2 * Procedures for interfacing to Open Firmware.
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stringify.h>
29 #include <linux/delay.h>
30 #include <linux/initrd.h>
31 #include <linux/bitops.h>
35 #include <asm/processor.h>
39 #include <asm/system.h>
41 #include <asm/pgtable.h>
43 #include <asm/iommu.h>
44 #include <asm/bootinfo.h>
45 #include <asm/btext.h>
46 #include <asm/sections.h>
47 #include <asm/machdep.h>
49 #ifdef CONFIG_LOGO_LINUX_CLUT224
50 #include <linux/linux_logo.h>
51 extern const struct linux_logo logo_linux_clut224;
55 * Properties whose value is longer than this get excluded from our
56 * copy of the device tree. This value does need to be big enough to
57 * ensure that we don't lose things like the interrupt-map property
58 * on a PCI-PCI bridge.
60 #define MAX_PROPERTY_LENGTH (1UL * 1024 * 1024)
63 * Eventually bump that one up
65 #define DEVTREE_CHUNK_SIZE 0x100000
68 * This is the size of the local memory reserve map that gets copied
69 * into the boot params passed to the kernel. That size is totally
70 * flexible as the kernel just reads the list until it encounters an
71 * entry with size 0, so it can be changed without breaking binary
74 #define MEM_RESERVE_MAP_SIZE 8
77 * prom_init() is called very early on, before the kernel text
78 * and data have been mapped to KERNELBASE. At this point the code
79 * is running at whatever address it has been loaded at.
80 * On ppc32 we compile with -mrelocatable, which means that references
81 * to extern and static variables get relocated automatically.
82 * On ppc64 we have to relocate the references explicitly with
83 * RELOC. (Note that strings count as static variables.)
85 * Because OF may have mapped I/O devices into the area starting at
86 * KERNELBASE, particularly on CHRP machines, we can't safely call
87 * OF once the kernel has been mapped to KERNELBASE. Therefore all
88 * OF calls must be done within prom_init().
90 * ADDR is used in calls to call_prom. The 4th and following
91 * arguments to call_prom should be 32-bit values.
92 * On ppc64, 64 bit values are truncated to 32 bits (and
93 * fortunately don't get interpreted as two arguments).
96 #define RELOC(x) (*PTRRELOC(&(x)))
97 #define ADDR(x) (u32) add_reloc_offset((unsigned long)(x))
100 #define ADDR(x) (u32) (x)
103 #define PROM_BUG() do { \
104 prom_printf("kernel BUG at %s line 0x%x!\n", \
105 RELOC(__FILE__), __LINE__); \
106 __asm__ __volatile__(".long " BUG_ILLEGAL_INSTR); \
110 #define prom_debug(x...) prom_printf(x)
112 #define prom_debug(x...)
116 #define PLATFORM_POWERMAC _MACH_Pmac
117 #define PLATFORM_CHRP _MACH_chrp
121 typedef u32 prom_arg_t;
137 struct mem_map_entry {
144 extern void __start(unsigned long r3, unsigned long r4, unsigned long r5);
147 extern void enter_prom(struct prom_args *args, unsigned long entry);
149 static inline void enter_prom(struct prom_args *args, unsigned long entry)
151 ((void (*)(struct prom_args *))entry)(args);
155 extern void copy_and_flush(unsigned long dest, unsigned long src,
156 unsigned long size, unsigned long offset);
159 static struct prom_t __initdata prom;
161 static unsigned long prom_entry __initdata;
163 #define PROM_SCRATCH_SIZE 256
165 static char __initdata of_stdout_device[256];
166 static char __initdata prom_scratch[PROM_SCRATCH_SIZE];
168 static unsigned long __initdata dt_header_start;
169 static unsigned long __initdata dt_struct_start, dt_struct_end;
170 static unsigned long __initdata dt_string_start, dt_string_end;
172 static unsigned long __initdata prom_initrd_start, prom_initrd_end;
175 static int __initdata iommu_force_on;
176 static int __initdata ppc64_iommu_off;
177 static unsigned long __initdata prom_tce_alloc_start;
178 static unsigned long __initdata prom_tce_alloc_end;
181 static int __initdata of_platform;
183 static char __initdata prom_cmd_line[COMMAND_LINE_SIZE];
185 static unsigned long __initdata prom_memory_limit;
187 static unsigned long __initdata alloc_top;
188 static unsigned long __initdata alloc_top_high;
189 static unsigned long __initdata alloc_bottom;
190 static unsigned long __initdata rmo_top;
191 static unsigned long __initdata ram_top;
193 static struct mem_map_entry __initdata mem_reserve_map[MEM_RESERVE_MAP_SIZE];
194 static int __initdata mem_reserve_cnt;
196 static cell_t __initdata regbuf[1024];
199 #define MAX_CPU_THREADS 2
205 unsigned int threadid;
206 } hmt_thread_data[NR_CPUS];
207 #endif /* CONFIG_HMT */
210 * Error results ... some OF calls will return "-1" on error, some
211 * will return 0, some will return either. To simplify, here are
212 * macros to use with any ihandle or phandle return value to check if
216 #define PROM_ERROR (-1u)
217 #define PHANDLE_VALID(p) ((p) != 0 && (p) != PROM_ERROR)
218 #define IHANDLE_VALID(i) ((i) != 0 && (i) != PROM_ERROR)
221 /* This is the one and *ONLY* place where we actually call open
225 static int __init call_prom(const char *service, int nargs, int nret, ...)
228 struct prom_args args;
231 args.service = ADDR(service);
235 va_start(list, nret);
236 for (i = 0; i < nargs; i++)
237 args.args[i] = va_arg(list, prom_arg_t);
240 for (i = 0; i < nret; i++)
241 args.args[nargs+i] = 0;
243 enter_prom(&args, RELOC(prom_entry));
245 return (nret > 0) ? args.args[nargs] : 0;
248 static int __init call_prom_ret(const char *service, int nargs, int nret,
249 prom_arg_t *rets, ...)
252 struct prom_args args;
255 args.service = ADDR(service);
259 va_start(list, rets);
260 for (i = 0; i < nargs; i++)
261 args.args[i] = va_arg(list, prom_arg_t);
264 for (i = 0; i < nret; i++)
267 enter_prom(&args, RELOC(prom_entry));
270 for (i = 1; i < nret; ++i)
271 rets[i] = args.args[nargs+i];
273 return (nret > 0) ? args.args[nargs] : 0;
277 static unsigned int __init prom_claim(unsigned long virt, unsigned long size,
280 return (unsigned int)call_prom("claim", 3, 1,
281 (prom_arg_t)virt, (prom_arg_t)size,
285 static void __init prom_print(const char *msg)
288 struct prom_t *_prom = &RELOC(prom);
290 if (_prom->stdout == 0)
293 for (p = msg; *p != 0; p = q) {
294 for (q = p; *q != 0 && *q != '\n'; ++q)
297 call_prom("write", 3, 1, _prom->stdout, p, q - p);
301 call_prom("write", 3, 1, _prom->stdout, ADDR("\r\n"), 2);
306 static void __init prom_print_hex(unsigned long val)
308 int i, nibbles = sizeof(val)*2;
309 char buf[sizeof(val)*2+1];
310 struct prom_t *_prom = &RELOC(prom);
312 for (i = nibbles-1; i >= 0; i--) {
313 buf[i] = (val & 0xf) + '0';
315 buf[i] += ('a'-'0'-10);
319 call_prom("write", 3, 1, _prom->stdout, buf, nibbles);
323 static void __init prom_printf(const char *format, ...)
