Merge master.kernel.org:/home/rmk/linux-2.6-arm
[linux-2.6] / drivers / scsi / megaraid / megaraid_sas.c
1 /*
2  *
3  *              Linux MegaRAID driver for SAS based RAID controllers
4  *
5  * Copyright (c) 2003-2005  LSI Logic Corporation.
6  *
7  *         This program is free software; you can redistribute it and/or
8  *         modify it under the terms of the GNU General Public License
9  *         as published by the Free Software Foundation; either version
10  *         2 of the License, or (at your option) any later version.
11  *
12  * FILE         : megaraid_sas.c
13  * Version      : v00.00.02.00-rc4
14  *
15  * Authors:
16  *      Sreenivas Bagalkote     <Sreenivas.Bagalkote@lsil.com>
17  *      Sumant Patro            <Sumant.Patro@lsil.com>
18  *
19  * List of supported controllers
20  *
21  * OEM  Product Name                    VID     DID     SSVID   SSID
22  * ---  ------------                    ---     ---     ----    ----
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/pci.h>
28 #include <linux/list.h>
29 #include <linux/moduleparam.h>
30 #include <linux/module.h>
31 #include <linux/spinlock.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/uio.h>
35 #include <asm/uaccess.h>
36 #include <linux/fs.h>
37 #include <linux/compat.h>
38
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include "megaraid_sas.h"
44
45 MODULE_LICENSE("GPL");
46 MODULE_VERSION(MEGASAS_VERSION);
47 MODULE_AUTHOR("sreenivas.bagalkote@lsil.com");
48 MODULE_DESCRIPTION("LSI Logic MegaRAID SAS Driver");
49
50 /*
51  * PCI ID table for all supported controllers
52  */
53 static struct pci_device_id megasas_pci_table[] = {
54
55         {
56          PCI_VENDOR_ID_LSI_LOGIC,
57          PCI_DEVICE_ID_LSI_SAS1064R,
58          PCI_ANY_ID,
59          PCI_ANY_ID,
60          },
61         {
62          PCI_VENDOR_ID_DELL,
63          PCI_DEVICE_ID_DELL_PERC5,
64          PCI_ANY_ID,
65          PCI_ANY_ID,
66          },
67         {0}                     /* Terminating entry */
68 };
69
70 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
71
72 static int megasas_mgmt_majorno;
73 static struct megasas_mgmt_info megasas_mgmt_info;
74 static struct fasync_struct *megasas_async_queue;
75 static DECLARE_MUTEX(megasas_async_queue_mutex);
76
77 /**
78  * megasas_get_cmd -    Get a command from the free pool
79  * @instance:           Adapter soft state
80  *
81  * Returns a free command from the pool
82  */
83 static inline struct megasas_cmd *megasas_get_cmd(struct megasas_instance
84                                                   *instance)
85 {
86         unsigned long flags;
87         struct megasas_cmd *cmd = NULL;
88
89         spin_lock_irqsave(&instance->cmd_pool_lock, flags);
90
91         if (!list_empty(&instance->cmd_pool)) {
92                 cmd = list_entry((&instance->cmd_pool)->next,
93                                  struct megasas_cmd, list);
94                 list_del_init(&cmd->list);
95         } else {
96                 printk(KERN_ERR "megasas: Command pool empty!\n");
97         }
98
99         spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
100         return cmd;
101 }
102
103 /**
104  * megasas_return_cmd - Return a cmd to free command pool
105  * @instance:           Adapter soft state
106  * @cmd:                Command packet to be returned to free command pool
107  */
108 static inline void
109 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
110 {
111         unsigned long flags;
112
113         spin_lock_irqsave(&instance->cmd_pool_lock, flags);
114
115         cmd->scmd = NULL;
116         list_add_tail(&cmd->list, &instance->cmd_pool);
117
118         spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
119 }
120
121 /**
122  * megasas_enable_intr -        Enables interrupts
123  * @regs:                       MFI register set
124  */
125 static inline void
126 megasas_enable_intr(struct megasas_register_set __iomem * regs)
127 {
128         writel(1, &(regs)->outbound_intr_mask);
129
130         /* Dummy readl to force pci flush */
131         readl(&regs->outbound_intr_mask);
132 }
133
134 /**
135  * megasas_disable_intr -       Disables interrupts
136  * @regs:                       MFI register set
137  */
138 static inline void
139 megasas_disable_intr(struct megasas_register_set __iomem * regs)
140 {
141         u32 mask = readl(&regs->outbound_intr_mask) & (~0x00000001);
142         writel(mask, &regs->outbound_intr_mask);
143
144         /* Dummy readl to force pci flush */
145         readl(&regs->outbound_intr_mask);
146 }
147
148 /**
149  * megasas_issue_polled -       Issues a polling command
150  * @instance:                   Adapter soft state
151  * @cmd:                        Command packet to be issued 
152  *
153  * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
154  */
155 static int
156 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
157 {
158         int i;
159         u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
160
161         struct megasas_header *frame_hdr = &cmd->frame->hdr;
162
163         frame_hdr->cmd_status = 0xFF;
164         frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
165
166         /*
167          * Issue the frame using inbound queue port
168          */
169         writel(cmd->frame_phys_addr >> 3,
170                &instance->reg_set->inbound_queue_port);
171
172         /*
173          * Wait for cmd_status to change
174          */
175         for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
176                 rmb();
177                 msleep(1);
178         }
179
180         if (frame_hdr->cmd_status == 0xff)
181                 return -ETIME;
182
183         return 0;
184 }
185
186 /**
187  * megasas_issue_blocked_cmd -  Synchronous wrapper around regular FW cmds
188  * @instance:                   Adapter soft state
189  * @cmd:                        Command to be issued
190  *
191  * This function waits on an event for the command to be returned from ISR.
192  * Used to issue ioctl commands.
193  */
194 static int
195 megasas_issue_blocked_cmd(struct megasas_instance *instance,
196                           struct megasas_cmd *cmd)
197 {
198         cmd->cmd_status = ENODATA;
199
200         writel(cmd->frame_phys_addr >> 3,
201                &instance->reg_set->inbound_queue_port);
202
203         wait_event(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA));
204
205         return 0;
206 }
207
208 /**
209  * megasas_issue_blocked_abort_cmd -    Aborts previously issued cmd
210  * @instance:                           Adapter soft state
211  * @cmd_to_abort:                       Previously issued cmd to be aborted
212  *
213  * MFI firmware can abort previously issued AEN comamnd (automatic event
214  * notification). The megasas_issue_blocked_abort_cmd() issues such abort
215  * cmd and blocks till it is completed.
216  */
217 static int
218 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
219                                 struct megasas_cmd *cmd_to_abort)
220 {
221         struct megasas_cmd *cmd;
222         struct megasas_abort_frame *abort_fr;
223
224         cmd = megasas_get_cmd(instance);
225
226         if (!cmd)
227                 return -1;
228
229         abort_fr = &cmd->frame->abort;
230
231         /*
232          * Prepare and issue the abort frame
233          */
234         abort_fr->cmd = MFI_CMD_ABORT;
235         abort_fr->cmd_status = 0xFF;
236         abort_fr->flags = 0;
237         abort_fr->abort_context = cmd_to_abort->index;
238         abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
239         abort_fr->abort_mfi_phys_addr_hi = 0;
240
241         cmd->sync_cmd = 1;
242         cmd->cmd_status = 0xFF;
243
244         writel(cmd->frame_phys_addr >> 3,
245                &instance->reg_set->inbound_queue_port);
246
247         /*
248          * Wait for this cmd to complete
249          */
250         wait_event(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF));
251
252         megasas_return_cmd(instance, cmd);
253         return 0;
254 }
255
256 /**
257  * megasas_make_sgl32 - Prepares 32-bit SGL
258  * @instance:           Adapter soft state
259  * @scp:                SCSI command from the mid-layer
260  * @mfi_sgl:            SGL to be filled in
261  *
262  * If successful, this function returns the number of SG elements. Otherwise,
263  * it returnes -1.
264  */
265 static inline int
266 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
267                    union megasas_sgl *mfi_sgl)
268 {
269         int i;
270         int sge_count;
271         struct scatterlist *os_sgl;
272
273         /*
274          * Return 0 if there is no data transfer
275          */
276         if (!scp->request_buffer || !scp->request_bufflen)
277                 return 0;
278
279         if (!scp->use_sg) {
280                 mfi_sgl->sge32[0].phys_addr = pci_map_single(instance->pdev,
281                                                              scp->
282                                                              request_buffer,
283                                                              scp->
284                                                              request_bufflen,
285                                                              scp->
286                                                              sc_data_direction);
287                 mfi_sgl->sge32[0].length = scp->request_bufflen;
288
289                 return 1;
290         }
291
292         os_sgl = (struct scatterlist *)scp->request_buffer;
293         sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
294                                scp->sc_data_direction);
295
296         for (i = 0; i < sge_count; i++, os_sgl++) {
297                 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
298                 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
299         }
300
301         return sge_count;
302 }
303
304 /**
305  * megasas_make_sgl64 - Prepares 64-bit SGL
306  * @instance:           Adapter soft state
307  * @scp:                SCSI command from the mid-layer
308  * @mfi_sgl:            SGL to be filled in
309  *
310  * If successful, this function returns the number of SG elements. Otherwise,
311  * it returnes -1.
312  */
313 static inline int
314 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
315                    union megasas_sgl *mfi_sgl)
316 {
317         int i;
318         int sge_count;
319         struct scatterlist *os_sgl;
320
321         /*
322          * Return 0 if there is no data transfer
323          */
324         if (!scp->request_buffer || !scp->request_bufflen)
325                 return 0;
326
327         if (!scp->use_sg) {
328                 mfi_sgl->sge64[0].phys_addr = pci_map_single(instance->pdev,
329                                                              scp->
330                                                              request_buffer,
331                                                              scp->
332                                                              request_bufflen,
333                                                              scp->
334                                                              sc_data_direction);
335
336                 mfi_sgl->sge64[0].length = scp->request_bufflen;
337
338                 return 1;
339         }
340
341         os_sgl = (struct scatterlist *)scp->request_buffer;
342         sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
343                                scp->sc_data_direction);
344
345         for (i = 0; i < sge_count; i++, os_sgl++) {
346                 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
347                 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
348         }
349
350         return sge_count;
351 }
352
353 /**
354  * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
355  * @instance:           Adapter soft state
356  * @scp:                SCSI command
357  * @cmd:                Command to be prepared in
358  *
359  * This function prepares CDB commands. These are typcially pass-through
360  * commands to the devices.
