x86: move non-standard 32-bit platform Kconfig entries
[linux-2.6] / block / blk-core.c
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *      -  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/blktrace_api.h>
30 #include <linux/fault-inject.h>
31 #include <trace/block.h>
32
33 #include "blk.h"
34
35 DEFINE_TRACE(block_plug);
36 DEFINE_TRACE(block_unplug_io);
37 DEFINE_TRACE(block_unplug_timer);
38 DEFINE_TRACE(block_getrq);
39 DEFINE_TRACE(block_sleeprq);
40 DEFINE_TRACE(block_rq_requeue);
41 DEFINE_TRACE(block_bio_backmerge);
42 DEFINE_TRACE(block_bio_frontmerge);
43 DEFINE_TRACE(block_bio_queue);
44 DEFINE_TRACE(block_rq_complete);
45 DEFINE_TRACE(block_remap);      /* Also used in drivers/md/dm.c */
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
47
48 static int __make_request(struct request_queue *q, struct bio *bio);
49
50 /*
51  * For the allocated request tables
52  */
53 static struct kmem_cache *request_cachep;
54
55 /*
56  * For queue allocation
57  */
58 struct kmem_cache *blk_requestq_cachep;
59
60 /*
61  * Controlling structure to kblockd
62  */
63 static struct workqueue_struct *kblockd_workqueue;
64
65 static void drive_stat_acct(struct request *rq, int new_io)
66 {
67         struct hd_struct *part;
68         int rw = rq_data_dir(rq);
69         int cpu;
70
71         if (!blk_fs_request(rq) || !rq->rq_disk)
72                 return;
73
74         cpu = part_stat_lock();
75         part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
76
77         if (!new_io)
78                 part_stat_inc(cpu, part, merges[rw]);
79         else {
80                 part_round_stats(cpu, part);
81                 part_inc_in_flight(part);
82         }
83
84         part_stat_unlock();
85 }
86
87 void blk_queue_congestion_threshold(struct request_queue *q)
88 {
89         int nr;
90
91         nr = q->nr_requests - (q->nr_requests / 8) + 1;
92         if (nr > q->nr_requests)
93                 nr = q->nr_requests;
94         q->nr_congestion_on = nr;
95
96         nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
97         if (nr < 1)
98                 nr = 1;
99         q->nr_congestion_off = nr;
100 }
101
102 /**
103  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
104  * @bdev:       device
105  *
106  * Locates the passed device's request queue and returns the address of its
107  * backing_dev_info
108  *
109  * Will return NULL if the request queue cannot be located.
110  */
111 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
112 {
113         struct backing_dev_info *ret = NULL;
114         struct request_queue *q = bdev_get_queue(bdev);
115
116         if (q)
117                 ret = &q->backing_dev_info;
118         return ret;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124         memset(rq, 0, sizeof(*rq));
125
126         INIT_LIST_HEAD(&rq->queuelist);
127         INIT_LIST_HEAD(&rq->timeout_list);
128         rq->cpu = -1;
129         rq->q = q;
130         rq->sector = rq->hard_sector = (sector_t) -1;
131         INIT_HLIST_NODE(&rq->hash);
132         RB_CLEAR_NODE(&rq->rb_node);
133         rq->cmd = rq->__cmd;
134         rq->tag = -1;
135         rq->ref_count = 1;
136 }
137 EXPORT_SYMBOL(blk_rq_init);
138
139 static void req_bio_endio(struct request *rq, struct bio *bio,
140                           unsigned int nbytes, int error)
141 {
142         struct request_queue *q = rq->q;
143
144         if (&q->bar_rq != rq) {
145                 if (error)
146                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
147                 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
148                         error = -EIO;
149
150                 if (unlikely(nbytes > bio->bi_size)) {
151                         printk(KERN_ERR "%s: want %u bytes done, %u left\n",
152                                __func__, nbytes, bio->bi_size);
153                         nbytes = bio->bi_size;
154                 }
155
156                 if (unlikely(rq->cmd_flags & REQ_QUIET))
157                         set_bit(BIO_QUIET, &bio->bi_flags);
158
159                 bio->bi_size -= nbytes;
160                 bio->bi_sector += (nbytes >> 9);
161
162                 if (bio_integrity(bio))
163                         bio_integrity_advance(bio, nbytes);
164
165                 if (bio->bi_size == 0)
166                         bio_endio(bio, error);
167         } else {
168
169                 /*
170                  * Okay, this is the barrier request in progress, just
171                  * record the error;
172                  */
173                 if (error && !q->orderr)
174                         q->orderr = error;
175         }
176 }
177
178 void blk_dump_rq_flags(struct request *rq, char *msg)
179 {
180         int bit;
181
182         printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
183                 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184                 rq->cmd_flags);
185
186         printk(KERN_INFO "  sector %llu, nr/cnr %lu/%u\n",
187                                                 (unsigned long long)rq->sector,
188                                                 rq->nr_sectors,
189                                                 rq->current_nr_sectors);
190         printk(KERN_INFO "  bio %p, biotail %p, buffer %p, data %p, len %u\n",
191                                                 rq->bio, rq->biotail,
192                                                 rq->buffer, rq->data,
193                                                 rq->data_len);
194
195         if (blk_pc_request(rq)) {
196                 printk(KERN_INFO "  cdb: ");
197                 for (bit = 0; bit < BLK_MAX_CDB; bit++)
198                         printk("%02x ", rq->cmd[bit]);
199                 printk("\n");
200         }
201 }
202 EXPORT_SYMBOL(blk_dump_rq_flags);
203
204 /*
205  * "plug" the device if there are no outstanding requests: this will
206  * force the transfer to start only after we have put all the requests
207  * on the list.
208  *
209  * This is called with interrupts off and no requests on the queue and
210  * with the queue lock held.
211  */
212 void blk_plug_device(struct request_queue *q)
213 {
214         WARN_ON(!irqs_disabled());
215
216         /*
217          * don't plug a stopped queue, it must be paired with blk_start_queue()
218          * which will restart the queueing
219          */
220         if (blk_queue_stopped(q))
221                 return;
222
223         if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
224                 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
225                 trace_block_plug(q);
226         }
227 }
228 EXPORT_SYMBOL(blk_plug_device);
229
230 /**
231  * blk_plug_device_unlocked - plug a device without queue lock held
232  * @q:    The &struct request_queue to plug
233  *
234  * Description:
235  *   Like @blk_plug_device(), but grabs the queue lock and disables
236  *   interrupts.
237  **/
238 void blk_plug_device_unlocked(struct request_queue *q)
239 {
240         unsigned long flags;
241
242         spin_lock_irqsave(q->queue_lock, flags);
243         blk_plug_device(q);
244         spin_unlock_irqrestore(q->queue_lock, flags);
245 }
246 EXPORT_SYMBOL(blk_plug_device_unlocked);
247
248 /*
249  * remove the queue from the plugged list, if present. called with
250  * queue lock held and interrupts disabled.
251  */
252 int blk_remove_plug(struct request_queue *q)
253 {
254         WARN_ON(!irqs_disabled());
255
256         if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
257                 return 0;
258
259         del_timer(&q->unplug_timer);
260         return 1;
261 }
262 EXPORT_SYMBOL(blk_remove_plug);
263
264 /*
265  * remove the plug and let it rip..
266  */
267 void __generic_unplug_device(struct request_queue *q)
268 {
269         if (unlikely(blk_queue_stopped(q)))
270                 return;
271         if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
272                 return;
273
274         q->request_fn(q);
275 }
276
277 /**
278  * generic_unplug_device - fire a request queue
279  * @q:    The &struct request_queue in question
280  *
281  * Description:
282  *   Linux uses plugging to build bigger requests queues before letting
283  *   the device have at them. If a queue is plugged, the I/O scheduler
284  *   is still adding and merging requests on the queue. Once the queue
285  *   gets unplugged, the request_fn defined for the queue is invoked and
286  *   transfers started.
