ACPI: asus_acpi: correct M6N/M6R display nodes
[linux-2.6] / sound / pci / cmipci.c
1 /*
2  * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3  * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19  
20 /* Does not work. Warning may block system in capture mode */
21 /* #define USE_VAR48KRATE */
22
23 #include <sound/driver.h>
24 #include <asm/io.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/pci.h>
29 #include <linux/slab.h>
30 #include <linux/gameport.h>
31 #include <linux/moduleparam.h>
32 #include <linux/mutex.h>
33 #include <sound/core.h>
34 #include <sound/info.h>
35 #include <sound/control.h>
36 #include <sound/pcm.h>
37 #include <sound/rawmidi.h>
38 #include <sound/mpu401.h>
39 #include <sound/opl3.h>
40 #include <sound/sb.h>
41 #include <sound/asoundef.h>
42 #include <sound/initval.h>
43
44 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
45 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
46 MODULE_LICENSE("GPL");
47 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
48                 "{C-Media,CMI8738B},"
49                 "{C-Media,CMI8338A},"
50                 "{C-Media,CMI8338B}}");
51
52 #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
53 #define SUPPORT_JOYSTICK 1
54 #endif
55
56 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
57 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
58 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;      /* Enable switches */
59 static long mpu_port[SNDRV_CARDS];
60 static long fm_port[SNDRV_CARDS];
61 static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
62 #ifdef SUPPORT_JOYSTICK
63 static int joystick_port[SNDRV_CARDS];
64 #endif
65
66 module_param_array(index, int, NULL, 0444);
67 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
68 module_param_array(id, charp, NULL, 0444);
69 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
70 module_param_array(enable, bool, NULL, 0444);
71 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
72 module_param_array(mpu_port, long, NULL, 0444);
73 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
74 module_param_array(fm_port, long, NULL, 0444);
75 MODULE_PARM_DESC(fm_port, "FM port.");
76 module_param_array(soft_ac3, bool, NULL, 0444);
77 MODULE_PARM_DESC(soft_ac3, "Sofware-conversion of raw SPDIF packets (model 033 only).");
78 #ifdef SUPPORT_JOYSTICK
79 module_param_array(joystick_port, int, NULL, 0444);
80 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
81 #endif
82
83 /*
84  * CM8x38 registers definition
85  */
86
87 #define CM_REG_FUNCTRL0         0x00
88 #define CM_RST_CH1              0x00080000
89 #define CM_RST_CH0              0x00040000
90 #define CM_CHEN1                0x00020000      /* ch1: enable */
91 #define CM_CHEN0                0x00010000      /* ch0: enable */
92 #define CM_PAUSE1               0x00000008      /* ch1: pause */
93 #define CM_PAUSE0               0x00000004      /* ch0: pause */
94 #define CM_CHADC1               0x00000002      /* ch1, 0:playback, 1:record */
95 #define CM_CHADC0               0x00000001      /* ch0, 0:playback, 1:record */
96
97 #define CM_REG_FUNCTRL1         0x04
98 #define CM_ASFC_MASK            0x0000E000      /* ADC sampling frequency */
99 #define CM_ASFC_SHIFT           13
100 #define CM_DSFC_MASK            0x00001C00      /* DAC sampling frequency */
101 #define CM_DSFC_SHIFT           10
102 #define CM_SPDF_1               0x00000200      /* SPDIF IN/OUT at channel B */
103 #define CM_SPDF_0               0x00000100      /* SPDIF OUT only channel A */
104 #define CM_SPDFLOOP             0x00000080      /* ext. SPDIIF/OUT -> IN loopback */
105 #define CM_SPDO2DAC             0x00000040      /* SPDIF/OUT can be heard from internal DAC */
106 #define CM_INTRM                0x00000020      /* master control block (MCB) interrupt enabled */
107 #define CM_BREQ                 0x00000010      /* bus master enabled */
108 #define CM_VOICE_EN             0x00000008      /* legacy voice (SB16,FM) */
109 #define CM_UART_EN              0x00000004      /* UART */
110 #define CM_JYSTK_EN             0x00000002      /* joy stick */
111
112 #define CM_REG_CHFORMAT         0x08
113
114 #define CM_CHB3D5C              0x80000000      /* 5,6 channels */
115 #define CM_CHB3D                0x20000000      /* 4 channels */
116
117 #define CM_CHIP_MASK1           0x1f000000
118 #define CM_CHIP_037             0x01000000
119
120 #define CM_SPDIF_SELECT1        0x00080000      /* for model <= 037 ? */
121 #define CM_AC3EN1               0x00100000      /* enable AC3: model 037 */
122 #define CM_SPD24SEL             0x00020000      /* 24bit spdif: model 037 */
123 /* #define CM_SPDIF_INVERSE     0x00010000 */ /* ??? */
124
125 #define CM_ADCBITLEN_MASK       0x0000C000      
126 #define CM_ADCBITLEN_16         0x00000000
127 #define CM_ADCBITLEN_15         0x00004000
128 #define CM_ADCBITLEN_14         0x00008000
129 #define CM_ADCBITLEN_13         0x0000C000
130
131 #define CM_ADCDACLEN_MASK       0x00003000
132 #define CM_ADCDACLEN_060        0x00000000
133 #define CM_ADCDACLEN_066        0x00001000
134 #define CM_ADCDACLEN_130        0x00002000
135 #define CM_ADCDACLEN_280        0x00003000
136
137 #define CM_CH1_SRATE_176K       0x00000800
138 #define CM_CH1_SRATE_88K        0x00000400
139 #define CM_CH0_SRATE_176K       0x00000200
140 #define CM_CH0_SRATE_88K        0x00000100
141
142 #define CM_SPDIF_INVERSE2       0x00000080      /* model 055? */
143
144 #define CM_CH1FMT_MASK          0x0000000C
145 #define CM_CH1FMT_SHIFT         2
146 #define CM_CH0FMT_MASK          0x00000003
147 #define CM_CH0FMT_SHIFT         0
148
149 #define CM_REG_INT_HLDCLR       0x0C
150 #define CM_CHIP_MASK2           0xff000000
151 #define CM_CHIP_039             0x04000000
152 #define CM_CHIP_039_6CH         0x01000000
153 #define CM_CHIP_055             0x08000000
154 #define CM_CHIP_8768            0x20000000
155 #define CM_TDMA_INT_EN          0x00040000
156 #define CM_CH1_INT_EN           0x00020000
157 #define CM_CH0_INT_EN           0x00010000
158 #define CM_INT_HOLD             0x00000002
159 #define CM_INT_CLEAR            0x00000001
160
161 #define CM_REG_INT_STATUS       0x10
162 #define CM_INTR                 0x80000000
163 #define CM_VCO                  0x08000000      /* Voice Control? CMI8738 */
164 #define CM_MCBINT               0x04000000      /* Master Control Block abort cond.? */
165 #define CM_UARTINT              0x00010000
166 #define CM_LTDMAINT             0x00008000
167 #define CM_HTDMAINT             0x00004000
168 #define CM_XDO46                0x00000080      /* Modell 033? Direct programming EEPROM (read data register) */
169 #define CM_LHBTOG               0x00000040      /* High/Low status from DMA ctrl register */
170 #define CM_LEG_HDMA             0x00000020      /* Legacy is in High DMA channel */
171 #define CM_LEG_STEREO           0x00000010      /* Legacy is in Stereo mode */
172 #define CM_CH1BUSY              0x00000008
173 #define CM_CH0BUSY              0x00000004
174 #define CM_CHINT1               0x00000002
175 #define CM_CHINT0               0x00000001
176
177 #define CM_REG_LEGACY_CTRL      0x14
178 #define CM_NXCHG                0x80000000      /* h/w multi channels? */
179 #define CM_VMPU_MASK            0x60000000      /* MPU401 i/o port address */
180 #define CM_VMPU_330             0x00000000
181 #define CM_VMPU_320             0x20000000
182 #define CM_VMPU_310             0x40000000
183 #define CM_VMPU_300             0x60000000
184 #define CM_VSBSEL_MASK          0x0C000000      /* SB16 base address */
185 #define CM_VSBSEL_220           0x00000000
186 #define CM_VSBSEL_240           0x04000000
187 #define CM_VSBSEL_260           0x08000000
188 #define CM_VSBSEL_280           0x0C000000
189 #define CM_FMSEL_MASK           0x03000000      /* FM OPL3 base address */
190 #define CM_FMSEL_388            0x00000000
191 #define CM_FMSEL_3C8            0x01000000
192 #define CM_FMSEL_3E0            0x02000000
193 #define CM_FMSEL_3E8            0x03000000
194 #define CM_ENSPDOUT             0x00800000      /* enable XPDIF/OUT to I/O interface */
195 #define CM_SPDCOPYRHT           0x00400000      /* set copyright spdif in/out */
196 #define CM_DAC2SPDO             0x00200000      /* enable wave+fm_midi -> SPDIF/OUT */
197 #define CM_SETRETRY             0x00010000      /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
198 #define CM_CHB3D6C              0x00008000      /* 5.1 channels support */
199 #define CM_LINE_AS_BASS         0x00006000      /* use line-in as bass */
200
201 #define CM_REG_MISC_CTRL        0x18
202 #define CM_PWD                  0x80000000
203 #define CM_RESET                0x40000000
204 #define CM_SFIL_MASK            0x30000000
205 #define CM_TXVX                 0x08000000
206 #define CM_N4SPK3D              0x04000000      /* 4ch output */
207 #define CM_SPDO5V               0x02000000      /* 5V spdif output (1 = 0.5v (coax)) */
208 #define CM_SPDIF48K             0x01000000      /* write */
209 #define CM_SPATUS48K            0x01000000      /* read */
210 #define CM_ENDBDAC              0x00800000      /* enable dual dac */
211 #define CM_XCHGDAC              0x00400000      /* 0: front=ch0, 1: front=ch1 */
212 #define CM_SPD32SEL             0x00200000      /* 0: 16bit SPDIF, 1: 32bit */
213 #define CM_SPDFLOOPI            0x00100000      /* int. SPDIF-IN -> int. OUT */
214 #define CM_FM_EN                0x00080000      /* enalbe FM */
215 #define CM_AC3EN2               0x00040000      /* enable AC3: model 039 */
216 #define CM_VIDWPDSB             0x00010000 
217 #define CM_SPDF_AC97            0x00008000      /* 0: SPDIF/OUT 44.1K, 1: 48K */
218 #define CM_MASK_EN              0x00004000
219 #define CM_VIDWPPRT             0x00002000
220 #define CM_SFILENB              0x00001000
221 #define CM_MMODE_MASK           0x00000E00
222 #define CM_SPDIF_SELECT2        0x00000100      /* for model > 039 ? */
223 #define CM_ENCENTER             0x00000080
224 #define CM_FLINKON              0x00000040
225 #define CM_FLINKOFF             0x00000020
226 #define CM_MIDSMP               0x00000010
227 #define CM_UPDDMA_MASK          0x0000000C
228 #define CM_TWAIT_MASK           0x00000003
229
230         /* byte */
231 #define CM_REG_MIXER0           0x20
232
233 #define CM_REG_SB16_DATA        0x22
234 #define CM_REG_SB16_ADDR        0x23
235
236 #define CM_REFFREQ_XIN          (315*1000*1000)/22      /* 14.31818 Mhz reference clock frequency pin XIN */
237 #define CM_ADCMULT_XIN          512                     /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
238 #define CM_TOLERANCE_RATE       0.001                   /* Tolerance sample rate pitch (1000ppm) */
239 #define CM_MAXIMUM_RATE         80000000                /* Note more than 80MHz */
240
241 #define CM_REG_MIXER1           0x24
242 #define CM_FMMUTE               0x80    /* mute FM */
243 #define CM_FMMUTE_SHIFT         7
244 #define CM_WSMUTE               0x40    /* mute PCM */
245 #define CM_WSMUTE_SHIFT         6
246 #define CM_SPK4                 0x20    /* lin-in -> rear line out */
247 #define CM_SPK4_SHIFT           5
248 #define CM_REAR2FRONT           0x10    /* exchange rear/front */
249 #define CM_REAR2FRONT_SHIFT     4
250 #define CM_WAVEINL              0x08    /* digital wave rec. left chan */
251 #define CM_WAVEINL_SHIFT        3
252 #define CM_WAVEINR              0x04    /* digical wave rec. right */
253 #define CM_WAVEINR_SHIFT        2
254 #define CM_X3DEN                0x02    /* 3D surround enable */
255 #define CM_X3DEN_SHIFT          1
256 #define CM_CDPLAY               0x01    /* enable SPDIF/IN PCM -> DAC */
257 #define CM_CDPLAY_SHIFT         0
258
259 #define CM_REG_MIXER2           0x25
260 #define CM_RAUXREN              0x80    /* AUX right capture */
261 #define CM_RAUXREN_SHIFT        7
262 #define CM_RAUXLEN              0x40    /* AUX left capture */
263 #define CM_RAUXLEN_SHIFT        6
264 #define CM_VAUXRM               0x20    /* AUX right mute */
265 #define CM_VAUXRM_SHIFT         5
266 #define CM_VAUXLM               0x10    /* AUX left mute */
267 #define CM_VAUXLM_SHIFT         4
268 #define CM_VADMIC_MASK          0x0e    /* mic gain level (0-3) << 1 */
269 #define CM_VADMIC_SHIFT         1
270 #define CM_MICGAINZ             0x01    /* mic boost */
271 #define CM_MICGAINZ_SHIFT       0
272
273 #define CM_REG_MIXER3           0x24
274 #define CM_REG_AUX_VOL          0x26
275 #define CM_VAUXL_MASK           0xf0
276 #define CM_VAUXR_MASK           0x0f
277
278 #define CM_REG_MISC             0x27
279 #define CM_XGPO1                0x20
280 // #define CM_XGPBIO            0x04
281 #define CM_MIC_CENTER_LFE       0x04    /* mic as center/lfe out? (model 039 or later?) */
282 #define CM_SPDIF_INVERSE        0x04    /* spdif input phase inverse (model 037) */
283 #define CM_SPDVALID             0x02    /* spdif input valid check */
284 #define CM_DMAUTO               0x01
285
286 #define CM_REG_AC97             0x28    /* hmmm.. do we have ac97 link? */
287 /*
288  * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
289  * or identical with AC97 codec?
