4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
16 #ifdef CONFIG_VM_EVENT_COUNTERS
17 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
18 EXPORT_PER_CPU_SYMBOL(vm_event_states);
20 static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask)
25 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
27 cpu = first_cpu(*cpumask);
28 while (cpu < NR_CPUS) {
29 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
31 cpu = next_cpu(cpu, *cpumask);
34 prefetch(&per_cpu(vm_event_states, cpu));
37 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38 ret[i] += this->event[i];
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
47 void all_vm_events(unsigned long *ret)
49 sum_vm_events(ret, &cpu_online_map);
51 EXPORT_SYMBOL_GPL(all_vm_events);
55 * Fold the foreign cpu events into our own.
57 * This is adding to the events on one processor
58 * but keeps the global counts constant.
60 void vm_events_fold_cpu(int cpu)
62 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
65 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
66 count_vm_events(i, fold_state->event[i]);
67 fold_state->event[i] = 0;
70 #endif /* CONFIG_HOTPLUG */
72 #endif /* CONFIG_VM_EVENT_COUNTERS */
75 * Manage combined zone based / global counters
77 * vm_stat contains the global counters
79 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
80 EXPORT_SYMBOL(vm_stat);
84 static int calculate_threshold(struct zone *zone)
87 int mem; /* memory in 128 MB units */
90 * The threshold scales with the number of processors and the amount
91 * of memory per zone. More memory means that we can defer updates for
92 * longer, more processors could lead to more contention.
93 * fls() is used to have a cheap way of logarithmic scaling.
95 * Some sample thresholds:
97 * Threshold Processors (fls) Zonesize fls(mem+1)
98 * ------------------------------------------------------------------
115 * 125 1024 10 8-16 GB 8
116 * 125 1024 10 16-32 GB 9
119 mem = zone->present_pages >> (27 - PAGE_SHIFT);
121 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
124 * Maximum threshold is 125
126 threshold = min(125, threshold);
132 * Refresh the thresholds for each zone.
134 static void refresh_zone_stat_thresholds(void)
140 for_each_zone(zone) {
142 if (!zone->present_pages)
145 threshold = calculate_threshold(zone);
147 for_each_online_cpu(cpu)
148 zone_pcp(zone, cpu)->stat_threshold = threshold;
153 * For use when we know that interrupts are disabled.
155 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
158 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
159 s8 *p = pcp->vm_stat_diff + item;
164 if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
165 zone_page_state_add(x, zone, item);
170 EXPORT_SYMBOL(__mod_zone_page_state);
173 * For an unknown interrupt state
175 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
180 local_irq_save(flags);
181 __mod_zone_page_state(zone, item, delta);
182 local_irq_restore(flags);
184 EXPORT_SYMBOL(mod_zone_page_state);
187 * Optimized increment and decrement functions.
189 * These are only for a single page and therefore can take a struct page *
190 * argument instead of struct zone *. This allows the inclusion of the code
191 * generated for page_zone(page) into the optimized functions.
193 * No overflow check is necessary and therefore the differential can be
194 * incremented or decremented in place which may allow the compilers to
195 * generate better code.
196 * The increment or decrement is known and therefore one boundary check can
199 * NOTE: These functions are very performance sensitive. Change only
202 * Some processors have inc/dec instructions that are atomic vs an interrupt.
203 * However, the code must first determine the differential location in a zone
204 * based on the processor number and then inc/dec the counter. There is no
205 * guarantee without disabling preemption that the processor will not change
206 * in between and therefore the atomicity vs. interrupt cannot be exploited
207 * in a useful way here.
209 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
211 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
212 s8 *p = pcp->vm_stat_diff + item;
216 if (unlikely(*p > pcp->stat_threshold)) {
217 int overstep = pcp->stat_threshold / 2;
219 zone_page_state_add(*p + overstep, zone, item);
224 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
226 __inc_zone_state(page_zone(page), item);
228 EXPORT_SYMBOL(__inc_zone_page_state);
230 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
232 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
233 s8 *p = pcp->vm_stat_diff + item;
237 if (unlikely(*p < - pcp->stat_threshold)) {
238 int overstep = pcp->stat_threshold / 2;
240 zone_page_state_add(*p - overstep, zone, item);
245 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
247 __dec_zone_state(page_zone(page), item);
249 EXPORT_SYMBOL(__dec_zone_page_state);
251 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
255 local_irq_save(flags);
256 __inc_zone_state(zone, item);
257 local_irq_restore(flags);
260 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
265 zone = page_zone(page);
266 local_irq_save(flags);
267 __inc_zone_state(zone, item);
268 local_irq_restore(flags);
270 EXPORT_SYMBOL(inc_zone_page_state);
272 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
276 local_irq_save(flags);
277 __dec_zone_page_state(page, item);
278 local_irq_restore(flags);
280 EXPORT_SYMBOL(dec_zone_page_state);
283 * Update the zone counters for one cpu.
