2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1998-2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Stephane Eranian <eranian@hpl.hp.com>
9 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10 * Copyright (C) 1999 VA Linux Systems
11 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
14 * Routines used by ia64 machines with contiguous (or virtually contiguous)
17 #include <linux/bootmem.h>
18 #include <linux/efi.h>
20 #include <linux/swap.h>
22 #include <asm/meminit.h>
23 #include <asm/pgalloc.h>
24 #include <asm/pgtable.h>
25 #include <asm/sections.h>
28 #ifdef CONFIG_VIRTUAL_MEM_MAP
29 static unsigned long max_gap;
33 * show_mem - give short summary of memory stats
35 * Shows a simple page count of reserved and used pages in the system.
36 * For discontig machines, it does this on a per-pgdat basis.
40 int i, total_reserved = 0;
41 int total_shared = 0, total_cached = 0;
42 unsigned long total_present = 0;
45 printk(KERN_INFO "Mem-info:\n");
47 printk(KERN_INFO "Free swap: %6ldkB\n",
48 nr_swap_pages<<(PAGE_SHIFT-10));
49 printk(KERN_INFO "Node memory in pages:\n");
50 for_each_online_pgdat(pgdat) {
51 unsigned long present;
53 int shared = 0, cached = 0, reserved = 0;
55 pgdat_resize_lock(pgdat, &flags);
56 present = pgdat->node_present_pages;
57 for(i = 0; i < pgdat->node_spanned_pages; i++) {
59 if (pfn_valid(pgdat->node_start_pfn + i))
60 page = pfn_to_page(pgdat->node_start_pfn + i);
62 #ifdef CONFIG_VIRTUAL_MEM_MAP
63 if (max_gap < LARGE_GAP)
66 i = vmemmap_find_next_valid_pfn(pgdat->node_id,
70 if (PageReserved(page))
72 else if (PageSwapCache(page))
74 else if (page_count(page))
75 shared += page_count(page)-1;
77 pgdat_resize_unlock(pgdat, &flags);
78 total_present += present;
79 total_reserved += reserved;
80 total_cached += cached;
81 total_shared += shared;
82 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
83 "shrd: %10d, swpd: %10d\n", pgdat->node_id,
84 present, reserved, shared, cached);
86 printk(KERN_INFO "%ld pages of RAM\n", total_present);
87 printk(KERN_INFO "%d reserved pages\n", total_reserved);
88 printk(KERN_INFO "%d pages shared\n", total_shared);
89 printk(KERN_INFO "%d pages swap cached\n", total_cached);
90 printk(KERN_INFO "Total of %ld pages in page table cache\n",
91 pgtable_quicklist_total_size());
92 printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
96 /* physical address where the bootmem map is located */
97 unsigned long bootmap_start;
100 * find_max_pfn - adjust the maximum page number callback
101 * @start: start of range
103 * @arg: address of pointer to global max_pfn variable
105 * Passed as a callback function to efi_memmap_walk() to determine the highest
106 * available page frame number in the system.
109 find_max_pfn (unsigned long start, unsigned long end, void *arg)
111 unsigned long *max_pfnp = arg, pfn;
113 pfn = (PAGE_ALIGN(end - 1) - PAGE_OFFSET) >> PAGE_SHIFT;
120 * find_bootmap_location - callback to find a memory area for the bootmap
121 * @start: start of region
122 * @end: end of region
123 * @arg: unused callback data
125 * Find a place to put the bootmap and return its starting address in
126 * bootmap_start. This address must be page-aligned.
129 find_bootmap_location (unsigned long start, unsigned long end, void *arg)
131 unsigned long needed = *(unsigned long *)arg;
132 unsigned long range_start, range_end, free_start;
136 if (start == PAGE_OFFSET) {
143 free_start = PAGE_OFFSET;
145 for (i = 0; i < num_rsvd_regions; i++) {
146 range_start = max(start, free_start);
147 range_end = min(end, rsvd_region[i].start & PAGE_MASK);
149 free_start = PAGE_ALIGN(rsvd_region[i].end);
151 if (range_end <= range_start)
152 continue; /* skip over empty range */
154 if (range_end - range_start >= needed) {
155 bootmap_start = __pa(range_start);
156 return -1; /* done */
159 /* nothing more available in this segment */
160 if (range_end == end)
167 * find_memory - setup memory map
169 * Walk the EFI memory map and find usable memory for the system, taking
170 * into account reserved areas.
175 unsigned long bootmap_size;
179 /* first find highest page frame number */
181 efi_memmap_walk(find_max_pfn, &max_pfn);
183 /* how many bytes to cover all the pages */
184 bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
186 /* look for a location to hold the bootmap */
187 bootmap_start = ~0UL;
188 efi_memmap_walk(find_bootmap_location, &bootmap_size);
189 if (bootmap_start == ~0UL)
190 panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
192 bootmap_size = init_bootmem(bootmap_start >> PAGE_SHIFT, max_pfn);
194 /* Free all available memory, then mark bootmem-map as being in use. */
195 efi_memmap_walk(filter_rsvd_memory, free_bootmem);
196 reserve_bootmem(bootmap_start, bootmap_size);
200 #ifdef CONFIG_CRASH_DUMP
201 /* If we are doing a crash dump, we still need to know the real mem
202 * size before original memory map is reset. */
203 saved_max_pfn = max_pfn;
209 * per_cpu_init - setup per-cpu variables
211 * Allocate and setup per-cpu data areas.
218 static int first_time=1;
221 * get_free_pages() cannot be used before cpu_init() done. BSP
222 * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls
227 cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS,
228 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
229 for (cpu = 0; cpu < NR_CPUS; cpu++) {
230 memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start);
231 __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start;
232 cpu_data += PERCPU_PAGE_SIZE;
233 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
236 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
238 #endif /* CONFIG_SMP */
241 count_pages (u64 start, u64 end, void *arg)
243 unsigned long *count = arg;
245 *count += (end - start) >> PAGE_SHIFT;
250 * Set up the page tables.
256 unsigned long max_dma;
257 unsigned long max_zone_pfns[MAX_NR_ZONES];
260 efi_memmap_walk(count_pages, &num_physpages);
262 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
263 #ifdef CONFIG_ZONE_DMA
264 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
265 max_zone_pfns[ZONE_DMA] = max_dma;
267 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
269 #ifdef CONFIG_VIRTUAL_MEM_MAP
270 efi_memmap_walk(register_active_ranges, NULL);
271 efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
272 if (max_gap < LARGE_GAP) {
273 vmem_map = (struct page *) 0;
274 free_area_init_nodes(max_zone_pfns);
276 unsigned long map_size;
278 /* allocate virtual_mem_map */
280 map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
281 sizeof(struct page));
282 vmalloc_end -= map_size;
283 vmem_map = (struct page *) vmalloc_end;
284 efi_memmap_walk(create_mem_map_page_table, NULL);
287 * alloc_node_mem_map makes an adjustment for mem_map
288 * which isn't compatible with vmem_map.
290 NODE_DATA(0)->node_mem_map = vmem_map +
291 find_min_pfn_with_active_regions();
292 free_area_init_nodes(max_zone_pfns);
294 printk("Virtual mem_map starts at 0x%p\n", mem_map);
296 #else /* !CONFIG_VIRTUAL_MEM_MAP */
297 add_active_range(0, 0, max_low_pfn);
298 free_area_init_nodes(max_zone_pfns);
299 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
300 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));