290  */
291 #define CM_REG_EXTERN_CODEC     CM_REG_AC97
292
293 /*
294  * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
295  */
296 #define CM_REG_MPU_PCI          0x40
297
298 /*
299  * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
300  */
301 #define CM_REG_FM_PCI           0x50
302
303 /*
304  * access from SB-mixer port
305  */
306 #define CM_REG_EXTENT_IND       0xf0
307 #define CM_VPHONE_MASK          0xe0    /* Phone volume control (0-3) << 5 */
308 #define CM_VPHONE_SHIFT         5
309 #define CM_VPHOM                0x10    /* Phone mute control */
310 #define CM_VSPKM                0x08    /* Speaker mute control, default high */
311 #define CM_RLOOPREN             0x04    /* Rec. R-channel enable */
312 #define CM_RLOOPLEN             0x02    /* Rec. L-channel enable */
313 #define CM_VADMIC3              0x01    /* Mic record boost */
314
315 /*
316  * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
317  * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
318  * unit (readonly?).
319  */
320 #define CM_REG_PLL              0xf8
321
322 /*
323  * extended registers
324  */
325 #define CM_REG_CH0_FRAME1       0x80    /* base address */
326 #define CM_REG_CH0_FRAME2       0x84
327 #define CM_REG_CH1_FRAME1       0x88    /* 0-15: count of samples at bus master; buffer size */
328 #define CM_REG_CH1_FRAME2       0x8C    /* 16-31: count of samples at codec; fragment size */
329 #define CM_REG_EXT_MISC         0x90
330 #define CM_REG_MISC_CTRL_8768   0x92    /* reg. name the same as 0x18 */
331 #define CM_CHB3D8C              0x20    /* 7.1 channels support */
332 #define CM_SPD32FMT             0x10    /* SPDIF/IN 32k */
333 #define CM_ADC2SPDIF            0x08    /* ADC output to SPDIF/OUT */
334 #define CM_SHAREADC             0x04    /* DAC in ADC as Center/LFE */
335 #define CM_REALTCMP             0x02    /* monitor the CMPL/CMPR of ADC */
336 #define CM_INVLRCK              0x01    /* invert ZVPORT's LRCK */
337
338 /*
339  * size of i/o region
340  */
341 #define CM_EXTENT_CODEC   0x100
342 #define CM_EXTENT_MIDI    0x2
343 #define CM_EXTENT_SYNTH   0x4
344
345
346 /*
347  * channels for playback / capture
348  */
349 #define CM_CH_PLAY      0
350 #define CM_CH_CAPT      1
351
352 /*
353  * flags to check device open/close
354  */
355 #define CM_OPEN_NONE    0
356 #define CM_OPEN_CH_MASK 0x01
357 #define CM_OPEN_DAC     0x10
358 #define CM_OPEN_ADC     0x20
359 #define CM_OPEN_SPDIF   0x40
360 #define CM_OPEN_MCHAN   0x80
361 #define CM_OPEN_PLAYBACK        (CM_CH_PLAY | CM_OPEN_DAC)
362 #define CM_OPEN_PLAYBACK2       (CM_CH_CAPT | CM_OPEN_DAC)
363 #define CM_OPEN_PLAYBACK_MULTI  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
364 #define CM_OPEN_CAPTURE         (CM_CH_CAPT | CM_OPEN_ADC)
365 #define CM_OPEN_SPDIF_PLAYBACK  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
366 #define CM_OPEN_SPDIF_CAPTURE   (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
367
368
369 #if CM_CH_PLAY == 1
370 #define CM_PLAYBACK_SRATE_176K  CM_CH1_SRATE_176K
371 #define CM_PLAYBACK_SPDF        CM_SPDF_1
372 #define CM_CAPTURE_SPDF         CM_SPDF_0
373 #else
374 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
375 #define CM_PLAYBACK_SPDF        CM_SPDF_0
376 #define CM_CAPTURE_SPDF         CM_SPDF_1
377 #endif
378
379
380 /*
381  * driver data
382  */
383
384 struct cmipci_pcm {
385         struct snd_pcm_substream *substream;
386         int running;            /* dac/adc running? */
387         unsigned int dma_size;  /* in frames */
388         unsigned int period_size;       /* in frames */
389         unsigned int offset;    /* physical address of the buffer */
390         unsigned int fmt;       /* format bits */
391         int ch;                 /* channel (0/1) */
392         unsigned int is_dac;            /* is dac? */
393         int bytes_per_frame;
394         int shift;
395 };
396
397 /* mixer elements toggled/resumed during ac3 playback */
398 struct cmipci_mixer_auto_switches {
399         const char *name;       /* switch to toggle */
400         int toggle_on;          /* value to change when ac3 mode */
401 };
402 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
403         {"PCM Playback Switch", 0},
404         {"IEC958 Output Switch", 1},
405         {"IEC958 Mix Analog", 0},
406         // {"IEC958 Out To DAC", 1}, // no longer used
407         {"IEC958 Loop", 0},
408 };
409 #define CM_SAVED_MIXERS         ARRAY_SIZE(cm_saved_mixer)
410
411 struct cmipci {
412         struct snd_card *card;
413
414         struct pci_dev *pci;
415         unsigned int device;    /* device ID */
416         int irq;
417
418         unsigned long iobase;
419         unsigned int ctrl;      /* FUNCTRL0 current value */
420
421         struct snd_pcm *pcm;            /* DAC/ADC PCM */
422         struct snd_pcm *pcm2;   /* 2nd DAC */
423         struct snd_pcm *pcm_spdif;      /* SPDIF */
424
425         int chip_version;
426         int max_channels;
427         unsigned int has_dual_dac: 1;
428         unsigned int can_ac3_sw: 1;
429         unsigned int can_ac3_hw: 1;
430         unsigned int can_multi_ch: 1;
431         unsigned int do_soft_ac3: 1;
432
433         unsigned int spdif_playback_avail: 1;   /* spdif ready? */
434         unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
435         int spdif_counter;      /* for software AC3 */
436
437         unsigned int dig_status;
438         unsigned int dig_pcm_status;
439
440         struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
441
442         int opened[2];  /* open mode */
443         struct mutex open_mutex;
444
445         unsigned int mixer_insensitive: 1;
446         struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
447         int mixer_res_status[CM_SAVED_MIXERS];
448
449         struct cmipci_pcm channel[2];   /* ch0 - DAC, ch1 - ADC or 2nd DAC */
450
451         /* external MIDI */
452         struct snd_rawmidi *rmidi;
453
454 #ifdef SUPPORT_JOYSTICK
455         struct gameport *gameport;
456 #endif
457
458         spinlock_t reg_lock;
459
460 #ifdef CONFIG_PM
461         unsigned int saved_regs[0x20];
462         unsigned char saved_mixers[0x20];
463 #endif
464 };
465
466
467 /* read/write operations for dword register */
468 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
469 {
470         outl(data, cm->iobase + cmd);
471 }
472
473 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
474 {
475         return inl(cm->iobase + cmd);
476 }
477
478 /* read/write operations for word register */
479 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
480 {
481         outw(data, cm->iobase + cmd);
482 }
483
484 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
485 {
486         return inw(cm->iobase + cmd);
487 }
488
489 /* read/write operations for byte register */
490 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
491 {
492         outb(data, cm->iobase + cmd);
493 }
494
495 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
496 {
497         return inb(cm->iobase + cmd);
498 }
499
500 /* bit operations for dword register */
501 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
502 {
503         unsigned int val, oval;
504         val = oval = inl(cm->iobase + cmd);
505         val |= flag;
506         if (val == oval)
507                 return 0;
508         outl(val, cm->iobase + cmd);
509         return 1;
510 }
511
512 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
513 {
514         unsigned int val, oval;
515         val = oval = inl(cm->iobase + cmd);
516         val &= ~flag;
517         if (val == oval)
518                 return 0;
519         outl(val, cm->iobase + cmd);
520         return 1;
521 }
522
523 /* bit operations for byte register */
524 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
525 {
526         unsigned char val, oval;
527         val = oval = inb(cm->iobase + cmd);
528         val |= flag;
529         if (val == oval)
530                 return 0;
531         outb(val, cm->iobase + cmd);
532         return 1;
533 }
534
535 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
536 {
537         unsigned char val, oval;
538         val = oval = inb(cm->iobase + cmd);
539         val &= ~flag;
540         if (val == oval)
541                 return 0;
542         outb(val, cm->iobase + cmd);
543         return 1;
544 }
545
546
547 /*
548  * PCM interface
549  */
550
551 /*
552  * calculate frequency
553  */
554
555 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
556
557 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
558 {
559         unsigned int i;
560         for (i = 0; i < ARRAY_SIZE(rates); i++) {
561                 if (rates[i] == rate)
562                         return i;
563         }
564         snd_BUG();
565         return 0;
566 }
567
568 #ifdef USE_VAR48KRATE
569 /*
570  * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
571  * does it this way .. maybe not.  Never get any information from C-Media about
572  * that <werner@suse.de>.
573  */
574 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
575 {
576         unsigned int delta, tolerance;
577         int xm, xn, xr;
578
579         for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
580                 rate <<= 1;
581         *n = -1;
582         if (*r > 0xff)
583                 goto out;
584         tolerance = rate*CM_TOLERANCE_RATE;
585
586         for (xn = (1+2); xn < (0x1f+2); xn++) {
587                 for (xm = (1+2); xm < (0xff+2); xm++) {
588                         xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
589
590                         if (xr < rate)
591                                 delta = rate - xr;
592                         else
593                                 delta = xr - rate;
594
595                         /*
596                          * If we found one, remember this,
597                          * and try to find a closer one
598                          */
599                         if (delta < tolerance) {
600                                 tolerance = delta;
601                                 *m = xm - 2;
602                                 *n = xn - 2;
603                         }
604                 }
605         }
606 out:
607         return (*n > -1);
608 }
609
610 /*
611  * Program pll register bits, I assume that the 8 registers 0xf8 upto 0xff
612  * are mapped onto the 8 ADC/DAC sampling frequency which can be choosen
613  * at the register CM_REG_FUNCTRL1 (0x04).
614  * Problem: other ways are also possible (any information about that?)
