1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 /* ethtool support for igb */
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
41 char stat_string[ETH_GSTRING_LEN];
46 #define IGB_STAT(m) FIELD_SIZEOF(struct igb_adapter, m), \
47 offsetof(struct igb_adapter, m)
48 static const struct igb_stats igb_gstrings_stats[] = {
49 { "rx_packets", IGB_STAT(stats.gprc) },
50 { "tx_packets", IGB_STAT(stats.gptc) },
51 { "rx_bytes", IGB_STAT(stats.gorc) },
52 { "tx_bytes", IGB_STAT(stats.gotc) },
53 { "rx_broadcast", IGB_STAT(stats.bprc) },
54 { "tx_broadcast", IGB_STAT(stats.bptc) },
55 { "rx_multicast", IGB_STAT(stats.mprc) },
56 { "tx_multicast", IGB_STAT(stats.mptc) },
57 { "rx_errors", IGB_STAT(net_stats.rx_errors) },
58 { "tx_errors", IGB_STAT(net_stats.tx_errors) },
59 { "tx_dropped", IGB_STAT(net_stats.tx_dropped) },
60 { "multicast", IGB_STAT(stats.mprc) },
61 { "collisions", IGB_STAT(stats.colc) },
62 { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) },
63 { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) },
64 { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
65 { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) },
66 { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
67 { "rx_queue_drop_packet_count", IGB_STAT(net_stats.rx_fifo_errors) },
68 { "rx_missed_errors", IGB_STAT(stats.mpc) },
69 { "tx_aborted_errors", IGB_STAT(stats.ecol) },
70 { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
71 { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) },
72 { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) },
73 { "tx_window_errors", IGB_STAT(stats.latecol) },
74 { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
75 { "tx_deferred_ok", IGB_STAT(stats.dc) },
76 { "tx_single_coll_ok", IGB_STAT(stats.scc) },
77 { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
78 { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
79 { "tx_restart_queue", IGB_STAT(restart_queue) },
80 { "rx_long_length_errors", IGB_STAT(stats.roc) },
81 { "rx_short_length_errors", IGB_STAT(stats.ruc) },
82 { "rx_align_errors", IGB_STAT(stats.algnerrc) },
83 { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
84 { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
85 { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
86 { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
87 { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
88 { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
89 { "rx_long_byte_count", IGB_STAT(stats.gorc) },
90 { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
91 { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
92 { "tx_dma_out_of_sync", IGB_STAT(stats.doosync) },
93 { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
94 { "tx_smbus", IGB_STAT(stats.mgptc) },
95 { "rx_smbus", IGB_STAT(stats.mgprc) },
96 { "dropped_smbus", IGB_STAT(stats.mgpdc) },
99 #define IGB_QUEUE_STATS_LEN \
100 (((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues)* \
101 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))) + \
102 ((((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues) * \
103 (sizeof(struct igb_tx_queue_stats) / sizeof(u64))))
104 #define IGB_GLOBAL_STATS_LEN \
105 sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
106 #define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
107 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
108 "Register test (offline)", "Eeprom test (offline)",
109 "Interrupt test (offline)", "Loopback test (offline)",
110 "Link test (on/offline)"
112 #define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
114 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
116 struct igb_adapter *adapter = netdev_priv(netdev);
117 struct e1000_hw *hw = &adapter->hw;
119 if (hw->phy.media_type == e1000_media_type_copper) {
121 ecmd->supported = (SUPPORTED_10baseT_Half |
122 SUPPORTED_10baseT_Full |
123 SUPPORTED_100baseT_Half |
124 SUPPORTED_100baseT_Full |
125 SUPPORTED_1000baseT_Full|
128 ecmd->advertising = ADVERTISED_TP;
130 if (hw->mac.autoneg == 1) {
131 ecmd->advertising |= ADVERTISED_Autoneg;
132 /* the e1000 autoneg seems to match ethtool nicely */
133 ecmd->advertising |= hw->phy.autoneg_advertised;
136 ecmd->port = PORT_TP;
137 ecmd->phy_address = hw->phy.addr;
139 ecmd->supported = (SUPPORTED_1000baseT_Full |
143 ecmd->advertising = (ADVERTISED_1000baseT_Full |
147 ecmd->port = PORT_FIBRE;
150 ecmd->transceiver = XCVR_INTERNAL;
152 if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
154 adapter->hw.mac.ops.get_speed_and_duplex(hw,
155 &adapter->link_speed,
156 &adapter->link_duplex);
157 ecmd->speed = adapter->link_speed;
159 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
160 * and HALF_DUPLEX != DUPLEX_HALF */
162 if (adapter->link_duplex == FULL_DUPLEX)
163 ecmd->duplex = DUPLEX_FULL;
165 ecmd->duplex = DUPLEX_HALF;
171 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
172 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
176 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
178 struct igb_adapter *adapter = netdev_priv(netdev);
179 struct e1000_hw *hw = &adapter->hw;
181 /* When SoL/IDER sessions are active, autoneg/speed/duplex
182 * cannot be changed */
183 if (igb_check_reset_block(hw)) {
184 dev_err(&adapter->pdev->dev, "Cannot change link "
185 "characteristics when SoL/IDER is active.\n");
189 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
192 if (ecmd->autoneg == AUTONEG_ENABLE) {
194 if (hw->phy.media_type == e1000_media_type_fiber)
195 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
199 hw->phy.autoneg_advertised = ecmd->advertising |
202 ecmd->advertising = hw->phy.autoneg_advertised;
204 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
205 clear_bit(__IGB_RESETTING, &adapter->state);
211 if (netif_running(adapter->netdev)) {
217 clear_bit(__IGB_RESETTING, &adapter->state);
221 static void igb_get_pauseparam(struct net_device *netdev,
222 struct ethtool_pauseparam *pause)
224 struct igb_adapter *adapter = netdev_priv(netdev);
225 struct e1000_hw *hw = &adapter->hw;
228 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
230 if (hw->fc.type == e1000_fc_rx_pause)
232 else if (hw->fc.type == e1000_fc_tx_pause)
234 else if (hw->fc.type == e1000_fc_full) {
240 static int igb_set_pauseparam(struct net_device *netdev,
241 struct ethtool_pauseparam *pause)
243 struct igb_adapter *adapter = netdev_priv(netdev);
244 struct e1000_hw *hw = &adapter->hw;
247 adapter->fc_autoneg = pause->autoneg;
249 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
252 if (pause->rx_pause && pause->tx_pause)
253 hw->fc.type = e1000_fc_full;
254 else if (pause->rx_pause && !pause->tx_pause)
255 hw->fc.type = e1000_fc_rx_pause;
256 else if (!pause->rx_pause && pause->tx_pause)
257 hw->fc.type = e1000_fc_tx_pause;
258 else if (!pause->rx_pause && !pause->tx_pause)
259 hw->fc.type = e1000_fc_none;
261 hw->fc.original_type = hw->fc.type;
263 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
264 if (netif_running(adapter->netdev)) {
270 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
271 igb_setup_link(hw) : igb_force_mac_fc(hw));
273 clear_bit(__IGB_RESETTING, &adapter->state);
277 static u32 igb_get_rx_csum(struct net_device *netdev)
279 struct igb_adapter *adapter = netdev_priv(netdev);
280 return !(adapter->flags & IGB_FLAG_RX_CSUM_DISABLED);