287  **/
288 void generic_unplug_device(struct request_queue *q)
289 {
290         if (blk_queue_plugged(q)) {
291                 spin_lock_irq(q->queue_lock);
292                 __generic_unplug_device(q);
293                 spin_unlock_irq(q->queue_lock);
294         }
295 }
296 EXPORT_SYMBOL(generic_unplug_device);
297
298 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
299                                    struct page *page)
300 {
301         struct request_queue *q = bdi->unplug_io_data;
302
303         blk_unplug(q);
304 }
305
306 void blk_unplug_work(struct work_struct *work)
307 {
308         struct request_queue *q =
309                 container_of(work, struct request_queue, unplug_work);
310
311         trace_block_unplug_io(q);
312         q->unplug_fn(q);
313 }
314
315 void blk_unplug_timeout(unsigned long data)
316 {
317         struct request_queue *q = (struct request_queue *)data;
318
319         trace_block_unplug_timer(q);
320         kblockd_schedule_work(q, &q->unplug_work);
321 }
322
323 void blk_unplug(struct request_queue *q)
324 {
325         /*
326          * devices don't necessarily have an ->unplug_fn defined
327          */
328         if (q->unplug_fn) {
329                 trace_block_unplug_io(q);
330                 q->unplug_fn(q);
331         }
332 }
333 EXPORT_SYMBOL(blk_unplug);
334
335 static void blk_invoke_request_fn(struct request_queue *q)
336 {
337         if (unlikely(blk_queue_stopped(q)))
338                 return;
339
340         /*
341          * one level of recursion is ok and is much faster than kicking
342          * the unplug handling
343          */
344         if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
345                 q->request_fn(q);
346                 queue_flag_clear(QUEUE_FLAG_REENTER, q);
347         } else {
348                 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
349                 kblockd_schedule_work(q, &q->unplug_work);
350         }
351 }
352
353 /**
354  * blk_start_queue - restart a previously stopped queue
355  * @q:    The &struct request_queue in question
356  *
357  * Description:
358  *   blk_start_queue() will clear the stop flag on the queue, and call
359  *   the request_fn for the queue if it was in a stopped state when
360  *   entered. Also see blk_stop_queue(). Queue lock must be held.
361  **/
362 void blk_start_queue(struct request_queue *q)
363 {
364         WARN_ON(!irqs_disabled());
365
366         queue_flag_clear(QUEUE_FLAG_STOPPED, q);
367         blk_invoke_request_fn(q);
368 }
369 EXPORT_SYMBOL(blk_start_queue);
370
371 /**
372  * blk_stop_queue - stop a queue
373  * @q:    The &struct request_queue in question
374  *
375  * Description:
376  *   The Linux block layer assumes that a block driver will consume all
377  *   entries on the request queue when the request_fn strategy is called.
378  *   Often this will not happen, because of hardware limitations (queue
379  *   depth settings). If a device driver gets a 'queue full' response,
380  *   or if it simply chooses not to queue more I/O at one point, it can
381  *   call this function to prevent the request_fn from being called until
382  *   the driver has signalled it's ready to go again. This happens by calling
383  *   blk_start_queue() to restart queue operations. Queue lock must be held.
384  **/
385 void blk_stop_queue(struct request_queue *q)
386 {
387         blk_remove_plug(q);
388         queue_flag_set(QUEUE_FLAG_STOPPED, q);
389 }
390 EXPORT_SYMBOL(blk_stop_queue);
391
392 /**
393  * blk_sync_queue - cancel any pending callbacks on a queue
394  * @q: the queue
395  *
396  * Description:
397  *     The block layer may perform asynchronous callback activity
398  *     on a queue, such as calling the unplug function after a timeout.
399  *     A block device may call blk_sync_queue to ensure that any
400  *     such activity is cancelled, thus allowing it to release resources
401  *     that the callbacks might use. The caller must already have made sure
402  *     that its ->make_request_fn will not re-add plugging prior to calling
403  *     this function.
404  *
405  */
406 void blk_sync_queue(struct request_queue *q)
407 {
408         del_timer_sync(&q->unplug_timer);
409         del_timer_sync(&q->timeout);
410         cancel_work_sync(&q->unplug_work);
411 }
412 EXPORT_SYMBOL(blk_sync_queue);
413
414 /**
415  * __blk_run_queue - run a single device queue
416  * @q:  The queue to run
417  *
418  * Description:
419  *    See @blk_run_queue. This variant must be called with the queue lock
420  *    held and interrupts disabled.
421  *
422  */
423 void __blk_run_queue(struct request_queue *q)
424 {
425         blk_remove_plug(q);
426
427         /*
428          * Only recurse once to avoid overrunning the stack, let the unplug
429          * handling reinvoke the handler shortly if we already got there.
430          */
431         if (!elv_queue_empty(q))
432                 blk_invoke_request_fn(q);
433 }
434 EXPORT_SYMBOL(__blk_run_queue);
435
436 /**
437  * blk_run_queue - run a single device queue
438  * @q: The queue to run
439  *
440  * Description:
441  *    Invoke request handling on this queue, if it has pending work to do.
442  *    May be used to restart queueing when a request has completed. Also
443  *    See @blk_start_queueing.
444  *
445  */
446 void blk_run_queue(struct request_queue *q)
447 {
448         unsigned long flags;
449
450         spin_lock_irqsave(q->queue_lock, flags);
451         __blk_run_queue(q);
452         spin_unlock_irqrestore(q->queue_lock, flags);
453 }
454 EXPORT_SYMBOL(blk_run_queue);
455
456 void blk_put_queue(struct request_queue *q)
457 {
458         kobject_put(&q->kobj);
459 }
460
461 void blk_cleanup_queue(struct request_queue *q)
462 {
463         /*
464          * We know we have process context here, so we can be a little
465          * cautious and ensure that pending block actions on this device
466          * are done before moving on. Going into this function, we should
467          * not have processes doing IO to this device.
468          */
469         blk_sync_queue(q);
470
471         mutex_lock(&q->sysfs_lock);
472         queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
473         mutex_unlock(&q->sysfs_lock);
474
475         if (q->elevator)
476                 elevator_exit(q->elevator);
477
478         blk_put_queue(q);
479 }
480 EXPORT_SYMBOL(blk_cleanup_queue);
481
482 static int blk_init_free_list(struct request_queue *q)
483 {
484         struct request_list *rl = &q->rq;
485
486         rl->count[READ] = rl->count[WRITE] = 0;
487         rl->starved[READ] = rl->starved[WRITE] = 0;
488         rl->elvpriv = 0;
489         init_waitqueue_head(&rl->wait[READ]);
490         init_waitqueue_head(&rl->wait[WRITE]);
491
492         rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
493                                 mempool_free_slab, request_cachep, q->node);
494
495         if (!rl->rq_pool)
496                 return -ENOMEM;
497
498         return 0;
499 }
500
501 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
502 {
503         return blk_alloc_queue_node(gfp_mask, -1);
504 }
505 EXPORT_SYMBOL(blk_alloc_queue);
506
507 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
508 {
509         struct request_queue *q;
510         int err;
511
512         q = kmem_cache_alloc_node(blk_requestq_cachep,
513                                 gfp_mask | __GFP_ZERO, node_id);
514         if (!q)
515                 return NULL;
516
517         q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
518         q->backing_dev_info.unplug_io_data = q;
519         err = bdi_init(&q->backing_dev_info);
520         if (err) {
521                 kmem_cache_free(blk_requestq_cachep, q);
522                 return NULL;
523         }
524
525         init_timer(&q->unplug_timer);
526         setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
527         INIT_LIST_HEAD(&q->timeout_list);
528         INIT_WORK(&q->unplug_work, blk_unplug_work);
529
530         kobject_init(&q->kobj, &blk_queue_ktype);
531
532         mutex_init(&q->sysfs_lock);
533         spin_lock_init(&q->__queue_lock);
534
535         return q;
536 }
537 EXPORT_SYMBOL(blk_alloc_queue_node);
538
539 /**
540  * blk_init_queue  - prepare a request queue for use with a block device
541  * @rfn:  The function to be called to process requests that have been
542  *        placed on the queue.
543  * @lock: Request queue spin lock
544  *
545  * Description:
546  *    If a block device wishes to use the standard request handling procedures,
547  *    which sorts requests and coalesces adjacent requests, then it must
548  *    call blk_init_queue().  The function @rfn will be called when there
549  *    are requests on the queue that need to be processed.  If the device
550  *    supports plugging, then @rfn may not be called immediately when requests
551  *    are available on the queue, but may be called at some time later instead.
552  *    Plugged queues are generally unplugged when a buffer belonging to one
553  *    of the requests on the queue is needed, or due to memory pressure.
554  *
555  *    @rfn is not required, or even expected, to remove all requests off the
556  *    queue, but only as many as it can handle at a time.  If it does leave
557  *    requests on the queue, it is responsible for arranging that the requests
558  *    get dealt with eventually.
559  *
560  *    The queue spin lock must be held while manipulating the requests on the
561  *    request queue; this lock will be taken also from interrupt context, so irq
562  *    disabling is needed for it.
563  *
564  *    Function returns a pointer to the initialized request queue, or %NULL if
565  *    it didn't succeed.
566  *
567  * Note:
568  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
569  *    when the block device is deactivated (such as at module unload).