615  */
616 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
617 {
618         unsigned int reg = CM_REG_PLL + slot;
619         /*
620          * Guess that this programs at reg. 0x04 the pos 15:13/12:10
621          * for DSFC/ASFC (000 upto 111).
622          */
623
624         /* FIXME: Init (Do we've to set an other register first before programming?) */
625
626         /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
627         snd_cmipci_write_b(cm, reg, rate>>8);
628         snd_cmipci_write_b(cm, reg, rate&0xff);
629
630         /* FIXME: Setup (Do we've to set an other register first to enable this?) */
631 }
632 #endif /* USE_VAR48KRATE */
633
634 static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
635                                 struct snd_pcm_hw_params *hw_params)
636 {
637         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
638 }
639
640 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
641                                           struct snd_pcm_hw_params *hw_params)
642 {
643         struct cmipci *cm = snd_pcm_substream_chip(substream);
644         if (params_channels(hw_params) > 2) {
645                 mutex_lock(&cm->open_mutex);
646                 if (cm->opened[CM_CH_PLAY]) {
647                         mutex_unlock(&cm->open_mutex);
648                         return -EBUSY;
649                 }
650                 /* reserve the channel A */
651                 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
652                 mutex_unlock(&cm->open_mutex);
653         }
654         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
655 }
656
657 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
658 {
659         int reset = CM_RST_CH0 << (cm->channel[ch].ch);
660         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
661         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
662         udelay(10);
663 }
664
665 static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
666 {
667         return snd_pcm_lib_free_pages(substream);
668 }
669
670
671 /*
672  */
673
674 static unsigned int hw_channels[] = {1, 2, 4, 5, 6, 8};
675 static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
676         .count = 3,
677         .list = hw_channels,
678         .mask = 0,
679 };
680 static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
681         .count = 5,
682         .list = hw_channels,
683         .mask = 0,
684 };
685 static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
686         .count = 6,
687         .list = hw_channels,
688         .mask = 0,
689 };
690
691 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
692 {
693         if (channels > 2) {
694                 if (! cm->can_multi_ch)
695                         return -EINVAL;
696                 if (rec->fmt != 0x03) /* stereo 16bit only */
697                         return -EINVAL;
698
699                 spin_lock_irq(&cm->reg_lock);
700                 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
701                 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
702                 if (channels > 4) {
703                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
704                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
705                 } else {
706                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
707                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
708                 }
709                 if (channels >= 6) {
710                         snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
711                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENCENTER);
712                 } else {
713                         snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
714                         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENCENTER);
715                 }
716                 if (cm->chip_version == 68) {
717                         if (channels == 8) {
718                                 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL_8768, CM_CHB3D8C);
719                         } else {
720                                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL_8768, CM_CHB3D8C);
721                         }
722                 }
723                 spin_unlock_irq(&cm->reg_lock);
724
725         } else {
726                 if (cm->can_multi_ch) {
727                         spin_lock_irq(&cm->reg_lock);
728                         snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
729                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
730                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
731                         snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
732                         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENCENTER);
733                         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
734                         spin_unlock_irq(&cm->reg_lock);
735                 }
736         }
737         return 0;
738 }
739
740
741 /*
742  * prepare playback/capture channel
743  * channel to be used must have been set in rec->ch.
744  */
745 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
746                                  struct snd_pcm_substream *substream)
747 {
748         unsigned int reg, freq, val;
749         struct snd_pcm_runtime *runtime = substream->runtime;
750
751         rec->fmt = 0;
752         rec->shift = 0;
753         if (snd_pcm_format_width(runtime->format) >= 16) {
754                 rec->fmt |= 0x02;
755                 if (snd_pcm_format_width(runtime->format) > 16)
756                         rec->shift++; /* 24/32bit */
757         }
758         if (runtime->channels > 1)
759                 rec->fmt |= 0x01;
760         if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
761                 snd_printd("cannot set dac channels\n");
762                 return -EINVAL;
763         }
764
765         rec->offset = runtime->dma_addr;
766         /* buffer and period sizes in frame */
767         rec->dma_size = runtime->buffer_size << rec->shift;
768         rec->period_size = runtime->period_size << rec->shift;
769         if (runtime->channels > 2) {
770                 /* multi-channels */
771                 rec->dma_size = (rec->dma_size * runtime->channels) / 2;
772                 rec->period_size = (rec->period_size * runtime->channels) / 2;
773         }
774
775         spin_lock_irq(&cm->reg_lock);
776
777         /* set buffer address */
778         reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
779         snd_cmipci_write(cm, reg, rec->offset);
780         /* program sample counts */
781         reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
782         snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
783         snd_cmipci_write_w(cm, reg + 2, rec->period_size - 1);
784
785         /* set adc/dac flag */
786         val = rec->ch ? CM_CHADC1 : CM_CHADC0;
787         if (rec->is_dac)
788                 cm->ctrl &= ~val;
789         else
790                 cm->ctrl |= val;
791         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
792         //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
793
794         /* set sample rate */
795         freq = snd_cmipci_rate_freq(runtime->rate);
796         val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
797         if (rec->ch) {
798                 val &= ~CM_ASFC_MASK;
799                 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
800         } else {
801                 val &= ~CM_DSFC_MASK;
802                 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
803         }
804         snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
805         //snd_printd("cmipci: functrl1 = %08x\n", val);
806
807         /* set format */
808         val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
809         if (rec->ch) {
810                 val &= ~CM_CH1FMT_MASK;
811                 val |= rec->fmt << CM_CH1FMT_SHIFT;
812         } else {
813                 val &= ~CM_CH0FMT_MASK;
814                 val |= rec->fmt << CM_CH0FMT_SHIFT;
815         }
816         snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
817         //snd_printd("cmipci: chformat = %08x\n", val);
818
819         rec->running = 0;
820         spin_unlock_irq(&cm->reg_lock);
821
822         return 0;
823 }
824
825 /*
826  * PCM trigger/stop
827  */
828 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
829                                   struct snd_pcm_substream *substream, int cmd)
830 {
831         unsigned int inthld, chen, reset, pause;
832         int result = 0;
833
834         inthld = CM_CH0_INT_EN << rec->ch;
835         chen = CM_CHEN0 << rec->ch;
836         reset = CM_RST_CH0 << rec->ch;
837         pause = CM_PAUSE0 << rec->ch;
838
839         spin_lock(&cm->reg_lock);
840         switch (cmd) {
841         case SNDRV_PCM_TRIGGER_START:
842                 rec->running = 1;
843                 /* set interrupt */
844                 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
845                 cm->ctrl |= chen;
846                 /* enable channel */
847                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
848                 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
849                 break;
850         case SNDRV_PCM_TRIGGER_STOP:
851                 rec->running = 0;
852                 /* disable interrupt */
853                 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
854                 /* reset */
855                 cm->ctrl &= ~chen;
856                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
857                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
858                 break;
859         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
860         case SNDRV_PCM_TRIGGER_SUSPEND:
861                 cm->ctrl |= pause;
862                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
863                 break;
864         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
865         case SNDRV_PCM_TRIGGER_RESUME:
866                 cm->ctrl &= ~pause;
867                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
868                 break;
869         default:
870                 result = -EINVAL;
871                 break;
872         }
873         spin_unlock(&cm->reg_lock);
874         return result;
875 }
876
877 /*
878  * return the current pointer
879  */
880 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
881                                                 struct snd_pcm_substream *substream)
882 {
883         size_t ptr;
884         unsigned int reg;
885         if (!rec->running)
886                 return 0;
887 #if 1 // this seems better..
888         reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
889         ptr = rec->dma_size - (snd_cmipci_read_w(cm, reg) + 1);
890         ptr >>= rec->shift;
891 #else
892         reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
893         ptr = snd_cmipci_read(cm, reg) - rec->offset;
894         ptr = bytes_to_frames(substream->runtime, ptr);
895 #endif
896         if (substream->runtime->channels > 2)
897                 ptr = (ptr * 2) / substream->runtime->channels;
898         return ptr;
899 }
900
901 /*
902  * playback
903  */
904
905 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
906                                        int cmd)
907 {
908         struct cmipci *cm = snd_pcm_substream_chip(substream);
909         return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], substream, cmd);
910 }
911
912 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
913 {
914         struct cmipci *cm = snd_pcm_substream_chip(substream);
915         return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
916 }
917
918
919
920 /*
921  * capture
922  */
923
924 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
925                                      int cmd)
926 {
927         struct cmipci *cm = snd_pcm_substream_chip(substream);
928         return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], substream, cmd);
929 }
930
931 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
932 {
933         struct cmipci *cm = snd_pcm_substream_chip(substream);
934         return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
935 }
936
937
938 /*
939  * hw preparation for spdif
940  */
941
942 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
943                                          struct snd_ctl_elem_info *uinfo)
944 {
945         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
946         uinfo->count = 1;
947         return 0;
948 }
949
950 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
951                                         struct snd_ctl_elem_value *ucontrol)
952 {
953         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
954         int i;
955
956         spin_lock_irq(&chip->reg_lock);
957         for (i = 0; i < 4; i++)
958                 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
959         spin_unlock_irq(&chip->reg_lock);
960         return 0;
961 }
962
963 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
964                                          struct snd_ctl_elem_value *ucontrol)
965 {
966         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
967         int i, change;
968         unsigned int val;
969
970         val = 0;
971         spin_lock_irq(&chip->reg_lock);
972         for (i = 0; i < 4; i++)
973                 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
974         change = val != chip->dig_status;
975         chip->dig_status = val;
976         spin_unlock_irq(&chip->reg_lock);
977         return change;
978 }
979
980 static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata =
981 {
982         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
983         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
984         .info =         snd_cmipci_spdif_default_info,
985         .get =          snd_cmipci_spdif_default_get,
986         .put =          snd_cmipci_spdif_default_put
987 };
988
989 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
990                                       struct snd_ctl_elem_info *uinfo)
991 {
992         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
993         uinfo->count = 1;
994         return 0;
995 }
996
997 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
998                                      struct snd_ctl_elem_value *ucontrol)
999 {
1000         ucontrol->value.iec958.status[0] = 0xff;
1001         ucontrol->value.iec958.status[1] = 0xff;
1002         ucontrol->value.iec958.status[2] = 0xff;
1003         ucontrol->value.iec958.status[3] = 0xff;
1004         return 0;
1005 }
1006
1007 static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata =
1008 {
1009         .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1010         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1011         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1012         .info =         snd_cmipci_spdif_mask_info,
1013         .get =          snd_cmipci_spdif_mask_get,
1014 };
1015
1016 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1017                                         struct snd_ctl_elem_info *uinfo)
1018 {
1019         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1020         uinfo->count = 1;
1021         return 0;
1022 }
1023
1024 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1025                                        struct snd_ctl_elem_value *ucontrol)
1026 {
1027         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1028         int i;
1029
1030         spin_lock_irq(&chip->reg_lock);
1031         for (i = 0; i < 4; i++)
1032                 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1033         spin_unlock_irq(&chip->reg_lock);
1034         return 0;
1035 }
1036
1037 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1038                                        struct snd_ctl_elem_value *ucontrol)
1039 {
1040         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1041         int i, change;
1042         unsigned int val;
1043
1044         val = 0;
1045         spin_lock_irq(&chip->reg_lock);
1046         for (i = 0; i < 4; i++)
1047                 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1048         change = val != chip->dig_pcm_status;
1049         chip->dig_pcm_status = val;
1050         spin_unlock_irq(&chip->reg_lock);
1051         return change;
1052 }
1053
1054 static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata =
1055 {
1056         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1057         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1058         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1059         .info =         snd_cmipci_spdif_stream_info,
1060         .get =          snd_cmipci_spdif_stream_get,
1061         .put =          snd_cmipci_spdif_stream_put
1062 };
1063
1064 /*
1065  */
1066
1067 /* save mixer setting and mute for AC3 playback */