283 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
285 struct igb_adapter *adapter = netdev_priv(netdev);
288 adapter->flags &= ~IGB_FLAG_RX_CSUM_DISABLED;
290 adapter->flags |= IGB_FLAG_RX_CSUM_DISABLED;
295 static u32 igb_get_tx_csum(struct net_device *netdev)
297 return (netdev->features & NETIF_F_IP_CSUM) != 0;
300 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
302 struct igb_adapter *adapter = netdev_priv(netdev);
305 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
306 if (adapter->hw.mac.type == e1000_82576)
307 netdev->features |= NETIF_F_SCTP_CSUM;
309 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
316 static int igb_set_tso(struct net_device *netdev, u32 data)
318 struct igb_adapter *adapter = netdev_priv(netdev);
321 netdev->features |= NETIF_F_TSO;
322 netdev->features |= NETIF_F_TSO6;
324 netdev->features &= ~NETIF_F_TSO;
325 netdev->features &= ~NETIF_F_TSO6;
328 dev_info(&adapter->pdev->dev, "TSO is %s\n",
329 data ? "Enabled" : "Disabled");
333 static u32 igb_get_msglevel(struct net_device *netdev)
335 struct igb_adapter *adapter = netdev_priv(netdev);
336 return adapter->msg_enable;
339 static void igb_set_msglevel(struct net_device *netdev, u32 data)
341 struct igb_adapter *adapter = netdev_priv(netdev);
342 adapter->msg_enable = data;
345 static int igb_get_regs_len(struct net_device *netdev)
347 #define IGB_REGS_LEN 551
348 return IGB_REGS_LEN * sizeof(u32);
351 static void igb_get_regs(struct net_device *netdev,
352 struct ethtool_regs *regs, void *p)
354 struct igb_adapter *adapter = netdev_priv(netdev);
355 struct e1000_hw *hw = &adapter->hw;
359 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
361 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
363 /* General Registers */
364 regs_buff[0] = rd32(E1000_CTRL);
365 regs_buff[1] = rd32(E1000_STATUS);
366 regs_buff[2] = rd32(E1000_CTRL_EXT);
367 regs_buff[3] = rd32(E1000_MDIC);
368 regs_buff[4] = rd32(E1000_SCTL);
369 regs_buff[5] = rd32(E1000_CONNSW);
370 regs_buff[6] = rd32(E1000_VET);
371 regs_buff[7] = rd32(E1000_LEDCTL);
372 regs_buff[8] = rd32(E1000_PBA);
373 regs_buff[9] = rd32(E1000_PBS);
374 regs_buff[10] = rd32(E1000_FRTIMER);
375 regs_buff[11] = rd32(E1000_TCPTIMER);
378 regs_buff[12] = rd32(E1000_EECD);
381 /* Reading EICS for EICR because they read the
382 * same but EICS does not clear on read */
383 regs_buff[13] = rd32(E1000_EICS);
384 regs_buff[14] = rd32(E1000_EICS);
385 regs_buff[15] = rd32(E1000_EIMS);
386 regs_buff[16] = rd32(E1000_EIMC);
387 regs_buff[17] = rd32(E1000_EIAC);
388 regs_buff[18] = rd32(E1000_EIAM);
389 /* Reading ICS for ICR because they read the
390 * same but ICS does not clear on read */
391 regs_buff[19] = rd32(E1000_ICS);
392 regs_buff[20] = rd32(E1000_ICS);
393 regs_buff[21] = rd32(E1000_IMS);
394 regs_buff[22] = rd32(E1000_IMC);
395 regs_buff[23] = rd32(E1000_IAC);
396 regs_buff[24] = rd32(E1000_IAM);
397 regs_buff[25] = rd32(E1000_IMIRVP);
400 regs_buff[26] = rd32(E1000_FCAL);
401 regs_buff[27] = rd32(E1000_FCAH);
402 regs_buff[28] = rd32(E1000_FCTTV);
403 regs_buff[29] = rd32(E1000_FCRTL);
404 regs_buff[30] = rd32(E1000_FCRTH);
405 regs_buff[31] = rd32(E1000_FCRTV);
408 regs_buff[32] = rd32(E1000_RCTL);
409 regs_buff[33] = rd32(E1000_RXCSUM);
410 regs_buff[34] = rd32(E1000_RLPML);
411 regs_buff[35] = rd32(E1000_RFCTL);
412 regs_buff[36] = rd32(E1000_MRQC);
413 regs_buff[37] = rd32(E1000_VT_CTL);
416 regs_buff[38] = rd32(E1000_TCTL);
417 regs_buff[39] = rd32(E1000_TCTL_EXT);
418 regs_buff[40] = rd32(E1000_TIPG);
419 regs_buff[41] = rd32(E1000_DTXCTL);
422 regs_buff[42] = rd32(E1000_WUC);
423 regs_buff[43] = rd32(E1000_WUFC);
424 regs_buff[44] = rd32(E1000_WUS);
425 regs_buff[45] = rd32(E1000_IPAV);
426 regs_buff[46] = rd32(E1000_WUPL);
429 regs_buff[47] = rd32(E1000_PCS_CFG0);
430 regs_buff[48] = rd32(E1000_PCS_LCTL);
431 regs_buff[49] = rd32(E1000_PCS_LSTAT);
432 regs_buff[50] = rd32(E1000_PCS_ANADV);
433 regs_buff[51] = rd32(E1000_PCS_LPAB);
434 regs_buff[52] = rd32(E1000_PCS_NPTX);
435 regs_buff[53] = rd32(E1000_PCS_LPABNP);
438 regs_buff[54] = adapter->stats.crcerrs;
439 regs_buff[55] = adapter->stats.algnerrc;
440 regs_buff[56] = adapter->stats.symerrs;
441 regs_buff[57] = adapter->stats.rxerrc;
442 regs_buff[58] = adapter->stats.mpc;
443 regs_buff[59] = adapter->stats.scc;
444 regs_buff[60] = adapter->stats.ecol;
445 regs_buff[61] = adapter->stats.mcc;
446 regs_buff[62] = adapter->stats.latecol;
447 regs_buff[63] = adapter->stats.colc;
448 regs_buff[64] = adapter->stats.dc;
449 regs_buff[65] = adapter->stats.tncrs;
450 regs_buff[66] = adapter->stats.sec;
451 regs_buff[67] = adapter->stats.htdpmc;
452 regs_buff[68] = adapter->stats.rlec;
453 regs_buff[69] = adapter->stats.xonrxc;
454 regs_buff[70] = adapter->stats.xontxc;
455 regs_buff[71] = adapter->stats.xoffrxc;
456 regs_buff[72] = adapter->stats.xofftxc;
457 regs_buff[73] = adapter->stats.fcruc;
458 regs_buff[74] = adapter->stats.prc64;
459 regs_buff[75] = adapter->stats.prc127;
460 regs_buff[76] = adapter->stats.prc255;
461 regs_buff[77] = adapter->stats.prc511;
462 regs_buff[78] = adapter->stats.prc1023;
463 regs_buff[79] = adapter->stats.prc1522;
464 regs_buff[80] = adapter->stats.gprc;
465 regs_buff[81] = adapter->stats.bprc;
466 regs_buff[82] = adapter->stats.mprc;
467 regs_buff[83] = adapter->stats.gptc;
468 regs_buff[84] = adapter->stats.gorc;
469 regs_buff[86] = adapter->stats.gotc;
470 regs_buff[88] = adapter->stats.rnbc;
471 regs_buff[89] = adapter->stats.ruc;
472 regs_buff[90] = adapter->stats.rfc;
473 regs_buff[91] = adapter->stats.roc;
474 regs_buff[92] = adapter->stats.rjc;
475 regs_buff[93] = adapter->stats.mgprc;
476 regs_buff[94] = adapter->stats.mgpdc;
477 regs_buff[95] = adapter->stats.mgptc;
478 regs_buff[96] = adapter->stats.tor;
479 regs_buff[98] = adapter->stats.tot;
480 regs_buff[100] = adapter->stats.tpr;
481 regs_buff[101] = adapter->stats.tpt;
482 regs_buff[102] = adapter->stats.ptc64;
483 regs_buff[103] = adapter->stats.ptc127;
484 regs_buff[104] = adapter->stats.ptc255;
485 regs_buff[105] = adapter->stats.ptc511;
486 regs_buff[106] = adapter->stats.ptc1023;
487 regs_buff[107] = adapter->stats.ptc1522;
488 regs_buff[108] = adapter->stats.mptc;
489 regs_buff[109] = adapter->stats.bptc;
490 regs_buff[110] = adapter->stats.tsctc;
491 regs_buff[111] = adapter->stats.iac;
492 regs_buff[112] = adapter->stats.rpthc;
493 regs_buff[113] = adapter->stats.hgptc;
494 regs_buff[114] = adapter->stats.hgorc;
495 regs_buff[116] = adapter->stats.hgotc;
496 regs_buff[118] = adapter->stats.lenerrs;
497 regs_buff[119] = adapter->stats.scvpc;
498 regs_buff[120] = adapter->stats.hrmpc;
500 /* These should probably be added to e1000_regs.h instead */
501 #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
502 #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
503 #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
504 #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
505 #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
506 #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
507 #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
509 for (i = 0; i < 4; i++)
510 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
511 for (i = 0; i < 4; i++)
512 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
513 for (i = 0; i < 4; i++)