325 const char *p, *q, *s;
328 struct prom_t *_prom = &RELOC(prom);
330 va_start(args, format);
332 format = PTRRELOC(format);
334 for (p = format; *p != 0; p = q) {
335 for (q = p; *q != 0 && *q != '\n' && *q != '%'; ++q)
338 call_prom("write", 3, 1, _prom->stdout, p, q - p);
343 call_prom("write", 3, 1, _prom->stdout,
353 s = va_arg(args, const char *);
358 v = va_arg(args, unsigned long);
366 static void __init __attribute__((noreturn)) prom_panic(const char *reason)
369 reason = PTRRELOC(reason);
372 /* ToDo: should put up an SRC here on p/iSeries */
373 call_prom("exit", 0, 0);
375 for (;;) /* should never get here */
380 static int __init prom_next_node(phandle *nodep)
384 if ((node = *nodep) != 0
385 && (*nodep = call_prom("child", 1, 1, node)) != 0)
387 if ((*nodep = call_prom("peer", 1, 1, node)) != 0)
390 if ((node = call_prom("parent", 1, 1, node)) == 0)
392 if ((*nodep = call_prom("peer", 1, 1, node)) != 0)
397 static int __init prom_getprop(phandle node, const char *pname,
398 void *value, size_t valuelen)
400 return call_prom("getprop", 4, 1, node, ADDR(pname),
401 (u32)(unsigned long) value, (u32) valuelen);
404 static int __init prom_getproplen(phandle node, const char *pname)
406 return call_prom("getproplen", 2, 1, node, ADDR(pname));
409 static int __init prom_setprop(phandle node, const char *pname,
410 void *value, size_t valuelen)
412 return call_prom("setprop", 4, 1, node, ADDR(pname),
413 (u32)(unsigned long) value, (u32) valuelen);
416 /* We can't use the standard versions because of RELOC headaches. */
417 #define isxdigit(c) (('0' <= (c) && (c) <= '9') \
418 || ('a' <= (c) && (c) <= 'f') \
419 || ('A' <= (c) && (c) <= 'F'))
421 #define isdigit(c) ('0' <= (c) && (c) <= '9')
422 #define islower(c) ('a' <= (c) && (c) <= 'z')
423 #define toupper(c) (islower(c) ? ((c) - 'a' + 'A') : (c))
425 unsigned long prom_strtoul(const char *cp, const char **endp)
427 unsigned long result = 0, base = 10, value;
432 if (toupper(*cp) == 'X') {
438 while (isxdigit(*cp) &&
439 (value = isdigit(*cp) ? *cp - '0' : toupper(*cp) - 'A' + 10) < base) {
440 result = result * base + value;
450 unsigned long prom_memparse(const char *ptr, const char **retptr)
452 unsigned long ret = prom_strtoul(ptr, retptr);
456 * We can't use a switch here because GCC *may* generate a
457 * jump table which won't work, because we're not running at
458 * the address we're linked at.
460 if ('G' == **retptr || 'g' == **retptr)
463 if ('M' == **retptr || 'm' == **retptr)
466 if ('K' == **retptr || 'k' == **retptr)
478 * Early parsing of the command line passed to the kernel, used for
479 * "mem=x" and the options that affect the iommu
481 static void __init early_cmdline_parse(void)
483 struct prom_t *_prom = &RELOC(prom);
487 RELOC(prom_cmd_line[0]) = 0;
488 p = RELOC(prom_cmd_line);
489 if ((long)_prom->chosen > 0)
490 l = prom_getprop(_prom->chosen, "bootargs", p, COMMAND_LINE_SIZE-1);
491 #ifdef CONFIG_CMDLINE
492 if (l == 0) /* dbl check */
493 strlcpy(RELOC(prom_cmd_line),
494 RELOC(CONFIG_CMDLINE), sizeof(prom_cmd_line));
495 #endif /* CONFIG_CMDLINE */
496 prom_printf("command line: %s\n", RELOC(prom_cmd_line));
499 opt = strstr(RELOC(prom_cmd_line), RELOC("iommu="));
501 prom_printf("iommu opt is: %s\n", opt);
503 while (*opt && *opt == ' ')
505 if (!strncmp(opt, RELOC("off"), 3))
506 RELOC(ppc64_iommu_off) = 1;
507 else if (!strncmp(opt, RELOC("force"), 5))
508 RELOC(iommu_force_on) = 1;
512 opt = strstr(RELOC(prom_cmd_line), RELOC("mem="));
515 RELOC(prom_memory_limit) = prom_memparse(opt, (const char **)&opt);
517 /* Align to 16 MB == size of ppc64 large page */
518 RELOC(prom_memory_limit) = ALIGN(RELOC(prom_memory_limit), 0x1000000);
523 #ifdef CONFIG_PPC_PSERIES
525 * To tell the firmware what our capabilities are, we have to pass
526 * it a fake 32-bit ELF header containing a couple of PT_NOTE sections
527 * that contain structures that contain the actual values.
529 static struct fake_elf {
536 char name[8]; /* "PowerPC" */
550 char name[24]; /* "IBM,RPA-Client-Config" */
564 .e_ident = { 0x7f, 'E', 'L', 'F',
565 ELFCLASS32, ELFDATA2MSB, EV_CURRENT },
566 .e_type = ET_EXEC, /* yeah right */
568 .e_version = EV_CURRENT,
569 .e_phoff = offsetof(struct fake_elf, phdr),
570 .e_phentsize = sizeof(Elf32_Phdr),
576 .p_offset = offsetof(struct fake_elf, chrpnote),
577 .p_filesz = sizeof(struct chrpnote)
580 .p_offset = offsetof(struct fake_elf, rpanote),
581 .p_filesz = sizeof(struct rpanote)
585 .namesz = sizeof("PowerPC"),
586 .descsz = sizeof(struct chrpdesc),
590 .real_mode = ~0U, /* ~0 means "don't care" */
599 .namesz = sizeof("IBM,RPA-Client-Config"),
600 .descsz = sizeof(struct rpadesc),
602 .name = "IBM,RPA-Client-Config",
605 .min_rmo_size = 64, /* in megabytes */
606 .min_rmo_percent = 0,
607 .max_pft_size = 48, /* 2^48 bytes max PFT size */
615 static void __init prom_send_capabilities(void)
619 elfloader = call_prom("open", 1, 1, ADDR("/packages/elf-loader"));
620 if (elfloader == 0) {
621 prom_printf("couldn't open /packages/elf-loader\n");
624 call_prom("call-method", 3, 1, ADDR("process-elf-header"),
625 elfloader, ADDR(&fake_elf));
626 call_prom("close", 1, 0, elfloader);
631 * Memory allocation strategy... our layout is normally:
633 * at 14Mb or more we have vmlinux, then a gap and initrd. In some
634 * rare cases, initrd might end up being before the kernel though.
635 * We assume this won't override the final kernel at 0, we have no
636 * provision to handle that in this version, but it should hopefully
639 * alloc_top is set to the top of RMO, eventually shrink down if the
642 * alloc_bottom is set to the top of kernel/initrd
644 * from there, allocations are done this way : rtas is allocated
645 * topmost, and the device-tree is allocated from the bottom. We try
646 * to grow the device-tree allocation as we progress. If we can't,
647 * then we fail, we don't currently have a facility to restart
648 * elsewhere, but that shouldn't be necessary.