570  **/
571
572 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
573 {
574         return blk_init_queue_node(rfn, lock, -1);
575 }
576 EXPORT_SYMBOL(blk_init_queue);
577
578 struct request_queue *
579 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
580 {
581         struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
582
583         if (!q)
584                 return NULL;
585
586         q->node = node_id;
587         if (blk_init_free_list(q)) {
588                 kmem_cache_free(blk_requestq_cachep, q);
589                 return NULL;
590         }
591
592         /*
593          * if caller didn't supply a lock, they get per-queue locking with
594          * our embedded lock
595          */
596         if (!lock)
597                 lock = &q->__queue_lock;
598
599         q->request_fn           = rfn;
600         q->prep_rq_fn           = NULL;
601         q->unplug_fn            = generic_unplug_device;
602         q->queue_flags          = (1 << QUEUE_FLAG_CLUSTER |
603                                    1 << QUEUE_FLAG_STACKABLE);
604         q->queue_lock           = lock;
605
606         blk_queue_segment_boundary(q, BLK_SEG_BOUNDARY_MASK);
607
608         blk_queue_make_request(q, __make_request);
609         blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
610
611         blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
612         blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
613
614         q->sg_reserved_size = INT_MAX;
615
616         blk_set_cmd_filter_defaults(&q->cmd_filter);
617
618         /*
619          * all done
620          */
621         if (!elevator_init(q, NULL)) {
622                 blk_queue_congestion_threshold(q);
623                 return q;
624         }
625
626         blk_put_queue(q);
627         return NULL;
628 }
629 EXPORT_SYMBOL(blk_init_queue_node);
630
631 int blk_get_queue(struct request_queue *q)
632 {
633         if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
634                 kobject_get(&q->kobj);
635                 return 0;
636         }
637
638         return 1;
639 }
640
641 static inline void blk_free_request(struct request_queue *q, struct request *rq)
642 {
643         if (rq->cmd_flags & REQ_ELVPRIV)
644                 elv_put_request(q, rq);
645         mempool_free(rq, q->rq.rq_pool);
646 }
647
648 static struct request *
649 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
650 {
651         struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
652
653         if (!rq)
654                 return NULL;
655
656         blk_rq_init(q, rq);
657
658         rq->cmd_flags = rw | REQ_ALLOCED;
659
660         if (priv) {
661                 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
662                         mempool_free(rq, q->rq.rq_pool);
663                         return NULL;
664                 }
665                 rq->cmd_flags |= REQ_ELVPRIV;
666         }
667
668         return rq;
669 }
670
671 /*
672  * ioc_batching returns true if the ioc is a valid batching request and
673  * should be given priority access to a request.
674  */
675 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
676 {
677         if (!ioc)
678                 return 0;
679
680         /*
681          * Make sure the process is able to allocate at least 1 request
682          * even if the batch times out, otherwise we could theoretically
683          * lose wakeups.
684          */
685         return ioc->nr_batch_requests == q->nr_batching ||
686                 (ioc->nr_batch_requests > 0
687                 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
688 }
689
690 /*
691  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
692  * will cause the process to be a "batcher" on all queues in the system. This
693  * is the behaviour we want though - once it gets a wakeup it should be given
694  * a nice run.
695  */
696 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
697 {
698         if (!ioc || ioc_batching(q, ioc))
699                 return;
700
701         ioc->nr_batch_requests = q->nr_batching;
702         ioc->last_waited = jiffies;
703 }
704
705 static void __freed_request(struct request_queue *q, int rw)
706 {
707         struct request_list *rl = &q->rq;
708
709         if (rl->count[rw] < queue_congestion_off_threshold(q))
710                 blk_clear_queue_congested(q, rw);
711
712         if (rl->count[rw] + 1 <= q->nr_requests) {
713                 if (waitqueue_active(&rl->wait[rw]))
714                         wake_up(&rl->wait[rw]);
715
716                 blk_clear_queue_full(q, rw);
717         }
718 }
719
720 /*
721  * A request has just been released.  Account for it, update the full and
722  * congestion status, wake up any waiters.   Called under q->queue_lock.
723  */
724 static void freed_request(struct request_queue *q, int rw, int priv)
725 {
726         struct request_list *rl = &q->rq;
727
728         rl->count[rw]--;
729         if (priv)
730                 rl->elvpriv--;
731
732         __freed_request(q, rw);
733
734         if (unlikely(rl->starved[rw ^ 1]))
735                 __freed_request(q, rw ^ 1);
736 }
737
738 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
739 /*
740  * Get a free request, queue_lock must be held.
741  * Returns NULL on failure, with queue_lock held.
742  * Returns !NULL on success, with queue_lock *not held*.
743  */
744 static struct request *get_request(struct request_queue *q, int rw_flags,
745                                    struct bio *bio, gfp_t gfp_mask)
746 {
747         struct request *rq = NULL;
748         struct request_list *rl = &q->rq;
749         struct io_context *ioc = NULL;
750         const int rw = rw_flags & 0x01;
751         int may_queue, priv;
752
753         may_queue = elv_may_queue(q, rw_flags);
754         if (may_queue == ELV_MQUEUE_NO)
755                 goto rq_starved;
756
757         if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
758                 if (rl->count[rw]+1 >= q->nr_requests) {
759                         ioc = current_io_context(GFP_ATOMIC, q->node);
760                         /*
761                          * The queue will fill after this allocation, so set
762                          * it as full, and mark this process as "batching".
763                          * This process will be allowed to complete a batch of
764                          * requests, others will be blocked.
765                          */
766                         if (!blk_queue_full(q, rw)) {
767                                 ioc_set_batching(q, ioc);
768                                 blk_set_queue_full(q, rw);
769                         } else {
770                                 if (may_queue != ELV_MQUEUE_MUST
771                                                 && !ioc_batching(q, ioc)) {
772                                         /*
773                                          * The queue is full and the allocating
774                                          * process is not a "batcher", and not
775                                          * exempted by the IO scheduler
776                                          */
777                                         goto out;
778                                 }
779                         }
780                 }
781                 blk_set_queue_congested(q, rw);
782         }
783
784         /*
785          * Only allow batching queuers to allocate up to 50% over the defined
786          * limit of requests, otherwise we could have thousands of requests
787          * allocated with any setting of ->nr_requests
788          */
789         if (rl->count[rw] >= (3 * q->nr_requests / 2))
790                 goto out;
791
792         rl->count[rw]++;
793         rl->starved[rw] = 0;
794
795         priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
796         if (priv)
797                 rl->elvpriv++;
798
799         spin_unlock_irq(q->queue_lock);
800
801         rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
802         if (unlikely(!rq)) {
803                 /*
804                  * Allocation failed presumably due to memory. Undo anything
805                  * we might have messed up.
806                  *
807                  * Allocating task should really be put onto the front of the
808                  * wait queue, but this is pretty rare.
809                  */
810                 spin_lock_irq(q->queue_lock);
811                 freed_request(q, rw, priv);
812
813                 /*
814                  * in the very unlikely event that allocation failed and no
815                  * requests for this direction was pending, mark us starved
816                  * so that freeing of a request in the other direction will
817                  * notice us. another possible fix would be to split the
818                  * rq mempool into READ and WRITE
819                  */
820 rq_starved:
821                 if (unlikely(rl->count[rw] == 0))
822                         rl->starved[rw] = 1;
823
824                 goto out;
825         }
826
827         /*
828          * ioc may be NULL here, and ioc_batching will be false. That's
829          * OK, if the queue is under the request limit then requests need
830          * not count toward the nr_batch_requests limit. There will always
831          * be some limit enforced by BLK_BATCH_TIME.
832          */
833         if (ioc_batching(q, ioc))
834                 ioc->nr_batch_requests--;
835
836         trace_block_getrq(q, bio, rw);
837 out:
838         return rq;
839 }
840
841 /*
842  * No available requests for this queue, unplug the device and wait for some
843  * requests to become available.
844  *
845  * Called with q->queue_lock held, and returns with it unlocked.
846  */
847 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
848                                         struct bio *bio)
849 {
850         const int rw = rw_flags & 0x01;
851         struct request *rq;
852
853         rq = get_request(q, rw_flags, bio, GFP_NOIO);
854         while (!rq) {
855                 DEFINE_WAIT(wait);
856                 struct io_context *ioc;
857                 struct request_list *rl = &q->rq;
858
859                 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
860                                 TASK_UNINTERRUPTIBLE);
861
862                 trace_block_sleeprq(q, bio, rw);
863
864                 __generic_unplug_device(q);
865                 spin_unlock_irq(q->queue_lock);
866                 io_schedule();
867
868                 /*
869                  * After sleeping, we become a "batching" process and
870                  * will be able to allocate at least one request, and
871                  * up to a big batch of them for a small period time.