514 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
515 for (i = 0; i < 4; i++)
516 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
517 for (i = 0; i < 4; i++)
518 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
519 for (i = 0; i < 4; i++)
520 regs_buff[141 + i] = rd32(E1000_RDH(i));
521 for (i = 0; i < 4; i++)
522 regs_buff[145 + i] = rd32(E1000_RDT(i));
523 for (i = 0; i < 4; i++)
524 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
526 for (i = 0; i < 10; i++)
527 regs_buff[153 + i] = rd32(E1000_EITR(i));
528 for (i = 0; i < 8; i++)
529 regs_buff[163 + i] = rd32(E1000_IMIR(i));
530 for (i = 0; i < 8; i++)
531 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
532 for (i = 0; i < 16; i++)
533 regs_buff[179 + i] = rd32(E1000_RAL(i));
534 for (i = 0; i < 16; i++)
535 regs_buff[195 + i] = rd32(E1000_RAH(i));
537 for (i = 0; i < 4; i++)
538 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
539 for (i = 0; i < 4; i++)
540 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
541 for (i = 0; i < 4; i++)
542 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
543 for (i = 0; i < 4; i++)
544 regs_buff[223 + i] = rd32(E1000_TDH(i));
545 for (i = 0; i < 4; i++)
546 regs_buff[227 + i] = rd32(E1000_TDT(i));
547 for (i = 0; i < 4; i++)
548 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
549 for (i = 0; i < 4; i++)
550 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
551 for (i = 0; i < 4; i++)
552 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
553 for (i = 0; i < 4; i++)
554 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
556 for (i = 0; i < 4; i++)
557 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
558 for (i = 0; i < 4; i++)
559 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
560 for (i = 0; i < 32; i++)
561 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
562 for (i = 0; i < 128; i++)
563 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
564 for (i = 0; i < 128; i++)
565 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
566 for (i = 0; i < 4; i++)
567 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
569 regs_buff[547] = rd32(E1000_TDFH);
570 regs_buff[548] = rd32(E1000_TDFT);
571 regs_buff[549] = rd32(E1000_TDFHS);
572 regs_buff[550] = rd32(E1000_TDFPC);
576 static int igb_get_eeprom_len(struct net_device *netdev)
578 struct igb_adapter *adapter = netdev_priv(netdev);
579 return adapter->hw.nvm.word_size * 2;
582 static int igb_get_eeprom(struct net_device *netdev,
583 struct ethtool_eeprom *eeprom, u8 *bytes)
585 struct igb_adapter *adapter = netdev_priv(netdev);
586 struct e1000_hw *hw = &adapter->hw;
588 int first_word, last_word;
592 if (eeprom->len == 0)
595 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
597 first_word = eeprom->offset >> 1;
598 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
600 eeprom_buff = kmalloc(sizeof(u16) *
601 (last_word - first_word + 1), GFP_KERNEL);
605 if (hw->nvm.type == e1000_nvm_eeprom_spi)
606 ret_val = hw->nvm.ops.read(hw, first_word,
607 last_word - first_word + 1,
610 for (i = 0; i < last_word - first_word + 1; i++) {
611 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
618 /* Device's eeprom is always little-endian, word addressable */
619 for (i = 0; i < last_word - first_word + 1; i++)
620 le16_to_cpus(&eeprom_buff[i]);
622 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
629 static int igb_set_eeprom(struct net_device *netdev,
630 struct ethtool_eeprom *eeprom, u8 *bytes)
632 struct igb_adapter *adapter = netdev_priv(netdev);
633 struct e1000_hw *hw = &adapter->hw;
636 int max_len, first_word, last_word, ret_val = 0;
639 if (eeprom->len == 0)
642 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
645 max_len = hw->nvm.word_size * 2;
647 first_word = eeprom->offset >> 1;
648 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
649 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
653 ptr = (void *)eeprom_buff;
655 if (eeprom->offset & 1) {
656 /* need read/modify/write of first changed EEPROM word */
657 /* only the second byte of the word is being modified */
658 ret_val = hw->nvm.ops.read(hw, first_word, 1,
662 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
663 /* need read/modify/write of last changed EEPROM word */
664 /* only the first byte of the word is being modified */
665 ret_val = hw->nvm.ops.read(hw, last_word, 1,
666 &eeprom_buff[last_word - first_word]);
669 /* Device's eeprom is always little-endian, word addressable */
670 for (i = 0; i < last_word - first_word + 1; i++)
671 le16_to_cpus(&eeprom_buff[i]);
673 memcpy(ptr, bytes, eeprom->len);
675 for (i = 0; i < last_word - first_word + 1; i++)
676 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
678 ret_val = hw->nvm.ops.write(hw, first_word,
679 last_word - first_word + 1, eeprom_buff);
681 /* Update the checksum over the first part of the EEPROM if needed
682 * and flush shadow RAM for 82573 controllers */
683 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
684 igb_update_nvm_checksum(hw);
690 static void igb_get_drvinfo(struct net_device *netdev,
691 struct ethtool_drvinfo *drvinfo)
693 struct igb_adapter *adapter = netdev_priv(netdev);
694 char firmware_version[32];
697 strncpy(drvinfo->driver, igb_driver_name, 32);
698 strncpy(drvinfo->version, igb_driver_version, 32);
700 /* EEPROM image version # is reported as firmware version # for
701 * 82575 controllers */
702 adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
703 sprintf(firmware_version, "%d.%d-%d",
704 (eeprom_data & 0xF000) >> 12,
705 (eeprom_data & 0x0FF0) >> 4,
706 eeprom_data & 0x000F);
708 strncpy(drvinfo->fw_version, firmware_version, 32);
709 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
710 drvinfo->n_stats = IGB_STATS_LEN;
711 drvinfo->testinfo_len = IGB_TEST_LEN;
712 drvinfo->regdump_len = igb_get_regs_len(netdev);
713 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
716 static void igb_get_ringparam(struct net_device *netdev,
717 struct ethtool_ringparam *ring)
719 struct igb_adapter *adapter = netdev_priv(netdev);
721 ring->rx_max_pending = IGB_MAX_RXD;
722 ring->tx_max_pending = IGB_MAX_TXD;
723 ring->rx_mini_max_pending = 0;
724 ring->rx_jumbo_max_pending = 0;
725 ring->rx_pending = adapter->rx_ring_count;
726 ring->tx_pending = adapter->tx_ring_count;
727 ring->rx_mini_pending = 0;
728 ring->rx_jumbo_pending = 0;
731 static int igb_set_ringparam(struct net_device *netdev,
732 struct ethtool_ringparam *ring)
734 struct igb_adapter *adapter = netdev_priv(netdev);
735 struct igb_ring *temp_ring;
737 u32 new_rx_count, new_tx_count;
739 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
742 new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
743 new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
744 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
746 new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
747 new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
748 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
750 if ((new_tx_count == adapter->tx_ring_count) &&
751 (new_rx_count == adapter->rx_ring_count)) {
756 if (adapter->num_tx_queues > adapter->num_rx_queues)
757 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
759 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
763 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