650 * Note that calls to reserve_mem have to be done explicitly, memory
651 * allocated with either alloc_up or alloc_down isn't automatically
657 * Allocates memory in the RMO upward from the kernel/initrd
659 * When align is 0, this is a special case, it means to allocate in place
660 * at the current location of alloc_bottom or fail (that is basically
661 * extending the previous allocation). Used for the device-tree flattening
663 static unsigned long __init alloc_up(unsigned long size, unsigned long align)
665 unsigned long base = _ALIGN_UP(RELOC(alloc_bottom), align);
666 unsigned long addr = 0;
668 prom_debug("alloc_up(%x, %x)\n", size, align);
669 if (RELOC(ram_top) == 0)
670 prom_panic("alloc_up() called with mem not initialized\n");
673 base = _ALIGN_UP(RELOC(alloc_bottom), align);
675 base = RELOC(alloc_bottom);
677 for(; (base + size) <= RELOC(alloc_top);
678 base = _ALIGN_UP(base + 0x100000, align)) {
679 prom_debug(" trying: 0x%x\n\r", base);
680 addr = (unsigned long)prom_claim(base, size, 0);
681 if (addr != PROM_ERROR)
689 RELOC(alloc_bottom) = addr;
691 prom_debug(" -> %x\n", addr);
692 prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom));
693 prom_debug(" alloc_top : %x\n", RELOC(alloc_top));
694 prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
695 prom_debug(" rmo_top : %x\n", RELOC(rmo_top));
696 prom_debug(" ram_top : %x\n", RELOC(ram_top));
702 * Allocates memory downward, either from top of RMO, or if highmem
703 * is set, from the top of RAM. Note that this one doesn't handle
704 * failures. It does claim memory if highmem is not set.
706 static unsigned long __init alloc_down(unsigned long size, unsigned long align,
709 unsigned long base, addr = 0;
711 prom_debug("alloc_down(%x, %x, %s)\n", size, align,
712 highmem ? RELOC("(high)") : RELOC("(low)"));
713 if (RELOC(ram_top) == 0)
714 prom_panic("alloc_down() called with mem not initialized\n");
717 /* Carve out storage for the TCE table. */
718 addr = _ALIGN_DOWN(RELOC(alloc_top_high) - size, align);
719 if (addr <= RELOC(alloc_bottom))
721 /* Will we bump into the RMO ? If yes, check out that we
722 * didn't overlap existing allocations there, if we did,
723 * we are dead, we must be the first in town !
725 if (addr < RELOC(rmo_top)) {
726 /* Good, we are first */
727 if (RELOC(alloc_top) == RELOC(rmo_top))
728 RELOC(alloc_top) = RELOC(rmo_top) = addr;
732 RELOC(alloc_top_high) = addr;
736 base = _ALIGN_DOWN(RELOC(alloc_top) - size, align);
737 for (; base > RELOC(alloc_bottom);
738 base = _ALIGN_DOWN(base - 0x100000, align)) {
739 prom_debug(" trying: 0x%x\n\r", base);
740 addr = (unsigned long)prom_claim(base, size, 0);
741 if (addr != PROM_ERROR)
747 RELOC(alloc_top) = addr;
750 prom_debug(" -> %x\n", addr);
751 prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom));
752 prom_debug(" alloc_top : %x\n", RELOC(alloc_top));
753 prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
754 prom_debug(" rmo_top : %x\n", RELOC(rmo_top));
755 prom_debug(" ram_top : %x\n", RELOC(ram_top));
763 static unsigned long __init prom_next_cell(int s, cell_t **cellp)
768 /* Ignore more than 2 cells */
769 while (s > sizeof(unsigned long) / 4) {
785 * Very dumb function for adding to the memory reserve list, but
786 * we don't need anything smarter at this point
788 * XXX Eventually check for collisions. They should NEVER happen.
789 * If problems seem to show up, it would be a good start to track
792 static void reserve_mem(unsigned long base, unsigned long size)
794 unsigned long top = base + size;
795 unsigned long cnt = RELOC(mem_reserve_cnt);
800 /* We need to always keep one empty entry so that we
801 * have our terminator with "size" set to 0 since we are
802 * dumb and just copy this entire array to the boot params
804 base = _ALIGN_DOWN(base, PAGE_SIZE);
805 top = _ALIGN_UP(top, PAGE_SIZE);
808 if (cnt >= (MEM_RESERVE_MAP_SIZE - 1))
809 prom_panic("Memory reserve map exhausted !\n");
810 RELOC(mem_reserve_map)[cnt].base = base;
811 RELOC(mem_reserve_map)[cnt].size = size;
812 RELOC(mem_reserve_cnt) = cnt + 1;
816 * Initialize memory allocation mecanism, parse "memory" nodes and
817 * obtain that way the top of memory and RMO to setup out local allocator
819 static void __init prom_init_mem(void)
822 char *path, type[64];
825 struct prom_t *_prom = &RELOC(prom);
829 * We iterate the memory nodes to find
830 * 1) top of RMO (first node)
834 prom_getprop(_prom->root, "#address-cells", &rac, sizeof(rac));
836 prom_getprop(_prom->root, "#size-cells", &rsc, sizeof(rsc));
837 prom_debug("root_addr_cells: %x\n", (unsigned long) rac);
838 prom_debug("root_size_cells: %x\n", (unsigned long) rsc);
840 prom_debug("scanning memory:\n");
841 path = RELOC(prom_scratch);
843 for (node = 0; prom_next_node(&node); ) {
845 prom_getprop(node, "device_type", type, sizeof(type));
847 if (strcmp(type, RELOC("memory")))
850 plen = prom_getprop(node, "reg", RELOC(regbuf), sizeof(regbuf));
851 if (plen > sizeof(regbuf)) {
852 prom_printf("memory node too large for buffer !\n");
853 plen = sizeof(regbuf);
856 endp = p + (plen / sizeof(cell_t));
859 memset(path, 0, PROM_SCRATCH_SIZE);
860 call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1);
861 prom_debug(" node %s :\n", path);
862 #endif /* DEBUG_PROM */
864 while ((endp - p) >= (rac + rsc)) {
865 unsigned long base, size;
867 base = prom_next_cell(rac, &p);
868 size = prom_next_cell(rsc, &p);
872 prom_debug(" %x %x\n", base, size);
874 RELOC(rmo_top) = size;
875 if ((base + size) > RELOC(ram_top))
876 RELOC(ram_top) = base + size;
880 RELOC(alloc_bottom) = PAGE_ALIGN((unsigned long)&RELOC(_end) + 0x4000);
882 /* Check if we have an initrd after the kernel, if we do move our bottom
885 if (RELOC(prom_initrd_start)) {
886 if (RELOC(prom_initrd_end) > RELOC(alloc_bottom))
887 RELOC(alloc_bottom) = PAGE_ALIGN(RELOC(prom_initrd_end));
891 * If prom_memory_limit is set we reduce the upper limits *except* for
892 * alloc_top_high. This must be the real top of RAM so we can put
896 RELOC(alloc_top_high) = RELOC(ram_top);
898 if (RELOC(prom_memory_limit)) {
899 if (RELOC(prom_memory_limit) <= RELOC(alloc_bottom)) {
900 prom_printf("Ignoring mem=%x <= alloc_bottom.\n",
901 RELOC(prom_memory_limit));
902 RELOC(prom_memory_limit) = 0;
903 } else if (RELOC(prom_memory_limit) >= RELOC(ram_top)) {
904 prom_printf("Ignoring mem=%x >= ram_top.\n",
905 RELOC(prom_memory_limit));
906 RELOC(prom_memory_limit) = 0;
908 RELOC(ram_top) = RELOC(prom_memory_limit);
909 RELOC(rmo_top) = min(RELOC(rmo_top), RELOC(prom_memory_limit));
914 * Setup our top alloc point, that is top of RMO or top of
915 * segment 0 when running non-LPAR.
916 * Some RS64 machines have buggy firmware where claims up at
917 * 1GB fail. Cap at 768MB as a workaround.
918 * Since 768MB is plenty of room, and we need to cap to something
919 * reasonable on 32-bit, cap at 768MB on all machines.