361  */
362 static inline int
363 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
364                    struct megasas_cmd *cmd)
365 {
366         u32 sge_sz;
367         int sge_bytes;
368         u32 is_logical;
369         u32 device_id;
370         u16 flags = 0;
371         struct megasas_pthru_frame *pthru;
372
373         is_logical = MEGASAS_IS_LOGICAL(scp);
374         device_id = MEGASAS_DEV_INDEX(instance, scp);
375         pthru = (struct megasas_pthru_frame *)cmd->frame;
376
377         if (scp->sc_data_direction == PCI_DMA_TODEVICE)
378                 flags = MFI_FRAME_DIR_WRITE;
379         else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
380                 flags = MFI_FRAME_DIR_READ;
381         else if (scp->sc_data_direction == PCI_DMA_NONE)
382                 flags = MFI_FRAME_DIR_NONE;
383
384         /*
385          * Prepare the DCDB frame
386          */
387         pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
388         pthru->cmd_status = 0x0;
389         pthru->scsi_status = 0x0;
390         pthru->target_id = device_id;
391         pthru->lun = scp->device->lun;
392         pthru->cdb_len = scp->cmd_len;
393         pthru->timeout = 0;
394         pthru->flags = flags;
395         pthru->data_xfer_len = scp->request_bufflen;
396
397         memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
398
399         /*
400          * Construct SGL
401          */
402         sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
403             sizeof(struct megasas_sge32);
404
405         if (IS_DMA64) {
406                 pthru->flags |= MFI_FRAME_SGL64;
407                 pthru->sge_count = megasas_make_sgl64(instance, scp,
408                                                       &pthru->sgl);
409         } else
410                 pthru->sge_count = megasas_make_sgl32(instance, scp,
411                                                       &pthru->sgl);
412
413         /*
414          * Sense info specific
415          */
416         pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
417         pthru->sense_buf_phys_addr_hi = 0;
418         pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
419
420         sge_bytes = sge_sz * pthru->sge_count;
421
422         /*
423          * Compute the total number of frames this command consumes. FW uses
424          * this number to pull sufficient number of frames from host memory.
425          */
426         cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
427             ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
428
429         if (cmd->frame_count > 7)
430                 cmd->frame_count = 8;
431
432         return cmd->frame_count;
433 }
434
435 /**
436  * megasas_build_ldio - Prepares IOs to logical devices
437  * @instance:           Adapter soft state
438  * @scp:                SCSI command
439  * @cmd:                Command to to be prepared
440  *
441  * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
442  */
443 static inline int
444 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
445                    struct megasas_cmd *cmd)
446 {
447         u32 sge_sz;
448         int sge_bytes;
449         u32 device_id;
450         u8 sc = scp->cmnd[0];
451         u16 flags = 0;
452         struct megasas_io_frame *ldio;
453
454         device_id = MEGASAS_DEV_INDEX(instance, scp);
455         ldio = (struct megasas_io_frame *)cmd->frame;
456
457         if (scp->sc_data_direction == PCI_DMA_TODEVICE)
458                 flags = MFI_FRAME_DIR_WRITE;
459         else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
460                 flags = MFI_FRAME_DIR_READ;
461
462         /*
463          * Preare the Logical IO frame: 2nd bit is zero for all read cmds
464          */
465         ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
466         ldio->cmd_status = 0x0;
467         ldio->scsi_status = 0x0;
468         ldio->target_id = device_id;
469         ldio->timeout = 0;
470         ldio->reserved_0 = 0;
471         ldio->pad_0 = 0;
472         ldio->flags = flags;
473         ldio->start_lba_hi = 0;
474         ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
475
476         /*
477          * 6-byte READ(0x08) or WRITE(0x0A) cdb
478          */
479         if (scp->cmd_len == 6) {
480                 ldio->lba_count = (u32) scp->cmnd[4];
481                 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
482                     ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
483
484                 ldio->start_lba_lo &= 0x1FFFFF;
485         }
486
487         /*
488          * 10-byte READ(0x28) or WRITE(0x2A) cdb
489          */
490         else if (scp->cmd_len == 10) {
491                 ldio->lba_count = (u32) scp->cmnd[8] |
492                     ((u32) scp->cmnd[7] << 8);
493                 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
494                     ((u32) scp->cmnd[3] << 16) |
495                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
496         }
497
498         /*
499          * 12-byte READ(0xA8) or WRITE(0xAA) cdb
500          */
501         else if (scp->cmd_len == 12) {
502                 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
503                     ((u32) scp->cmnd[7] << 16) |
504                     ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
505
506                 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
507                     ((u32) scp->cmnd[3] << 16) |
508                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
509         }
510
511         /*
512          * 16-byte READ(0x88) or WRITE(0x8A) cdb
513          */
514         else if (scp->cmd_len == 16) {
515                 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
516                     ((u32) scp->cmnd[11] << 16) |
517                     ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
518
519                 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
520                     ((u32) scp->cmnd[7] << 16) |
521                     ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
522
523                 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
524                     ((u32) scp->cmnd[3] << 16) |
525                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
526
527         }
528
529         /*
530          * Construct SGL
531          */
532         sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
533             sizeof(struct megasas_sge32);
534
535         if (IS_DMA64) {
536                 ldio->flags |= MFI_FRAME_SGL64;
537                 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
538         } else
539                 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
540
541         /*
542          * Sense info specific
543          */
544         ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
545         ldio->sense_buf_phys_addr_hi = 0;
546         ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
547
548         sge_bytes = sge_sz * ldio->sge_count;
549
550         cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
551             ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
552
553         if (cmd->frame_count > 7)
554                 cmd->frame_count = 8;
555
556         return cmd->frame_count;
557 }
558
559 /**
560  * megasas_build_cmd -  Prepares a command packet
561  * @instance:           Adapter soft state
562  * @scp:                SCSI command
563  * @frame_count:        [OUT] Number of frames used to prepare this command
564  */
565 static inline struct megasas_cmd *megasas_build_cmd(struct megasas_instance
566                                                     *instance,
567                                                     struct scsi_cmnd *scp,
568                                                     int *frame_count)
569 {
570         u32 logical_cmd;
571         struct megasas_cmd *cmd;
572
573         /*
574          * Find out if this is logical or physical drive command.
575          */
576         logical_cmd = MEGASAS_IS_LOGICAL(scp);
577
578         /*
579          * Logical drive command
580          */
581         if (logical_cmd) {
582
583                 if (scp->device->id >= MEGASAS_MAX_LD) {
584                         scp->result = DID_BAD_TARGET << 16;
585                         return NULL;
586                 }
587
588                 switch (scp->cmnd[0]) {
589
590                 case READ_10:
591                 case WRITE_10:
592                 case READ_12:
593                 case WRITE_12:
594                 case READ_6:
595                 case WRITE_6:
596                 case READ_16:
597                 case WRITE_16:
598                         /*
599                          * Fail for LUN > 0
600                          */
601                         if (scp->device->lun) {
602                                 scp->result = DID_BAD_TARGET << 16;
603                                 return NULL;
604                         }
605
606                         cmd = megasas_get_cmd(instance);
607
608                         if (!cmd) {
609                                 scp->result = DID_IMM_RETRY << 16;
610                                 return NULL;
611                         }
612
613                         *frame_count = megasas_build_ldio(instance, scp, cmd);
614
615                         if (!(*frame_count)) {
616                                 megasas_return_cmd(instance, cmd);
617                                 return NULL;
618                         }
619
620                         return cmd;
621
622                 default:
623                         /*
624                          * Fail for LUN > 0
625                          */
626                         if (scp->device->lun) {
627                                 scp->result = DID_BAD_TARGET << 16;
628                                 return NULL;
629                         }
630
631                         cmd = megasas_get_cmd(instance);
632
633                         if (!cmd) {
634                                 scp->result = DID_IMM_RETRY << 16;
635                                 return NULL;
636                         }
637
638                         *frame_count = megasas_build_dcdb(instance, scp, cmd);
639
640                         if (!(*frame_count)) {
641                                 megasas_return_cmd(instance, cmd);
642                                 return NULL;
643                         }
644
645                         return cmd;
646                 }
647         } else {
648                 cmd = megasas_get_cmd(instance);
649
650                 if (!cmd) {
651                         scp->result = DID_IMM_RETRY << 16;
652                         return NULL;
653                 }
654
655                 *frame_count = megasas_build_dcdb(instance, scp, cmd);
656
657                 if (!(*frame_count)) {
658                         megasas_return_cmd(instance, cmd);
659                         return NULL;
660                 }
661
662                 return cmd;
663         }
664
665         return NULL;
666 }
667
668 /**
669  * megasas_queue_command -      Queue entry point
670  * @scmd:                       SCSI command to be queued
671  * @done:                       Callback entry point
672  */
673 static int
674 megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
675 {
676         u32 frame_count;
677         unsigned long flags;
678         struct megasas_cmd *cmd;
679         struct megasas_instance *instance;
680
681         instance = (struct megasas_instance *)
682             scmd->device->host->hostdata;
683         scmd->scsi_done = done;
684         scmd->result = 0;
685
686         cmd = megasas_build_cmd(instance, scmd, &frame_count);
687
688         if (!cmd) {
689                 done(scmd);
690                 return 0;
691         }
692
693         cmd->scmd = scmd;
694         scmd->SCp.ptr = (char *)cmd;
695         scmd->SCp.sent_command = jiffies;
696
697         /*
698          * Issue the command to the FW
699          */
700         spin_lock_irqsave(&instance->instance_lock, flags);
701         instance->fw_outstanding++;
702         spin_unlock_irqrestore(&instance->instance_lock, flags);
703
704         writel(((cmd->frame_phys_addr >> 3) | (cmd->frame_count - 1)),
705                &instance->reg_set->inbound_queue_port);
706
707         return 0;
708 }
709
710 /**
711  * megasas_wait_for_outstanding -       Wait for all outstanding cmds
712  * @instance:                           Adapter soft state
713  *
714  * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
715  * complete all its outstanding commands. Returns error if one or more IOs
716  * are pending after this time period. It also marks the controller dead.
717  */
718 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
719 {
720         int i;
721         u32 wait_time = MEGASAS_RESET_WAIT_TIME;
722
723         for (i = 0; i < wait_time; i++) {
724
725                 if (!instance->fw_outstanding)
726                         break;
727
728                 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
729                         printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
730                                "commands to complete\n", i,
731                                instance->fw_outstanding);
732                 }
733
734                 msleep(1000);
735         }
736
737         if (instance->fw_outstanding) {
738                 instance->hw_crit_error = 1;
739                 return FAILED;
740         }
741
742         return SUCCESS;
743 }
744
745 /**
746  * megasas_generic_reset -      Generic reset routine
747  * @scmd:                       Mid-layer SCSI command
748  *
749  * This routine implements a generic reset handler for device, bus and host
750  * reset requests. Device, bus and host specific reset handlers can use this
751  * function after they do their specific tasks.