766 if (netif_running(adapter->netdev))
770 * We can't just free everything and then setup again,
771 * because the ISRs in MSI-X mode get passed pointers
772 * to the tx and rx ring structs.
774 if (new_tx_count != adapter->tx_ring_count) {
775 memcpy(temp_ring, adapter->tx_ring,
776 adapter->num_tx_queues * sizeof(struct igb_ring));
778 for (i = 0; i < adapter->num_tx_queues; i++) {
779 temp_ring[i].count = new_tx_count;
780 err = igb_setup_tx_resources(adapter, &temp_ring[i]);
784 igb_free_tx_resources(&temp_ring[i]);
790 for (i = 0; i < adapter->num_tx_queues; i++)
791 igb_free_tx_resources(&adapter->tx_ring[i]);
793 memcpy(adapter->tx_ring, temp_ring,
794 adapter->num_tx_queues * sizeof(struct igb_ring));
796 adapter->tx_ring_count = new_tx_count;
799 if (new_rx_count != adapter->rx_ring->count) {
800 memcpy(temp_ring, adapter->rx_ring,
801 adapter->num_rx_queues * sizeof(struct igb_ring));
803 for (i = 0; i < adapter->num_rx_queues; i++) {
804 temp_ring[i].count = new_rx_count;
805 err = igb_setup_rx_resources(adapter, &temp_ring[i]);
809 igb_free_rx_resources(&temp_ring[i]);
816 for (i = 0; i < adapter->num_rx_queues; i++)
817 igb_free_rx_resources(&adapter->rx_ring[i]);
819 memcpy(adapter->rx_ring, temp_ring,
820 adapter->num_rx_queues * sizeof(struct igb_ring));
822 adapter->rx_ring_count = new_rx_count;
827 if (netif_running(adapter->netdev))
830 clear_bit(__IGB_RESETTING, &adapter->state);
835 /* ethtool register test data */
836 struct igb_reg_test {
845 /* In the hardware, registers are laid out either singly, in arrays
846 * spaced 0x100 bytes apart, or in contiguous tables. We assume
847 * most tests take place on arrays or single registers (handled
848 * as a single-element array) and special-case the tables.
849 * Table tests are always pattern tests.
851 * We also make provision for some required setup steps by specifying
852 * registers to be written without any read-back testing.
855 #define PATTERN_TEST 1
856 #define SET_READ_TEST 2
857 #define WRITE_NO_TEST 3
858 #define TABLE32_TEST 4
859 #define TABLE64_TEST_LO 5
860 #define TABLE64_TEST_HI 6
863 static struct igb_reg_test reg_test_82576[] = {
864 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
865 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
866 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
867 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
868 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
869 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
870 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
871 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
872 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
873 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
874 /* Enable all RX queues before testing. */
875 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
876 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
877 /* RDH is read-only for 82576, only test RDT. */
878 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
879 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
880 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
881 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
882 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
883 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
884 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
885 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
886 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
887 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
888 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
889 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
890 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
891 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
892 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
893 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
894 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
895 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
896 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
897 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
898 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
899 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
903 /* 82575 register test */
904 static struct igb_reg_test reg_test_82575[] = {
905 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
906 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
907 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
908 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
909 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
910 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
911 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
912 /* Enable all four RX queues before testing. */
913 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
914 /* RDH is read-only for 82575, only test RDT. */
915 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
916 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
917 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
918 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
919 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
920 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
921 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
922 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
923 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
924 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
925 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
926 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
927 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
928 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
929 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
930 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
934 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
935 int reg, u32 mask, u32 write)
937 struct e1000_hw *hw = &adapter->hw;
940 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
941 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
942 wr32(reg, (_test[pat] & write));
944 if (val != (_test[pat] & write & mask)) {
945 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
946 "failed: got 0x%08X expected 0x%08X\n",
947 reg, val, (_test[pat] & write & mask));
955 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
956 int reg, u32 mask, u32 write)
958 struct e1000_hw *hw = &adapter->hw;
960 wr32(reg, write & mask);
962 if ((write & mask) != (val & mask)) {
963 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
964 " got 0x%08X expected 0x%08X\n", reg,
965 (val & mask), (write & mask));
972 #define REG_PATTERN_TEST(reg, mask, write) \
974 if (reg_pattern_test(adapter, data, reg, mask, write)) \
978 #define REG_SET_AND_CHECK(reg, mask, write) \
980 if (reg_set_and_check(adapter, data, reg, mask, write)) \
984 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
986 struct e1000_hw *hw = &adapter->hw;
987 struct igb_reg_test *test;
988 u32 value, before, after;
993 switch (adapter->hw.mac.type) {
995 test = reg_test_82576;
998 test = reg_test_82575;
1002 /* Because the status register is such a special case,
1003 * we handle it separately from the rest of the register
1004 * tests. Some bits are read-only, some toggle, and some
1005 * are writable on newer MACs.