285 * Note that refresh_cpu_vm_stats strives to only access
286 * node local memory. The per cpu pagesets on remote zones are placed
287 * in the memory local to the processor using that pageset. So the
288 * loop over all zones will access a series of cachelines local to
291 * The call to zone_page_state_add updates the cachelines with the
292 * statistics in the remote zone struct as well as the global cachelines
293 * with the global counters. These could cause remote node cache line
294 * bouncing and will have to be only done when necessary.
296 void refresh_cpu_vm_stats(int cpu)
302 for_each_zone(zone) {
303 struct per_cpu_pageset *p;
305 if (!populated_zone(zone))
308 p = zone_pcp(zone, cpu);
310 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
311 if (p->vm_stat_diff[i]) {
312 local_irq_save(flags);
313 zone_page_state_add(p->vm_stat_diff[i],
315 p->vm_stat_diff[i] = 0;
317 /* 3 seconds idle till flush */
320 local_irq_restore(flags);
324 * Deal with draining the remote pageset of this
327 * Check if there are pages remaining in this pageset
328 * if not then there is nothing to expire.
330 if (!p->expire || (!p->pcp[0].count && !p->pcp[1].count))
334 * We never drain zones local to this processor.
336 if (zone_to_nid(zone) == numa_node_id()) {
346 drain_zone_pages(zone, p->pcp + 0);
349 drain_zone_pages(zone, p->pcp + 1);
354 static void __refresh_cpu_vm_stats(void *dummy)
356 refresh_cpu_vm_stats(smp_processor_id());
360 * Consolidate all counters.
362 * Note that the result is less inaccurate but still inaccurate
363 * if concurrent processes are allowed to run.
365 void refresh_vm_stats(void)
367 on_each_cpu(__refresh_cpu_vm_stats, NULL, 0, 1);
369 EXPORT_SYMBOL(refresh_vm_stats);
375 * zonelist = the list of zones passed to the allocator
376 * z = the zone from which the allocation occurred.
378 * Must be called with interrupts disabled.
380 void zone_statistics(struct zonelist *zonelist, struct zone *z)
382 if (z->zone_pgdat == zonelist->zones[0]->zone_pgdat) {
383 __inc_zone_state(z, NUMA_HIT);
385 __inc_zone_state(z, NUMA_MISS);
386 __inc_zone_state(zonelist->zones[0], NUMA_FOREIGN);
388 if (z->node == numa_node_id())
389 __inc_zone_state(z, NUMA_LOCAL);
391 __inc_zone_state(z, NUMA_OTHER);
395 #ifdef CONFIG_PROC_FS
397 #include <linux/seq_file.h>
399 static void *frag_start(struct seq_file *m, loff_t *pos)
403 for (pgdat = first_online_pgdat();
405 pgdat = next_online_pgdat(pgdat))
411 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
413 pg_data_t *pgdat = (pg_data_t *)arg;
416 return next_online_pgdat(pgdat);
419 static void frag_stop(struct seq_file *m, void *arg)
424 * This walks the free areas for each zone.
426 static int frag_show(struct seq_file *m, void *arg)
428 pg_data_t *pgdat = (pg_data_t *)arg;
430 struct zone *node_zones = pgdat->node_zones;
434 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
435 if (!populated_zone(zone))
438 spin_lock_irqsave(&zone->lock, flags);
439 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
440 for (order = 0; order < MAX_ORDER; ++order)
441 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
442 spin_unlock_irqrestore(&zone->lock, flags);
448 const struct seq_operations fragmentation_op = {
455 #ifdef CONFIG_ZONE_DMA
456 #define TEXT_FOR_DMA(xx) xx "_dma",
458 #define TEXT_FOR_DMA(xx)
461 #ifdef CONFIG_ZONE_DMA32
462 #define TEXT_FOR_DMA32(xx) xx "_dma32",
464 #define TEXT_FOR_DMA32(xx)
467 #ifdef CONFIG_HIGHMEM
468 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
470 #define TEXT_FOR_HIGHMEM(xx)
473 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
476 static const char * const vmstat_text[] = {
477 /* Zoned VM counters */
486 "nr_slab_reclaimable",
487 "nr_slab_unreclaimable",
488 "nr_page_table_pages",
502 #ifdef CONFIG_VM_EVENT_COUNTERS
508 TEXTS_FOR_ZONES("pgalloc")
517 TEXTS_FOR_ZONES("pgrefill")
518 TEXTS_FOR_ZONES("pgsteal")
519 TEXTS_FOR_ZONES("pgscan_kswapd")
520 TEXTS_FOR_ZONES("pgscan_direct")
534 * Output information about zones in @pgdat.