1068 static int save_mixer_state(struct cmipci *cm)
1069 {
1070         if (! cm->mixer_insensitive) {
1071                 struct snd_ctl_elem_value *val;
1072                 unsigned int i;
1073
1074                 val = kmalloc(sizeof(*val), GFP_ATOMIC);
1075                 if (!val)
1076                         return -ENOMEM;
1077                 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1078                         struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1079                         if (ctl) {
1080                                 int event;
1081                                 memset(val, 0, sizeof(*val));
1082                                 ctl->get(ctl, val);
1083                                 cm->mixer_res_status[i] = val->value.integer.value[0];
1084                                 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1085                                 event = SNDRV_CTL_EVENT_MASK_INFO;
1086                                 if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1087                                         ctl->put(ctl, val); /* toggle */
1088                                         event |= SNDRV_CTL_EVENT_MASK_VALUE;
1089                                 }
1090                                 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1091                                 snd_ctl_notify(cm->card, event, &ctl->id);
1092                         }
1093                 }
1094                 kfree(val);
1095                 cm->mixer_insensitive = 1;
1096         }
1097         return 0;
1098 }
1099
1100
1101 /* restore the previously saved mixer status */
1102 static void restore_mixer_state(struct cmipci *cm)
1103 {
1104         if (cm->mixer_insensitive) {
1105                 struct snd_ctl_elem_value *val;
1106                 unsigned int i;
1107
1108                 val = kmalloc(sizeof(*val), GFP_KERNEL);
1109                 if (!val)
1110                         return;
1111                 cm->mixer_insensitive = 0; /* at first clear this;
1112                                               otherwise the changes will be ignored */
1113                 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1114                         struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1115                         if (ctl) {
1116                                 int event;
1117
1118                                 memset(val, 0, sizeof(*val));
1119                                 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1120                                 ctl->get(ctl, val);
1121                                 event = SNDRV_CTL_EVENT_MASK_INFO;
1122                                 if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1123                                         val->value.integer.value[0] = cm->mixer_res_status[i];
1124                                         ctl->put(ctl, val);
1125                                         event |= SNDRV_CTL_EVENT_MASK_VALUE;
1126                                 }
1127                                 snd_ctl_notify(cm->card, event, &ctl->id);
1128                         }
1129                 }
1130                 kfree(val);
1131         }
1132 }
1133
1134 /* spinlock held! */
1135 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1136 {
1137         if (do_ac3) {
1138                 /* AC3EN for 037 */
1139                 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1140                 /* AC3EN for 039 */
1141                 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1142         
1143                 if (cm->can_ac3_hw) {
1144                         /* SPD24SEL for 037, 0x02 */
1145                         /* SPD24SEL for 039, 0x20, but cannot be set */
1146                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1147                         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1148                 } else { /* can_ac3_sw */
1149                         /* SPD32SEL for 037 & 039, 0x20 */
1150                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1151                         /* set 176K sample rate to fix 033 HW bug */
1152                         if (cm->chip_version == 33) {
1153                                 if (rate >= 48000) {
1154                                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1155                                 } else {
1156                                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1157                                 }
1158                         }
1159                 }
1160
1161         } else {
1162                 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1163                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1164
1165                 if (cm->can_ac3_hw) {
1166                         /* chip model >= 37 */
1167                         if (snd_pcm_format_width(subs->runtime->format) > 16) {
1168                                 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1169                                 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1170                         } else {
1171                                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1172                                 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1173                         }
1174                 } else {
1175                         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1176                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1177                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1178                 }
1179         }
1180 }
1181
1182 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1183 {
1184         int rate, err;
1185
1186         rate = subs->runtime->rate;
1187
1188         if (up && do_ac3)
1189                 if ((err = save_mixer_state(cm)) < 0)
1190                         return err;
1191
1192         spin_lock_irq(&cm->reg_lock);
1193         cm->spdif_playback_avail = up;
1194         if (up) {
1195                 /* they are controlled via "IEC958 Output Switch" */
1196                 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1197                 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1198                 if (cm->spdif_playback_enabled)
1199                         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1200                 setup_ac3(cm, subs, do_ac3, rate);
1201
1202                 if (rate == 48000)
1203                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1204                 else
1205                         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1206
1207         } else {
1208                 /* they are controlled via "IEC958 Output Switch" */
1209                 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1210                 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1211                 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1212                 setup_ac3(cm, subs, 0, 0);
1213         }
1214         spin_unlock_irq(&cm->reg_lock);
1215         return 0;
1216 }
1217
1218
1219 /*
1220  * preparation
1221  */
1222
1223 /* playback - enable spdif only on the certain condition */
1224 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1225 {
1226         struct cmipci *cm = snd_pcm_substream_chip(substream);
1227         int rate = substream->runtime->rate;
1228         int err, do_spdif, do_ac3 = 0;
1229
1230         do_spdif = ((rate == 44100 || rate == 48000) &&
1231                     substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1232                     substream->runtime->channels == 2);
1233         if (do_spdif && cm->can_ac3_hw) 
1234                 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1235         if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1236                 return err;
1237         return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1238 }
1239
1240 /* playback  (via device #2) - enable spdif always */
1241 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1242 {
1243         struct cmipci *cm = snd_pcm_substream_chip(substream);
1244         int err, do_ac3;
1245
1246         if (cm->can_ac3_hw) 
1247                 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1248         else
1249                 do_ac3 = 1; /* doesn't matter */
1250         if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1251                 return err;
1252         return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1253 }
1254
1255 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1256 {
1257         struct cmipci *cm = snd_pcm_substream_chip(substream);
1258         setup_spdif_playback(cm, substream, 0, 0);
1259         restore_mixer_state(cm);
1260         return snd_cmipci_hw_free(substream);
1261 }
1262
1263 /* capture */
1264 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1265 {
1266         struct cmipci *cm = snd_pcm_substream_chip(substream);
1267         return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1268 }
1269
1270 /* capture with spdif (via device #2) */
1271 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1272 {
1273         struct cmipci *cm = snd_pcm_substream_chip(substream);
1274
1275         spin_lock_irq(&cm->reg_lock);
1276         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1277         spin_unlock_irq(&cm->reg_lock);
1278
1279         return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1280 }
1281
1282 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1283 {
1284         struct cmipci *cm = snd_pcm_substream_chip(subs);
1285
1286         spin_lock_irq(&cm->reg_lock);
1287         snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1288         spin_unlock_irq(&cm->reg_lock);
1289
1290         return snd_cmipci_hw_free(subs);
1291 }
1292
1293
1294 /*
1295  * interrupt handler
1296  */
1297 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1298 {
1299         struct cmipci *cm = dev_id;
1300         unsigned int status, mask = 0;
1301         
1302         /* fastpath out, to ease interrupt sharing */
1303         status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1304         if (!(status & CM_INTR))
1305                 return IRQ_NONE;
1306
1307         /* acknowledge interrupt */
1308         spin_lock(&cm->reg_lock);
1309         if (status & CM_CHINT0)
1310                 mask |= CM_CH0_INT_EN;
1311         if (status & CM_CHINT1)
1312                 mask |= CM_CH1_INT_EN;
1313         snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1314         snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1315         spin_unlock(&cm->reg_lock);
1316
1317         if (cm->rmidi && (status & CM_UARTINT))
1318                 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data, regs);
1319
1320         if (cm->pcm) {
1321                 if ((status & CM_CHINT0) && cm->channel[0].running)
1322                         snd_pcm_period_elapsed(cm->channel[0].substream);
1323                 if ((status & CM_CHINT1) && cm->channel[1].running)
1324                         snd_pcm_period_elapsed(cm->channel[1].substream);
1325         }
1326         return IRQ_HANDLED;
1327 }
1328
1329 /*
1330  * h/w infos
1331  */
1332
1333 /* playback on channel A */
1334 static struct snd_pcm_hardware snd_cmipci_playback =
1335 {
1336         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1337                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1338                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1339         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1340         .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1341         .rate_min =             5512,
1342         .rate_max =             48000,
1343         .channels_min =         1,
1344         .channels_max =         2,
1345         .buffer_bytes_max =     (128*1024),
1346         .period_bytes_min =     64,
1347         .period_bytes_max =     (128*1024),
1348         .periods_min =          2,
1349         .periods_max =          1024,
1350         .fifo_size =            0,
1351 };
1352
1353 /* capture on channel B */
1354 static struct snd_pcm_hardware snd_cmipci_capture =
1355 {
1356         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1357                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1358                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1359         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1360         .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1361         .rate_min =             5512,
1362         .rate_max =             48000,
1363         .channels_min =         1,
1364         .channels_max =         2,
1365         .buffer_bytes_max =     (128*1024),
1366         .period_bytes_min =     64,
1367         .period_bytes_max =     (128*1024),
1368         .periods_min =          2,
1369         .periods_max =          1024,
1370         .fifo_size =            0,
1371 };
1372
1373 /* playback on channel B - stereo 16bit only? */
1374 static struct snd_pcm_hardware snd_cmipci_playback2 =
1375 {
1376         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1377                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1378                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1379         .formats =              SNDRV_PCM_FMTBIT_S16_LE,
1380         .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1381         .rate_min =             5512,
1382         .rate_max =             48000,
1383         .channels_min =         2,
1384         .channels_max =         2,
1385         .buffer_bytes_max =     (128*1024),
1386         .period_bytes_min =     64,
1387         .period_bytes_max =     (128*1024),
1388         .periods_min =          2,
1389         .periods_max =          1024,
1390         .fifo_size =            0,
1391 };
1392
1393 /* spdif playback on channel A */
1394 static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1395 {
1396         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1397                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1398                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1399         .formats =              SNDRV_PCM_FMTBIT_S16_LE,
1400         .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1401         .rate_min =             44100,
1402         .rate_max =             48000,
1403         .channels_min =         2,
1404         .channels_max =         2,
1405         .buffer_bytes_max =     (128*1024),
1406         .period_bytes_min =     64,
1407         .period_bytes_max =     (128*1024),
1408         .periods_min =          2,
1409         .periods_max =          1024,
1410         .fifo_size =            0,
1411 };
1412
1413 /* spdif playback on channel A (32bit, IEC958 subframes) */
1414 static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1415 {
1416         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1417                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1418                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1419         .formats =              SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1420         .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1421         .rate_min =             44100,
1422         .rate_max =             48000,
1423         .channels_min =         2,
1424         .channels_max =         2,
1425         .buffer_bytes_max =     (128*1024),
1426         .period_bytes_min =     64,
1427         .period_bytes_max =     (128*1024),
1428         .periods_min =          2,
1429         .periods_max =          1024,
1430         .fifo_size =            0,
1431 };
1432
1433 /* spdif capture on channel B */
1434 static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1435 {
1436         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1437                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1438                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1439         .formats =              SNDRV_PCM_FMTBIT_S16_LE,
1440         .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1441         .rate_min =             44100,
1442         .rate_max =             48000,
1443         .channels_min =         2,
1444         .channels_max =         2,
1445         .buffer_bytes_max =     (128*1024),
1446         .period_bytes_min =     64,
1447         .period_bytes_max =     (128*1024),
1448         .periods_min =          2,
1449         .periods_max =          1024,
1450         .fifo_size =            0,
1451 };
1452
1453 /*
1454  * check device open/close
1455  */
1456 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1457 {
1458         int ch = mode & CM_OPEN_CH_MASK;
1459
1460         /* FIXME: a file should wait until the device becomes free
1461          * when it's opened on blocking mode.  however, since the current
1462          * pcm framework doesn't pass file pointer before actually opened,
1463          * we can't know whether blocking mode or not in open callback..