1007 before = rd32(E1000_STATUS);
1008 value = (rd32(E1000_STATUS) & toggle);
1009 wr32(E1000_STATUS, toggle);
1010 after = rd32(E1000_STATUS) & toggle;
1011 if (value != after) {
1012 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1013 "got: 0x%08X expected: 0x%08X\n", after, value);
1017 /* restore previous status */
1018 wr32(E1000_STATUS, before);
1020 /* Perform the remainder of the register test, looping through
1021 * the test table until we either fail or reach the null entry.
1024 for (i = 0; i < test->array_len; i++) {
1025 switch (test->test_type) {
1027 REG_PATTERN_TEST(test->reg +
1028 (i * test->reg_offset),
1033 REG_SET_AND_CHECK(test->reg +
1034 (i * test->reg_offset),
1040 (adapter->hw.hw_addr + test->reg)
1041 + (i * test->reg_offset));
1044 REG_PATTERN_TEST(test->reg + (i * 4),
1048 case TABLE64_TEST_LO:
1049 REG_PATTERN_TEST(test->reg + (i * 8),
1053 case TABLE64_TEST_HI:
1054 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1067 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1074 /* Read and add up the contents of the EEPROM */
1075 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1076 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp))
1084 /* If Checksum is not Correct return error else test passed */
1085 if ((checksum != (u16) NVM_SUM) && !(*data))
1091 static irqreturn_t igb_test_intr(int irq, void *data)
1093 struct net_device *netdev = (struct net_device *) data;
1094 struct igb_adapter *adapter = netdev_priv(netdev);
1095 struct e1000_hw *hw = &adapter->hw;
1097 adapter->test_icr |= rd32(E1000_ICR);
1102 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1104 struct e1000_hw *hw = &adapter->hw;
1105 struct net_device *netdev = adapter->netdev;
1106 u32 mask, ics_mask, i = 0, shared_int = true;
1107 u32 irq = adapter->pdev->irq;
1111 /* Hook up test interrupt handler just for this test */
1112 if (adapter->msix_entries)
1113 /* NOTE: we don't test MSI-X interrupts here, yet */
1116 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1118 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1122 } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1123 netdev->name, netdev)) {
1125 } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1126 netdev->name, netdev)) {
1130 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1131 (shared_int ? "shared" : "unshared"));
1132 /* Disable all the interrupts */
1133 wr32(E1000_IMC, 0xFFFFFFFF);
1136 /* Define all writable bits for ICS */
1137 switch(hw->mac.type) {
1139 ics_mask = 0x37F47EDD;
1142 ics_mask = 0x77D4FBFD;
1145 ics_mask = 0x7FFFFFFF;
1149 /* Test each interrupt */
1150 for (; i < 31; i++) {
1151 /* Interrupt to test */
1154 if (!(mask & ics_mask))
1158 /* Disable the interrupt to be reported in
1159 * the cause register and then force the same
1160 * interrupt and see if one gets posted. If
1161 * an interrupt was posted to the bus, the
1164 adapter->test_icr = 0;
1166 /* Flush any pending interrupts */
1167 wr32(E1000_ICR, ~0);
1169 wr32(E1000_IMC, mask);
1170 wr32(E1000_ICS, mask);
1173 if (adapter->test_icr & mask) {
1179 /* Enable the interrupt to be reported in
1180 * the cause register and then force the same
1181 * interrupt and see if one gets posted. If
1182 * an interrupt was not posted to the bus, the
1185 adapter->test_icr = 0;
1187 /* Flush any pending interrupts */
1188 wr32(E1000_ICR, ~0);
1190 wr32(E1000_IMS, mask);
1191 wr32(E1000_ICS, mask);
1194 if (!(adapter->test_icr & mask)) {
1200 /* Disable the other interrupts to be reported in
1201 * the cause register and then force the other
1202 * interrupts and see if any get posted. If
1203 * an interrupt was posted to the bus, the
1206 adapter->test_icr = 0;
1208 /* Flush any pending interrupts */
1209 wr32(E1000_ICR, ~0);
1211 wr32(E1000_IMC, ~mask);
1212 wr32(E1000_ICS, ~mask);
1215 if (adapter->test_icr & mask) {
1222 /* Disable all the interrupts */
1223 wr32(E1000_IMC, ~0);
1226 /* Unhook test interrupt handler */
1227 free_irq(irq, netdev);
1232 static void igb_free_desc_rings(struct igb_adapter *adapter)
1234 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1235 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1236 struct pci_dev *pdev = adapter->pdev;
1239 if (tx_ring->desc && tx_ring->buffer_info) {
1240 for (i = 0; i < tx_ring->count; i++) {
1241 struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1243 pci_unmap_single(pdev, buf->dma, buf->length,
1246 dev_kfree_skb(buf->skb);
1250 if (rx_ring->desc && rx_ring->buffer_info) {
1251 for (i = 0; i < rx_ring->count; i++) {
1252 struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1254 pci_unmap_single(pdev, buf->dma,
1256 PCI_DMA_FROMDEVICE);
1258 dev_kfree_skb(buf->skb);
1262 if (tx_ring->desc) {
1263 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1265 tx_ring->desc = NULL;
1267 if (rx_ring->desc) {
1268 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1270 rx_ring->desc = NULL;
1273 kfree(tx_ring->buffer_info);
1274 tx_ring->buffer_info = NULL;
1275 kfree(rx_ring->buffer_info);
1276 rx_ring->buffer_info = NULL;
1281 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1283 struct e1000_hw *hw = &adapter->hw;
1284 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1285 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1286 struct pci_dev *pdev = adapter->pdev;
1287 struct igb_buffer *buffer_info;
1291 /* Setup Tx descriptor ring and Tx buffers */
1293 if (!tx_ring->count)
1294 tx_ring->count = IGB_DEFAULT_TXD;
1296 tx_ring->buffer_info = kcalloc(tx_ring->count,
1297 sizeof(struct igb_buffer),
1299 if (!tx_ring->buffer_info) {
1304 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1305 tx_ring->size = ALIGN(tx_ring->size, 4096);
1306 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1308 if (!tx_ring->desc) {
1312 tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1314 wr32(E1000_TDBAL(0),
1315 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1316 wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1317 wr32(E1000_TDLEN(0),
1318 tx_ring->count * sizeof(union e1000_adv_tx_desc));
1319 wr32(E1000_TDH(0), 0);
1320 wr32(E1000_TDT(0), 0);
1322 E1000_TCTL_PSP | E1000_TCTL_EN |