536 static int zoneinfo_show(struct seq_file *m, void *arg)
538 pg_data_t *pgdat = arg;
540 struct zone *node_zones = pgdat->node_zones;
543 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
546 if (!populated_zone(zone))
549 spin_lock_irqsave(&zone->lock, flags);
550 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
556 "\n scanned %lu (a: %lu i: %lu)"
559 zone_page_state(zone, NR_FREE_PAGES),
564 zone->nr_scan_active, zone->nr_scan_inactive,
566 zone->present_pages);
568 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
569 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
570 zone_page_state(zone, i));
573 "\n protection: (%lu",
574 zone->lowmem_reserve[0]);
575 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
576 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
580 for_each_online_cpu(i) {
581 struct per_cpu_pageset *pageset;
584 pageset = zone_pcp(zone, i);
585 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
592 pageset->pcp[j].count,
593 pageset->pcp[j].high,
594 pageset->pcp[j].batch);
597 seq_printf(m, "\n vm stats threshold: %d",
598 pageset->stat_threshold);
602 "\n all_unreclaimable: %u"
603 "\n prev_priority: %i"
605 zone->all_unreclaimable,
607 zone->zone_start_pfn);
608 spin_unlock_irqrestore(&zone->lock, flags);
614 const struct seq_operations zoneinfo_op = {
615 .start = frag_start, /* iterate over all zones. The same as in
619 .show = zoneinfo_show,
622 static void *vmstat_start(struct seq_file *m, loff_t *pos)
625 #ifdef CONFIG_VM_EVENT_COUNTERS
630 if (*pos >= ARRAY_SIZE(vmstat_text))
633 #ifdef CONFIG_VM_EVENT_COUNTERS
634 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
635 + sizeof(struct vm_event_state), GFP_KERNEL);
637 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
642 return ERR_PTR(-ENOMEM);
643 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
644 v[i] = global_page_state(i);
645 #ifdef CONFIG_VM_EVENT_COUNTERS
646 e = v + NR_VM_ZONE_STAT_ITEMS;
648 e[PGPGIN] /= 2; /* sectors -> kbytes */
654 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
657 if (*pos >= ARRAY_SIZE(vmstat_text))
659 return (unsigned long *)m->private + *pos;
662 static int vmstat_show(struct seq_file *m, void *arg)
664 unsigned long *l = arg;
665 unsigned long off = l - (unsigned long *)m->private;
667 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
671 static void vmstat_stop(struct seq_file *m, void *arg)
677 const struct seq_operations vmstat_op = {
678 .start = vmstat_start,
684 #endif /* CONFIG_PROC_FS */
687 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
688 int sysctl_stat_interval __read_mostly = HZ;
690 static void vmstat_update(struct work_struct *w)
692 refresh_cpu_vm_stats(smp_processor_id());
693 schedule_delayed_work(&__get_cpu_var(vmstat_work),
694 sysctl_stat_interval);
697 static void __devinit start_cpu_timer(int cpu)
699 struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);
701 INIT_DELAYED_WORK(vmstat_work, vmstat_update);
702 schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
706 * Use the cpu notifier to insure that the thresholds are recalculated
709 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
710 unsigned long action,
713 long cpu = (long)hcpu;
717 case CPU_ONLINE_FROZEN:
718 start_cpu_timer(cpu);
720 case CPU_DOWN_PREPARE:
721 case CPU_DOWN_PREPARE_FROZEN:
722 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
723 per_cpu(vmstat_work, cpu).work.func = NULL;
725 case CPU_DOWN_FAILED:
726 case CPU_DOWN_FAILED_FROZEN:
727 start_cpu_timer(cpu);
730 case CPU_DEAD_FROZEN:
731 refresh_zone_stat_thresholds();
739 static struct notifier_block __cpuinitdata vmstat_notifier =
740 { &vmstat_cpuup_callback, NULL, 0 };
742 int __init setup_vmstat(void)
746 refresh_zone_stat_thresholds();
747 register_cpu_notifier(&vmstat_notifier);
749 for_each_online_cpu(cpu)
750 start_cpu_timer(cpu);
753 module_init(setup_vmstat)