752  */
753 static int megasas_generic_reset(struct scsi_cmnd *scmd)
754 {
755         int ret_val;
756         struct megasas_instance *instance;
757
758         instance = (struct megasas_instance *)scmd->device->host->hostdata;
759
760         scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x\n",
761                scmd->serial_number, scmd->cmnd[0]);
762
763         if (instance->hw_crit_error) {
764                 printk(KERN_ERR "megasas: cannot recover from previous reset "
765                        "failures\n");
766                 return FAILED;
767         }
768
769         ret_val = megasas_wait_for_outstanding(instance);
770         if (ret_val == SUCCESS)
771                 printk(KERN_NOTICE "megasas: reset successful \n");
772         else
773                 printk(KERN_ERR "megasas: failed to do reset\n");
774
775         return ret_val;
776 }
777
778 static enum scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
779 {
780         unsigned long seconds;
781
782         if (scmd->SCp.ptr) {
783                 seconds = (jiffies - scmd->SCp.sent_command) / HZ;
784
785                 if (seconds < 90) {
786                         return EH_RESET_TIMER;
787                 } else {
788                         return EH_NOT_HANDLED;
789                 }
790         }
791
792         return EH_HANDLED;
793 }
794
795 /**
796  * megasas_reset_device -       Device reset handler entry point
797  */
798 static int megasas_reset_device(struct scsi_cmnd *scmd)
799 {
800         int ret;
801
802         /*
803          * First wait for all commands to complete
804          */
805         ret = megasas_generic_reset(scmd);
806
807         return ret;
808 }
809
810 /**
811  * megasas_reset_bus_host -     Bus & host reset handler entry point
812  */
813 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
814 {
815         int ret;
816
817         /*
818          * Frist wait for all commands to complete
819          */
820         ret = megasas_generic_reset(scmd);
821
822         return ret;
823 }
824
825 /**
826  * megasas_service_aen -        Processes an event notification
827  * @instance:                   Adapter soft state
828  * @cmd:                        AEN command completed by the ISR
829  *
830  * For AEN, driver sends a command down to FW that is held by the FW till an
831  * event occurs. When an event of interest occurs, FW completes the command
832  * that it was previously holding.
833  *
834  * This routines sends SIGIO signal to processes that have registered with the
835  * driver for AEN.
836  */
837 static void
838 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
839 {
840         /*
841          * Don't signal app if it is just an aborted previously registered aen
842          */
843         if (!cmd->abort_aen)
844                 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
845         else
846                 cmd->abort_aen = 0;
847
848         instance->aen_cmd = NULL;
849         megasas_return_cmd(instance, cmd);
850 }
851
852 /*
853  * Scsi host template for megaraid_sas driver
854  */
855 static struct scsi_host_template megasas_template = {
856
857         .module = THIS_MODULE,
858         .name = "LSI Logic SAS based MegaRAID driver",
859         .proc_name = "megaraid_sas",
860         .queuecommand = megasas_queue_command,
861         .eh_device_reset_handler = megasas_reset_device,
862         .eh_bus_reset_handler = megasas_reset_bus_host,
863         .eh_host_reset_handler = megasas_reset_bus_host,
864         .eh_timed_out = megasas_reset_timer,
865         .use_clustering = ENABLE_CLUSTERING,
866 };
867
868 /**
869  * megasas_complete_int_cmd -   Completes an internal command
870  * @instance:                   Adapter soft state
871  * @cmd:                        Command to be completed
872  *
873  * The megasas_issue_blocked_cmd() function waits for a command to complete
874  * after it issues a command. This function wakes up that waiting routine by
875  * calling wake_up() on the wait queue.
876  */
877 static void
878 megasas_complete_int_cmd(struct megasas_instance *instance,
879                          struct megasas_cmd *cmd)
880 {
881         cmd->cmd_status = cmd->frame->io.cmd_status;
882
883         if (cmd->cmd_status == ENODATA) {
884                 cmd->cmd_status = 0;
885         }
886         wake_up(&instance->int_cmd_wait_q);
887 }
888
889 /**
890  * megasas_complete_abort -     Completes aborting a command
891  * @instance:                   Adapter soft state
892  * @cmd:                        Cmd that was issued to abort another cmd
893  *
894  * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q 
895  * after it issues an abort on a previously issued command. This function 
896  * wakes up all functions waiting on the same wait queue.
897  */
898 static void
899 megasas_complete_abort(struct megasas_instance *instance,
900                        struct megasas_cmd *cmd)
901 {
902         if (cmd->sync_cmd) {
903                 cmd->sync_cmd = 0;
904                 cmd->cmd_status = 0;
905                 wake_up(&instance->abort_cmd_wait_q);
906         }
907
908         return;
909 }
910
911 /**
912  * megasas_unmap_sgbuf -        Unmap SG buffers
913  * @instance:                   Adapter soft state
914  * @cmd:                        Completed command
915  */
916 static inline void
917 megasas_unmap_sgbuf(struct megasas_instance *instance, struct megasas_cmd *cmd)
918 {
919         dma_addr_t buf_h;
920         u8 opcode;
921
922         if (cmd->scmd->use_sg) {
923                 pci_unmap_sg(instance->pdev, cmd->scmd->request_buffer,
924                              cmd->scmd->use_sg, cmd->scmd->sc_data_direction);
925                 return;
926         }
927
928         if (!cmd->scmd->request_bufflen)
929                 return;
930
931         opcode = cmd->frame->hdr.cmd;
932
933         if ((opcode == MFI_CMD_LD_READ) || (opcode == MFI_CMD_LD_WRITE)) {
934                 if (IS_DMA64)
935                         buf_h = cmd->frame->io.sgl.sge64[0].phys_addr;
936                 else
937                         buf_h = cmd->frame->io.sgl.sge32[0].phys_addr;
938         } else {
939                 if (IS_DMA64)
940                         buf_h = cmd->frame->pthru.sgl.sge64[0].phys_addr;
941                 else
942                         buf_h = cmd->frame->pthru.sgl.sge32[0].phys_addr;
943         }
944
945         pci_unmap_single(instance->pdev, buf_h, cmd->scmd->request_bufflen,
946                          cmd->scmd->sc_data_direction);
947         return;
948 }
949
950 /**
951  * megasas_complete_cmd -       Completes a command
952  * @instance:                   Adapter soft state
953  * @cmd:                        Command to be completed
954  * @alt_status:                 If non-zero, use this value as status to 
955  *                              SCSI mid-layer instead of the value returned
956  *                              by the FW. This should be used if caller wants
957  *                              an alternate status (as in the case of aborted
958  *                              commands)
959  */
960 static inline void
961 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
962                      u8 alt_status)
963 {
964         int exception = 0;
965         struct megasas_header *hdr = &cmd->frame->hdr;
966         unsigned long flags;
967
968         if (cmd->scmd) {
969                 cmd->scmd->SCp.ptr = (char *)0;
970         }
971
972         switch (hdr->cmd) {
973
974         case MFI_CMD_PD_SCSI_IO:
975         case MFI_CMD_LD_SCSI_IO:
976
977                 /*
978                  * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
979                  * issued either through an IO path or an IOCTL path. If it
980                  * was via IOCTL, we will send it to internal completion.
981                  */
982                 if (cmd->sync_cmd) {
983                         cmd->sync_cmd = 0;
984                         megasas_complete_int_cmd(instance, cmd);
985                         break;
986                 }
987
988                 /*
989                  * Don't export physical disk devices to mid-layer.
990                  */
991                 if (!MEGASAS_IS_LOGICAL(cmd->scmd) &&
992                     (hdr->cmd_status == MFI_STAT_OK) &&
993                     (cmd->scmd->cmnd[0] == INQUIRY)) {
994
995                         if (((*(u8 *) cmd->scmd->request_buffer) & 0x1F) ==
996                             TYPE_DISK) {
997                                 cmd->scmd->result = DID_BAD_TARGET << 16;
998                                 exception = 1;
999                         }
1000                 }
1001
1002         case MFI_CMD_LD_READ:
1003         case MFI_CMD_LD_WRITE:
1004
1005                 if (alt_status) {
1006                         cmd->scmd->result = alt_status << 16;
1007                         exception = 1;
1008                 }
1009
1010                 if (exception) {
1011
1012                         spin_lock_irqsave(&instance->instance_lock, flags);
1013                         instance->fw_outstanding--;
1014                         spin_unlock_irqrestore(&instance->instance_lock, flags);
1015
1016                         megasas_unmap_sgbuf(instance, cmd);
1017                         cmd->scmd->scsi_done(cmd->scmd);
1018                         megasas_return_cmd(instance, cmd);
1019
1020                         break;
1021                 }
1022
1023                 switch (hdr->cmd_status) {
1024
1025                 case MFI_STAT_OK:
1026                         cmd->scmd->result = DID_OK << 16;
1027                         break;
1028
1029                 case MFI_STAT_SCSI_IO_FAILED:
1030                 case MFI_STAT_LD_INIT_IN_PROGRESS:
1031                         cmd->scmd->result =
1032                             (DID_ERROR << 16) | hdr->scsi_status;
1033                         break;
1034
1035                 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1036
1037                         cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1038
1039                         if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1040                                 memset(cmd->scmd->sense_buffer, 0,
1041                                        SCSI_SENSE_BUFFERSIZE);
1042                                 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1043                                        hdr->sense_len);
1044
1045                                 cmd->scmd->result |= DRIVER_SENSE << 24;
1046                         }
1047
1048                         break;
1049
1050                 case MFI_STAT_LD_OFFLINE:
1051                 case MFI_STAT_DEVICE_NOT_FOUND:
1052                         cmd->scmd->result = DID_BAD_TARGET << 16;
1053                         break;
1054
1055                 default:
1056                         printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1057                                hdr->cmd_status);
1058                         cmd->scmd->result = DID_ERROR << 16;
1059                         break;
1060                 }
1061
1062                 spin_lock_irqsave(&instance->instance_lock, flags);
1063                 instance->fw_outstanding--;
1064                 spin_unlock_irqrestore(&instance->instance_lock, flags);
1065
1066                 megasas_unmap_sgbuf(instance, cmd);
1067                 cmd->scmd->scsi_done(cmd->scmd);
1068                 megasas_return_cmd(instance, cmd);
1069
1070                 break;
1071
1072         case MFI_CMD_SMP:
1073         case MFI_CMD_STP:
1074         case MFI_CMD_DCMD:
1075
1076                 /*
1077                  * See if got an event notification
1078                  */
1079                 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1080                         megasas_service_aen(instance, cmd);
1081                 else
1082                         megasas_complete_int_cmd(instance, cmd);
1083
1084                 break;
1085
1086         case MFI_CMD_ABORT:
1087                 /*
1088                  * Cmd issued to abort another cmd returned
1089                  */
1090                 megasas_complete_abort(instance, cmd);
1091                 break;
1092
1093         default:
1094                 printk("megasas: Unknown command completed! [0x%X]\n",
1095                        hdr->cmd);
1096                 break;
1097         }
1098 }
1099
1100 /**
1101  * megasas_deplete_reply_queue -        Processes all completed commands
1102  * @instance:                           Adapter soft state
1103  * @alt_status:                         Alternate status to be returned to
1104  *                                      SCSI mid-layer instead of the status
1105  *                                      returned by the FW
1106  */
1107 static inline int
1108 megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1109 {
1110         u32 status;
1111         u32 producer;
1112         u32 consumer;
1113         u32 context;
1114         struct megasas_cmd *cmd;
1115
1116         /*
1117          * Check if it is our interrupt
1118          */
1119         status = readl(&instance->reg_set->outbound_intr_status);
1120
1121         if (!(status & MFI_OB_INTR_STATUS_MASK)) {
1122                 return IRQ_NONE;
1123         }
1124
1125         /*
1126          * Clear the interrupt by writing back the same value
1127          */
1128         writel(status, &instance->reg_set->outbound_intr_status);
1129
1130         producer = *instance->producer;
1131         consumer = *instance->consumer;
1132
1133         while (consumer != producer) {
1134                 context = instance->reply_queue[consumer];
1135
1136                 cmd = instance->cmd_list[context];
1137
1138                 megasas_complete_cmd(instance, cmd, alt_status);
1139
1140                 consumer++;
1141                 if (consumer == (instance->max_fw_cmds + 1)) {
1142                         consumer = 0;
1143                 }
1144         }
1145
1146         *instance->consumer = producer;
1147
1148         return IRQ_HANDLED;
1149 }
1150
1151 /**
1152  * megasas_isr - isr entry point
1153  */
1154 static irqreturn_t megasas_isr(int irq, void *devp, struct pt_regs *regs)
1155 {
1156         return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1157                                            DID_OK);
1158 }
1159
1160 /**
1161  * megasas_transition_to_ready -        Move the FW to READY state
1162  * @reg_set:                            MFI register set
1163  *
1164  * During the initialization, FW passes can potentially be in any one of
1165  * several possible states. If the FW in operational, waiting-for-handshake
1166  * states, driver must take steps to bring it to ready state. Otherwise, it
1167  * has to wait for the ready state.