1323 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1324 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1326 for (i = 0; i < tx_ring->count; i++) {
1327 union e1000_adv_tx_desc *tx_desc;
1328 struct sk_buff *skb;
1329 unsigned int size = 1024;
1331 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
1332 skb = alloc_skb(size, GFP_KERNEL);
1338 buffer_info = &tx_ring->buffer_info[i];
1339 buffer_info->skb = skb;
1340 buffer_info->length = skb->len;
1341 buffer_info->dma = pci_map_single(pdev, skb->data, skb->len,
1343 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
1344 tx_desc->read.olinfo_status = cpu_to_le32(skb->len) <<
1345 E1000_ADVTXD_PAYLEN_SHIFT;
1346 tx_desc->read.cmd_type_len = cpu_to_le32(skb->len);
1347 tx_desc->read.cmd_type_len |= cpu_to_le32(E1000_TXD_CMD_EOP |
1348 E1000_TXD_CMD_IFCS |
1350 E1000_ADVTXD_DTYP_DATA |
1351 E1000_ADVTXD_DCMD_DEXT);
1354 /* Setup Rx descriptor ring and Rx buffers */
1356 if (!rx_ring->count)
1357 rx_ring->count = IGB_DEFAULT_RXD;
1359 rx_ring->buffer_info = kcalloc(rx_ring->count,
1360 sizeof(struct igb_buffer),
1362 if (!rx_ring->buffer_info) {
1367 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1368 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1370 if (!rx_ring->desc) {
1374 rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1376 rctl = rd32(E1000_RCTL);
1377 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1378 wr32(E1000_RDBAL(0),
1379 ((u64) rx_ring->dma & 0xFFFFFFFF));
1380 wr32(E1000_RDBAH(0),
1381 ((u64) rx_ring->dma >> 32));
1382 wr32(E1000_RDLEN(0), rx_ring->size);
1383 wr32(E1000_RDH(0), 0);
1384 wr32(E1000_RDT(0), 0);
1385 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1386 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1387 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1388 wr32(E1000_RCTL, rctl);
1389 wr32(E1000_SRRCTL(0), E1000_SRRCTL_DESCTYPE_ADV_ONEBUF);
1391 for (i = 0; i < rx_ring->count; i++) {
1392 union e1000_adv_rx_desc *rx_desc;
1393 struct sk_buff *skb;
1395 buffer_info = &rx_ring->buffer_info[i];
1396 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
1397 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1403 skb_reserve(skb, NET_IP_ALIGN);
1404 buffer_info->skb = skb;
1405 buffer_info->dma = pci_map_single(pdev, skb->data,
1407 PCI_DMA_FROMDEVICE);
1408 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
1409 memset(skb->data, 0x00, skb->len);
1415 igb_free_desc_rings(adapter);
1419 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1421 struct e1000_hw *hw = &adapter->hw;
1423 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1424 igb_write_phy_reg(hw, 29, 0x001F);
1425 igb_write_phy_reg(hw, 30, 0x8FFC);
1426 igb_write_phy_reg(hw, 29, 0x001A);
1427 igb_write_phy_reg(hw, 30, 0x8FF0);
1430 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1432 struct e1000_hw *hw = &adapter->hw;
1435 hw->mac.autoneg = false;
1437 if (hw->phy.type == e1000_phy_m88) {
1438 /* Auto-MDI/MDIX Off */
1439 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1440 /* reset to update Auto-MDI/MDIX */
1441 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1443 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1446 ctrl_reg = rd32(E1000_CTRL);
1448 /* force 1000, set loopback */
1449 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1451 /* Now set up the MAC to the same speed/duplex as the PHY. */
1452 ctrl_reg = rd32(E1000_CTRL);
1453 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1454 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1455 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1456 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1457 E1000_CTRL_FD | /* Force Duplex to FULL */
1458 E1000_CTRL_SLU); /* Set link up enable bit */
1460 if (hw->phy.type == e1000_phy_m88)
1461 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1463 wr32(E1000_CTRL, ctrl_reg);
1465 /* Disable the receiver on the PHY so when a cable is plugged in, the
1466 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1468 if (hw->phy.type == e1000_phy_m88)
1469 igb_phy_disable_receiver(adapter);
1476 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1478 return igb_integrated_phy_loopback(adapter);
1481 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1483 struct e1000_hw *hw = &adapter->hw;
1486 if (hw->phy.media_type == e1000_media_type_fiber ||
1487 hw->phy.media_type == e1000_media_type_internal_serdes) {
1488 reg = rd32(E1000_RCTL);
1489 reg |= E1000_RCTL_LBM_TCVR;
1490 wr32(E1000_RCTL, reg);
1492 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1494 reg = rd32(E1000_CTRL);
1495 reg &= ~(E1000_CTRL_RFCE |
1498 reg |= E1000_CTRL_SLU |
1500 wr32(E1000_CTRL, reg);
1502 /* Unset switch control to serdes energy detect */
1503 reg = rd32(E1000_CONNSW);
1504 reg &= ~E1000_CONNSW_ENRGSRC;
1505 wr32(E1000_CONNSW, reg);
1507 /* Set PCS register for forced speed */
1508 reg = rd32(E1000_PCS_LCTL);
1509 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1510 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1511 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1512 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1513 E1000_PCS_LCTL_FSD | /* Force Speed */
1514 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1515 wr32(E1000_PCS_LCTL, reg);
1518 } else if (hw->phy.media_type == e1000_media_type_copper) {
1519 return igb_set_phy_loopback(adapter);
1525 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1527 struct e1000_hw *hw = &adapter->hw;
1531 rctl = rd32(E1000_RCTL);
1532 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1533 wr32(E1000_RCTL, rctl);
1535 hw->mac.autoneg = true;
1536 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1537 if (phy_reg & MII_CR_LOOPBACK) {
1538 phy_reg &= ~MII_CR_LOOPBACK;
1539 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1540 igb_phy_sw_reset(hw);
1544 static void igb_create_lbtest_frame(struct sk_buff *skb,
1545 unsigned int frame_size)
1547 memset(skb->data, 0xFF, frame_size);
1549 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1550 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1551 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1554 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1557 if (*(skb->data + 3) == 0xFF)