872                  * See ioc_batching, ioc_set_batching
873                  */
874                 ioc = current_io_context(GFP_NOIO, q->node);
875                 ioc_set_batching(q, ioc);
876
877                 spin_lock_irq(q->queue_lock);
878                 finish_wait(&rl->wait[rw], &wait);
879
880                 rq = get_request(q, rw_flags, bio, GFP_NOIO);
881         };
882
883         return rq;
884 }
885
886 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
887 {
888         struct request *rq;
889
890         BUG_ON(rw != READ && rw != WRITE);
891
892         spin_lock_irq(q->queue_lock);
893         if (gfp_mask & __GFP_WAIT) {
894                 rq = get_request_wait(q, rw, NULL);
895         } else {
896                 rq = get_request(q, rw, NULL, gfp_mask);
897                 if (!rq)
898                         spin_unlock_irq(q->queue_lock);
899         }
900         /* q->queue_lock is unlocked at this point */
901
902         return rq;
903 }
904 EXPORT_SYMBOL(blk_get_request);
905
906 /**
907  * blk_start_queueing - initiate dispatch of requests to device
908  * @q:          request queue to kick into gear
909  *
910  * This is basically a helper to remove the need to know whether a queue
911  * is plugged or not if someone just wants to initiate dispatch of requests
912  * for this queue. Should be used to start queueing on a device outside
913  * of ->request_fn() context. Also see @blk_run_queue.
914  *
915  * The queue lock must be held with interrupts disabled.
916  */
917 void blk_start_queueing(struct request_queue *q)
918 {
919         if (!blk_queue_plugged(q)) {
920                 if (unlikely(blk_queue_stopped(q)))
921                         return;
922                 q->request_fn(q);
923         } else
924                 __generic_unplug_device(q);
925 }
926 EXPORT_SYMBOL(blk_start_queueing);
927
928 /**
929  * blk_requeue_request - put a request back on queue
930  * @q:          request queue where request should be inserted
931  * @rq:         request to be inserted
932  *
933  * Description:
934  *    Drivers often keep queueing requests until the hardware cannot accept
935  *    more, when that condition happens we need to put the request back
936  *    on the queue. Must be called with queue lock held.
937  */
938 void blk_requeue_request(struct request_queue *q, struct request *rq)
939 {
940         blk_delete_timer(rq);
941         blk_clear_rq_complete(rq);
942         trace_block_rq_requeue(q, rq);
943
944         if (blk_rq_tagged(rq))
945                 blk_queue_end_tag(q, rq);
946
947         elv_requeue_request(q, rq);
948 }
949 EXPORT_SYMBOL(blk_requeue_request);
950
951 /**
952  * blk_insert_request - insert a special request into a request queue
953  * @q:          request queue where request should be inserted
954  * @rq:         request to be inserted
955  * @at_head:    insert request at head or tail of queue
956  * @data:       private data
957  *
958  * Description:
959  *    Many block devices need to execute commands asynchronously, so they don't
960  *    block the whole kernel from preemption during request execution.  This is
961  *    accomplished normally by inserting aritficial requests tagged as
962  *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
963  *    be scheduled for actual execution by the request queue.
964  *
965  *    We have the option of inserting the head or the tail of the queue.
966  *    Typically we use the tail for new ioctls and so forth.  We use the head
967  *    of the queue for things like a QUEUE_FULL message from a device, or a
968  *    host that is unable to accept a particular command.
969  */
970 void blk_insert_request(struct request_queue *q, struct request *rq,
971                         int at_head, void *data)
972 {
973         int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
974         unsigned long flags;
975
976         /*
977          * tell I/O scheduler that this isn't a regular read/write (ie it
978          * must not attempt merges on this) and that it acts as a soft
979          * barrier
980          */
981         rq->cmd_type = REQ_TYPE_SPECIAL;
982         rq->cmd_flags |= REQ_SOFTBARRIER;
983
984         rq->special = data;
985
986         spin_lock_irqsave(q->queue_lock, flags);
987
988         /*
989          * If command is tagged, release the tag
990          */
991         if (blk_rq_tagged(rq))
992                 blk_queue_end_tag(q, rq);
993
994         drive_stat_acct(rq, 1);
995         __elv_add_request(q, rq, where, 0);
996         blk_start_queueing(q);
997         spin_unlock_irqrestore(q->queue_lock, flags);
998 }
999 EXPORT_SYMBOL(blk_insert_request);
1000
1001 /*
1002  * add-request adds a request to the linked list.
1003  * queue lock is held and interrupts disabled, as we muck with the
1004  * request queue list.
1005  */
1006 static inline void add_request(struct request_queue *q, struct request *req)
1007 {
1008         drive_stat_acct(req, 1);
1009
1010         /*
1011          * elevator indicated where it wants this request to be
1012          * inserted at elevator_merge time
1013          */
1014         __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1015 }
1016
1017 static void part_round_stats_single(int cpu, struct hd_struct *part,
1018                                     unsigned long now)
1019 {
1020         if (now == part->stamp)
1021                 return;
1022
1023         if (part->in_flight) {
1024                 __part_stat_add(cpu, part, time_in_queue,
1025                                 part->in_flight * (now - part->stamp));
1026                 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1027         }
1028         part->stamp = now;
1029 }
1030
1031 /**
1032  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1033  * @cpu: cpu number for stats access
1034  * @part: target partition
1035  *
1036  * The average IO queue length and utilisation statistics are maintained
1037  * by observing the current state of the queue length and the amount of
1038  * time it has been in this state for.
1039  *
1040  * Normally, that accounting is done on IO completion, but that can result
1041  * in more than a second's worth of IO being accounted for within any one
1042  * second, leading to >100% utilisation.  To deal with that, we call this
1043  * function to do a round-off before returning the results when reading
1044  * /proc/diskstats.  This accounts immediately for all queue usage up to
1045  * the current jiffies and restarts the counters again.
1046  */
1047 void part_round_stats(int cpu, struct hd_struct *part)
1048 {
1049         unsigned long now = jiffies;
1050
1051         if (part->partno)
1052                 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1053         part_round_stats_single(cpu, part, now);
1054 }
1055 EXPORT_SYMBOL_GPL(part_round_stats);
1056
1057 /*
1058  * queue lock must be held
1059  */
1060 void __blk_put_request(struct request_queue *q, struct request *req)
1061 {
1062         if (unlikely(!q))
1063                 return;
1064         if (unlikely(--req->ref_count))
1065                 return;
1066
1067         elv_completed_request(q, req);
1068
1069         /*
1070          * Request may not have originated from ll_rw_blk. if not,
1071          * it didn't come out of our reserved rq pools
1072          */
1073         if (req->cmd_flags & REQ_ALLOCED) {
1074                 int rw = rq_data_dir(req);
1075                 int priv = req->cmd_flags & REQ_ELVPRIV;
1076
1077                 BUG_ON(!list_empty(&req->queuelist));
1078                 BUG_ON(!hlist_unhashed(&req->hash));
1079
1080                 blk_free_request(q, req);
1081                 freed_request(q, rw, priv);
1082         }
1083 }
1084 EXPORT_SYMBOL_GPL(__blk_put_request);
1085
1086 void blk_put_request(struct request *req)
1087 {
1088         unsigned long flags;
1089         struct request_queue *q = req->q;
1090
1091         spin_lock_irqsave(q->queue_lock, flags);
1092         __blk_put_request(q, req);
1093         spin_unlock_irqrestore(q->queue_lock, flags);
1094 }
1095 EXPORT_SYMBOL(blk_put_request);
1096
1097 void init_request_from_bio(struct request *req, struct bio *bio)
1098 {
1099         req->cpu = bio->bi_comp_cpu;
1100         req->cmd_type = REQ_TYPE_FS;
1101
1102         /*
1103          * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1104          */
1105         if (bio_rw_ahead(bio))
1106                 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1107                                    REQ_FAILFAST_DRIVER);
1108         if (bio_failfast_dev(bio))
1109                 req->cmd_flags |= REQ_FAILFAST_DEV;
1110         if (bio_failfast_transport(bio))
1111                 req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1112         if (bio_failfast_driver(bio))
1113                 req->cmd_flags |= REQ_FAILFAST_DRIVER;
1114
1115         /*
1116          * REQ_BARRIER implies no merging, but lets make it explicit
1117          */
1118         if (unlikely(bio_discard(bio))) {
1119                 req->cmd_flags |= REQ_DISCARD;
1120                 if (bio_barrier(bio))
1121                         req->cmd_flags |= REQ_SOFTBARRIER;
1122                 req->q->prepare_discard_fn(req->q, req);
1123         } else if (unlikely(bio_barrier(bio)))