922 RELOC(rmo_top) = RELOC(ram_top);
923 RELOC(rmo_top) = min(0x30000000ul, RELOC(rmo_top));
924 RELOC(alloc_top) = RELOC(rmo_top);
926 prom_printf("memory layout at init:\n");
927 prom_printf(" memory_limit : %x (16 MB aligned)\n", RELOC(prom_memory_limit));
928 prom_printf(" alloc_bottom : %x\n", RELOC(alloc_bottom));
929 prom_printf(" alloc_top : %x\n", RELOC(alloc_top));
930 prom_printf(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
931 prom_printf(" rmo_top : %x\n", RELOC(rmo_top));
932 prom_printf(" ram_top : %x\n", RELOC(ram_top));
937 * Allocate room for and instantiate RTAS
939 static void __init prom_instantiate_rtas(void)
946 prom_debug("prom_instantiate_rtas: start...\n");
948 rtas_node = call_prom("finddevice", 1, 1, ADDR("/rtas"));
949 prom_debug("rtas_node: %x\n", rtas_node);
950 if (!PHANDLE_VALID(rtas_node))
953 prom_getprop(rtas_node, "rtas-size", &size, sizeof(size));
957 base = alloc_down(size, PAGE_SIZE, 0);
959 prom_printf("RTAS allocation failed !\n");
963 rtas_inst = call_prom("open", 1, 1, ADDR("/rtas"));
964 if (!IHANDLE_VALID(rtas_inst)) {
965 prom_printf("opening rtas package failed");
969 prom_printf("instantiating rtas at 0x%x ...", base);
971 if (call_prom_ret("call-method", 3, 2, &entry,
972 ADDR("instantiate-rtas"),
973 rtas_inst, base) == PROM_ERROR
975 prom_printf(" failed\n");
978 prom_printf(" done\n");
980 reserve_mem(base, size);
982 prom_setprop(rtas_node, "linux,rtas-base", &base, sizeof(base));
983 prom_setprop(rtas_node, "linux,rtas-entry", &entry, sizeof(entry));
985 prom_debug("rtas base = 0x%x\n", base);
986 prom_debug("rtas entry = 0x%x\n", entry);
987 prom_debug("rtas size = 0x%x\n", (long)size);
989 prom_debug("prom_instantiate_rtas: end...\n");
994 * Allocate room for and initialize TCE tables
996 static void __init prom_initialize_tce_table(void)
1000 char compatible[64], type[64], model[64];
1001 char *path = RELOC(prom_scratch);
1003 u32 minalign, minsize;
1004 u64 tce_entry, *tce_entryp;
1005 u64 local_alloc_top, local_alloc_bottom;
1008 if (RELOC(ppc64_iommu_off))
1011 prom_debug("starting prom_initialize_tce_table\n");
1013 /* Cache current top of allocs so we reserve a single block */
1014 local_alloc_top = RELOC(alloc_top_high);
1015 local_alloc_bottom = local_alloc_top;
1017 /* Search all nodes looking for PHBs. */
1018 for (node = 0; prom_next_node(&node); ) {
1022 prom_getprop(node, "compatible",
1023 compatible, sizeof(compatible));
1024 prom_getprop(node, "device_type", type, sizeof(type));
1025 prom_getprop(node, "model", model, sizeof(model));
1027 if ((type[0] == 0) || (strstr(type, RELOC("pci")) == NULL))
1030 /* Keep the old logic in tack to avoid regression. */
1031 if (compatible[0] != 0) {
1032 if ((strstr(compatible, RELOC("python")) == NULL) &&
1033 (strstr(compatible, RELOC("Speedwagon")) == NULL) &&
1034 (strstr(compatible, RELOC("Winnipeg")) == NULL))
1036 } else if (model[0] != 0) {
1037 if ((strstr(model, RELOC("ython")) == NULL) &&
1038 (strstr(model, RELOC("peedwagon")) == NULL) &&
1039 (strstr(model, RELOC("innipeg")) == NULL))
1043 if (prom_getprop(node, "tce-table-minalign", &minalign,
1044 sizeof(minalign)) == PROM_ERROR)
1046 if (prom_getprop(node, "tce-table-minsize", &minsize,
1047 sizeof(minsize)) == PROM_ERROR)
1048 minsize = 4UL << 20;
1051 * Even though we read what OF wants, we just set the table
1052 * size to 4 MB. This is enough to map 2GB of PCI DMA space.
1053 * By doing this, we avoid the pitfalls of trying to DMA to
1054 * MMIO space and the DMA alias hole.
1056 * On POWER4, firmware sets the TCE region by assuming
1057 * each TCE table is 8MB. Using this memory for anything
1058 * else will impact performance, so we always allocate 8MB.
1061 if (__is_processor(PV_POWER4) || __is_processor(PV_POWER4p))
1062 minsize = 8UL << 20;
1064 minsize = 4UL << 20;
1066 /* Align to the greater of the align or size */
1067 align = max(minalign, minsize);
1068 base = alloc_down(minsize, align, 1);
1070 prom_panic("ERROR, cannot find space for TCE table.\n");
1071 if (base < local_alloc_bottom)
1072 local_alloc_bottom = base;
1074 /* Save away the TCE table attributes for later use. */
1075 prom_setprop(node, "linux,tce-base", &base, sizeof(base));
1076 prom_setprop(node, "linux,tce-size", &minsize, sizeof(minsize));
1078 /* It seems OF doesn't null-terminate the path :-( */
1079 memset(path, 0, sizeof(path));
1080 /* Call OF to setup the TCE hardware */
1081 if (call_prom("package-to-path", 3, 1, node,
1082 path, PROM_SCRATCH_SIZE-1) == PROM_ERROR) {
1083 prom_printf("package-to-path failed\n");
1086 prom_debug("TCE table: %s\n", path);
1087 prom_debug("\tnode = 0x%x\n", node);
1088 prom_debug("\tbase = 0x%x\n", base);
1089 prom_debug("\tsize = 0x%x\n", minsize);
1091 /* Initialize the table to have a one-to-one mapping
1092 * over the allocated size.
1094 tce_entryp = (unsigned long *)base;
1095 for (i = 0; i < (minsize >> 3) ;tce_entryp++, i++) {
1096 tce_entry = (i << PAGE_SHIFT);
1098 *tce_entryp = tce_entry;
1101 prom_printf("opening PHB %s", path);
1102 phb_node = call_prom("open", 1, 1, path);
1104 prom_printf("... failed\n");
1106 prom_printf("... done\n");
1108 call_prom("call-method", 6, 0, ADDR("set-64-bit-addressing"),
1109 phb_node, -1, minsize,
1110 (u32) base, (u32) (base >> 32));
1111 call_prom("close", 1, 0, phb_node);
1114 reserve_mem(local_alloc_bottom, local_alloc_top - local_alloc_bottom);
1116 if (RELOC(prom_memory_limit)) {
1118 * We align the start to a 16MB boundary so we can map
1119 * the TCE area using large pages if possible.
1120 * The end should be the top of RAM so no need to align it.
1122 RELOC(prom_tce_alloc_start) = _ALIGN_DOWN(local_alloc_bottom,
1124 RELOC(prom_tce_alloc_end) = local_alloc_top;
1127 /* Flag the first invalid entry */
1128 prom_debug("ending prom_initialize_tce_table\n");
1133 * With CHRP SMP we need to use the OF to start the other processors.
1134 * We can't wait until smp_boot_cpus (the OF is trashed by then)
1135 * so we have to put the processors into a holding pattern controlled
1136 * by the kernel (not OF) before we destroy the OF.
1138 * This uses a chunk of low memory, puts some holding pattern
1139 * code there and sends the other processors off to there until
1140 * smp_boot_cpus tells them to do something. The holding pattern
1141 * checks that address until its cpu # is there, when it is that
1142 * cpu jumps to __secondary_start(). smp_boot_cpus() takes care
1143 * of setting those values.