1558 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1559 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1564 static int igb_run_loopback_test(struct igb_adapter *adapter)
1566 struct e1000_hw *hw = &adapter->hw;
1567 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1568 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1569 struct pci_dev *pdev = adapter->pdev;
1570 int i, j, k, l, lc, good_cnt;
1574 wr32(E1000_RDT(0), rx_ring->count - 1);
1576 /* Calculate the loop count based on the largest descriptor ring
1577 * The idea is to wrap the largest ring a number of times using 64
1578 * send/receive pairs during each loop
1581 if (rx_ring->count <= tx_ring->count)
1582 lc = ((tx_ring->count / 64) * 2) + 1;
1584 lc = ((rx_ring->count / 64) * 2) + 1;
1587 for (j = 0; j <= lc; j++) { /* loop count loop */
1588 for (i = 0; i < 64; i++) { /* send the packets */
1589 igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1591 pci_dma_sync_single_for_device(pdev,
1592 tx_ring->buffer_info[k].dma,
1593 tx_ring->buffer_info[k].length,
1596 if (k == tx_ring->count)
1599 wr32(E1000_TDT(0), k);
1601 time = jiffies; /* set the start time for the receive */
1603 do { /* receive the sent packets */
1604 pci_dma_sync_single_for_cpu(pdev,
1605 rx_ring->buffer_info[l].dma,
1607 PCI_DMA_FROMDEVICE);
1609 ret_val = igb_check_lbtest_frame(
1610 rx_ring->buffer_info[l].skb, 1024);
1614 if (l == rx_ring->count)
1616 /* time + 20 msecs (200 msecs on 2.4) is more than
1617 * enough time to complete the receives, if it's
1618 * exceeded, break and error off
1620 } while (good_cnt < 64 && jiffies < (time + 20));
1621 if (good_cnt != 64) {
1622 ret_val = 13; /* ret_val is the same as mis-compare */
1625 if (jiffies >= (time + 20)) {
1626 ret_val = 14; /* error code for time out error */
1629 } /* end loop count loop */
1633 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1635 /* PHY loopback cannot be performed if SoL/IDER
1636 * sessions are active */
1637 if (igb_check_reset_block(&adapter->hw)) {
1638 dev_err(&adapter->pdev->dev,
1639 "Cannot do PHY loopback test "
1640 "when SoL/IDER is active.\n");
1644 *data = igb_setup_desc_rings(adapter);
1647 *data = igb_setup_loopback_test(adapter);
1650 *data = igb_run_loopback_test(adapter);
1651 igb_loopback_cleanup(adapter);
1654 igb_free_desc_rings(adapter);
1659 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1661 struct e1000_hw *hw = &adapter->hw;
1663 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1665 hw->mac.serdes_has_link = false;
1667 /* On some blade server designs, link establishment
1668 * could take as long as 2-3 minutes */
1670 hw->mac.ops.check_for_link(&adapter->hw);
1671 if (hw->mac.serdes_has_link)
1674 } while (i++ < 3750);
1678 hw->mac.ops.check_for_link(&adapter->hw);
1679 if (hw->mac.autoneg)
1682 if (!(rd32(E1000_STATUS) &
1689 static void igb_diag_test(struct net_device *netdev,
1690 struct ethtool_test *eth_test, u64 *data)
1692 struct igb_adapter *adapter = netdev_priv(netdev);
1693 u16 autoneg_advertised;
1694 u8 forced_speed_duplex, autoneg;
1695 bool if_running = netif_running(netdev);
1697 set_bit(__IGB_TESTING, &adapter->state);
1698 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1701 /* save speed, duplex, autoneg settings */
1702 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1703 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1704 autoneg = adapter->hw.mac.autoneg;
1706 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1708 /* Link test performed before hardware reset so autoneg doesn't
1709 * interfere with test result */
1710 if (igb_link_test(adapter, &data[4]))
1711 eth_test->flags |= ETH_TEST_FL_FAILED;
1714 /* indicate we're in test mode */
1719 if (igb_reg_test(adapter, &data[0]))
1720 eth_test->flags |= ETH_TEST_FL_FAILED;
1723 if (igb_eeprom_test(adapter, &data[1]))
1724 eth_test->flags |= ETH_TEST_FL_FAILED;
1727 if (igb_intr_test(adapter, &data[2]))
1728 eth_test->flags |= ETH_TEST_FL_FAILED;
1731 if (igb_loopback_test(adapter, &data[3]))
1732 eth_test->flags |= ETH_TEST_FL_FAILED;
1734 /* restore speed, duplex, autoneg settings */
1735 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1736 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1737 adapter->hw.mac.autoneg = autoneg;
1739 /* force this routine to wait until autoneg complete/timeout */
1740 adapter->hw.phy.autoneg_wait_to_complete = true;
1742 adapter->hw.phy.autoneg_wait_to_complete = false;
1744 clear_bit(__IGB_TESTING, &adapter->state);
1748 dev_info(&adapter->pdev->dev, "online testing starting\n");
1750 if (igb_link_test(adapter, &data[4]))
1751 eth_test->flags |= ETH_TEST_FL_FAILED;
1753 /* Online tests aren't run; pass by default */
1759 clear_bit(__IGB_TESTING, &adapter->state);
1761 msleep_interruptible(4 * 1000);
1764 static int igb_wol_exclusion(struct igb_adapter *adapter,
1765 struct ethtool_wolinfo *wol)
1767 struct e1000_hw *hw = &adapter->hw;
1768 int retval = 1; /* fail by default */
1770 switch (hw->device_id) {
1771 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1772 /* WoL not supported */
1775 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1776 case E1000_DEV_ID_82576_FIBER:
1777 case E1000_DEV_ID_82576_SERDES:
1778 /* Wake events not supported on port B */
1779 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1783 /* return success for non excluded adapter ports */
1786 case E1000_DEV_ID_82576_QUAD_COPPER:
1787 /* quad port adapters only support WoL on port A */
1788 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1792 /* return success for non excluded adapter ports */
1796 /* dual port cards only support WoL on port A from now on
1797 * unless it was enabled in the eeprom for port B
1798 * so exclude FUNC_1 ports from having WoL enabled */
1799 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1800 !adapter->eeprom_wol) {
1811 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1813 struct igb_adapter *adapter = netdev_priv(netdev);
1815 wol->supported = WAKE_UCAST | WAKE_MCAST |
1816 WAKE_BCAST | WAKE_MAGIC;
1819 /* this function will set ->supported = 0 and return 1 if wol is not
1820 * supported by this hardware */
1821 if (igb_wol_exclusion(adapter, wol) ||
1822 !device_can_wakeup(&adapter->pdev->dev))