1168  */
1169 static int
1170 megasas_transition_to_ready(struct megasas_register_set __iomem * reg_set)
1171 {
1172         int i;
1173         u8 max_wait;
1174         u32 fw_state;
1175         u32 cur_state;
1176
1177         fw_state = readl(&reg_set->outbound_msg_0) & MFI_STATE_MASK;
1178
1179         while (fw_state != MFI_STATE_READY) {
1180
1181                 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1182                        " state\n");
1183                 switch (fw_state) {
1184
1185                 case MFI_STATE_FAULT:
1186
1187                         printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1188                         return -ENODEV;
1189
1190                 case MFI_STATE_WAIT_HANDSHAKE:
1191                         /*
1192                          * Set the CLR bit in inbound doorbell
1193                          */
1194                         writel(MFI_INIT_CLEAR_HANDSHAKE,
1195                                &reg_set->inbound_doorbell);
1196
1197                         max_wait = 2;
1198                         cur_state = MFI_STATE_WAIT_HANDSHAKE;
1199                         break;
1200
1201                 case MFI_STATE_OPERATIONAL:
1202                         /*
1203                          * Bring it to READY state; assuming max wait 2 secs
1204                          */
1205                         megasas_disable_intr(reg_set);
1206                         writel(MFI_INIT_READY, &reg_set->inbound_doorbell);
1207
1208                         max_wait = 10;
1209                         cur_state = MFI_STATE_OPERATIONAL;
1210                         break;
1211
1212                 case MFI_STATE_UNDEFINED:
1213                         /*
1214                          * This state should not last for more than 2 seconds
1215                          */
1216                         max_wait = 2;
1217                         cur_state = MFI_STATE_UNDEFINED;
1218                         break;
1219
1220                 case MFI_STATE_BB_INIT:
1221                         max_wait = 2;
1222                         cur_state = MFI_STATE_BB_INIT;
1223                         break;
1224
1225                 case MFI_STATE_FW_INIT:
1226                         max_wait = 20;
1227                         cur_state = MFI_STATE_FW_INIT;
1228                         break;
1229
1230                 case MFI_STATE_FW_INIT_2:
1231                         max_wait = 20;
1232                         cur_state = MFI_STATE_FW_INIT_2;
1233                         break;
1234
1235                 case MFI_STATE_DEVICE_SCAN:
1236                         max_wait = 20;
1237                         cur_state = MFI_STATE_DEVICE_SCAN;
1238                         break;
1239
1240                 case MFI_STATE_FLUSH_CACHE:
1241                         max_wait = 20;
1242                         cur_state = MFI_STATE_FLUSH_CACHE;
1243                         break;
1244
1245                 default:
1246                         printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1247                                fw_state);
1248                         return -ENODEV;
1249                 }
1250
1251                 /*
1252                  * The cur_state should not last for more than max_wait secs
1253                  */
1254                 for (i = 0; i < (max_wait * 1000); i++) {
1255                         fw_state = MFI_STATE_MASK &
1256                             readl(&reg_set->outbound_msg_0);
1257
1258                         if (fw_state == cur_state) {
1259                                 msleep(1);
1260                         } else
1261                                 break;
1262                 }
1263
1264                 /*
1265                  * Return error if fw_state hasn't changed after max_wait
1266                  */
1267                 if (fw_state == cur_state) {
1268                         printk(KERN_DEBUG "FW state [%d] hasn't changed "
1269                                "in %d secs\n", fw_state, max_wait);
1270                         return -ENODEV;
1271                 }
1272         };
1273
1274         return 0;
1275 }
1276
1277 /**
1278  * megasas_teardown_frame_pool -        Destroy the cmd frame DMA pool
1279  * @instance:                           Adapter soft state
1280  */
1281 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1282 {
1283         int i;
1284         u32 max_cmd = instance->max_fw_cmds;
1285         struct megasas_cmd *cmd;
1286
1287         if (!instance->frame_dma_pool)
1288                 return;
1289
1290         /*
1291          * Return all frames to pool
1292          */
1293         for (i = 0; i < max_cmd; i++) {
1294
1295                 cmd = instance->cmd_list[i];
1296
1297                 if (cmd->frame)
1298                         pci_pool_free(instance->frame_dma_pool, cmd->frame,
1299                                       cmd->frame_phys_addr);
1300
1301                 if (cmd->sense)
1302                         pci_pool_free(instance->sense_dma_pool, cmd->frame,
1303                                       cmd->sense_phys_addr);
1304         }
1305
1306         /*
1307          * Now destroy the pool itself
1308          */
1309         pci_pool_destroy(instance->frame_dma_pool);
1310         pci_pool_destroy(instance->sense_dma_pool);
1311
1312         instance->frame_dma_pool = NULL;
1313         instance->sense_dma_pool = NULL;
1314 }
1315
1316 /**
1317  * megasas_create_frame_pool -  Creates DMA pool for cmd frames
1318  * @instance:                   Adapter soft state
1319  *
1320  * Each command packet has an embedded DMA memory buffer that is used for
1321  * filling MFI frame and the SG list that immediately follows the frame. This
1322  * function creates those DMA memory buffers for each command packet by using
1323  * PCI pool facility.
1324  */
1325 static int megasas_create_frame_pool(struct megasas_instance *instance)
1326 {
1327         int i;
1328         u32 max_cmd;
1329         u32 sge_sz;
1330         u32 sgl_sz;
1331         u32 total_sz;
1332         u32 frame_count;
1333         struct megasas_cmd *cmd;
1334
1335         max_cmd = instance->max_fw_cmds;
1336
1337         /*
1338          * Size of our frame is 64 bytes for MFI frame, followed by max SG
1339          * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1340          */
1341         sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1342             sizeof(struct megasas_sge32);
1343
1344         /*
1345          * Calculated the number of 64byte frames required for SGL
1346          */
1347         sgl_sz = sge_sz * instance->max_num_sge;
1348         frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1349
1350         /*
1351          * We need one extra frame for the MFI command
1352          */
1353         frame_count++;
1354
1355         total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1356         /*
1357          * Use DMA pool facility provided by PCI layer
1358          */
1359         instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1360                                                    instance->pdev, total_sz, 64,
1361                                                    0);
1362
1363         if (!instance->frame_dma_pool) {
1364                 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1365                 return -ENOMEM;
1366         }
1367
1368         instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1369                                                    instance->pdev, 128, 4, 0);
1370
1371         if (!instance->sense_dma_pool) {
1372                 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1373
1374                 pci_pool_destroy(instance->frame_dma_pool);
1375                 instance->frame_dma_pool = NULL;
1376
1377                 return -ENOMEM;
1378         }
1379
1380         /*
1381          * Allocate and attach a frame to each of the commands in cmd_list.
1382          * By making cmd->index as the context instead of the &cmd, we can
1383          * always use 32bit context regardless of the architecture
1384          */
1385         for (i = 0; i < max_cmd; i++) {
1386
1387                 cmd = instance->cmd_list[i];
1388
1389                 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1390                                             GFP_KERNEL, &cmd->frame_phys_addr);
1391
1392                 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1393                                             GFP_KERNEL, &cmd->sense_phys_addr);
1394
1395                 /*
1396                  * megasas_teardown_frame_pool() takes care of freeing
1397                  * whatever has been allocated
1398                  */
1399                 if (!cmd->frame || !cmd->sense) {
1400                         printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1401                         megasas_teardown_frame_pool(instance);
1402                         return -ENOMEM;
1403                 }
1404
1405                 cmd->frame->io.context = cmd->index;
1406         }
1407
1408         return 0;
1409 }
1410
1411 /**
1412  * megasas_free_cmds -  Free all the cmds in the free cmd pool
1413  * @instance:           Adapter soft state
1414  */
1415 static void megasas_free_cmds(struct megasas_instance *instance)
1416 {
1417         int i;
1418         /* First free the MFI frame pool */
1419         megasas_teardown_frame_pool(instance);
1420
1421         /* Free all the commands in the cmd_list */
1422         for (i = 0; i < instance->max_fw_cmds; i++)
1423                 kfree(instance->cmd_list[i]);
1424
1425         /* Free the cmd_list buffer itself */
1426         kfree(instance->cmd_list);
1427         instance->cmd_list = NULL;
1428
1429         INIT_LIST_HEAD(&instance->cmd_pool);
1430 }
1431
1432 /**
1433  * megasas_alloc_cmds - Allocates the command packets
1434  * @instance:           Adapter soft state
1435  *
1436  * Each command that is issued to the FW, whether IO commands from the OS or
1437  * internal commands like IOCTLs, are wrapped in local data structure called
1438  * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1439  * the FW.