1464          */
1465         mutex_lock(&cm->open_mutex);
1466         if (cm->opened[ch]) {
1467                 mutex_unlock(&cm->open_mutex);
1468                 return -EBUSY;
1469         }
1470         cm->opened[ch] = mode;
1471         cm->channel[ch].substream = subs;
1472         if (! (mode & CM_OPEN_DAC)) {
1473                 /* disable dual DAC mode */
1474                 cm->channel[ch].is_dac = 0;
1475                 spin_lock_irq(&cm->reg_lock);
1476                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1477                 spin_unlock_irq(&cm->reg_lock);
1478         }
1479         mutex_unlock(&cm->open_mutex);
1480         return 0;
1481 }
1482
1483 static void close_device_check(struct cmipci *cm, int mode)
1484 {
1485         int ch = mode & CM_OPEN_CH_MASK;
1486
1487         mutex_lock(&cm->open_mutex);
1488         if (cm->opened[ch] == mode) {
1489                 if (cm->channel[ch].substream) {
1490                         snd_cmipci_ch_reset(cm, ch);
1491                         cm->channel[ch].running = 0;
1492                         cm->channel[ch].substream = NULL;
1493                 }
1494                 cm->opened[ch] = 0;
1495                 if (! cm->channel[ch].is_dac) {
1496                         /* enable dual DAC mode again */
1497                         cm->channel[ch].is_dac = 1;
1498                         spin_lock_irq(&cm->reg_lock);
1499                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1500                         spin_unlock_irq(&cm->reg_lock);
1501                 }
1502         }
1503         mutex_unlock(&cm->open_mutex);
1504 }
1505
1506 /*
1507  */
1508
1509 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1510 {
1511         struct cmipci *cm = snd_pcm_substream_chip(substream);
1512         struct snd_pcm_runtime *runtime = substream->runtime;
1513         int err;
1514
1515         if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1516                 return err;
1517         runtime->hw = snd_cmipci_playback;
1518         runtime->hw.channels_max = cm->max_channels;
1519         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1520         cm->dig_pcm_status = cm->dig_status;
1521         return 0;
1522 }
1523
1524 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1525 {
1526         struct cmipci *cm = snd_pcm_substream_chip(substream);
1527         struct snd_pcm_runtime *runtime = substream->runtime;
1528         int err;
1529
1530         if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1531                 return err;
1532         runtime->hw = snd_cmipci_capture;
1533         if (cm->chip_version == 68) {   // 8768 only supports 44k/48k recording
1534                 runtime->hw.rate_min = 41000;
1535                 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1536         }
1537         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1538         return 0;
1539 }
1540
1541 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1542 {
1543         struct cmipci *cm = snd_pcm_substream_chip(substream);
1544         struct snd_pcm_runtime *runtime = substream->runtime;
1545         int err;
1546
1547         if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1548                 return err;
1549         runtime->hw = snd_cmipci_playback2;
1550         mutex_lock(&cm->open_mutex);
1551         if (! cm->opened[CM_CH_PLAY]) {
1552                 if (cm->can_multi_ch) {
1553                         runtime->hw.channels_max = cm->max_channels;
1554                         if (cm->max_channels == 4)
1555                                 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1556                         else if (cm->max_channels == 6)
1557                                 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1558                         else if (cm->max_channels == 8)
1559                                 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1560                 }
1561                 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1562         }
1563         mutex_unlock(&cm->open_mutex);
1564         return 0;
1565 }
1566
1567 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1568 {
1569         struct cmipci *cm = snd_pcm_substream_chip(substream);
1570         struct snd_pcm_runtime *runtime = substream->runtime;
1571         int err;
1572
1573         if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1574                 return err;
1575         if (cm->can_ac3_hw) {
1576                 runtime->hw = snd_cmipci_playback_spdif;
1577                 if (cm->chip_version >= 37)
1578                         runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1579         } else {
1580                 runtime->hw = snd_cmipci_playback_iec958_subframe;
1581         }
1582         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1583         cm->dig_pcm_status = cm->dig_status;
1584         return 0;
1585 }
1586
1587 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1588 {
1589         struct cmipci *cm = snd_pcm_substream_chip(substream);
1590         struct snd_pcm_runtime *runtime = substream->runtime;
1591         int err;
1592
1593         if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1594                 return err;
1595         runtime->hw = snd_cmipci_capture_spdif;
1596         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1597         return 0;
1598 }
1599
1600
1601 /*
1602  */
1603
1604 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1605 {
1606         struct cmipci *cm = snd_pcm_substream_chip(substream);
1607         close_device_check(cm, CM_OPEN_PLAYBACK);
1608         return 0;
1609 }
1610
1611 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1612 {
1613         struct cmipci *cm = snd_pcm_substream_chip(substream);
1614         close_device_check(cm, CM_OPEN_CAPTURE);
1615         return 0;
1616 }
1617
1618 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1619 {
1620         struct cmipci *cm = snd_pcm_substream_chip(substream);
1621         close_device_check(cm, CM_OPEN_PLAYBACK2);
1622         close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1623         return 0;
1624 }
1625
1626 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1627 {
1628         struct cmipci *cm = snd_pcm_substream_chip(substream);
1629         close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1630         return 0;
1631 }
1632
1633 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1634 {
1635         struct cmipci *cm = snd_pcm_substream_chip(substream);
1636         close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1637         return 0;
1638 }
1639
1640
1641 /*
1642  */
1643
1644 static struct snd_pcm_ops snd_cmipci_playback_ops = {
1645         .open =         snd_cmipci_playback_open,
1646         .close =        snd_cmipci_playback_close,
1647         .ioctl =        snd_pcm_lib_ioctl,
1648         .hw_params =    snd_cmipci_hw_params,
1649         .hw_free =      snd_cmipci_playback_hw_free,
1650         .prepare =      snd_cmipci_playback_prepare,
1651         .trigger =      snd_cmipci_playback_trigger,
1652         .pointer =      snd_cmipci_playback_pointer,
1653 };
1654
1655 static struct snd_pcm_ops snd_cmipci_capture_ops = {
1656         .open =         snd_cmipci_capture_open,
1657         .close =        snd_cmipci_capture_close,
1658         .ioctl =        snd_pcm_lib_ioctl,
1659         .hw_params =    snd_cmipci_hw_params,
1660         .hw_free =      snd_cmipci_hw_free,
1661         .prepare =      snd_cmipci_capture_prepare,
1662         .trigger =      snd_cmipci_capture_trigger,
1663         .pointer =      snd_cmipci_capture_pointer,
1664 };
1665
1666 static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1667         .open =         snd_cmipci_playback2_open,
1668         .close =        snd_cmipci_playback2_close,
1669         .ioctl =        snd_pcm_lib_ioctl,
1670         .hw_params =    snd_cmipci_playback2_hw_params,
1671         .hw_free =      snd_cmipci_hw_free,
1672         .prepare =      snd_cmipci_capture_prepare,     /* channel B */
1673         .trigger =      snd_cmipci_capture_trigger,     /* channel B */
1674         .pointer =      snd_cmipci_capture_pointer,     /* channel B */
1675 };
1676
1677 static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1678         .open =         snd_cmipci_playback_spdif_open,
1679         .close =        snd_cmipci_playback_spdif_close,
1680         .ioctl =        snd_pcm_lib_ioctl,
1681         .hw_params =    snd_cmipci_hw_params,
1682         .hw_free =      snd_cmipci_playback_hw_free,
1683         .prepare =      snd_cmipci_playback_spdif_prepare,      /* set up rate */
1684         .trigger =      snd_cmipci_playback_trigger,
1685         .pointer =      snd_cmipci_playback_pointer,
1686 };
1687
1688 static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1689         .open =         snd_cmipci_capture_spdif_open,
1690         .close =        snd_cmipci_capture_spdif_close,
1691         .ioctl =        snd_pcm_lib_ioctl,
1692         .hw_params =    snd_cmipci_hw_params,
1693         .hw_free =      snd_cmipci_capture_spdif_hw_free,
1694         .prepare =      snd_cmipci_capture_spdif_prepare,
1695         .trigger =      snd_cmipci_capture_trigger,
1696         .pointer =      snd_cmipci_capture_pointer,
1697 };
1698
1699
1700 /*
1701  */
1702
1703 static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device)
1704 {
1705         struct snd_pcm *pcm;
1706         int err;
1707
1708         err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1709         if (err < 0)
1710                 return err;
1711
1712         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1713         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1714
1715         pcm->private_data = cm;
1716         pcm->info_flags = 0;
1717         strcpy(pcm->name, "C-Media PCI DAC/ADC");
1718         cm->pcm = pcm;
1719
1720         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1721                                               snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1722
1723         return 0;
1724 }
1725
1726 static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1727 {
1728         struct snd_pcm *pcm;
1729         int err;
1730
1731         err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1732         if (err < 0)
1733                 return err;
1734
1735         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1736
1737         pcm->private_data = cm;
1738         pcm->info_flags = 0;
1739         strcpy(pcm->name, "C-Media PCI 2nd DAC");
1740         cm->pcm2 = pcm;
1741
1742         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1743                                               snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1744
1745         return 0;
1746 }
1747
1748 static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1749 {
1750         struct snd_pcm *pcm;
1751         int err;
1752
1753         err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1754         if (err < 0)
1755                 return err;
1756
1757         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1758         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1759
1760         pcm->private_data = cm;
1761         pcm->info_flags = 0;
1762         strcpy(pcm->name, "C-Media PCI IEC958");
1763         cm->pcm_spdif = pcm;
1764
1765         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1766                                               snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1767
1768         return 0;
1769 }
1770
1771 /*
1772  * mixer interface:
1773  * - CM8338/8738 has a compatible mixer interface with SB16, but
1774  *   lack of some elements like tone control, i/o gain and AGC.