1124                 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1125
1126         if (bio_sync(bio))
1127                 req->cmd_flags |= REQ_RW_SYNC;
1128         if (bio_rw_meta(bio))
1129                 req->cmd_flags |= REQ_RW_META;
1130
1131         req->errors = 0;
1132         req->hard_sector = req->sector = bio->bi_sector;
1133         req->ioprio = bio_prio(bio);
1134         req->start_time = jiffies;
1135         blk_rq_bio_prep(req->q, req, bio);
1136 }
1137
1138 static int __make_request(struct request_queue *q, struct bio *bio)
1139 {
1140         struct request *req;
1141         int el_ret, nr_sectors;
1142         const unsigned short prio = bio_prio(bio);
1143         const int sync = bio_sync(bio);
1144         int rw_flags;
1145
1146         nr_sectors = bio_sectors(bio);
1147
1148         /*
1149          * low level driver can indicate that it wants pages above a
1150          * certain limit bounced to low memory (ie for highmem, or even
1151          * ISA dma in theory)
1152          */
1153         blk_queue_bounce(q, &bio);
1154
1155         spin_lock_irq(q->queue_lock);
1156
1157         if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1158                 goto get_rq;
1159
1160         el_ret = elv_merge(q, &req, bio);
1161         switch (el_ret) {
1162         case ELEVATOR_BACK_MERGE:
1163                 BUG_ON(!rq_mergeable(req));
1164
1165                 if (!ll_back_merge_fn(q, req, bio))
1166                         break;
1167
1168                 trace_block_bio_backmerge(q, bio);
1169
1170                 req->biotail->bi_next = bio;
1171                 req->biotail = bio;
1172                 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1173                 req->ioprio = ioprio_best(req->ioprio, prio);
1174                 if (!blk_rq_cpu_valid(req))
1175                         req->cpu = bio->bi_comp_cpu;
1176                 drive_stat_acct(req, 0);
1177                 if (!attempt_back_merge(q, req))
1178                         elv_merged_request(q, req, el_ret);
1179                 goto out;
1180
1181         case ELEVATOR_FRONT_MERGE:
1182                 BUG_ON(!rq_mergeable(req));
1183
1184                 if (!ll_front_merge_fn(q, req, bio))
1185                         break;
1186
1187                 trace_block_bio_frontmerge(q, bio);
1188
1189                 bio->bi_next = req->bio;
1190                 req->bio = bio;
1191
1192                 /*
1193                  * may not be valid. if the low level driver said
1194                  * it didn't need a bounce buffer then it better
1195                  * not touch req->buffer either...
1196                  */
1197                 req->buffer = bio_data(bio);
1198                 req->current_nr_sectors = bio_cur_sectors(bio);
1199                 req->hard_cur_sectors = req->current_nr_sectors;
1200                 req->sector = req->hard_sector = bio->bi_sector;
1201                 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1202                 req->ioprio = ioprio_best(req->ioprio, prio);
1203                 if (!blk_rq_cpu_valid(req))
1204                         req->cpu = bio->bi_comp_cpu;
1205                 drive_stat_acct(req, 0);
1206                 if (!attempt_front_merge(q, req))
1207                         elv_merged_request(q, req, el_ret);
1208                 goto out;
1209
1210         /* ELV_NO_MERGE: elevator says don't/can't merge. */
1211         default:
1212                 ;
1213         }
1214
1215 get_rq:
1216         /*
1217          * This sync check and mask will be re-done in init_request_from_bio(),
1218          * but we need to set it earlier to expose the sync flag to the
1219          * rq allocator and io schedulers.
1220          */
1221         rw_flags = bio_data_dir(bio);
1222         if (sync)
1223                 rw_flags |= REQ_RW_SYNC;
1224
1225         /*
1226          * Grab a free request. This is might sleep but can not fail.
1227          * Returns with the queue unlocked.
1228          */
1229         req = get_request_wait(q, rw_flags, bio);
1230
1231         /*
1232          * After dropping the lock and possibly sleeping here, our request
1233          * may now be mergeable after it had proven unmergeable (above).
1234          * We don't worry about that case for efficiency. It won't happen
1235          * often, and the elevators are able to handle it.
1236          */
1237         init_request_from_bio(req, bio);
1238
1239         spin_lock_irq(q->queue_lock);
1240         if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1241             bio_flagged(bio, BIO_CPU_AFFINE))
1242                 req->cpu = blk_cpu_to_group(smp_processor_id());
1243         if (!blk_queue_nonrot(q) && elv_queue_empty(q))
1244                 blk_plug_device(q);
1245         add_request(q, req);
1246 out:
1247         if (sync || blk_queue_nonrot(q))
1248                 __generic_unplug_device(q);
1249         spin_unlock_irq(q->queue_lock);
1250         return 0;
1251 }
1252
1253 /*
1254  * If bio->bi_dev is a partition, remap the location
1255  */
1256 static inline void blk_partition_remap(struct bio *bio)
1257 {
1258         struct block_device *bdev = bio->bi_bdev;
1259
1260         if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1261                 struct hd_struct *p = bdev->bd_part;
1262
1263                 bio->bi_sector += p->start_sect;
1264                 bio->bi_bdev = bdev->bd_contains;
1265
1266                 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1267                                     bdev->bd_dev, bio->bi_sector,
1268                                     bio->bi_sector - p->start_sect);
1269         }
1270 }
1271
1272 static void handle_bad_sector(struct bio *bio)
1273 {
1274         char b[BDEVNAME_SIZE];
1275
1276         printk(KERN_INFO "attempt to access beyond end of device\n");
1277         printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1278                         bdevname(bio->bi_bdev, b),
1279                         bio->bi_rw,
1280                         (unsigned long long)bio->bi_sector + bio_sectors(bio),
1281                         (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1282
1283         set_bit(BIO_EOF, &bio->bi_flags);
1284 }
1285
1286 #ifdef CONFIG_FAIL_MAKE_REQUEST
1287
1288 static DECLARE_FAULT_ATTR(fail_make_request);
1289
1290 static int __init setup_fail_make_request(char *str)
1291 {
1292         return setup_fault_attr(&fail_make_request, str);
1293 }
1294 __setup("fail_make_request=", setup_fail_make_request);
1295
1296 static int should_fail_request(struct bio *bio)
1297 {
1298         struct hd_struct *part = bio->bi_bdev->bd_part;
1299
1300         if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1301                 return should_fail(&fail_make_request, bio->bi_size);
1302
1303         return 0;
1304 }
1305
1306 static int __init fail_make_request_debugfs(void)
1307 {
1308         return init_fault_attr_dentries(&fail_make_request,
1309                                         "fail_make_request");
1310 }
1311
1312 late_initcall(fail_make_request_debugfs);
1313
1314 #else /* CONFIG_FAIL_MAKE_REQUEST */
1315
1316 static inline int should_fail_request(struct bio *bio)
1317 {
1318         return 0;
1319 }
1320
1321 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1322
1323 /*
1324  * Check whether this bio extends beyond the end of the device.
1325  */
1326 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1327 {
1328         sector_t maxsector;
1329
1330         if (!nr_sectors)
1331                 return 0;
1332
1333         /* Test device or partition size, when known. */
1334         maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1335         if (maxsector) {
1336                 sector_t sector = bio->bi_sector;
1337
1338                 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1339                         /*
1340                          * This may well happen - the kernel calls bread()
1341                          * without checking the size of the device, e.g., when
1342                          * mounting a device.
1343                          */
1344                         handle_bad_sector(bio);
1345                         return 1;
1346                 }
1347         }
1348
1349         return 0;
1350 }
1351
1352 /**
1353  * generic_make_request - hand a buffer to its device driver for I/O
1354  * @bio:  The bio describing the location in memory and on the device.
1355  *
1356  * generic_make_request() is used to make I/O requests of block
1357  * devices. It is passed a &struct bio, which describes the I/O that needs
1358  * to be done.
1359  *
1360  * generic_make_request() does not return any status.  The
1361  * success/failure status of the request, along with notification of
1362  * completion, is delivered asynchronously through the bio->bi_end_io
1363  * function described (one day) else where.
1364  *
1365  * The caller of generic_make_request must make sure that bi_io_vec
1366  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1367  * set to describe the device address, and the
1368  * bi_end_io and optionally bi_private are set to describe how
1369  * completion notification should be signaled.