1825 /* apply any specific unsupported masks here */
1826 switch (adapter->hw.device_id) {
1831 if (adapter->wol & E1000_WUFC_EX)
1832 wol->wolopts |= WAKE_UCAST;
1833 if (adapter->wol & E1000_WUFC_MC)
1834 wol->wolopts |= WAKE_MCAST;
1835 if (adapter->wol & E1000_WUFC_BC)
1836 wol->wolopts |= WAKE_BCAST;
1837 if (adapter->wol & E1000_WUFC_MAG)
1838 wol->wolopts |= WAKE_MAGIC;
1843 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1845 struct igb_adapter *adapter = netdev_priv(netdev);
1846 struct e1000_hw *hw = &adapter->hw;
1848 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1851 if (igb_wol_exclusion(adapter, wol) ||
1852 !device_can_wakeup(&adapter->pdev->dev))
1853 return wol->wolopts ? -EOPNOTSUPP : 0;
1855 switch (hw->device_id) {
1860 /* these settings will always override what we currently have */
1863 if (wol->wolopts & WAKE_UCAST)
1864 adapter->wol |= E1000_WUFC_EX;
1865 if (wol->wolopts & WAKE_MCAST)
1866 adapter->wol |= E1000_WUFC_MC;
1867 if (wol->wolopts & WAKE_BCAST)
1868 adapter->wol |= E1000_WUFC_BC;
1869 if (wol->wolopts & WAKE_MAGIC)
1870 adapter->wol |= E1000_WUFC_MAG;
1872 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1877 /* bit defines for adapter->led_status */
1878 #define IGB_LED_ON 0
1880 static int igb_phys_id(struct net_device *netdev, u32 data)
1882 struct igb_adapter *adapter = netdev_priv(netdev);
1883 struct e1000_hw *hw = &adapter->hw;
1885 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1886 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1889 msleep_interruptible(data * 1000);
1892 clear_bit(IGB_LED_ON, &adapter->led_status);
1893 igb_cleanup_led(hw);
1898 static int igb_set_coalesce(struct net_device *netdev,
1899 struct ethtool_coalesce *ec)
1901 struct igb_adapter *adapter = netdev_priv(netdev);
1902 struct e1000_hw *hw = &adapter->hw;
1905 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1906 ((ec->rx_coalesce_usecs > 3) &&
1907 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1908 (ec->rx_coalesce_usecs == 2))
1911 /* convert to rate of irq's per second */
1912 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
1913 adapter->itr_setting = ec->rx_coalesce_usecs;
1914 adapter->itr = IGB_START_ITR;
1916 adapter->itr_setting = ec->rx_coalesce_usecs << 2;
1917 adapter->itr = adapter->itr_setting;
1920 for (i = 0; i < adapter->num_rx_queues; i++)
1921 wr32(adapter->rx_ring[i].itr_register, adapter->itr);
1926 static int igb_get_coalesce(struct net_device *netdev,
1927 struct ethtool_coalesce *ec)
1929 struct igb_adapter *adapter = netdev_priv(netdev);
1931 if (adapter->itr_setting <= 3)
1932 ec->rx_coalesce_usecs = adapter->itr_setting;
1934 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
1940 static int igb_nway_reset(struct net_device *netdev)
1942 struct igb_adapter *adapter = netdev_priv(netdev);
1943 if (netif_running(netdev))
1944 igb_reinit_locked(adapter);
1948 static int igb_get_sset_count(struct net_device *netdev, int sset)
1952 return IGB_STATS_LEN;
1954 return IGB_TEST_LEN;
1960 static void igb_get_ethtool_stats(struct net_device *netdev,
1961 struct ethtool_stats *stats, u64 *data)
1963 struct igb_adapter *adapter = netdev_priv(netdev);
1965 int stat_count_tx = sizeof(struct igb_tx_queue_stats) / sizeof(u64);
1966 int stat_count_rx = sizeof(struct igb_rx_queue_stats) / sizeof(u64);
1970 igb_update_stats(adapter);
1971 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1972 char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset;
1973 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1974 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1976 for (j = 0; j < adapter->num_tx_queues; j++) {
1978 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
1979 for (k = 0; k < stat_count_tx; k++)
1980 data[i + k] = queue_stat[k];
1983 for (j = 0; j < adapter->num_rx_queues; j++) {
1985 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1986 for (k = 0; k < stat_count_rx; k++)
1987 data[i + k] = queue_stat[k];
1992 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1994 struct igb_adapter *adapter = netdev_priv(netdev);
1998 switch (stringset) {
2000 memcpy(data, *igb_gstrings_test,
2001 IGB_TEST_LEN*ETH_GSTRING_LEN);
2004 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2005 memcpy(p, igb_gstrings_stats[i].stat_string,
2007 p += ETH_GSTRING_LEN;
2009 for (i = 0; i < adapter->num_tx_queues; i++) {
2010 sprintf(p, "tx_queue_%u_packets", i);
2011 p += ETH_GSTRING_LEN;
2012 sprintf(p, "tx_queue_%u_bytes", i);
2013 p += ETH_GSTRING_LEN;
2015 for (i = 0; i < adapter->num_rx_queues; i++) {
2016 sprintf(p, "rx_queue_%u_packets", i);
2017 p += ETH_GSTRING_LEN;
2018 sprintf(p, "rx_queue_%u_bytes", i);
2019 p += ETH_GSTRING_LEN;
2020 sprintf(p, "rx_queue_%u_drops", i);
2021 p += ETH_GSTRING_LEN;
2023 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2028 static struct ethtool_ops igb_ethtool_ops = {
2029 .get_settings = igb_get_settings,
2030 .set_settings = igb_set_settings,
2031 .get_drvinfo = igb_get_drvinfo,
2032 .get_regs_len = igb_get_regs_len,
2033 .get_regs = igb_get_regs,
2034 .get_wol = igb_get_wol,
2035 .set_wol = igb_set_wol,
2036 .get_msglevel = igb_get_msglevel,
2037 .set_msglevel = igb_set_msglevel,
2038 .nway_reset = igb_nway_reset,
2039 .get_link = ethtool_op_get_link,
2040 .get_eeprom_len = igb_get_eeprom_len,
2041 .get_eeprom = igb_get_eeprom,
2042 .set_eeprom = igb_set_eeprom,
2043 .get_ringparam = igb_get_ringparam,
2044 .set_ringparam = igb_set_ringparam,
2045 .get_pauseparam = igb_get_pauseparam,
2046 .set_pauseparam = igb_set_pauseparam,
2047 .get_rx_csum = igb_get_rx_csum,
2048 .set_rx_csum = igb_set_rx_csum,
2049 .get_tx_csum = igb_get_tx_csum,
2050 .set_tx_csum = igb_set_tx_csum,
2051 .get_sg = ethtool_op_get_sg,
2052 .set_sg = ethtool_op_set_sg,
2053 .get_tso = ethtool_op_get_tso,
2054 .set_tso = igb_set_tso,
2055 .self_test = igb_diag_test,
2056 .get_strings = igb_get_strings,
2057 .phys_id = igb_phys_id,
2058 .get_sset_count = igb_get_sset_count,
2059 .get_ethtool_stats = igb_get_ethtool_stats,
2060 .get_coalesce = igb_get_coalesce,
2061 .set_coalesce = igb_set_coalesce,
2064 void igb_set_ethtool_ops(struct net_device *netdev)
2066 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);