1440  *
1441  * Each frame has a 32-bit field called context (tag). This context is used
1442  * to get back the megasas_cmd from the frame when a frame gets completed in
1443  * the ISR. Typically the address of the megasas_cmd itself would be used as
1444  * the context. But we wanted to keep the differences between 32 and 64 bit
1445  * systems to the mininum. We always use 32 bit integers for the context. In
1446  * this driver, the 32 bit values are the indices into an array cmd_list.
1447  * This array is used only to look up the megasas_cmd given the context. The
1448  * free commands themselves are maintained in a linked list called cmd_pool.
1449  */
1450 static int megasas_alloc_cmds(struct megasas_instance *instance)
1451 {
1452         int i;
1453         int j;
1454         u32 max_cmd;
1455         struct megasas_cmd *cmd;
1456
1457         max_cmd = instance->max_fw_cmds;
1458
1459         /*
1460          * instance->cmd_list is an array of struct megasas_cmd pointers.
1461          * Allocate the dynamic array first and then allocate individual
1462          * commands.
1463          */
1464         instance->cmd_list = kmalloc(sizeof(struct megasas_cmd *) * max_cmd,
1465                                      GFP_KERNEL);
1466
1467         if (!instance->cmd_list) {
1468                 printk(KERN_DEBUG "megasas: out of memory\n");
1469                 return -ENOMEM;
1470         }
1471
1472         memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) * max_cmd);
1473
1474         for (i = 0; i < max_cmd; i++) {
1475                 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1476                                                 GFP_KERNEL);
1477
1478                 if (!instance->cmd_list[i]) {
1479
1480                         for (j = 0; j < i; j++)
1481                                 kfree(instance->cmd_list[j]);
1482
1483                         kfree(instance->cmd_list);
1484                         instance->cmd_list = NULL;
1485
1486                         return -ENOMEM;
1487                 }
1488         }
1489
1490         /*
1491          * Add all the commands to command pool (instance->cmd_pool)
1492          */
1493         for (i = 0; i < max_cmd; i++) {
1494                 cmd = instance->cmd_list[i];
1495                 memset(cmd, 0, sizeof(struct megasas_cmd));
1496                 cmd->index = i;
1497                 cmd->instance = instance;
1498
1499                 list_add_tail(&cmd->list, &instance->cmd_pool);
1500         }
1501
1502         /*
1503          * Create a frame pool and assign one frame to each cmd
1504          */
1505         if (megasas_create_frame_pool(instance)) {
1506                 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1507                 megasas_free_cmds(instance);
1508         }
1509
1510         return 0;
1511 }
1512
1513 /**
1514  * megasas_get_controller_info -        Returns FW's controller structure
1515  * @instance:                           Adapter soft state
1516  * @ctrl_info:                          Controller information structure
1517  *
1518  * Issues an internal command (DCMD) to get the FW's controller structure.
1519  * This information is mainly used to find out the maximum IO transfer per
1520  * command supported by the FW.
1521  */
1522 static int
1523 megasas_get_ctrl_info(struct megasas_instance *instance,
1524                       struct megasas_ctrl_info *ctrl_info)
1525 {
1526         int ret = 0;
1527         struct megasas_cmd *cmd;
1528         struct megasas_dcmd_frame *dcmd;
1529         struct megasas_ctrl_info *ci;
1530         dma_addr_t ci_h = 0;
1531
1532         cmd = megasas_get_cmd(instance);
1533
1534         if (!cmd) {
1535                 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1536                 return -ENOMEM;
1537         }
1538
1539         dcmd = &cmd->frame->dcmd;
1540
1541         ci = pci_alloc_consistent(instance->pdev,
1542                                   sizeof(struct megasas_ctrl_info), &ci_h);
1543
1544         if (!ci) {
1545                 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1546                 megasas_return_cmd(instance, cmd);
1547                 return -ENOMEM;
1548         }
1549
1550         memset(ci, 0, sizeof(*ci));
1551         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1552
1553         dcmd->cmd = MFI_CMD_DCMD;
1554         dcmd->cmd_status = 0xFF;
1555         dcmd->sge_count = 1;
1556         dcmd->flags = MFI_FRAME_DIR_READ;
1557         dcmd->timeout = 0;
1558         dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1559         dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1560         dcmd->sgl.sge32[0].phys_addr = ci_h;
1561         dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1562
1563         if (!megasas_issue_polled(instance, cmd)) {
1564                 ret = 0;
1565                 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1566         } else {
1567                 ret = -1;
1568         }
1569
1570         pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1571                             ci, ci_h);
1572
1573         megasas_return_cmd(instance, cmd);
1574         return ret;
1575 }
1576
1577 /**
1578  * megasas_init_mfi -   Initializes the FW
1579  * @instance:           Adapter soft state
1580  *
1581  * This is the main function for initializing MFI firmware.
1582  */
1583 static int megasas_init_mfi(struct megasas_instance *instance)
1584 {
1585         u32 context_sz;
1586         u32 reply_q_sz;
1587         u32 max_sectors_1;
1588         u32 max_sectors_2;
1589         struct megasas_register_set __iomem *reg_set;
1590
1591         struct megasas_cmd *cmd;
1592         struct megasas_ctrl_info *ctrl_info;
1593
1594         struct megasas_init_frame *init_frame;
1595         struct megasas_init_queue_info *initq_info;
1596         dma_addr_t init_frame_h;
1597         dma_addr_t initq_info_h;
1598
1599         /*
1600          * Map the message registers
1601          */
1602         instance->base_addr = pci_resource_start(instance->pdev, 0);
1603
1604         if (pci_request_regions(instance->pdev, "megasas: LSI Logic")) {
1605                 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1606                 return -EBUSY;
1607         }
1608
1609         instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1610
1611         if (!instance->reg_set) {
1612                 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1613                 goto fail_ioremap;
1614         }
1615
1616         reg_set = instance->reg_set;
1617
1618         /*
1619          * We expect the FW state to be READY
1620          */
1621         if (megasas_transition_to_ready(instance->reg_set))
1622                 goto fail_ready_state;
1623
1624         /*
1625          * Get various operational parameters from status register
1626          */
1627         instance->max_fw_cmds = readl(&reg_set->outbound_msg_0) & 0x00FFFF;
1628         instance->max_num_sge = (readl(&reg_set->outbound_msg_0) & 0xFF0000) >>
1629             0x10;
1630         /*
1631          * Create a pool of commands
1632          */
1633         if (megasas_alloc_cmds(instance))
1634                 goto fail_alloc_cmds;
1635
1636         /*
1637          * Allocate memory for reply queue. Length of reply queue should
1638          * be _one_ more than the maximum commands handled by the firmware.
1639          *
1640          * Note: When FW completes commands, it places corresponding contex
1641          * values in this circular reply queue. This circular queue is a fairly
1642          * typical producer-consumer queue. FW is the producer (of completed
1643          * commands) and the driver is the consumer.
1644          */
1645         context_sz = sizeof(u32);
1646         reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
1647
1648         instance->reply_queue = pci_alloc_consistent(instance->pdev,
1649                                                      reply_q_sz,
1650                                                      &instance->reply_queue_h);
1651
1652         if (!instance->reply_queue) {
1653                 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
1654                 goto fail_reply_queue;
1655         }
1656
1657         /*
1658          * Prepare a init frame. Note the init frame points to queue info
1659          * structure. Each frame has SGL allocated after first 64 bytes. For
1660          * this frame - since we don't need any SGL - we use SGL's space as
1661          * queue info structure
1662          *
1663          * We will not get a NULL command below. We just created the pool.
1664          */
1665         cmd = megasas_get_cmd(instance);
1666
1667         init_frame = (struct megasas_init_frame *)cmd->frame;
1668         initq_info = (struct megasas_init_queue_info *)
1669             ((unsigned long)init_frame + 64);
1670
1671         init_frame_h = cmd->frame_phys_addr;
1672         initq_info_h = init_frame_h + 64;
1673
1674         memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1675         memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1676
1677         initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1678         initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1679
1680         initq_info->producer_index_phys_addr_lo = instance->producer_h;
1681         initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1682
1683         init_frame->cmd = MFI_CMD_INIT;
1684         init_frame->cmd_status = 0xFF;
1685         init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1686
1687         init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1688
1689         /*
1690          * Issue the init frame in polled mode
1691          */
1692         if (megasas_issue_polled(instance, cmd)) {
1693                 printk(KERN_DEBUG "megasas: Failed to init firmware\n");
1694                 goto fail_fw_init;
1695         }
1696
1697         megasas_return_cmd(instance, cmd);
1698
1699         ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
1700
1701         /*
1702          * Compute the max allowed sectors per IO: The controller info has two
1703          * limits on max sectors. Driver should use the minimum of these two.
1704          *
1705          * 1 << stripe_sz_ops.min = max sectors per strip
1706          *
1707          * Note that older firmwares ( < FW ver 30) didn't report information
1708          * to calculate max_sectors_1. So the number ended up as zero always.