1775  * - Access to native registers:
1776  *   - A 3D switch
1777  *   - Output mute switches
1778  */
1779
1780 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1781 {
1782         outb(idx, s->iobase + CM_REG_SB16_ADDR);
1783         outb(data, s->iobase + CM_REG_SB16_DATA);
1784 }
1785
1786 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1787 {
1788         unsigned char v;
1789
1790         outb(idx, s->iobase + CM_REG_SB16_ADDR);
1791         v = inb(s->iobase + CM_REG_SB16_DATA);
1792         return v;
1793 }
1794
1795 /*
1796  * general mixer element
1797  */
1798 struct cmipci_sb_reg {
1799         unsigned int left_reg, right_reg;
1800         unsigned int left_shift, right_shift;
1801         unsigned int mask;
1802         unsigned int invert: 1;
1803         unsigned int stereo: 1;
1804 };
1805
1806 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1807  ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1808
1809 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1810 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1811   .info = snd_cmipci_info_volume, \
1812   .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1813   .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1814 }
1815
1816 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1817 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1818 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1819 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1820
1821 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1822 {
1823         r->left_reg = val & 0xff;
1824         r->right_reg = (val >> 8) & 0xff;
1825         r->left_shift = (val >> 16) & 0x07;
1826         r->right_shift = (val >> 19) & 0x07;
1827         r->invert = (val >> 22) & 1;
1828         r->stereo = (val >> 23) & 1;
1829         r->mask = (val >> 24) & 0xff;
1830 }
1831
1832 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
1833                                   struct snd_ctl_elem_info *uinfo)
1834 {
1835         struct cmipci_sb_reg reg;
1836
1837         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1838         uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1839         uinfo->count = reg.stereo + 1;
1840         uinfo->value.integer.min = 0;
1841         uinfo->value.integer.max = reg.mask;
1842         return 0;
1843 }
1844  
1845 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
1846                                  struct snd_ctl_elem_value *ucontrol)
1847 {
1848         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
1849         struct cmipci_sb_reg reg;
1850         int val;
1851
1852         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1853         spin_lock_irq(&cm->reg_lock);
1854         val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
1855         if (reg.invert)
1856                 val = reg.mask - val;
1857         ucontrol->value.integer.value[0] = val;
1858         if (reg.stereo) {
1859                 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
1860                 if (reg.invert)
1861                         val = reg.mask - val;
1862                  ucontrol->value.integer.value[1] = val;
1863         }
1864         spin_unlock_irq(&cm->reg_lock);
1865         return 0;
1866 }
1867
1868 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
1869                                  struct snd_ctl_elem_value *ucontrol)
1870 {
1871         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
1872         struct cmipci_sb_reg reg;
1873         int change;
1874         int left, right, oleft, oright;
1875
1876         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1877         left = ucontrol->value.integer.value[0] & reg.mask;
1878         if (reg.invert)
1879                 left = reg.mask - left;
1880         left <<= reg.left_shift;
1881         if (reg.stereo) {
1882                 right = ucontrol->value.integer.value[1] & reg.mask;
1883                 if (reg.invert)
1884                         right = reg.mask - right;
1885                 right <<= reg.right_shift;
1886         } else
1887                 right = 0;
1888         spin_lock_irq(&cm->reg_lock);
1889         oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
1890         left |= oleft & ~(reg.mask << reg.left_shift);
1891         change = left != oleft;
1892         if (reg.stereo) {
1893                 if (reg.left_reg != reg.right_reg) {
1894                         snd_cmipci_mixer_write(cm, reg.left_reg, left);
1895                         oright = snd_cmipci_mixer_read(cm, reg.right_reg);
1896                 } else
1897                         oright = left;
1898                 right |= oright & ~(reg.mask << reg.right_shift);
1899                 change |= right != oright;
1900                 snd_cmipci_mixer_write(cm, reg.right_reg, right);
1901         } else
1902                 snd_cmipci_mixer_write(cm, reg.left_reg, left);
1903         spin_unlock_irq(&cm->reg_lock);
1904         return change;
1905 }
1906
1907 /*
1908  * input route (left,right) -> (left,right)
1909  */
1910 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
1911 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1912   .info = snd_cmipci_info_input_sw, \
1913   .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
1914   .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
1915 }
1916
1917 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
1918                                     struct snd_ctl_elem_info *uinfo)
1919 {
1920         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1921         uinfo->count = 4;
1922         uinfo->value.integer.min = 0;
1923         uinfo->value.integer.max = 1;
1924         return 0;
1925 }
1926  
1927 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
1928                                    struct snd_ctl_elem_value *ucontrol)
1929 {
1930         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
1931         struct cmipci_sb_reg reg;
1932         int val1, val2;
1933
1934         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1935         spin_lock_irq(&cm->reg_lock);
1936         val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
1937         val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
1938         spin_unlock_irq(&cm->reg_lock);
1939         ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
1940         ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
1941         ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
1942         ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
1943         return 0;
1944 }
1945
1946 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
1947                                    struct snd_ctl_elem_value *ucontrol)
1948 {
1949         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
1950         struct cmipci_sb_reg reg;
1951         int change;
1952         int val1, val2, oval1, oval2;
1953
1954         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1955         spin_lock_irq(&cm->reg_lock);
1956         oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
1957         oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
1958         val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
1959         val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
1960         val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
1961         val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
1962         val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
1963         val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
1964         change = val1 != oval1 || val2 != oval2;
1965         snd_cmipci_mixer_write(cm, reg.left_reg, val1);
1966         snd_cmipci_mixer_write(cm, reg.right_reg, val2);
1967         spin_unlock_irq(&cm->reg_lock);
1968         return change;
1969 }
1970
1971 /*
1972  * native mixer switches/volumes
1973  */
1974
1975 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
1976 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1977   .info = snd_cmipci_info_native_mixer, \
1978   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
1979   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
1980 }
1981
1982 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
1983 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1984   .info = snd_cmipci_info_native_mixer, \
1985   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
1986   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
1987 }
1988
1989 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
1990 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1991   .info = snd_cmipci_info_native_mixer, \
1992   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
1993   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
1994 }
1995
1996 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
1997 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1998   .info = snd_cmipci_info_native_mixer, \
1999   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2000   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2001 }
2002
2003 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2004                                         struct snd_ctl_elem_info *uinfo)
2005 {
2006         struct cmipci_sb_reg reg;
2007
2008         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2009         uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2010         uinfo->count = reg.stereo + 1;
2011         uinfo->value.integer.min = 0;
2012         uinfo->value.integer.max = reg.mask;
2013         return 0;
2014
2015 }
2016
2017 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2018                                        struct snd_ctl_elem_value *ucontrol)
2019 {
2020         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2021         struct cmipci_sb_reg reg;
2022         unsigned char oreg, val;
2023
2024         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2025         spin_lock_irq(&cm->reg_lock);
2026         oreg = inb(cm->iobase + reg.left_reg);
2027         val = (oreg >> reg.left_shift) & reg.mask;
2028         if (reg.invert)
2029                 val = reg.mask - val;
2030         ucontrol->value.integer.value[0] = val;
2031         if (reg.stereo) {
2032                 val = (oreg >> reg.right_shift) & reg.mask;
2033                 if (reg.invert)
2034                         val = reg.mask - val;
2035                 ucontrol->value.integer.value[1] = val;
2036         }
2037         spin_unlock_irq(&cm->reg_lock);
2038         return 0;
2039 }
2040
2041 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2042                                        struct snd_ctl_elem_value *ucontrol)
2043 {
2044         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2045         struct cmipci_sb_reg reg;
2046         unsigned char oreg, nreg, val;
2047
2048         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2049         spin_lock_irq(&cm->reg_lock);
2050         oreg = inb(cm->iobase + reg.left_reg);
2051         val = ucontrol->value.integer.value[0] & reg.mask;
2052         if (reg.invert)
2053                 val = reg.mask - val;
2054         nreg = oreg & ~(reg.mask << reg.left_shift);
2055         nreg |= (val << reg.left_shift);
2056         if (reg.stereo) {
2057                 val = ucontrol->value.integer.value[1] & reg.mask;
2058                 if (reg.invert)
2059                         val = reg.mask - val;
2060                 nreg &= ~(reg.mask << reg.right_shift);
2061                 nreg |= (val << reg.right_shift);
2062         }
2063         outb(nreg, cm->iobase + reg.left_reg);
2064         spin_unlock_irq(&cm->reg_lock);
2065         return (nreg != oreg);
2066 }
2067
2068 /*
2069  * special case - check mixer sensitivity
2070  */
2071 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2072                                                  struct snd_ctl_elem_value *ucontrol)
2073 {
2074         //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2075         return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2076 }
2077
2078 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2079                                                  struct snd_ctl_elem_value *ucontrol)
2080 {
2081         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2082         if (cm->mixer_insensitive) {
2083                 /* ignored */
2084                 return 0;
2085         }
2086         return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2087 }
2088
2089
2090 static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = {
2091         CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2092         CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2093         CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2094         //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2095         { /* switch with sensitivity */
2096                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2097                 .name = "PCM Playback Switch",
2098                 .info = snd_cmipci_info_native_mixer,
2099                 .get = snd_cmipci_get_native_mixer_sensitive,
2100                 .put = snd_cmipci_put_native_mixer_sensitive,
2101                 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2102         },
2103         CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2104         CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2105         CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2106         CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2107         CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2108         CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2109         CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2110         CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2111         CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2112         CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2113         CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2114         CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2115         CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2116         CMIPCI_SB_VOL_MONO("PC Speaker Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2117         CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2118         CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2119         CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2120         CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2121         CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2122         CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2123         CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2124         CMIPCI_DOUBLE("PC Speaker Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2125         CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2126 };
2127
2128 /*
2129  * other switches
2130  */
2131
2132 struct cmipci_switch_args {
2133         int reg;                /* register index */
2134         unsigned int mask;      /* mask bits */
2135         unsigned int mask_on;   /* mask bits to turn on */
2136         unsigned int is_byte: 1;                /* byte access? */
2137         unsigned int ac3_sensitive: 1;  /* access forbidden during
2138                                          * non-audio operation?
2139                                          */
2140 };
2141
2142 static int snd_cmipci_uswitch_info(struct snd_kcontrol *kcontrol,
2143                                    struct snd_ctl_elem_info *uinfo)
2144 {
2145         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2146         uinfo->count = 1;
2147         uinfo->value.integer.min = 0;
2148         uinfo->value.integer.max = 1;
2149         return 0;
2150 }
2151
2152 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2153                                    struct snd_ctl_elem_value *ucontrol,
2154                                    struct cmipci_switch_args *args)
2155 {
2156         unsigned int val;
2157         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2158
2159         spin_lock_irq(&cm->reg_lock);
2160         if (args->ac3_sensitive && cm->mixer_insensitive) {
2161                 ucontrol->value.integer.value[0] = 0;
2162                 spin_unlock_irq(&cm->reg_lock);
2163                 return 0;
2164         }
2165         if (args->is_byte)
2166                 val = inb(cm->iobase + args->reg);
2167         else
2168                 val = snd_cmipci_read(cm, args->reg);
2169         ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2170         spin_unlock_irq(&cm->reg_lock);
2171         return 0;
2172 }
2173
2174 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2175                                   struct snd_ctl_elem_value *ucontrol)
2176 {
2177         struct cmipci_switch_args *args;
2178         args = (struct cmipci_switch_args *)kcontrol->private_value;
2179         snd_assert(args != NULL, return -EINVAL);
2180         return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2181 }
2182
2183 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2184                                    struct snd_ctl_elem_value *ucontrol,
2185                                    struct cmipci_switch_args *args)
2186 {
2187         unsigned int val;
2188         int change;
2189         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2190
2191         spin_lock_irq(&cm->reg_lock);
2192         if (args->ac3_sensitive && cm->mixer_insensitive) {
2193                 /* ignored */
2194                 spin_unlock_irq(&cm->reg_lock);
2195                 return 0;
2196         }
2197         if (args->is_byte)
2198                 val = inb(cm->iobase + args->reg);
2199         else
2200                 val = snd_cmipci_read(cm, args->reg);
2201         change = (val & args->mask) != (ucontrol->value.integer.value[0] ? args->mask : 0);
2202         if (change) {
2203                 val &= ~args->mask;
2204                 if (ucontrol->value.integer.value[0])
2205                         val |= args->mask_on;
2206                 else
2207                         val |= (args->mask & ~args->mask_on);
2208                 if (args->is_byte)
2209                         outb((unsigned char)val, cm->iobase + args->reg);
2210                 else
2211                         snd_cmipci_write(cm, args->reg, val);
2212         }
2213         spin_unlock_irq(&cm->reg_lock);
2214         return change;
2215 }
2216
2217 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2218                                   struct snd_ctl_elem_value *ucontrol)
2219 {
2220         struct cmipci_switch_args *args;
2221         args = (struct cmipci_switch_args *)kcontrol->private_value;
2222         snd_assert(args != NULL, return -EINVAL);
2223         return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2224 }
2225
2226 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2227 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2228   .reg = xreg, \
2229   .mask = xmask, \
2230   .mask_on = xmask_on, \
2231   .is_byte = xis_byte, \
2232   .ac3_sensitive = xac3, \
2233 }
2234         
2235 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2236         DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2237
2238 #if 0 /* these will be controlled in pcm device */
2239 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2240 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2241 #endif
2242 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2243 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2244 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2245 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2246 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2247 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2248 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2249 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2250 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2251 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2252 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2253 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2254 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2255 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2256 #if CM_CH_PLAY == 1
2257 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2258 #else
2259 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2260 #endif
2261 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2262 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_SPK4, 1, 0);
2263 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_LINE_AS_BASS, 0, 0);
2264 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2265 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2266
2267 #define DEFINE_SWITCH(sname, stype, sarg) \
2268 { .name = sname, \
2269   .iface = stype, \
2270   .info = snd_cmipci_uswitch_info, \
2271   .get = snd_cmipci_uswitch_get, \
2272   .put = snd_cmipci_uswitch_put, \
2273   .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2274 }
2275
2276 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2277 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2278
2279
2280 /*
2281  * callbacks for spdif output switch
2282  * needs toggle two registers..