1370  *
1371  * generic_make_request and the drivers it calls may use bi_next if this
1372  * bio happens to be merged with someone else, and may change bi_dev and
1373  * bi_sector for remaps as it sees fit.  So the values of these fields
1374  * should NOT be depended on after the call to generic_make_request.
1375  */
1376 static inline void __generic_make_request(struct bio *bio)
1377 {
1378         struct request_queue *q;
1379         sector_t old_sector;
1380         int ret, nr_sectors = bio_sectors(bio);
1381         dev_t old_dev;
1382         int err = -EIO;
1383
1384         might_sleep();
1385
1386         if (bio_check_eod(bio, nr_sectors))
1387                 goto end_io;
1388
1389         /*
1390          * Resolve the mapping until finished. (drivers are
1391          * still free to implement/resolve their own stacking
1392          * by explicitly returning 0)
1393          *
1394          * NOTE: we don't repeat the blk_size check for each new device.
1395          * Stacking drivers are expected to know what they are doing.
1396          */
1397         old_sector = -1;
1398         old_dev = 0;
1399         do {
1400                 char b[BDEVNAME_SIZE];
1401
1402                 q = bdev_get_queue(bio->bi_bdev);
1403                 if (unlikely(!q)) {
1404                         printk(KERN_ERR
1405                                "generic_make_request: Trying to access "
1406                                 "nonexistent block-device %s (%Lu)\n",
1407                                 bdevname(bio->bi_bdev, b),
1408                                 (long long) bio->bi_sector);
1409                         goto end_io;
1410                 }
1411
1412                 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1413                         printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1414                                 bdevname(bio->bi_bdev, b),
1415                                 bio_sectors(bio),
1416                                 q->max_hw_sectors);
1417                         goto end_io;
1418                 }
1419
1420                 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1421                         goto end_io;
1422
1423                 if (should_fail_request(bio))
1424                         goto end_io;
1425
1426                 /*
1427                  * If this device has partitions, remap block n
1428                  * of partition p to block n+start(p) of the disk.
1429                  */
1430                 blk_partition_remap(bio);
1431
1432                 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1433                         goto end_io;
1434
1435                 if (old_sector != -1)
1436                         trace_block_remap(q, bio, old_dev, bio->bi_sector,
1437                                             old_sector);
1438
1439                 trace_block_bio_queue(q, bio);
1440
1441                 old_sector = bio->bi_sector;
1442                 old_dev = bio->bi_bdev->bd_dev;
1443
1444                 if (bio_check_eod(bio, nr_sectors))
1445                         goto end_io;
1446
1447                 if (bio_discard(bio) && !q->prepare_discard_fn) {
1448                         err = -EOPNOTSUPP;
1449                         goto end_io;
1450                 }
1451
1452                 ret = q->make_request_fn(q, bio);
1453         } while (ret);
1454
1455         return;
1456
1457 end_io:
1458         bio_endio(bio, err);
1459 }
1460
1461 /*
1462  * We only want one ->make_request_fn to be active at a time,
1463  * else stack usage with stacked devices could be a problem.
1464  * So use current->bio_{list,tail} to keep a list of requests
1465  * submited by a make_request_fn function.
1466  * current->bio_tail is also used as a flag to say if
1467  * generic_make_request is currently active in this task or not.
1468  * If it is NULL, then no make_request is active.  If it is non-NULL,
1469  * then a make_request is active, and new requests should be added
1470  * at the tail
1471  */
1472 void generic_make_request(struct bio *bio)
1473 {
1474         if (current->bio_tail) {
1475                 /* make_request is active */
1476                 *(current->bio_tail) = bio;
1477                 bio->bi_next = NULL;
1478                 current->bio_tail = &bio->bi_next;
1479                 return;
1480         }
1481         /* following loop may be a bit non-obvious, and so deserves some
1482          * explanation.
1483          * Before entering the loop, bio->bi_next is NULL (as all callers
1484          * ensure that) so we have a list with a single bio.
1485          * We pretend that we have just taken it off a longer list, so
1486          * we assign bio_list to the next (which is NULL) and bio_tail
1487          * to &bio_list, thus initialising the bio_list of new bios to be
1488          * added.  __generic_make_request may indeed add some more bios
1489          * through a recursive call to generic_make_request.  If it
1490          * did, we find a non-NULL value in bio_list and re-enter the loop
1491          * from the top.  In this case we really did just take the bio
1492          * of the top of the list (no pretending) and so fixup bio_list and
1493          * bio_tail or bi_next, and call into __generic_make_request again.
1494          *
1495          * The loop was structured like this to make only one call to
1496          * __generic_make_request (which is important as it is large and
1497          * inlined) and to keep the structure simple.
1498          */
1499         BUG_ON(bio->bi_next);
1500         do {
1501                 current->bio_list = bio->bi_next;
1502                 if (bio->bi_next == NULL)
1503                         current->bio_tail = &current->bio_list;
1504                 else
1505                         bio->bi_next = NULL;
1506                 __generic_make_request(bio);
1507                 bio = current->bio_list;
1508         } while (bio);
1509         current->bio_tail = NULL; /* deactivate */
1510 }
1511 EXPORT_SYMBOL(generic_make_request);
1512
1513 /**
1514  * submit_bio - submit a bio to the block device layer for I/O
1515  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1516  * @bio: The &struct bio which describes the I/O
1517  *
1518  * submit_bio() is very similar in purpose to generic_make_request(), and
1519  * uses that function to do most of the work. Both are fairly rough
1520  * interfaces; @bio must be presetup and ready for I/O.
1521  *
1522  */
1523 void submit_bio(int rw, struct bio *bio)
1524 {
1525         int count = bio_sectors(bio);
1526
1527         bio->bi_rw |= rw;
1528
1529         /*
1530          * If it's a regular read/write or a barrier with data attached,
1531          * go through the normal accounting stuff before submission.
1532          */
1533         if (bio_has_data(bio)) {
1534                 if (rw & WRITE) {
1535                         count_vm_events(PGPGOUT, count);
1536                 } else {
1537                         task_io_account_read(bio->bi_size);
1538                         count_vm_events(PGPGIN, count);
1539                 }
1540
1541                 if (unlikely(block_dump)) {
1542                         char b[BDEVNAME_SIZE];
1543                         printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1544                         current->comm, task_pid_nr(current),
1545                                 (rw & WRITE) ? "WRITE" : "READ",
1546                                 (unsigned long long)bio->bi_sector,
1547                                 bdevname(bio->bi_bdev, b));
1548                 }
1549         }
1550
1551         generic_make_request(bio);
1552 }
1553 EXPORT_SYMBOL(submit_bio);
1554
1555 /**
1556  * blk_rq_check_limits - Helper function to check a request for the queue limit
1557  * @q:  the queue
1558  * @rq: the request being checked
1559  *
1560  * Description:
1561  *    @rq may have been made based on weaker limitations of upper-level queues
1562  *    in request stacking drivers, and it may violate the limitation of @q.
1563  *    Since the block layer and the underlying device driver trust @rq
1564  *    after it is inserted to @q, it should be checked against @q before
1565  *    the insertion using this generic function.
1566  *
1567  *    This function should also be useful for request stacking drivers
1568  *    in some cases below, so export this fuction.
1569  *    Request stacking drivers like request-based dm may change the queue
1570  *    limits while requests are in the queue (e.g. dm's table swapping).
1571  *    Such request stacking drivers should check those requests agaist
1572  *    the new queue limits again when they dispatch those requests,
1573  *    although such checkings are also done against the old queue limits
1574  *    when submitting requests.
1575  */
1576 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1577 {
1578         if (rq->nr_sectors > q->max_sectors ||
1579             rq->data_len > q->max_hw_sectors << 9) {
1580                 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1581                 return -EIO;
1582         }
1583
1584         /*
1585          * queue's settings related to segment counting like q->bounce_pfn
1586          * may differ from that of other stacking queues.
1587          * Recalculate it to check the request correctly on this queue's
1588          * limitation.
1589          */
1590         blk_recalc_rq_segments(rq);
1591         if (rq->nr_phys_segments > q->max_phys_segments ||
1592             rq->nr_phys_segments > q->max_hw_segments) {
1593                 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1594                 return -EIO;
1595         }
1596
1597         return 0;
1598 }
1599 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1600
1601 /**
1602  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1603  * @q:  the queue to submit the request
1604  * @rq: the request being queued
1605  */
1606 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1607 {
1608         unsigned long flags;
1609
1610         if (blk_rq_check_limits(q, rq))
1611                 return -EIO;
1612
1613 #ifdef CONFIG_FAIL_MAKE_REQUEST
1614         if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1615             should_fail(&fail_make_request, blk_rq_bytes(rq)))
1616                 return -EIO;
1617 #endif
1618
1619         spin_lock_irqsave(q->queue_lock, flags);
1620
1621         /*
1622          * Submitting request must be dequeued before calling this function
1623          * because it will be linked to another request_queue
1624          */
1625         BUG_ON(blk_queued_rq(rq));
1626
1627         drive_stat_acct(rq, 1);
1628         __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1629
1630         spin_unlock_irqrestore(q->queue_lock, flags);
1631
1632         return 0;
1633 }
1634 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1635
1636 /**
1637  * blkdev_dequeue_request - dequeue request and start timeout timer
1638  * @req: request to dequeue
1639  *
1640  * Dequeue @req and start timeout timer on it.  This hands off the
1641  * request to the driver.