1709          */
1710         if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
1711
1712                 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
1713                     ctrl_info->max_strips_per_io;
1714                 max_sectors_2 = ctrl_info->max_request_size;
1715
1716                 instance->max_sectors_per_req = (max_sectors_1 < max_sectors_2)
1717                     ? max_sectors_1 : max_sectors_2;
1718         } else
1719                 instance->max_sectors_per_req = instance->max_num_sge *
1720                     PAGE_SIZE / 512;
1721
1722         kfree(ctrl_info);
1723
1724         return 0;
1725
1726       fail_fw_init:
1727         megasas_return_cmd(instance, cmd);
1728
1729         pci_free_consistent(instance->pdev, reply_q_sz,
1730                             instance->reply_queue, instance->reply_queue_h);
1731       fail_reply_queue:
1732         megasas_free_cmds(instance);
1733
1734       fail_alloc_cmds:
1735       fail_ready_state:
1736         iounmap(instance->reg_set);
1737
1738       fail_ioremap:
1739         pci_release_regions(instance->pdev);
1740
1741         return -EINVAL;
1742 }
1743
1744 /**
1745  * megasas_release_mfi -        Reverses the FW initialization
1746  * @intance:                    Adapter soft state
1747  */
1748 static void megasas_release_mfi(struct megasas_instance *instance)
1749 {
1750         u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
1751
1752         pci_free_consistent(instance->pdev, reply_q_sz,
1753                             instance->reply_queue, instance->reply_queue_h);
1754
1755         megasas_free_cmds(instance);
1756
1757         iounmap(instance->reg_set);
1758
1759         pci_release_regions(instance->pdev);
1760 }
1761
1762 /**
1763  * megasas_get_seq_num -        Gets latest event sequence numbers
1764  * @instance:                   Adapter soft state
1765  * @eli:                        FW event log sequence numbers information
1766  *
1767  * FW maintains a log of all events in a non-volatile area. Upper layers would
1768  * usually find out the latest sequence number of the events, the seq number at
1769  * the boot etc. They would "read" all the events below the latest seq number
1770  * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
1771  * number), they would subsribe to AEN (asynchronous event notification) and
1772  * wait for the events to happen.
1773  */
1774 static int
1775 megasas_get_seq_num(struct megasas_instance *instance,
1776                     struct megasas_evt_log_info *eli)
1777 {
1778         struct megasas_cmd *cmd;
1779         struct megasas_dcmd_frame *dcmd;
1780         struct megasas_evt_log_info *el_info;
1781         dma_addr_t el_info_h = 0;
1782
1783         cmd = megasas_get_cmd(instance);
1784
1785         if (!cmd) {
1786                 return -ENOMEM;
1787         }
1788
1789         dcmd = &cmd->frame->dcmd;
1790         el_info = pci_alloc_consistent(instance->pdev,
1791                                        sizeof(struct megasas_evt_log_info),
1792                                        &el_info_h);
1793
1794         if (!el_info) {
1795                 megasas_return_cmd(instance, cmd);
1796                 return -ENOMEM;
1797         }
1798
1799         memset(el_info, 0, sizeof(*el_info));
1800         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1801
1802         dcmd->cmd = MFI_CMD_DCMD;
1803         dcmd->cmd_status = 0x0;
1804         dcmd->sge_count = 1;
1805         dcmd->flags = MFI_FRAME_DIR_READ;
1806         dcmd->timeout = 0;
1807         dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
1808         dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
1809         dcmd->sgl.sge32[0].phys_addr = el_info_h;
1810         dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
1811
1812         megasas_issue_blocked_cmd(instance, cmd);
1813
1814         /*
1815          * Copy the data back into callers buffer
1816          */
1817         memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
1818
1819         pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
1820                             el_info, el_info_h);
1821
1822         megasas_return_cmd(instance, cmd);
1823
1824         return 0;
1825 }
1826
1827 /**
1828  * megasas_register_aen -       Registers for asynchronous event notification
1829  * @instance:                   Adapter soft state
1830  * @seq_num:                    The starting sequence number
1831  * @class_locale:               Class of the event
1832  *
1833  * This function subscribes for AEN for events beyond the @seq_num. It requests
1834  * to be notified if and only if the event is of type @class_locale
1835  */
1836 static int
1837 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
1838                      u32 class_locale_word)
1839 {
1840         int ret_val;
1841         struct megasas_cmd *cmd;
1842         struct megasas_dcmd_frame *dcmd;
1843         union megasas_evt_class_locale curr_aen;
1844         union megasas_evt_class_locale prev_aen;
1845
1846         /*
1847          * If there an AEN pending already (aen_cmd), check if the
1848          * class_locale of that pending AEN is inclusive of the new
1849          * AEN request we currently have. If it is, then we don't have
1850          * to do anything. In other words, whichever events the current
1851          * AEN request is subscribing to, have already been subscribed
1852          * to.
1853          *
1854          * If the old_cmd is _not_ inclusive, then we have to abort
1855          * that command, form a class_locale that is superset of both
1856          * old and current and re-issue to the FW
1857          */
1858
1859         curr_aen.word = class_locale_word;
1860
1861         if (instance->aen_cmd) {
1862
1863                 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
1864
1865                 /*
1866                  * A class whose enum value is smaller is inclusive of all
1867                  * higher values. If a PROGRESS (= -1) was previously
1868                  * registered, then a new registration requests for higher
1869                  * classes need not be sent to FW. They are automatically
1870                  * included.
1871                  *
1872                  * Locale numbers don't have such hierarchy. They are bitmap
1873                  * values
1874                  */
1875                 if ((prev_aen.members.class <= curr_aen.members.class) &&
1876                     !((prev_aen.members.locale & curr_aen.members.locale) ^
1877                       curr_aen.members.locale)) {
1878                         /*
1879                          * Previously issued event registration includes
1880                          * current request. Nothing to do.
1881                          */
1882                         return 0;
1883                 } else {
1884                         curr_aen.members.locale |= prev_aen.members.locale;
1885
1886                         if (prev_aen.members.class < curr_aen.members.class)
1887                                 curr_aen.members.class = prev_aen.members.class;
1888
1889                         instance->aen_cmd->abort_aen = 1;
1890                         ret_val = megasas_issue_blocked_abort_cmd(instance,
1891                                                                   instance->
1892                                                                   aen_cmd);
1893
1894                         if (ret_val) {
1895                                 printk(KERN_DEBUG "megasas: Failed to abort "
1896                                        "previous AEN command\n");
1897                                 return ret_val;
1898                         }
1899                 }
1900         }
1901
1902         cmd = megasas_get_cmd(instance);
1903
1904         if (!cmd)
1905                 return -ENOMEM;
1906
1907         dcmd = &cmd->frame->dcmd;
1908
1909         memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
1910
1911         /*
1912          * Prepare DCMD for aen registration
1913          */
1914         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1915
1916         dcmd->cmd = MFI_CMD_DCMD;
1917         dcmd->cmd_status = 0x0;
1918         dcmd->sge_count = 1;
1919         dcmd->flags = MFI_FRAME_DIR_READ;
1920         dcmd->timeout = 0;
1921         dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
1922         dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
1923         dcmd->mbox.w[0] = seq_num;
1924         dcmd->mbox.w[1] = curr_aen.word;
1925         dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
1926         dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
1927
1928         /*
1929          * Store reference to the cmd used to register for AEN. When an
1930          * application wants us to register for AEN, we have to abort this
1931          * cmd and re-register with a new EVENT LOCALE supplied by that app
1932          */
1933         instance->aen_cmd = cmd;
1934
1935         /*
1936          * Issue the aen registration frame
1937          */
1938         writel(cmd->frame_phys_addr >> 3,
1939                &instance->reg_set->inbound_queue_port);
1940
1941         return 0;
1942 }
1943
1944 /**
1945  * megasas_start_aen -  Subscribes to AEN during driver load time
1946  * @instance:           Adapter soft state
1947  */
1948 static int megasas_start_aen(struct megasas_instance *instance)
1949 {
1950         struct megasas_evt_log_info eli;
1951         union megasas_evt_class_locale class_locale;
1952
1953         /*
1954          * Get the latest sequence number from FW
1955          */
1956         memset(&eli, 0, sizeof(eli));
1957
1958         if (megasas_get_seq_num(instance, &eli))
1959                 return -1;
1960
1961         /*
1962          * Register AEN with FW for latest sequence number plus 1
1963          */
1964         class_locale.members.reserved = 0;
1965         class_locale.members.locale = MR_EVT_LOCALE_ALL;
1966         class_locale.members.class = MR_EVT_CLASS_DEBUG;
1967
1968         return megasas_register_aen(instance, eli.newest_seq_num + 1,
1969                                     class_locale.word);
1970 }
1971
1972 /**
1973  * megasas_io_attach -  Attaches this driver to SCSI mid-layer
1974  * @instance:           Adapter soft state
1975  */
1976 static int megasas_io_attach(struct megasas_instance *instance)
1977 {
1978         struct Scsi_Host *host = instance->host;
1979
1980         /*
1981          * Export parameters required by SCSI mid-layer
1982          */
1983         host->irq = instance->pdev->irq;
1984         host->unique_id = instance->unique_id;
1985         host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
1986         host->this_id = instance->init_id;
1987         host->sg_tablesize = instance->max_num_sge;
1988         host->max_sectors = instance->max_sectors_per_req;
1989         host->cmd_per_lun = 128;
1990         host->max_channel = MEGASAS_MAX_CHANNELS - 1;
1991         host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
1992         host->max_lun = MEGASAS_MAX_LUN;
1993
1994         /*
1995          * Notify the mid-layer about the new controller
1996          */
1997         if (scsi_add_host(host, &instance->pdev->dev)) {
1998                 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
1999                 return -ENODEV;
2000         }
2001
2002         /*
2003          * Trigger SCSI to scan our drives
2004          */
2005         scsi_scan_host(host);
2006         return 0;
2007 }
2008
2009 /**
2010  * megasas_probe_one -  PCI hotplug entry point
2011  * @pdev:               PCI device structure
2012  * @id:                 PCI ids of supported hotplugged adapter 
2013  */
2014 static int __devinit
2015 megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2016 {
2017         int rval;
2018         struct Scsi_Host *host;
2019         struct megasas_instance *instance;
2020
2021         /*
2022          * Announce PCI information
2023          */
2024         printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2025                pdev->vendor, pdev->device, pdev->subsystem_vendor,
2026                pdev->subsystem_device);
2027
2028         printk("bus %d:slot %d:func %d\n",
2029                pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2030
2031         /*
2032          * PCI prepping: enable device set bus mastering and dma mask
2033          */
2034         rval = pci_enable_device(pdev);
2035
2036         if (rval) {
2037                 return rval;
2038         }
2039
2040         pci_set_master(pdev);
2041
2042         /*
2043          * All our contollers are capable of performing 64-bit DMA
2044          */
2045         if (IS_DMA64) {
2046                 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2047
2048                         if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2049                                 goto fail_set_dma_mask;
2050                 }
2051         } else {