2283  */
2284 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2285                                         struct snd_ctl_elem_value *ucontrol)
2286 {
2287         int changed;
2288         changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2289         changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2290         return changed;
2291 }
2292
2293 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2294                                         struct snd_ctl_elem_value *ucontrol)
2295 {
2296         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2297         int changed;
2298         changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2299         changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2300         if (changed) {
2301                 if (ucontrol->value.integer.value[0]) {
2302                         if (chip->spdif_playback_avail)
2303                                 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2304                 } else {
2305                         if (chip->spdif_playback_avail)
2306                                 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2307                 }
2308         }
2309         chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2310         return changed;
2311 }
2312
2313
2314 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2315                                         struct snd_ctl_elem_info *uinfo)
2316 {
2317         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2318         static char *texts[3] = { "Line-In", "Rear Output", "Bass Output" };
2319         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2320         uinfo->count = 1;
2321         uinfo->value.enumerated.items = cm->chip_version >= 39 ? 3 : 2;
2322         if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2323                 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2324         strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2325         return 0;
2326 }
2327
2328 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2329 {
2330         unsigned int val;
2331         if (cm->chip_version >= 39) {
2332                 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2333                 if (val & CM_LINE_AS_BASS)
2334                         return 2;
2335         }
2336         val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2337         if (val & CM_SPK4)
2338                 return 1;
2339         return 0;
2340 }
2341
2342 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2343                                        struct snd_ctl_elem_value *ucontrol)
2344 {
2345         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2346
2347         spin_lock_irq(&cm->reg_lock);
2348         ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2349         spin_unlock_irq(&cm->reg_lock);
2350         return 0;
2351 }
2352
2353 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2354                                        struct snd_ctl_elem_value *ucontrol)
2355 {
2356         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2357         int change;
2358
2359         spin_lock_irq(&cm->reg_lock);
2360         if (ucontrol->value.enumerated.item[0] == 2)
2361                 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_LINE_AS_BASS);
2362         else
2363                 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_LINE_AS_BASS);
2364         if (ucontrol->value.enumerated.item[0] == 1)
2365                 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_SPK4);
2366         else
2367                 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_SPK4);
2368         spin_unlock_irq(&cm->reg_lock);
2369         return change;
2370 }
2371
2372 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2373                                        struct snd_ctl_elem_info *uinfo)
2374 {
2375         static char *texts[2] = { "Mic-In", "Center/LFE Output" };
2376         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2377         uinfo->count = 1;
2378         uinfo->value.enumerated.items = 2;
2379         if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2380                 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2381         strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2382         return 0;
2383 }
2384
2385 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2386                                       struct snd_ctl_elem_value *ucontrol)
2387 {
2388         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2389         /* same bit as spdi_phase */
2390         spin_lock_irq(&cm->reg_lock);
2391         ucontrol->value.enumerated.item[0] = 
2392                 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2393         spin_unlock_irq(&cm->reg_lock);
2394         return 0;
2395 }
2396
2397 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2398                                       struct snd_ctl_elem_value *ucontrol)
2399 {
2400         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2401         int change;
2402
2403         spin_lock_irq(&cm->reg_lock);
2404         if (ucontrol->value.enumerated.item[0])
2405                 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2406         else
2407                 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2408         spin_unlock_irq(&cm->reg_lock);
2409         return change;
2410 }
2411
2412 /* both for CM8338/8738 */
2413 static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = {
2414         DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2415         {
2416                 .name = "Line-In Mode",
2417                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2418                 .info = snd_cmipci_line_in_mode_info,
2419                 .get = snd_cmipci_line_in_mode_get,
2420                 .put = snd_cmipci_line_in_mode_put,
2421         },
2422 };
2423
2424 /* for non-multichannel chips */
2425 static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata =
2426 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2427
2428 /* only for CM8738 */
2429 static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = {
2430 #if 0 /* controlled in pcm device */
2431         DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2432         DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2433         DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2434 #endif
2435         // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2436         { .name = "IEC958 Output Switch",
2437           .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2438           .info = snd_cmipci_uswitch_info,
2439           .get = snd_cmipci_spdout_enable_get,
2440           .put = snd_cmipci_spdout_enable_put,
2441         },
2442         DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2443         DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2444         DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2445 //      DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2446         DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2447         DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2448 };
2449
2450 /* only for model 033/037 */
2451 static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = {
2452         DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2453         DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2454         DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2455 };
2456
2457 /* only for model 039 or later */
2458 static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = {
2459         DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2460         DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2461         {
2462                 .name = "Mic-In Mode",
2463                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2464                 .info = snd_cmipci_mic_in_mode_info,
2465                 .get = snd_cmipci_mic_in_mode_get,
2466                 .put = snd_cmipci_mic_in_mode_put,
2467         }
2468 };
2469
2470 /* card control switches */
2471 static struct snd_kcontrol_new snd_cmipci_control_switches[] __devinitdata = {
2472         // DEFINE_CARD_SWITCH("Joystick", joystick), /* now module option */
2473         DEFINE_CARD_SWITCH("Modem", modem),
2474 };
2475
2476
2477 static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2478 {
2479         struct snd_card *card;
2480         struct snd_kcontrol_new *sw;
2481         struct snd_kcontrol *kctl;
2482         unsigned int idx;
2483         int err;
2484
2485         snd_assert(cm != NULL && cm->card != NULL, return -EINVAL);
2486
2487         card = cm->card;
2488
2489         strcpy(card->mixername, "CMedia PCI");
2490
2491         spin_lock_irq(&cm->reg_lock);
2492         snd_cmipci_mixer_write(cm, 0x00, 0x00);         /* mixer reset */
2493         spin_unlock_irq(&cm->reg_lock);
2494
2495         for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2496                 if (cm->chip_version == 68) {   // 8768 has no PCM volume
2497                         if (!strcmp(snd_cmipci_mixers[idx].name,
2498                                 "PCM Playback Volume"))
2499                                 continue;
2500                 }
2501                 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2502                         return err;
2503         }
2504
2505         /* mixer switches */
2506         sw = snd_cmipci_mixer_switches;
2507         for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2508                 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2509                 if (err < 0)
2510                         return err;
2511         }
2512         if (! cm->can_multi_ch) {
2513                 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2514                 if (err < 0)
2515                         return err;
2516         }
2517         if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2518             cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2519                 sw = snd_cmipci_8738_mixer_switches;
2520                 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2521                         err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2522                         if (err < 0)
2523                                 return err;
2524                 }
2525                 if (cm->can_ac3_hw) {
2526                         if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2527                                 return err;
2528                         kctl->id.device = pcm_spdif_device;
2529                         if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2530                                 return err;
2531                         kctl->id.device = pcm_spdif_device;
2532                         if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2533                                 return err;
2534                         kctl->id.device = pcm_spdif_device;
2535                 }
2536                 if (cm->chip_version <= 37) {
2537                         sw = snd_cmipci_old_mixer_switches;
2538                         for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2539                                 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2540                                 if (err < 0)
2541                                         return err;
2542                         }
2543                 }
2544         }
2545         if (cm->chip_version >= 39) {
2546                 sw = snd_cmipci_extra_mixer_switches;
2547                 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2548                         err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2549                         if (err < 0)
2550                                 return err;
2551                 }
2552         }
2553
2554         /* card switches */
2555         sw = snd_cmipci_control_switches;
2556         for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_control_switches); idx++, sw++) {
2557                 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2558                 if (err < 0)
2559                         return err;
2560         }
2561
2562         for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2563                 struct snd_ctl_elem_id id;
2564                 struct snd_kcontrol *ctl;
2565                 memset(&id, 0, sizeof(id));
2566                 id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2567                 strcpy(id.name, cm_saved_mixer[idx].name);
2568                 if ((ctl = snd_ctl_find_id(cm->card, &id)) != NULL)
2569                         cm->mixer_res_ctl[idx] = ctl;
2570         }
2571
2572         return 0;
2573 }
2574
2575
2576 /*
2577  * proc interface
2578  */
2579
2580 #ifdef CONFIG_PROC_FS
2581 static void snd_cmipci_proc_read(struct snd_info_entry *entry, 
2582                                  struct snd_info_buffer *buffer)
2583 {
2584         struct cmipci *cm = entry->private_data;
2585         int i;
2586         
2587         snd_iprintf(buffer, "%s\n\n", cm->card->longname);
2588         for (i = 0; i < 0x40; i++) {
2589                 int v = inb(cm->iobase + i);
2590                 if (i % 4 == 0)
2591                         snd_iprintf(buffer, "%02x: ", i);
2592                 snd_iprintf(buffer, "%02x", v);
2593                 if (i % 4 == 3)
2594                         snd_iprintf(buffer, "\n");
2595                 else
2596                         snd_iprintf(buffer, " ");
2597         }
2598 }
2599
2600 static void __devinit snd_cmipci_proc_init(struct cmipci *cm)
2601 {
2602         struct snd_info_entry *entry;
2603
2604         if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2605                 snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2606 }
2607 #else /* !CONFIG_PROC_FS */
2608 static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
2609 #endif
2610
2611
2612 static struct pci_device_id snd_cmipci_ids[] __devinitdata = {
2613         {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2614         {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2615         {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2616         {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2617         {PCI_VENDOR_ID_AL, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2618         {0,},
2619 };
2620
2621
2622 /*
2623  * check chip version and capabilities
2624  * driver name is modified according to the chip model
2625  */
2626 static void __devinit query_chip(struct cmipci *cm)
2627 {
2628         unsigned int detect;
2629
2630         /* check reg 0Ch, bit 24-31 */
2631         detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2632         if (! detect) {
2633                 /* check reg 08h, bit 24-28 */
2634                 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2635                 if (! detect) {
2636                         cm->chip_version = 33;
2637                         cm->max_channels = 2;
2638                         if (cm->do_soft_ac3)
2639                                 cm->can_ac3_sw = 1;
2640                         else
2641                                 cm->can_ac3_hw = 1;
2642                         cm->has_dual_dac = 1;
2643                 } else {
2644                         cm->chip_version = 37;
2645                         cm->max_channels = 2;
2646                         cm->can_ac3_hw = 1;
2647                         cm->has_dual_dac = 1;
2648                 }
2649         } else {
2650                 /* check reg 0Ch, bit 26 */
2651                 if (detect & CM_CHIP_8768) {
2652                         cm->chip_version = 68;
2653                         cm->max_channels = 8;
2654                         cm->can_ac3_hw = 1;
2655                         cm->has_dual_dac = 1;
2656                         cm->can_multi_ch = 1;
2657                 } else if (detect & CM_CHIP_055) {
2658                         cm->chip_version = 55;
2659                         cm->max_channels = 6;
2660                         cm->can_ac3_hw = 1;
2661                         cm->has_dual_dac = 1;
2662                         cm->can_multi_ch = 1;
2663                 } else if (detect & CM_CHIP_039) {
2664                         cm->chip_version = 39;
2665                         if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2666                                 cm->max_channels = 6;
2667                         else
2668                                 cm->max_channels = 4;
2669                         cm->can_ac3_hw = 1;
2670                         cm->has_dual_dac = 1;
2671                         cm->can_multi_ch = 1;
2672                 } else {
2673                         printk(KERN_ERR "chip %x version not supported\n", detect);
2674                 }
2675         }
2676 }
2677
2678 #ifdef SUPPORT_JOYSTICK
2679 static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2680 {
2681         static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2682         struct gameport *gp;
2683         struct resource *r = NULL;
2684         int i, io_port = 0;
2685
2686         if (joystick_port[dev] == 0)
2687                 return -ENODEV;
2688
2689         if (joystick_port[dev] == 1) { /* auto-detect */
2690                 for (i = 0; ports[i]; i++) {
2691                         io_port = ports[i];
2692                         r = request_region(io_port, 1, "CMIPCI gameport");
2693                         if (r)
2694                                 break;
2695                 }
2696         } else {
2697                 io_port = joystick_port[dev];
2698                 r = request_region(io_port, 1, "CMIPCI gameport");
2699         }
2700
2701         if (!r) {
2702                 printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
2703                 return -EBUSY;
2704         }
2705
2706         cm->gameport = gp = gameport_allocate_port();