1642  *
1643  * Block internal functions which don't want to start timer should
1644  * call elv_dequeue_request().
1645  */
1646 void blkdev_dequeue_request(struct request *req)
1647 {
1648         elv_dequeue_request(req->q, req);
1649
1650         /*
1651          * We are now handing the request to the hardware, add the
1652          * timeout handler.
1653          */
1654         blk_add_timer(req);
1655 }
1656 EXPORT_SYMBOL(blkdev_dequeue_request);
1657
1658 /**
1659  * __end_that_request_first - end I/O on a request
1660  * @req:      the request being processed
1661  * @error:    %0 for success, < %0 for error
1662  * @nr_bytes: number of bytes to complete
1663  *
1664  * Description:
1665  *     Ends I/O on a number of bytes attached to @req, and sets it up
1666  *     for the next range of segments (if any) in the cluster.
1667  *
1668  * Return:
1669  *     %0 - we are done with this request, call end_that_request_last()
1670  *     %1 - still buffers pending for this request
1671  **/
1672 static int __end_that_request_first(struct request *req, int error,
1673                                     int nr_bytes)
1674 {
1675         int total_bytes, bio_nbytes, next_idx = 0;
1676         struct bio *bio;
1677
1678         trace_block_rq_complete(req->q, req);
1679
1680         /*
1681          * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1682          * sense key with us all the way through
1683          */
1684         if (!blk_pc_request(req))
1685                 req->errors = 0;
1686
1687         if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1688                 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1689                                 req->rq_disk ? req->rq_disk->disk_name : "?",
1690                                 (unsigned long long)req->sector);
1691         }
1692
1693         if (blk_fs_request(req) && req->rq_disk) {
1694                 const int rw = rq_data_dir(req);
1695                 struct hd_struct *part;
1696                 int cpu;
1697
1698                 cpu = part_stat_lock();
1699                 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1700                 part_stat_add(cpu, part, sectors[rw], nr_bytes >> 9);
1701                 part_stat_unlock();
1702         }
1703
1704         total_bytes = bio_nbytes = 0;
1705         while ((bio = req->bio) != NULL) {
1706                 int nbytes;
1707
1708                 if (nr_bytes >= bio->bi_size) {
1709                         req->bio = bio->bi_next;
1710                         nbytes = bio->bi_size;
1711                         req_bio_endio(req, bio, nbytes, error);
1712                         next_idx = 0;
1713                         bio_nbytes = 0;
1714                 } else {
1715                         int idx = bio->bi_idx + next_idx;
1716
1717                         if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1718                                 blk_dump_rq_flags(req, "__end_that");
1719                                 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1720                                        __func__, bio->bi_idx, bio->bi_vcnt);
1721                                 break;
1722                         }
1723
1724                         nbytes = bio_iovec_idx(bio, idx)->bv_len;
1725                         BIO_BUG_ON(nbytes > bio->bi_size);
1726
1727                         /*
1728                          * not a complete bvec done
1729                          */
1730                         if (unlikely(nbytes > nr_bytes)) {
1731                                 bio_nbytes += nr_bytes;
1732                                 total_bytes += nr_bytes;
1733                                 break;
1734                         }
1735
1736                         /*
1737                          * advance to the next vector
1738                          */
1739                         next_idx++;
1740                         bio_nbytes += nbytes;
1741                 }
1742
1743                 total_bytes += nbytes;
1744                 nr_bytes -= nbytes;
1745
1746                 bio = req->bio;
1747                 if (bio) {
1748                         /*
1749                          * end more in this run, or just return 'not-done'
1750                          */
1751                         if (unlikely(nr_bytes <= 0))
1752                                 break;
1753                 }
1754         }
1755
1756         /*
1757          * completely done
1758          */
1759         if (!req->bio)
1760                 return 0;
1761
1762         /*
1763          * if the request wasn't completed, update state
1764          */
1765         if (bio_nbytes) {
1766                 req_bio_endio(req, bio, bio_nbytes, error);
1767                 bio->bi_idx += next_idx;
1768                 bio_iovec(bio)->bv_offset += nr_bytes;
1769                 bio_iovec(bio)->bv_len -= nr_bytes;
1770         }
1771
1772         blk_recalc_rq_sectors(req, total_bytes >> 9);
1773         blk_recalc_rq_segments(req);
1774         return 1;
1775 }
1776
1777 /*
1778  * queue lock must be held
1779  */
1780 static void end_that_request_last(struct request *req, int error)
1781 {
1782         struct gendisk *disk = req->rq_disk;
1783
1784         if (blk_rq_tagged(req))
1785                 blk_queue_end_tag(req->q, req);
1786
1787         if (blk_queued_rq(req))
1788                 elv_dequeue_request(req->q, req);
1789
1790         if (unlikely(laptop_mode) && blk_fs_request(req))
1791                 laptop_io_completion();
1792
1793         blk_delete_timer(req);
1794
1795         /*
1796          * Account IO completion.  bar_rq isn't accounted as a normal
1797          * IO on queueing nor completion.  Accounting the containing
1798          * request is enough.
1799          */
1800         if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1801                 unsigned long duration = jiffies - req->start_time;
1802                 const int rw = rq_data_dir(req);
1803                 struct hd_struct *part;
1804                 int cpu;
1805
1806                 cpu = part_stat_lock();
1807                 part = disk_map_sector_rcu(disk, req->sector);
1808
1809                 part_stat_inc(cpu, part, ios[rw]);
1810                 part_stat_add(cpu, part, ticks[rw], duration);
1811                 part_round_stats(cpu, part);
1812                 part_dec_in_flight(part);
1813
1814                 part_stat_unlock();
1815         }
1816
1817         if (req->end_io)
1818                 req->end_io(req, error);
1819         else {
1820                 if (blk_bidi_rq(req))
1821                         __blk_put_request(req->next_rq->q, req->next_rq);
1822
1823                 __blk_put_request(req->q, req);
1824         }
1825 }
1826
1827 /**
1828  * blk_rq_bytes - Returns bytes left to complete in the entire request
1829  * @rq: the request being processed
1830  **/
1831 unsigned int blk_rq_bytes(struct request *rq)
1832 {
1833         if (blk_fs_request(rq))
1834                 return rq->hard_nr_sectors << 9;
1835
1836         return rq->data_len;
1837 }
1838 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1839
1840 /**
1841  * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1842  * @rq: the request being processed
1843  **/
1844 unsigned int blk_rq_cur_bytes(struct request *rq)
1845 {
1846         if (blk_fs_request(rq))
1847                 return rq->current_nr_sectors << 9;
1848
1849         if (rq->bio)
1850                 return rq->bio->bi_size;
1851
1852         return rq->data_len;
1853 }
1854 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1855
1856 /**
1857  * end_request - end I/O on the current segment of the request
1858  * @req:        the request being processed
1859  * @uptodate:   error value or %0/%1 uptodate flag
1860  *
1861  * Description:
1862  *     Ends I/O on the current segment of a request. If that is the only
1863  *     remaining segment, the request is also completed and freed.
1864  *
1865  *     This is a remnant of how older block drivers handled I/O completions.
1866  *     Modern drivers typically end I/O on the full request in one go, unless
1867  *     they have a residual value to account for. For that case this function
1868  *     isn't really useful, unless the residual just happens to be the
1869  *     full current segment. In other words, don't use this function in new
1870  *     code. Use blk_end_request() or __blk_end_request() to end a request.
1871  **/
1872 void end_request(struct request *req, int uptodate)
1873 {
1874         int error = 0;
1875
1876         if (uptodate <= 0)
1877                 error = uptodate ? uptodate : -EIO;
1878
1879         __blk_end_request(req, error, req->hard_cur_sectors << 9);
1880 }
1881 EXPORT_SYMBOL(end_request);
1882
1883 static int end_that_request_data(struct request *rq, int error,
1884                                  unsigned int nr_bytes, unsigned int bidi_bytes)
1885 {
1886         if (rq->bio) {
1887                 if (__end_that_request_first(rq, error, nr_bytes))
1888                         return 1;
1889
1890                 /* Bidi request must be completed as a whole */
1891                 if (blk_bidi_rq(rq) &&
1892                     __end_that_request_first(rq->next_rq, error, bidi_bytes))
1893                         return 1;
1894         }
1895
1896         return 0;
1897 }
1898
1899 /**
1900  * blk_end_io - Generic end_io function to complete a request.