2052                 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2053                         goto fail_set_dma_mask;
2054         }
2055
2056         host = scsi_host_alloc(&megasas_template,
2057                                sizeof(struct megasas_instance));
2058
2059         if (!host) {
2060                 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2061                 goto fail_alloc_instance;
2062         }
2063
2064         instance = (struct megasas_instance *)host->hostdata;
2065         memset(instance, 0, sizeof(*instance));
2066
2067         instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2068                                                   &instance->producer_h);
2069         instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2070                                                   &instance->consumer_h);
2071
2072         if (!instance->producer || !instance->consumer) {
2073                 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2074                        "producer, consumer\n");
2075                 goto fail_alloc_dma_buf;
2076         }
2077
2078         *instance->producer = 0;
2079         *instance->consumer = 0;
2080
2081         instance->evt_detail = pci_alloc_consistent(pdev,
2082                                                     sizeof(struct
2083                                                            megasas_evt_detail),
2084                                                     &instance->evt_detail_h);
2085
2086         if (!instance->evt_detail) {
2087                 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2088                        "event detail structure\n");
2089                 goto fail_alloc_dma_buf;
2090         }
2091
2092         /*
2093          * Initialize locks and queues
2094          */
2095         INIT_LIST_HEAD(&instance->cmd_pool);
2096
2097         init_waitqueue_head(&instance->int_cmd_wait_q);
2098         init_waitqueue_head(&instance->abort_cmd_wait_q);
2099
2100         spin_lock_init(&instance->cmd_pool_lock);
2101         spin_lock_init(&instance->instance_lock);
2102
2103         sema_init(&instance->aen_mutex, 1);
2104         sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2105
2106         /*
2107          * Initialize PCI related and misc parameters
2108          */
2109         instance->pdev = pdev;
2110         instance->host = host;
2111         instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2112         instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2113
2114         /*
2115          * Initialize MFI Firmware
2116          */
2117         if (megasas_init_mfi(instance))
2118                 goto fail_init_mfi;
2119
2120         /*
2121          * Register IRQ
2122          */
2123         if (request_irq(pdev->irq, megasas_isr, SA_SHIRQ, "megasas", instance)) {
2124                 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2125                 goto fail_irq;
2126         }
2127
2128         megasas_enable_intr(instance->reg_set);
2129
2130         /*
2131          * Store instance in PCI softstate
2132          */
2133         pci_set_drvdata(pdev, instance);
2134
2135         /*
2136          * Add this controller to megasas_mgmt_info structure so that it
2137          * can be exported to management applications
2138          */
2139         megasas_mgmt_info.count++;
2140         megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2141         megasas_mgmt_info.max_index++;
2142
2143         /*
2144          * Initiate AEN (Asynchronous Event Notification)
2145          */
2146         if (megasas_start_aen(instance)) {
2147                 printk(KERN_DEBUG "megasas: start aen failed\n");
2148                 goto fail_start_aen;
2149         }
2150
2151         /*
2152          * Register with SCSI mid-layer
2153          */
2154         if (megasas_io_attach(instance))
2155                 goto fail_io_attach;
2156
2157         return 0;
2158
2159       fail_start_aen:
2160       fail_io_attach:
2161         megasas_mgmt_info.count--;
2162         megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2163         megasas_mgmt_info.max_index--;
2164
2165         pci_set_drvdata(pdev, NULL);
2166         megasas_disable_intr(instance->reg_set);
2167         free_irq(instance->pdev->irq, instance);
2168
2169         megasas_release_mfi(instance);
2170
2171       fail_irq:
2172       fail_init_mfi:
2173       fail_alloc_dma_buf:
2174         if (instance->evt_detail)
2175                 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2176                                     instance->evt_detail,
2177                                     instance->evt_detail_h);
2178
2179         if (instance->producer)
2180                 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2181                                     instance->producer_h);
2182         if (instance->consumer)
2183                 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2184                                     instance->consumer_h);
2185         scsi_host_put(host);
2186
2187       fail_alloc_instance:
2188       fail_set_dma_mask:
2189         pci_disable_device(pdev);
2190
2191         return -ENODEV;
2192 }
2193
2194 /**
2195  * megasas_flush_cache -        Requests FW to flush all its caches
2196  * @instance:                   Adapter soft state
2197  */
2198 static void megasas_flush_cache(struct megasas_instance *instance)
2199 {
2200         struct megasas_cmd *cmd;
2201         struct megasas_dcmd_frame *dcmd;
2202
2203         cmd = megasas_get_cmd(instance);
2204
2205         if (!cmd)
2206                 return;
2207
2208         dcmd = &cmd->frame->dcmd;
2209
2210         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2211
2212         dcmd->cmd = MFI_CMD_DCMD;
2213         dcmd->cmd_status = 0x0;
2214         dcmd->sge_count = 0;
2215         dcmd->flags = MFI_FRAME_DIR_NONE;
2216         dcmd->timeout = 0;
2217         dcmd->data_xfer_len = 0;
2218         dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2219         dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2220
2221         megasas_issue_blocked_cmd(instance, cmd);
2222
2223         megasas_return_cmd(instance, cmd);
2224
2225         return;
2226 }
2227
2228 /**
2229  * megasas_shutdown_controller -        Instructs FW to shutdown the controller
2230  * @instance:                           Adapter soft state
2231  */
2232 static void megasas_shutdown_controller(struct megasas_instance *instance)
2233 {
2234         struct megasas_cmd *cmd;
2235         struct megasas_dcmd_frame *dcmd;
2236
2237         cmd = megasas_get_cmd(instance);
2238
2239         if (!cmd)
2240                 return;
2241
2242         if (instance->aen_cmd)
2243                 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2244
2245         dcmd = &cmd->frame->dcmd;
2246
2247         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2248
2249         dcmd->cmd = MFI_CMD_DCMD;
2250         dcmd->cmd_status = 0x0;
2251         dcmd->sge_count = 0;
2252         dcmd->flags = MFI_FRAME_DIR_NONE;
2253         dcmd->timeout = 0;
2254         dcmd->data_xfer_len = 0;
2255         dcmd->opcode = MR_DCMD_CTRL_SHUTDOWN;
2256
2257         megasas_issue_blocked_cmd(instance, cmd);
2258
2259         megasas_return_cmd(instance, cmd);
2260
2261         return;
2262 }
2263
2264 /**
2265  * megasas_detach_one - PCI hot"un"plug entry point
2266  * @pdev:               PCI device structure
2267  */
2268 static void megasas_detach_one(struct pci_dev *pdev)
2269 {
2270         int i;
2271         struct Scsi_Host *host;
2272         struct megasas_instance *instance;
2273
2274         instance = pci_get_drvdata(pdev);
2275         host = instance->host;
2276
2277         scsi_remove_host(instance->host);
2278         megasas_flush_cache(instance);
2279         megasas_shutdown_controller(instance);
2280
2281         /*
2282          * Take the instance off the instance array. Note that we will not
2283          * decrement the max_index. We let this array be sparse array
2284          */
2285         for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2286                 if (megasas_mgmt_info.instance[i] == instance) {
2287                         megasas_mgmt_info.count--;
2288                         megasas_mgmt_info.instance[i] = NULL;
2289
2290                         break;
2291                 }
2292         }
2293
2294         pci_set_drvdata(instance->pdev, NULL);
2295
2296         megasas_disable_intr(instance->reg_set);
2297
2298         free_irq(instance->pdev->irq, instance);
2299
2300         megasas_release_mfi(instance);
2301
2302         pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2303                             instance->evt_detail, instance->evt_detail_h);
2304
2305         pci_free_consistent(pdev, sizeof(u32), instance->producer,
2306                             instance->producer_h);
2307
2308         pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2309                             instance->consumer_h);
2310
2311         scsi_host_put(host);
2312
2313         pci_set_drvdata(pdev, NULL);
2314
2315         pci_disable_device(pdev);
2316
2317         return;
2318 }
2319
2320 /**
2321  * megasas_shutdown -   Shutdown entry point
2322  * @device:             Generic device structure
2323  */
2324 static void megasas_shutdown(struct pci_dev *pdev)
2325 {
2326         struct megasas_instance *instance = pci_get_drvdata(pdev);
2327         megasas_flush_cache(instance);
2328 }
2329
2330 /**
2331  * megasas_mgmt_open -  char node "open" entry point
2332  */
2333 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2334 {
2335         /*
2336          * Allow only those users with admin rights
2337          */
2338         if (!capable(CAP_SYS_ADMIN))
2339                 return -EACCES;
2340
2341         return 0;
2342 }
2343
2344 /**
2345  * megasas_mgmt_release - char node "release" entry point
2346  */
2347 static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2348 {
2349         filep->private_data = NULL;
2350         fasync_helper(-1, filep, 0, &megasas_async_queue);
2351
2352         return 0;
2353 }
2354
2355 /**
2356  * megasas_mgmt_fasync -        Async notifier registration from applications
2357  *
2358  * This function adds the calling process to a driver global queue. When an
2359  * event occurs, SIGIO will be sent to all processes in this queue.
2360  */
2361 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2362 {
2363         int rc;
2364
2365         down(&megasas_async_queue_mutex);
2366
2367         rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2368
2369         up(&megasas_async_queue_mutex);
2370
2371         if (rc >= 0) {
2372                 /* For sanity check when we get ioctl */
2373                 filep->private_data = filep;
2374                 return 0;
2375         }
2376
2377         printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2378
2379         return rc;
2380 }
2381
2382 /**
2383  * megasas_mgmt_fw_ioctl -      Issues management ioctls to FW
2384  * @instance:                   Adapter soft state
2385  * @argp:                       User's ioctl packet
2386  */
2387 static int
2388 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2389                       struct megasas_iocpacket __user * user_ioc,
2390                       struct megasas_iocpacket *ioc)
2391 {
2392         struct megasas_sge32 *kern_sge32;
2393         struct megasas_cmd *cmd;
2394         void *kbuff_arr[MAX_IOCTL_SGE];
2395         dma_addr_t buf_handle = 0;
2396         int error = 0, i;
2397         void *sense = NULL;
2398         dma_addr_t sense_handle;
2399         u32 *sense_ptr;
2400
2401         memset(kbuff_arr, 0, sizeof(kbuff_arr));
2402
2403         if (ioc->sge_count > MAX_IOCTL_SGE) {
2404                 printk(KERN_DEBUG "megasas: SGE count [%d] >  max limit [%d]\n",
2405                        ioc->sge_count, MAX_IOCTL_SGE);
2406                 return -EINVAL;
2407         }
2408
2409         cmd = megasas_get_cmd(instance);
2410         if (!cmd) {
2411                 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2412                 return -ENOMEM;
2413         }
2414
2415         /*
2416          * User's IOCTL packet has 2 frames (maximum). Copy those two
2417          * frames into our cmd's frames. cmd->frame's context will get
2418          * overwritten when we copy from user's frames. So set that value
2419          * alone separately
2420          */
2421         memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2422         cmd->frame->hdr.context = cmd->index;
2423
2424         /*
2425          * The management interface between applications and the fw uses
2426          * MFI frames. E.g, RAID configuration changes, LD property changes
2427          * etc are accomplishes through different kinds of MFI frames. The
2428          * driver needs to care only about substituting user buffers with
2429          * kernel buffers in SGLs. The location of SGL is embedded in the
2430          * struct iocpacket itself.