1145 * We also use physical address 0x4 here to tell when a cpu
1146 * is in its holding pattern code.
1150 static void __init prom_hold_cpus(void)
1158 unsigned int interrupt_server[MAX_CPU_THREADS];
1159 unsigned int cpu_threads, hw_cpu_num;
1161 extern void __secondary_hold(void);
1162 extern unsigned long __secondary_hold_spinloop;
1163 extern unsigned long __secondary_hold_acknowledge;
1164 unsigned long *spinloop
1165 = (void *) __pa(&__secondary_hold_spinloop);
1166 unsigned long *acknowledge
1167 = (void *) __pa(&__secondary_hold_acknowledge);
1169 unsigned long secondary_hold
1170 = __pa(*PTRRELOC((unsigned long *)__secondary_hold));
1172 unsigned long secondary_hold = __pa(&__secondary_hold);
1174 struct prom_t *_prom = &RELOC(prom);
1176 prom_debug("prom_hold_cpus: start...\n");
1177 prom_debug(" 1) spinloop = 0x%x\n", (unsigned long)spinloop);
1178 prom_debug(" 1) *spinloop = 0x%x\n", *spinloop);
1179 prom_debug(" 1) acknowledge = 0x%x\n",
1180 (unsigned long)acknowledge);
1181 prom_debug(" 1) *acknowledge = 0x%x\n", *acknowledge);
1182 prom_debug(" 1) secondary_hold = 0x%x\n", secondary_hold);
1184 /* Set the common spinloop variable, so all of the secondary cpus
1185 * will block when they are awakened from their OF spinloop.
1186 * This must occur for both SMP and non SMP kernels, since OF will
1187 * be trashed when we move the kernel.
1192 for (i = 0; i < NR_CPUS; i++) {
1193 RELOC(hmt_thread_data)[i].pir = 0xdeadbeef;
1197 for (node = 0; prom_next_node(&node); ) {
1199 prom_getprop(node, "device_type", type, sizeof(type));
1200 if (strcmp(type, RELOC("cpu")) != 0)
1203 /* Skip non-configured cpus. */
1204 if (prom_getprop(node, "status", type, sizeof(type)) > 0)
1205 if (strcmp(type, RELOC("okay")) != 0)
1209 prom_getprop(node, "reg", ®, sizeof(reg));
1211 prom_debug("\ncpuid = 0x%x\n", cpuid);
1212 prom_debug("cpu hw idx = 0x%x\n", reg);
1214 /* Init the acknowledge var which will be reset by
1215 * the secondary cpu when it awakens from its OF
1218 *acknowledge = (unsigned long)-1;
1220 propsize = prom_getprop(node, "ibm,ppc-interrupt-server#s",
1222 sizeof(interrupt_server));
1224 /* no property. old hardware has no SMT */
1226 interrupt_server[0] = reg; /* fake it with phys id */
1228 /* We have a threaded processor */
1229 cpu_threads = propsize / sizeof(u32);
1230 if (cpu_threads > MAX_CPU_THREADS) {
1231 prom_printf("SMT: too many threads!\n"
1232 "SMT: found %x, max is %x\n",
1233 cpu_threads, MAX_CPU_THREADS);
1234 cpu_threads = 1; /* ToDo: panic? */
1238 hw_cpu_num = interrupt_server[0];
1239 if (hw_cpu_num != _prom->cpu) {
1240 /* Primary Thread of non-boot cpu */
1241 prom_printf("%x : starting cpu hw idx %x... ", cpuid, reg);
1242 call_prom("start-cpu", 3, 0, node,
1243 secondary_hold, reg);
1245 for ( i = 0 ; (i < 100000000) &&
1246 (*acknowledge == ((unsigned long)-1)); i++ )
1249 if (*acknowledge == reg) {
1250 prom_printf("done\n");
1251 /* We have to get every CPU out of OF,
1252 * even if we never start it. */
1253 if (cpuid >= NR_CPUS)
1256 prom_printf("failed: %x\n", *acknowledge);
1261 prom_printf("%x : boot cpu %x\n", cpuid, reg);
1265 /* Init paca for secondary threads. They start later. */
1266 for (i=1; i < cpu_threads; i++) {
1268 if (cpuid >= NR_CPUS)
1271 #endif /* CONFIG_SMP */
1275 /* Only enable HMT on processors that provide support. */
1276 if (__is_processor(PV_PULSAR) ||
1277 __is_processor(PV_ICESTAR) ||
1278 __is_processor(PV_SSTAR)) {
1279 prom_printf(" starting secondary threads\n");
1281 for (i = 0; i < NR_CPUS; i += 2) {
1286 unsigned long pir = mfspr(SPRN_PIR);
1287 if (__is_processor(PV_PULSAR)) {
1288 RELOC(hmt_thread_data)[i].pir =
1291 RELOC(hmt_thread_data)[i].pir =
1297 prom_printf("Processor is not HMT capable\n");
1301 if (cpuid > NR_CPUS)
1302 prom_printf("WARNING: maximum CPUs (" __stringify(NR_CPUS)
1303 ") exceeded: ignoring extras\n");
1305 prom_debug("prom_hold_cpus: end...\n");
1310 static void __init prom_init_client_services(unsigned long pp)
1312 struct prom_t *_prom = &RELOC(prom);
1314 /* Get a handle to the prom entry point before anything else */
1315 RELOC(prom_entry) = pp;
1317 /* get a handle for the stdout device */
1318 _prom->chosen = call_prom("finddevice", 1, 1, ADDR("/chosen"));
1319 if (!PHANDLE_VALID(_prom->chosen))
1320 prom_panic("cannot find chosen"); /* msg won't be printed :( */
1322 /* get device tree root */
1323 _prom->root = call_prom("finddevice", 1, 1, ADDR("/"));
1324 if (!PHANDLE_VALID(_prom->root))
1325 prom_panic("cannot find device tree root"); /* msg won't be printed :( */
1328 static void __init prom_init_stdout(void)
1330 struct prom_t *_prom = &RELOC(prom);
1331 char *path = RELOC(of_stdout_device);
1335 if (prom_getprop(_prom->chosen, "stdout", &val, sizeof(val)) <= 0)
1336 prom_panic("cannot find stdout");
1338 _prom->stdout = val;
1340 /* Get the full OF pathname of the stdout device */
1341 memset(path, 0, 256);
1342 call_prom("instance-to-path", 3, 1, _prom->stdout, path, 255);
1343 val = call_prom("instance-to-package", 1, 1, _prom->stdout);
1344 prom_setprop(_prom->chosen, "linux,stdout-package", &val, sizeof(val));
1345 prom_printf("OF stdout device is: %s\n", RELOC(of_stdout_device));
1346 prom_setprop(_prom->chosen, "linux,stdout-path",
1347 RELOC(of_stdout_device), strlen(RELOC(of_stdout_device))+1);
1349 /* If it's a display, note it */
1350 memset(type, 0, sizeof(type));
1351 prom_getprop(val, "device_type", type, sizeof(type));
1352 if (strcmp(type, RELOC("display")) == 0)
1353 prom_setprop(val, "linux,boot-display", NULL, 0);
1356 static void __init prom_close_stdin(void)