1901  * @rq:           the request being processed
1902  * @error:        %0 for success, < %0 for error
1903  * @nr_bytes:     number of bytes to complete @rq
1904  * @bidi_bytes:   number of bytes to complete @rq->next_rq
1905  * @drv_callback: function called between completion of bios in the request
1906  *                and completion of the request.
1907  *                If the callback returns non %0, this helper returns without
1908  *                completion of the request.
1909  *
1910  * Description:
1911  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1912  *     If @rq has leftover, sets it up for the next range of segments.
1913  *
1914  * Return:
1915  *     %0 - we are done with this request
1916  *     %1 - this request is not freed yet, it still has pending buffers.
1917  **/
1918 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1919                       unsigned int bidi_bytes,
1920                       int (drv_callback)(struct request *))
1921 {
1922         struct request_queue *q = rq->q;
1923         unsigned long flags = 0UL;
1924
1925         if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1926                 return 1;
1927
1928         /* Special feature for tricky drivers */
1929         if (drv_callback && drv_callback(rq))
1930                 return 1;
1931
1932         add_disk_randomness(rq->rq_disk);
1933
1934         spin_lock_irqsave(q->queue_lock, flags);
1935         end_that_request_last(rq, error);
1936         spin_unlock_irqrestore(q->queue_lock, flags);
1937
1938         return 0;
1939 }
1940
1941 /**
1942  * blk_end_request - Helper function for drivers to complete the request.
1943  * @rq:       the request being processed
1944  * @error:    %0 for success, < %0 for error
1945  * @nr_bytes: number of bytes to complete
1946  *
1947  * Description:
1948  *     Ends I/O on a number of bytes attached to @rq.
1949  *     If @rq has leftover, sets it up for the next range of segments.
1950  *
1951  * Return:
1952  *     %0 - we are done with this request
1953  *     %1 - still buffers pending for this request
1954  **/
1955 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1956 {
1957         return blk_end_io(rq, error, nr_bytes, 0, NULL);
1958 }
1959 EXPORT_SYMBOL_GPL(blk_end_request);
1960
1961 /**
1962  * __blk_end_request - Helper function for drivers to complete the request.
1963  * @rq:       the request being processed
1964  * @error:    %0 for success, < %0 for error
1965  * @nr_bytes: number of bytes to complete
1966  *
1967  * Description:
1968  *     Must be called with queue lock held unlike blk_end_request().
1969  *
1970  * Return:
1971  *     %0 - we are done with this request
1972  *     %1 - still buffers pending for this request
1973  **/
1974 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1975 {
1976         if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
1977                 return 1;
1978
1979         add_disk_randomness(rq->rq_disk);
1980
1981         end_that_request_last(rq, error);
1982
1983         return 0;
1984 }
1985 EXPORT_SYMBOL_GPL(__blk_end_request);
1986
1987 /**
1988  * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1989  * @rq:         the bidi request being processed
1990  * @error:      %0 for success, < %0 for error
1991  * @nr_bytes:   number of bytes to complete @rq
1992  * @bidi_bytes: number of bytes to complete @rq->next_rq
1993  *
1994  * Description:
1995  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1996  *
1997  * Return:
1998  *     %0 - we are done with this request
1999  *     %1 - still buffers pending for this request
2000  **/
2001 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
2002                          unsigned int bidi_bytes)
2003 {
2004         return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
2005 }
2006 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
2007
2008 /**
2009  * blk_update_request - Special helper function for request stacking drivers
2010  * @rq:           the request being processed
2011  * @error:        %0 for success, < %0 for error
2012  * @nr_bytes:     number of bytes to complete @rq
2013  *
2014  * Description:
2015  *     Ends I/O on a number of bytes attached to @rq, but doesn't complete
2016  *     the request structure even if @rq doesn't have leftover.
2017  *     If @rq has leftover, sets it up for the next range of segments.
2018  *
2019  *     This special helper function is only for request stacking drivers
2020  *     (e.g. request-based dm) so that they can handle partial completion.
2021  *     Actual device drivers should use blk_end_request instead.
2022  */
2023 void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
2024 {
2025         if (!end_that_request_data(rq, error, nr_bytes, 0)) {
2026                 /*
2027                  * These members are not updated in end_that_request_data()
2028                  * when all bios are completed.
2029                  * Update them so that the request stacking driver can find
2030                  * how many bytes remain in the request later.
2031                  */
2032                 rq->nr_sectors = rq->hard_nr_sectors = 0;
2033                 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2034         }
2035 }
2036 EXPORT_SYMBOL_GPL(blk_update_request);
2037
2038 /**
2039  * blk_end_request_callback - Special helper function for tricky drivers
2040  * @rq:           the request being processed
2041  * @error:        %0 for success, < %0 for error
2042  * @nr_bytes:     number of bytes to complete
2043  * @drv_callback: function called between completion of bios in the request
2044  *                and completion of the request.
2045  *                If the callback returns non %0, this helper returns without
2046  *                completion of the request.
2047  *
2048  * Description:
2049  *     Ends I/O on a number of bytes attached to @rq.
2050  *     If @rq has leftover, sets it up for the next range of segments.
2051  *
2052  *     This special helper function is used only for existing tricky drivers.
2053  *     (e.g. cdrom_newpc_intr() of ide-cd)
2054  *     This interface will be removed when such drivers are rewritten.
2055  *     Don't use this interface in other places anymore.
2056  *
2057  * Return:
2058  *     %0 - we are done with this request
2059  *     %1 - this request is not freed yet.
2060  *          this request still has pending buffers or
2061  *          the driver doesn't want to finish this request yet.
2062  **/
2063 int blk_end_request_callback(struct request *rq, int error,
2064                              unsigned int nr_bytes,
2065                              int (drv_callback)(struct request *))
2066 {
2067         return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2068 }
2069 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2070
2071 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2072                      struct bio *bio)
2073 {
2074         /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2075            we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2076         rq->cmd_flags |= (bio->bi_rw & 3);
2077
2078         if (bio_has_data(bio)) {
2079                 rq->nr_phys_segments = bio_phys_segments(q, bio);
2080                 rq->buffer = bio_data(bio);
2081         }
2082         rq->current_nr_sectors = bio_cur_sectors(bio);
2083         rq->hard_cur_sectors = rq->current_nr_sectors;
2084         rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2085         rq->data_len = bio->bi_size;
2086
2087         rq->bio = rq->biotail = bio;
2088
2089         if (bio->bi_bdev)
2090                 rq->rq_disk = bio->bi_bdev->bd_disk;
2091 }
2092
2093 /**
2094  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2095  * @q : the queue of the device being checked
2096  *
2097  * Description:
2098  *    Check if underlying low-level drivers of a device are busy.
2099  *    If the drivers want to export their busy state, they must set own
2100  *    exporting function using blk_queue_lld_busy() first.
2101  *
2102  *    Basically, this function is used only by request stacking drivers
2103  *    to stop dispatching requests to underlying devices when underlying
2104  *    devices are busy.  This behavior helps more I/O merging on the queue
2105  *    of the request stacking driver and prevents I/O throughput regression
2106  *    on burst I/O load.
2107  *
2108  * Return:
2109  *    0 - Not busy (The request stacking driver should dispatch request)
2110  *    1 - Busy (The request stacking driver should stop dispatching request)
2111  */
2112 int blk_lld_busy(struct request_queue *q)
2113 {
2114         if (q->lld_busy_fn)
2115                 return q->lld_busy_fn(q);
2116
2117         return 0;
2118 }
2119 EXPORT_SYMBOL_GPL(blk_lld_busy);
2120
2121 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2122 {
2123         return queue_work(kblockd_workqueue, work);
2124 }
2125 EXPORT_SYMBOL(kblockd_schedule_work);
2126
2127 int __init blk_dev_init(void)
2128 {
2129         kblockd_workqueue = create_workqueue("kblockd");
2130         if (!kblockd_workqueue)
2131                 panic("Failed to create kblockd\n");
2132
2133         request_cachep = kmem_cache_create("blkdev_requests",
2134                         sizeof(struct request), 0, SLAB_PANIC, NULL);
2135
2136         blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2137                         sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2138
2139         return 0;
2140 }
2141