2431          */
2432         kern_sge32 = (struct megasas_sge32 *)
2433             ((unsigned long)cmd->frame + ioc->sgl_off);
2434
2435         /*
2436          * For each user buffer, create a mirror buffer and copy in
2437          */
2438         for (i = 0; i < ioc->sge_count; i++) {
2439                 kbuff_arr[i] = pci_alloc_consistent(instance->pdev,
2440                                                     ioc->sgl[i].iov_len,
2441                                                     &buf_handle);
2442                 if (!kbuff_arr[i]) {
2443                         printk(KERN_DEBUG "megasas: Failed to alloc "
2444                                "kernel SGL buffer for IOCTL \n");
2445                         error = -ENOMEM;
2446                         goto out;
2447                 }
2448
2449                 /*
2450                  * We don't change the dma_coherent_mask, so
2451                  * pci_alloc_consistent only returns 32bit addresses
2452                  */
2453                 kern_sge32[i].phys_addr = (u32) buf_handle;
2454                 kern_sge32[i].length = ioc->sgl[i].iov_len;
2455
2456                 /*
2457                  * We created a kernel buffer corresponding to the
2458                  * user buffer. Now copy in from the user buffer
2459                  */
2460                 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2461                                    (u32) (ioc->sgl[i].iov_len))) {
2462                         error = -EFAULT;
2463                         goto out;
2464                 }
2465         }
2466
2467         if (ioc->sense_len) {
2468                 sense = pci_alloc_consistent(instance->pdev, ioc->sense_len,
2469                                              &sense_handle);
2470                 if (!sense) {
2471                         error = -ENOMEM;
2472                         goto out;
2473                 }
2474
2475                 sense_ptr =
2476                     (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
2477                 *sense_ptr = sense_handle;
2478         }
2479
2480         /*
2481          * Set the sync_cmd flag so that the ISR knows not to complete this
2482          * cmd to the SCSI mid-layer
2483          */
2484         cmd->sync_cmd = 1;
2485         megasas_issue_blocked_cmd(instance, cmd);
2486         cmd->sync_cmd = 0;
2487
2488         /*
2489          * copy out the kernel buffers to user buffers
2490          */
2491         for (i = 0; i < ioc->sge_count; i++) {
2492                 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
2493                                  ioc->sgl[i].iov_len)) {
2494                         error = -EFAULT;
2495                         goto out;
2496                 }
2497         }
2498
2499         /*
2500          * copy out the sense
2501          */
2502         if (ioc->sense_len) {
2503                 /*
2504                  * sense_ptr points to the location that has the user
2505                  * sense buffer address
2506                  */
2507                 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
2508                                      ioc->sense_off);
2509
2510                 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
2511                                  sense, ioc->sense_len)) {
2512                         error = -EFAULT;
2513                         goto out;
2514                 }
2515         }
2516
2517         /*
2518          * copy the status codes returned by the fw
2519          */
2520         if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
2521                          &cmd->frame->hdr.cmd_status, sizeof(u8))) {
2522                 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
2523                 error = -EFAULT;
2524         }
2525
2526       out:
2527         if (sense) {
2528                 pci_free_consistent(instance->pdev, ioc->sense_len,
2529                                     sense, sense_handle);
2530         }
2531
2532         for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
2533                 pci_free_consistent(instance->pdev,
2534                                     kern_sge32[i].length,
2535                                     kbuff_arr[i], kern_sge32[i].phys_addr);
2536         }
2537
2538         megasas_return_cmd(instance, cmd);
2539         return error;
2540 }
2541
2542 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
2543 {
2544         int i;
2545
2546         for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2547
2548                 if ((megasas_mgmt_info.instance[i]) &&
2549                     (megasas_mgmt_info.instance[i]->host->host_no == host_no))
2550                         return megasas_mgmt_info.instance[i];
2551         }
2552
2553         return NULL;
2554 }
2555
2556 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
2557 {
2558         struct megasas_iocpacket __user *user_ioc =
2559             (struct megasas_iocpacket __user *)arg;
2560         struct megasas_iocpacket *ioc;
2561         struct megasas_instance *instance;
2562         int error;
2563
2564         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
2565         if (!ioc)
2566                 return -ENOMEM;
2567
2568         if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
2569                 error = -EFAULT;
2570                 goto out_kfree_ioc;
2571         }
2572
2573         instance = megasas_lookup_instance(ioc->host_no);
2574         if (!instance) {
2575                 error = -ENODEV;
2576                 goto out_kfree_ioc;
2577         }
2578
2579         /*
2580          * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
2581          */
2582         if (down_interruptible(&instance->ioctl_sem)) {
2583                 error = -ERESTARTSYS;
2584                 goto out_kfree_ioc;
2585         }
2586         error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
2587         up(&instance->ioctl_sem);
2588
2589       out_kfree_ioc:
2590         kfree(ioc);
2591         return error;
2592 }
2593
2594 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
2595 {
2596         struct megasas_instance *instance;
2597         struct megasas_aen aen;
2598         int error;
2599
2600         if (file->private_data != file) {
2601                 printk(KERN_DEBUG "megasas: fasync_helper was not "
2602                        "called first\n");
2603                 return -EINVAL;
2604         }
2605
2606         if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
2607                 return -EFAULT;
2608
2609         instance = megasas_lookup_instance(aen.host_no);
2610
2611         if (!instance)
2612                 return -ENODEV;
2613
2614         down(&instance->aen_mutex);
2615         error = megasas_register_aen(instance, aen.seq_num,
2616                                      aen.class_locale_word);
2617         up(&instance->aen_mutex);
2618         return error;
2619 }
2620
2621 /**
2622  * megasas_mgmt_ioctl - char node ioctl entry point
2623  */
2624 static long
2625 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2626 {
2627         switch (cmd) {
2628         case MEGASAS_IOC_FIRMWARE:
2629                 return megasas_mgmt_ioctl_fw(file, arg);
2630
2631         case MEGASAS_IOC_GET_AEN:
2632                 return megasas_mgmt_ioctl_aen(file, arg);
2633         }
2634
2635         return -ENOTTY;
2636 }
2637
2638 #ifdef CONFIG_COMPAT
2639 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
2640 {
2641         struct compat_megasas_iocpacket __user *cioc =
2642             (struct compat_megasas_iocpacket __user *)arg;
2643         struct megasas_iocpacket __user *ioc =
2644             compat_alloc_user_space(sizeof(struct megasas_iocpacket));
2645         int i;
2646         int error = 0;
2647
2648         clear_user(ioc, sizeof(*ioc));
2649
2650         if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
2651             copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
2652             copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
2653             copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
2654             copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
2655             copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
2656                 return -EFAULT;
2657
2658         for (i = 0; i < MAX_IOCTL_SGE; i++) {
2659                 compat_uptr_t ptr;
2660
2661                 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
2662                     put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
2663                     copy_in_user(&ioc->sgl[i].iov_len,
2664                                  &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
2665                         return -EFAULT;
2666         }
2667
2668         error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
2669
2670         if (copy_in_user(&cioc->frame.hdr.cmd_status,
2671                          &ioc->frame.hdr.cmd_status, sizeof(u8))) {
2672                 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
2673                 return -EFAULT;
2674         }
2675         return error;
2676 }
2677
2678 static long
2679 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
2680                           unsigned long arg)
2681 {
2682         switch (cmd) {
2683         case MEGASAS_IOC_FIRMWARE:{
2684                         return megasas_mgmt_compat_ioctl_fw(file, arg);
2685                 }
2686         case MEGASAS_IOC_GET_AEN:
2687                 return megasas_mgmt_ioctl_aen(file, arg);
2688         }
2689
2690         return -ENOTTY;
2691 }
2692 #endif
2693
2694 /*
2695  * File operations structure for management interface
2696  */
2697 static struct file_operations megasas_mgmt_fops = {
2698         .owner = THIS_MODULE,
2699         .open = megasas_mgmt_open,
2700         .release = megasas_mgmt_release,
2701         .fasync = megasas_mgmt_fasync,
2702         .unlocked_ioctl = megasas_mgmt_ioctl,
2703 #ifdef CONFIG_COMPAT
2704         .compat_ioctl = megasas_mgmt_compat_ioctl,
2705 #endif
2706 };
2707
2708 /*
2709  * PCI hotplug support registration structure
2710  */
2711 static struct pci_driver megasas_pci_driver = {
2712
2713         .name = "megaraid_sas",
2714         .id_table = megasas_pci_table,
2715         .probe = megasas_probe_one,
2716         .remove = __devexit_p(megasas_detach_one),
2717         .shutdown = megasas_shutdown,
2718 };
2719
2720 /*
2721  * Sysfs driver attributes
2722  */
2723 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
2724 {
2725         return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
2726                         MEGASAS_VERSION);
2727 }
2728
2729 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
2730
2731 static ssize_t
2732 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
2733 {
2734         return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
2735                         MEGASAS_RELDATE);
2736 }
2737
2738 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
2739                    NULL);
2740
2741 /**
2742  * megasas_init - Driver load entry point
2743  */
2744 static int __init megasas_init(void)
2745 {
2746         int rval;
2747
2748         /*
2749          * Announce driver version and other information
2750          */
2751         printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
2752                MEGASAS_EXT_VERSION);
2753
2754         memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
2755
2756         /*
2757          * Register character device node
2758          */
2759         rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
2760
2761         if (rval < 0) {
2762                 printk(KERN_DEBUG "megasas: failed to open device node\n");
2763                 return rval;
2764         }
2765
2766         megasas_mgmt_majorno = rval;
2767
2768         /*
2769          * Register ourselves as PCI hotplug module
2770          */
2771         rval = pci_module_init(&megasas_pci_driver);
2772
2773         if (rval) {
2774                 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
2775                 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2776         }
2777
2778         driver_create_file(&megasas_pci_driver.driver, &driver_attr_version);
2779         driver_create_file(&megasas_pci_driver.driver,
2780                            &driver_attr_release_date);
2781
2782         return rval;
2783 }
2784
2785 /**
2786  * megasas_exit - Driver unload entry point
2787  */
2788 static void __exit megasas_exit(void)
2789 {
2790         driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
2791         driver_remove_file(&megasas_pci_driver.driver,
2792                            &driver_attr_release_date);
2793
2794         pci_unregister_driver(&megasas_pci_driver);
2795         unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2796 }
2797
2798 module_init(megasas_init);
2799 module_exit(megasas_exit);