1358 struct prom_t *_prom = &RELOC(prom);
1361 if (prom_getprop(_prom->chosen, "stdin", &val, sizeof(val)) > 0)
1362 call_prom("close", 1, 0, val);
1365 static int __init prom_find_machine_type(void)
1367 struct prom_t *_prom = &RELOC(prom);
1372 len = prom_getprop(_prom->root, "compatible",
1373 compat, sizeof(compat)-1);
1377 char *p = &compat[i];
1381 if (strstr(p, RELOC("Power Macintosh")) ||
1382 strstr(p, RELOC("MacRISC4")))
1383 return PLATFORM_POWERMAC;
1385 if (strstr(p, RELOC("Momentum,Maple")))
1386 return PLATFORM_MAPLE;
1392 /* Default to pSeries. We need to know if we are running LPAR */
1393 rtas = call_prom("finddevice", 1, 1, ADDR("/rtas"));
1394 if (PHANDLE_VALID(rtas)) {
1395 int x = prom_getproplen(rtas, "ibm,hypertas-functions");
1396 if (x != PROM_ERROR) {
1397 prom_printf("Hypertas detected, assuming LPAR !\n");
1398 return PLATFORM_PSERIES_LPAR;
1401 return PLATFORM_PSERIES;
1403 return PLATFORM_CHRP;
1407 static int __init setup_disp(phandle dp)
1409 #if defined(CONFIG_BOOTX_TEXT) && defined(CONFIG_PPC32)
1410 int width = 640, height = 480, depth = 8, pitch;
1415 char *getprop = "getprop";
1417 prom_printf("Initializing screen: ");
1419 memset(name, 0, sizeof(name));
1420 call_prom(getprop, 4, 1, dp, "name", name, sizeof(name));
1421 name[sizeof(name)-1] = 0;
1424 call_prom(getprop, 4, 1, dp, "width", &width, sizeof(width));
1425 call_prom(getprop, 4, 1, dp, "height", &height, sizeof(height));
1426 call_prom(getprop, 4, 1, dp, "depth", &depth, sizeof(depth));
1427 pitch = width * ((depth + 7) / 8);
1428 call_prom(getprop, 4, 1, dp, "linebytes",
1429 &pitch, sizeof(pitch));
1431 pitch = 0x1000; /* for strange IBM display */
1433 call_prom(getprop, 4, 1, dp, "address", &address, sizeof(address));
1435 /* look for an assigned address with a size of >= 1MB */
1436 naddrs = call_prom(getprop, 4, 1, dp, "assigned-addresses",
1437 addrs, sizeof(addrs));
1439 for (i = 0; i < naddrs; ++i) {
1440 if (addrs[i][4] >= (1 << 20)) {
1441 address = addrs[i][2];
1442 /* use the BE aperture if possible */
1443 if (addrs[i][4] >= (16 << 20))
1444 address += (8 << 20);
1449 prom_print("Failed to get address\n");
1453 /* kludge for valkyrie */
1454 if (strcmp(name, "valkyrie") == 0)
1457 prom_printf("\n\n\n\naddress = %x\n", address);
1458 btext_setup_display(width, height, depth, pitch, address);
1459 #endif /* CONFIG_BOOTX_TEXT && CONFIG_PPC32 */
1463 static int __init prom_set_color(ihandle ih, int i, int r, int g, int b)
1465 return call_prom("call-method", 6, 1, ADDR("color!"), ih, i, b, g, r);
1469 * If we have a display that we don't know how to drive,
1470 * we will want to try to execute OF's open method for it
1471 * later. However, OF will probably fall over if we do that
1472 * we've taken over the MMU.
1473 * So we check whether we will need to open the display,
1474 * and if so, open it now.
1476 static void __init prom_check_displays(void)
1478 char type[16], *path;
1482 int got_display = 0;
1484 static unsigned char default_colors[] = {
1502 const unsigned char *clut;
1504 prom_printf("Looking for displays\n");
1505 for (node = 0; prom_next_node(&node); ) {
1506 memset(type, 0, sizeof(type));
1507 prom_getprop(node, "device_type", type, sizeof(type));
1508 if (strcmp(type, RELOC("display")) != 0)
1511 /* It seems OF doesn't null-terminate the path :-( */
1512 path = RELOC(prom_scratch);
1513 memset(path, 0, PROM_SCRATCH_SIZE);
1516 * leave some room at the end of the path for appending extra
1519 if (call_prom("package-to-path", 3, 1, node, path,
1520 PROM_SCRATCH_SIZE-10) == PROM_ERROR)
1522 prom_printf("found display : %s, opening ... ", path);
1524 ih = call_prom("open", 1, 1, path);
1526 prom_printf("failed\n");
1531 prom_printf("done\n");
1532 prom_setprop(node, "linux,opened", NULL, 0);
1534 /* Setup a usable color table when the appropriate
1535 * method is available. Should update this to set-colors */
1536 clut = RELOC(default_colors);
1537 for (i = 0; i < 32; i++, clut += 3)
1538 if (prom_set_color(ih, i, clut[0], clut[1],
1542 #ifdef CONFIG_LOGO_LINUX_CLUT224
1543 clut = PTRRELOC(RELOC(logo_linux_clut224.clut));
1544 for (i = 0; i < RELOC(logo_linux_clut224.clutsize); i++, clut += 3)
1545 if (prom_set_color(ih, i + 32, clut[0], clut[1],
1548 #endif /* CONFIG_LOGO_LINUX_CLUT224 */
1550 got_display = setup_disp(node);
1555 /* Return (relocated) pointer to this much memory: moves initrd if reqd. */
1556 static void __init *make_room(unsigned long *mem_start, unsigned long *mem_end,
1557 unsigned long needed, unsigned long align)
1561 *mem_start = _ALIGN(*mem_start, align);
1562 while ((*mem_start + needed) > *mem_end) {
1563 unsigned long room, chunk;
1565 prom_debug("Chunk exhausted, claiming more at %x...\n",
1566 RELOC(alloc_bottom));
1567 room = RELOC(alloc_top) - RELOC(alloc_bottom);
1568 if (room > DEVTREE_CHUNK_SIZE)
1569 room = DEVTREE_CHUNK_SIZE;
1570 if (room < PAGE_SIZE)
1571 prom_panic("No memory for flatten_device_tree (no room)");
1572 chunk = alloc_up(room, 0);
1574 prom_panic("No memory for flatten_device_tree (claim failed)");
1575 *mem_end = RELOC(alloc_top);
1578 ret = (void *)*mem_start;
1579 *mem_start += needed;
1584 #define dt_push_token(token, mem_start, mem_end) \
1585 do { *((u32 *)make_room(mem_start, mem_end, 4, 4)) = token; } while(0)
1587 static unsigned long __init dt_find_string(char *str)
1591 s = os = (char *)RELOC(dt_string_start);
1593 while (s < (char *)RELOC(dt_string_end)) {
1594 if (strcmp(s, str) == 0)
1602 * The Open Firmware 1275 specification states properties must be 31 bytes or
1603 * less, however not all firmwares obey this. Make it 64 bytes to be safe.