2707         if (!gp) {
2708                 printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
2709                 release_and_free_resource(r);
2710                 return -ENOMEM;
2711         }
2712         gameport_set_name(gp, "C-Media Gameport");
2713         gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2714         gameport_set_dev_parent(gp, &cm->pci->dev);
2715         gp->io = io_port;
2716         gameport_set_port_data(gp, r);
2717
2718         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2719
2720         gameport_register_port(cm->gameport);
2721
2722         return 0;
2723 }
2724
2725 static void snd_cmipci_free_gameport(struct cmipci *cm)
2726 {
2727         if (cm->gameport) {
2728                 struct resource *r = gameport_get_port_data(cm->gameport);
2729
2730                 gameport_unregister_port(cm->gameport);
2731                 cm->gameport = NULL;
2732
2733                 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2734                 release_and_free_resource(r);
2735         }
2736 }
2737 #else
2738 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2739 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2740 #endif
2741
2742 static int snd_cmipci_free(struct cmipci *cm)
2743 {
2744         if (cm->irq >= 0) {
2745                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2746                 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2747                 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2748                 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2749                 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2750                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2751                 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2752
2753                 /* reset mixer */
2754                 snd_cmipci_mixer_write(cm, 0, 0);
2755
2756                 synchronize_irq(cm->irq);
2757
2758                 free_irq(cm->irq, cm);
2759         }
2760
2761         snd_cmipci_free_gameport(cm);
2762         pci_release_regions(cm->pci);
2763         pci_disable_device(cm->pci);
2764         kfree(cm);
2765         return 0;
2766 }
2767
2768 static int snd_cmipci_dev_free(struct snd_device *device)
2769 {
2770         struct cmipci *cm = device->device_data;
2771         return snd_cmipci_free(cm);
2772 }
2773
2774 static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2775 {
2776         long iosynth;
2777         unsigned int val;
2778         struct snd_opl3 *opl3;
2779         int err;
2780
2781         /* first try FM regs in PCI port range */
2782         iosynth = cm->iobase + CM_REG_FM_PCI;
2783         err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2784                               OPL3_HW_OPL3, 1, &opl3);
2785         if (err < 0) {
2786                 /* then try legacy ports */
2787                 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2788                 iosynth = fm_port;
2789                 switch (iosynth) {
2790                 case 0x3E8: val |= CM_FMSEL_3E8; break;
2791                 case 0x3E0: val |= CM_FMSEL_3E0; break;
2792                 case 0x3C8: val |= CM_FMSEL_3C8; break;
2793                 case 0x388: val |= CM_FMSEL_388; break;
2794                 default:
2795                             return 0;
2796                 }
2797                 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2798                 /* enable FM */
2799                 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2800
2801                 if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2802                                     OPL3_HW_OPL3, 0, &opl3) < 0) {
2803                         printk(KERN_ERR "cmipci: no OPL device at %#lx, "
2804                                "skipping...\n", iosynth);
2805                         /* disable FM */
2806                         snd_cmipci_write(cm, CM_REG_LEGACY_CTRL,
2807                                          val & ~CM_FMSEL_MASK);
2808                         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2809                         return 0;
2810                 }
2811         }
2812         if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2813                 printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
2814                 return err;
2815         }
2816         return 0;
2817 }
2818
2819 static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2820                                        int dev, struct cmipci **rcmipci)
2821 {
2822         struct cmipci *cm;
2823         int err;
2824         static struct snd_device_ops ops = {
2825                 .dev_free =     snd_cmipci_dev_free,
2826         };
2827         unsigned int val = 0;
2828         long iomidi;
2829         int integrated_midi;
2830         int pcm_index, pcm_spdif_index;
2831         static struct pci_device_id intel_82437vx[] = {
2832                 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2833                 { },
2834         };
2835
2836         *rcmipci = NULL;
2837
2838         if ((err = pci_enable_device(pci)) < 0)
2839                 return err;
2840
2841         cm = kzalloc(sizeof(*cm), GFP_KERNEL);
2842         if (cm == NULL) {
2843                 pci_disable_device(pci);
2844                 return -ENOMEM;
2845         }
2846
2847         spin_lock_init(&cm->reg_lock);
2848         mutex_init(&cm->open_mutex);
2849         cm->device = pci->device;
2850         cm->card = card;
2851         cm->pci = pci;
2852         cm->irq = -1;
2853         cm->channel[0].ch = 0;
2854         cm->channel[1].ch = 1;
2855         cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
2856
2857         if ((err = pci_request_regions(pci, card->driver)) < 0) {
2858                 kfree(cm);
2859                 pci_disable_device(pci);
2860                 return err;
2861         }
2862         cm->iobase = pci_resource_start(pci, 0);
2863
2864         if (request_irq(pci->irq, snd_cmipci_interrupt,
2865                         SA_INTERRUPT|SA_SHIRQ, card->driver, cm)) {
2866                 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
2867                 snd_cmipci_free(cm);
2868                 return -EBUSY;
2869         }
2870         cm->irq = pci->irq;
2871
2872         pci_set_master(cm->pci);
2873
2874         /*
2875          * check chip version, max channels and capabilities
2876          */
2877
2878         cm->chip_version = 0;
2879         cm->max_channels = 2;
2880         cm->do_soft_ac3 = soft_ac3[dev];
2881
2882         if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
2883             pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
2884                 query_chip(cm);
2885         /* added -MCx suffix for chip supporting multi-channels */
2886         if (cm->can_multi_ch)
2887                 sprintf(cm->card->driver + strlen(cm->card->driver),
2888                         "-MC%d", cm->max_channels);
2889         else if (cm->can_ac3_sw)
2890                 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
2891
2892         cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
2893         cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
2894
2895 #if CM_CH_PLAY == 1
2896         cm->ctrl = CM_CHADC0;   /* default FUNCNTRL0 */
2897 #else
2898         cm->ctrl = CM_CHADC1;   /* default FUNCNTRL0 */
2899 #endif
2900
2901         /* initialize codec registers */
2902         snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);     /* disable ints */
2903         snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2904         snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2905         snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);       /* disable channels */
2906         snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2907
2908         snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
2909         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
2910 #if CM_CH_PLAY == 1
2911         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
2912 #else
2913         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
2914 #endif
2915         /* Set Bus Master Request */
2916         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
2917
2918         /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
2919         switch (pci->device) {
2920         case PCI_DEVICE_ID_CMEDIA_CM8738:
2921         case PCI_DEVICE_ID_CMEDIA_CM8738B:
2922                 if (!pci_dev_present(intel_82437vx)) 
2923                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
2924                 break;
2925         default:
2926                 break;
2927         }
2928
2929         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
2930                 snd_cmipci_free(cm);
2931                 return err;
2932         }
2933
2934         integrated_midi = snd_cmipci_read_b(cm, CM_REG_MPU_PCI) != 0xff;
2935         if (integrated_midi && mpu_port[dev] == 1)
2936                 iomidi = cm->iobase + CM_REG_MPU_PCI;
2937         else {
2938                 iomidi = mpu_port[dev];
2939                 switch (iomidi) {
2940                 case 0x320: val = CM_VMPU_320; break;
2941                 case 0x310: val = CM_VMPU_310; break;
2942                 case 0x300: val = CM_VMPU_300; break;
2943                 case 0x330: val = CM_VMPU_330; break;
2944                 default:
2945                             iomidi = 0; break;
2946                 }
2947                 if (iomidi > 0) {
2948                         snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2949                         /* enable UART */
2950                         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
2951                 }
2952         }
2953
2954         if ((err = snd_cmipci_create_fm(cm, fm_port[dev])) < 0)
2955                 return err;
2956
2957         /* reset mixer */
2958         snd_cmipci_mixer_write(cm, 0, 0);
2959
2960         snd_cmipci_proc_init(cm);
2961
2962         /* create pcm devices */
2963         pcm_index = pcm_spdif_index = 0;
2964         if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
2965                 return err;
2966         pcm_index++;
2967         if (cm->has_dual_dac) {
2968                 if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
2969                         return err;
2970                 pcm_index++;
2971         }
2972         if (cm->can_ac3_hw || cm->can_ac3_sw) {
2973                 pcm_spdif_index = pcm_index;
2974                 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
2975                         return err;
2976         }
2977
2978         /* create mixer interface & switches */
2979         if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
2980                 return err;
2981
2982         if (iomidi > 0) {
2983                 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
2984                                                iomidi,
2985                                                (integrated_midi ?
2986                                                 MPU401_INFO_INTEGRATED : 0),
2987                                                cm->irq, 0, &cm->rmidi)) < 0) {
2988                         printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
2989                 }
2990         }
2991
2992 #ifdef USE_VAR48KRATE
2993         for (val = 0; val < ARRAY_SIZE(rates); val++)
2994                 snd_cmipci_set_pll(cm, rates[val], val);
2995
2996         /*
2997          * (Re-)Enable external switch spdo_48k
2998          */
2999         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3000 #endif /* USE_VAR48KRATE */
3001
3002         if (snd_cmipci_create_gameport(cm, dev) < 0)
3003                 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3004
3005         snd_card_set_dev(card, &pci->dev);
3006
3007         *rcmipci = cm;
3008         return 0;
3009 }
3010
3011 /*
3012  */
3013
3014 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3015
3016 static int __devinit snd_cmipci_probe(struct pci_dev *pci,
3017                                       const struct pci_device_id *pci_id)
3018 {
3019         static int dev;
3020         struct snd_card *card;
3021         struct cmipci *cm;
3022         int err;
3023
3024         if (dev >= SNDRV_CARDS)
3025                 return -ENODEV;
3026         if (! enable[dev]) {
3027                 dev++;
3028                 return -ENOENT;
3029         }
3030
3031         card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
3032         if (card == NULL)
3033                 return -ENOMEM;
3034         
3035         switch (pci->device) {
3036         case PCI_DEVICE_ID_CMEDIA_CM8738:
3037         case PCI_DEVICE_ID_CMEDIA_CM8738B:
3038                 strcpy(card->driver, "CMI8738");
3039                 break;
3040         case PCI_DEVICE_ID_CMEDIA_CM8338A:
3041         case PCI_DEVICE_ID_CMEDIA_CM8338B:
3042                 strcpy(card->driver, "CMI8338");
3043                 break;
3044         default:
3045                 strcpy(card->driver, "CMIPCI");
3046                 break;
3047         }
3048
3049         if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3050                 snd_card_free(card);
3051                 return err;
3052         }
3053         card->private_data = cm;
3054
3055         sprintf(card->shortname, "C-Media PCI %s", card->driver);
3056         sprintf(card->longname, "%s (model %d) at 0x%lx, irq %i",
3057                 card->shortname,
3058                 cm->chip_version,
3059                 cm->iobase,
3060                 cm->irq);
3061
3062         //snd_printd("%s is detected\n", card->longname);
3063
3064         if ((err = snd_card_register(card)) < 0) {
3065                 snd_card_free(card);
3066                 return err;
3067         }
3068         pci_set_drvdata(pci, card);
3069         dev++;
3070         return 0;
3071
3072 }
3073
3074 static void __devexit snd_cmipci_remove(struct pci_dev *pci)
3075 {
3076         snd_card_free(pci_get_drvdata(pci));
3077         pci_set_drvdata(pci, NULL);
3078 }
3079
3080
3081 #ifdef CONFIG_PM
3082 /*
3083  * power management
3084  */
3085 static unsigned char saved_regs[] = {
3086         CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3087         CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3088         CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3089         CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3090         CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3091 };
3092
3093 static unsigned char saved_mixers[] = {
3094         SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3095         SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3096         SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3097         SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3098         SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3099         SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3100         CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3101         SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3102 };
3103
3104 static int snd_cmipci_suspend(struct pci_dev *pci, pm_message_t state)
3105 {
3106         struct snd_card *card = pci_get_drvdata(pci);
3107         struct cmipci *cm = card->private_data;
3108         int i;
3109
3110         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3111         
3112         snd_pcm_suspend_all(cm->pcm);
3113         snd_pcm_suspend_all(cm->pcm2);
3114         snd_pcm_suspend_all(cm->pcm_spdif);
3115
3116         /* save registers */
3117         for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3118                 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3119         for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3120                 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3121
3122         /* disable ints */
3123         snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3124
3125         pci_set_power_state(pci, PCI_D3hot);
3126         pci_disable_device(pci);
3127         pci_save_state(pci);
3128         return 0;
3129 }
3130
3131 static int snd_cmipci_resume(struct pci_dev *pci)
3132 {
3133         struct snd_card *card = pci_get_drvdata(pci);
3134         struct cmipci *cm = card->private_data;
3135         int i;
3136
3137         pci_restore_state(pci);
3138         pci_enable_device(pci);
3139         pci_set_power_state(pci, PCI_D0);
3140         pci_set_master(pci);
3141
3142         /* reset / initialize to a sane state */
3143         snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3144         snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3145         snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3146         snd_cmipci_mixer_write(cm, 0, 0);
3147
3148         /* restore registers */
3149         for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3150                 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3151         for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3152                 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3153
3154         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3155         return 0;
3156 }
3157 #endif /* CONFIG_PM */
3158
3159 static struct pci_driver driver = {
3160         .name = "C-Media PCI",
3161         .id_table = snd_cmipci_ids,
3162         .probe = snd_cmipci_probe,
3163         .remove = __devexit_p(snd_cmipci_remove),
3164 #ifdef CONFIG_PM
3165         .suspend = snd_cmipci_suspend,
3166         .resume = snd_cmipci_resume,
3167 #endif
3168 };
3169         
3170 static int __init alsa_card_cmipci_init(void)
3171 {
3172         return pci_register_driver(&driver);
3173 }
3174
3175 static void __exit alsa_card_cmipci_exit(void)
3176 {
3177         pci_unregister_driver(&driver);
3178 }
3179
3180 module_init(alsa_card_cmipci_init)
3181 module_exit(alsa_card_cmipci_exit)