1605 #define MAX_PROPERTY_NAME 64
1607 static void __init scan_dt_build_strings(phandle node,
1608 unsigned long *mem_start,
1609 unsigned long *mem_end)
1611 char *prev_name, *namep, *sstart;
1615 sstart = (char *)RELOC(dt_string_start);
1617 /* get and store all property names */
1618 prev_name = RELOC("");
1620 /* 64 is max len of name including nul. */
1621 namep = make_room(mem_start, mem_end, MAX_PROPERTY_NAME, 1);
1622 if (call_prom("nextprop", 3, 1, node, prev_name, namep) != 1) {
1623 /* No more nodes: unwind alloc */
1624 *mem_start = (unsigned long)namep;
1629 if (strcmp(namep, RELOC("name")) == 0) {
1630 *mem_start = (unsigned long)namep;
1631 prev_name = RELOC("name");
1634 /* get/create string entry */
1635 soff = dt_find_string(namep);
1637 *mem_start = (unsigned long)namep;
1638 namep = sstart + soff;
1640 /* Trim off some if we can */
1641 *mem_start = (unsigned long)namep + strlen(namep) + 1;
1642 RELOC(dt_string_end) = *mem_start;
1647 /* do all our children */
1648 child = call_prom("child", 1, 1, node);
1649 while (child != 0) {
1650 scan_dt_build_strings(child, mem_start, mem_end);
1651 child = call_prom("peer", 1, 1, child);
1655 static void __init scan_dt_build_struct(phandle node, unsigned long *mem_start,
1656 unsigned long *mem_end)
1659 char *namep, *prev_name, *sstart, *p, *ep, *lp, *path;
1661 unsigned char *valp;
1662 static char pname[MAX_PROPERTY_NAME];
1665 dt_push_token(OF_DT_BEGIN_NODE, mem_start, mem_end);
1667 /* get the node's full name */
1668 namep = (char *)*mem_start;
1669 l = call_prom("package-to-path", 3, 1, node,
1670 namep, *mem_end - *mem_start);
1672 /* Didn't fit? Get more room. */
1673 if ((l+1) > (*mem_end - *mem_start)) {
1674 namep = make_room(mem_start, mem_end, l+1, 1);
1675 call_prom("package-to-path", 3, 1, node, namep, l);
1679 /* Fixup an Apple bug where they have bogus \0 chars in the
1680 * middle of the path in some properties
1682 for (p = namep, ep = namep + l; p < ep; p++)
1684 memmove(p, p+1, ep - p);
1688 /* now try to extract the unit name in that mess */
1689 for (p = namep, lp = NULL; *p; p++)
1693 memmove(namep, lp, strlen(lp) + 1);
1694 *mem_start = _ALIGN(((unsigned long) namep) +
1695 strlen(namep) + 1, 4);
1698 /* get it again for debugging */
1699 path = RELOC(prom_scratch);
1700 memset(path, 0, PROM_SCRATCH_SIZE);
1701 call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1);
1703 /* get and store all properties */
1704 prev_name = RELOC("");
1705 sstart = (char *)RELOC(dt_string_start);
1707 if (call_prom("nextprop", 3, 1, node, prev_name,
1712 if (strcmp(RELOC(pname), RELOC("name")) == 0) {
1713 prev_name = RELOC("name");
1717 /* find string offset */
1718 soff = dt_find_string(RELOC(pname));
1720 prom_printf("WARNING: Can't find string index for"
1721 " <%s>, node %s\n", RELOC(pname), path);
1724 prev_name = sstart + soff;
1727 l = call_prom("getproplen", 2, 1, node, RELOC(pname));
1730 if (l == PROM_ERROR)
1732 if (l > MAX_PROPERTY_LENGTH) {
1733 prom_printf("WARNING: ignoring large property ");
1734 /* It seems OF doesn't null-terminate the path :-( */
1735 prom_printf("[%s] ", path);
1736 prom_printf("%s length 0x%x\n", RELOC(pname), l);
1740 /* push property head */
1741 dt_push_token(OF_DT_PROP, mem_start, mem_end);
1742 dt_push_token(l, mem_start, mem_end);
1743 dt_push_token(soff, mem_start, mem_end);
1745 /* push property content */
1746 valp = make_room(mem_start, mem_end, l, 4);
1747 call_prom("getprop", 4, 1, node, RELOC(pname), valp, l);
1748 *mem_start = _ALIGN(*mem_start, 4);
1751 /* Add a "linux,phandle" property. */
1752 soff = dt_find_string(RELOC("linux,phandle"));
1754 prom_printf("WARNING: Can't find string index for"
1755 " <linux-phandle> node %s\n", path);
1757 dt_push_token(OF_DT_PROP, mem_start, mem_end);
1758 dt_push_token(4, mem_start, mem_end);
1759 dt_push_token(soff, mem_start, mem_end);
1760 valp = make_room(mem_start, mem_end, 4, 4);
1761 *(u32 *)valp = node;
1764 /* do all our children */
1765 child = call_prom("child", 1, 1, node);
1766 while (child != 0) {
1767 scan_dt_build_struct(child, mem_start, mem_end);
1768 child = call_prom("peer", 1, 1, child);
1771 dt_push_token(OF_DT_END_NODE, mem_start, mem_end);
1774 static void __init flatten_device_tree(void)
1777 unsigned long mem_start, mem_end, room;
1778 struct boot_param_header *hdr;
1779 struct prom_t *_prom = &RELOC(prom);
1784 * Check how much room we have between alloc top & bottom (+/- a
1785 * few pages), crop to 4Mb, as this is our "chuck" size
1787 room = RELOC(alloc_top) - RELOC(alloc_bottom) - 0x4000;
1788 if (room > DEVTREE_CHUNK_SIZE)
1789 room = DEVTREE_CHUNK_SIZE;
1790 prom_debug("starting device tree allocs at %x\n", RELOC(alloc_bottom));
1792 /* Now try to claim that */
1793 mem_start = (unsigned long)alloc_up(room, PAGE_SIZE);
1795 prom_panic("Can't allocate initial device-tree chunk\n");
1796 mem_end = RELOC(alloc_top);
1798 /* Get root of tree */
1799 root = call_prom("peer", 1, 1, (phandle)0);
1800 if (root == (phandle)0)
1801 prom_panic ("couldn't get device tree root\n");
1803 /* Build header and make room for mem rsv map */
1804 mem_start = _ALIGN(mem_start, 4);
1805 hdr = make_room(&mem_start, &mem_end,
1806 sizeof(struct boot_param_header), 4);
1807 RELOC(dt_header_start) = (unsigned long)hdr;
1808 rsvmap = make_room(&mem_start, &mem_end, sizeof(mem_reserve_map), 8);
1810 /* Start of strings */
1811 mem_start = PAGE_ALIGN(mem_start);
1812 RELOC(dt_string_start) = mem_start;
1813 mem_start += 4; /* hole */
1815 /* Add "linux,phandle" in there, we'll need it */
1816 namep = make_room(&mem_start, &mem_end, 16, 1);
1817 strcpy(namep, RELOC("linux,phandle"));
1818 mem_start = (unsigned long)namep + strlen(namep) + 1;
1820 /* Build string array */
1821 prom_printf("Building dt strings...\n");
1822 scan_dt_build_strings(root, &mem_start, &mem_end);
1823 RELOC(dt_string_end) = mem_start;
1825 /* Build structure */
1826 mem_start = PAGE_ALIGN(mem_start);
1827 RELOC(dt_struct_start) = mem_start;
1828 prom_printf("Building dt structure...\n");
1829 scan_dt_build_struct(root, &mem_start, &mem_end);
1830 dt_push_token(OF_DT_END, &mem_start, &mem_end);
1831 RELOC(dt_struct_end) = PAGE_ALIGN(mem_start);
1834 hdr->boot_cpuid_phys = _prom->cpu;
1835 hdr->magic = OF_DT_HEADER;
1836 hdr->totalsize = RELOC(dt_struct_end) - RELOC(dt_header_start);
1837 hdr->off_dt_struct = RELOC(dt_struct_start) - RELOC(dt_header_start);
1838 hdr->off_dt_strings = RELOC(dt_string_start) - RELOC(dt_header_start);
1839 hdr->dt_strings_size = RELOC(dt_string_end) - RELOC(dt_string_start);
1840 hdr->off_mem_rsvmap = ((unsigned long)rsvmap) - RELOC(dt_header_start);
1841 hdr->version = OF_DT_VERSION;
1842 /* Version 16 is not backward compatible */
1843 hdr->last_comp_version = 0x10;
1845 /* Reserve the whole thing and copy the reserve map in, we
1846 * also bump mem_reserve_cnt to cause further reservations to
1847 * fail since it's too late.
1849 reserve_mem(RELOC(dt_header_start), hdr->totalsize);
1850 memcpy(rsvmap, RELOC(mem_reserve_map), sizeof(mem_reserve_map));
1855 prom_printf("reserved memory map:\n");
1856 for (i = 0; i < RELOC(mem_reserve_cnt); i++)
1857 prom_printf(" %x - %x\n",
1858 RELOC(mem_reserve_map)[i].base,
1859 RELOC(mem_reserve_map)[i].size);
1862 RELOC(mem_reserve_cnt) = MEM_RESERVE_MAP_SIZE;
1864 prom_printf("Device tree strings 0x%x -> 0x%x\n",
1865 RELOC(dt_string_start), RELOC(dt_string_end));
1866 prom_printf("Device tree struct 0x%x -> 0x%x\n",
1867 RELOC(dt_struct_start), RELOC(dt_struct_end));
1872 static void __init fixup_device_tree(void)
1874 #if defined(CONFIG_PPC64) && defined(CONFIG_PPC_PMAC)
1875 phandle u3, i2c, mpic;
1880 /* Some G5s have a missing interrupt definition, fix it up here */
1881 u3 = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000"));
1882 if (!PHANDLE_VALID(u3))
1884 i2c = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/i2c@f8001000"));
1885 if (!PHANDLE_VALID(i2c))
1887 mpic = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/mpic@f8040000"));
1888 if (!PHANDLE_VALID(mpic))
1891 /* check if proper rev of u3 */
1892 if (prom_getprop(u3, "device-rev", &u3_rev, sizeof(u3_rev))
1895 if (u3_rev != 0x35 && u3_rev != 0x37)
1897 /* does it need fixup ? */
1898 if (prom_getproplen(i2c, "interrupts") > 0)
1901 prom_printf("fixing up bogus interrupts for u3 i2c...\n");
1903 /* interrupt on this revision of u3 is number 0 and level */
1906 prom_setprop(i2c, "interrupts", &interrupts, sizeof(interrupts));
1908 prom_setprop(i2c, "interrupt-parent", &parent, sizeof(parent));
1913 static void __init prom_find_boot_cpu(void)
1915 struct prom_t *_prom = &RELOC(prom);
1920 if (prom_getprop(_prom->chosen, "cpu", &prom_cpu, sizeof(prom_cpu)) <= 0)
1921 prom_panic("cannot find boot cpu");
1923 cpu_pkg = call_prom("instance-to-package", 1, 1, prom_cpu);
1925 prom_getprop(cpu_pkg, "reg", &getprop_rval, sizeof(getprop_rval));
1926 _prom->cpu = getprop_rval;
1928 prom_debug("Booting CPU hw index = 0x%x\n", _prom->cpu);
1931 static void __init prom_check_initrd(unsigned long r3, unsigned long r4)
1933 #ifdef CONFIG_BLK_DEV_INITRD
1934 struct prom_t *_prom = &RELOC(prom);
1936 if (r3 && r4 && r4 != 0xdeadbeef) {
1939 RELOC(prom_initrd_start) = (r3 >= KERNELBASE) ? __pa(r3) : r3;
1940 RELOC(prom_initrd_end) = RELOC(prom_initrd_start) + r4;
1942 val = RELOC(prom_initrd_start);
1943 prom_setprop(_prom->chosen, "linux,initrd-start", &val,
1945 val = RELOC(prom_initrd_end);
1946 prom_setprop(_prom->chosen, "linux,initrd-end", &val,
1949 reserve_mem(RELOC(prom_initrd_start),
1950 RELOC(prom_initrd_end) - RELOC(prom_initrd_start));
1952 prom_debug("initrd_start=0x%x\n", RELOC(prom_initrd_start));
1953 prom_debug("initrd_end=0x%x\n", RELOC(prom_initrd_end));
1955 #endif /* CONFIG_BLK_DEV_INITRD */
1959 * We enter here early on, when the Open Firmware prom is still
1960 * handling exceptions and the MMU hash table for us.
1963 unsigned long __init prom_init(unsigned long r3, unsigned long r4,
1965 unsigned long r6, unsigned long r7)
1967 struct prom_t *_prom;
1968 extern char _stext[];
1973 unsigned long offset = reloc_offset();
1977 _prom = &RELOC(prom);
1980 * First zero the BSS
1982 memset(&RELOC(__bss_start), 0, __bss_stop - __bss_start);
1985 * Init interface to Open Firmware, get some node references,
1988 prom_init_client_services(pp);
1991 * Init prom stdout device
1996 * Check for an initrd
1998 prom_check_initrd(r3, r4);
2001 * Get default machine type. At this point, we do not differentiate
2002 * between pSeries SMP and pSeries LPAR
2004 RELOC(of_platform) = prom_find_machine_type();
2005 getprop_rval = RELOC(of_platform);
2006 prom_setprop(_prom->chosen, "linux,platform",
2007 &getprop_rval, sizeof(getprop_rval));
2009 #ifdef CONFIG_PPC_PSERIES
2011 * On pSeries, inform the firmware about our capabilities
2013 if (RELOC(of_platform) & PLATFORM_PSERIES)
2014 prom_send_capabilities();
2017 #if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_BPA)
2019 * On pSeries and BPA, copy the CPU hold code
2021 if (RELOC(of_platform) & (PLATFORM_PSERIES | PLATFORM_BPA))
2022 copy_and_flush(0, KERNELBASE - offset, 0x100, 0);
2026 * Do early parsing of command line
2028 early_cmdline_parse();
2031 * Initialize memory management within prom_init
2036 * Determine which cpu is actually running right _now_
2038 prom_find_boot_cpu();
2041 * Initialize display devices
2043 prom_check_displays();
2047 * Initialize IOMMU (TCE tables) on pSeries. Do that before anything else
2048 * that uses the allocator, we need to make sure we get the top of memory
2049 * available for us here...
2051 if (RELOC(of_platform) == PLATFORM_PSERIES)
2052 prom_initialize_tce_table();
2056 * On non-powermacs, try to instantiate RTAS and puts all CPUs
2057 * in spin-loops. PowerMacs don't have a working RTAS and use
2058 * a different way to spin CPUs
2060 if (RELOC(of_platform) != PLATFORM_POWERMAC) {
2061 prom_instantiate_rtas();
2066 * Fill in some infos for use by the kernel later on
2068 if (RELOC(prom_memory_limit))
2069 prom_setprop(_prom->chosen, "linux,memory-limit",
2070 &RELOC(prom_memory_limit),
2071 sizeof(prom_memory_limit));
2073 if (RELOC(ppc64_iommu_off))
2074 prom_setprop(_prom->chosen, "linux,iommu-off", NULL, 0);
2076 if (RELOC(iommu_force_on))
2077 prom_setprop(_prom->chosen, "linux,iommu-force-on", NULL, 0);
2079 if (RELOC(prom_tce_alloc_start)) {
2080 prom_setprop(_prom->chosen, "linux,tce-alloc-start",
2081 &RELOC(prom_tce_alloc_start),
2082 sizeof(prom_tce_alloc_start));
2083 prom_setprop(_prom->chosen, "linux,tce-alloc-end",
2084 &RELOC(prom_tce_alloc_end),
2085 sizeof(prom_tce_alloc_end));
2090 * Fixup any known bugs in the device-tree
2092 fixup_device_tree();
2095 * Now finally create the flattened device-tree
2097 prom_printf("copying OF device tree ...\n");
2098 flatten_device_tree();
2100 /* in case stdin is USB and still active on IBM machines... */
2104 * Call OF "quiesce" method to shut down pending DMA's from
2107 prom_printf("Calling quiesce ...\n");
2108 call_prom("quiesce", 0, 0);
2111 * And finally, call the kernel passing it the flattened device
2112 * tree and NULL as r5, thus triggering the new entry point which
2113 * is common to us and kexec
2115 hdr = RELOC(dt_header_start);
2116 prom_printf("returning from prom_init\n");
2117 prom_debug("->dt_header_start=0x%x\n", hdr);
2120 reloc_got2(-offset);