2 * Handle caching attributes in page tables (PAT)
4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Suresh B Siddha <suresh.b.siddha@intel.com>
7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/gfp.h>
18 #include <asm/cacheflush.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/pgtable.h>
22 #include <asm/fcntl.h>
31 int __read_mostly pat_enabled = 1;
33 void __cpuinit pat_disable(const char *reason)
36 printk(KERN_INFO "%s\n", reason);
39 static int __init nopat(char *str)
41 pat_disable("PAT support disabled.");
44 early_param("nopat", nopat);
46 static inline void pat_disable(const char *reason)
53 static int debug_enable;
55 static int __init pat_debug_setup(char *str)
60 __setup("debugpat", pat_debug_setup);
62 #define dprintk(fmt, arg...) \
63 do { if (debug_enable) printk(KERN_INFO fmt, ##arg); } while (0)
66 static u64 __read_mostly boot_pat_state;
69 PAT_UC = 0, /* uncached */
70 PAT_WC = 1, /* Write combining */
71 PAT_WT = 4, /* Write Through */
72 PAT_WP = 5, /* Write Protected */
73 PAT_WB = 6, /* Write Back (default) */
74 PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */
77 #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
87 if (!boot_pat_state) {
88 pat_disable("PAT not supported by CPU.");
92 * If this happens we are on a secondary CPU, but
93 * switched to PAT on the boot CPU. We have no way to
96 printk(KERN_ERR "PAT enabled, "
97 "but not supported by secondary CPU\n");
102 /* Set PWT to Write-Combining. All other bits stay the same */
104 * PTE encoding used in Linux:
109 * 000 WB _PAGE_CACHE_WB
110 * 001 WC _PAGE_CACHE_WC
111 * 010 UC- _PAGE_CACHE_UC_MINUS
112 * 011 UC _PAGE_CACHE_UC
115 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
116 PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
120 rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
122 wrmsrl(MSR_IA32_CR_PAT, pat);
123 printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
124 smp_processor_id(), boot_pat_state, pat);
129 static char *cattr_name(unsigned long flags)
131 switch (flags & _PAGE_CACHE_MASK) {
132 case _PAGE_CACHE_UC: return "uncached";
133 case _PAGE_CACHE_UC_MINUS: return "uncached-minus";
134 case _PAGE_CACHE_WB: return "write-back";
135 case _PAGE_CACHE_WC: return "write-combining";
136 default: return "broken";
141 * The global memtype list keeps track of memory type for specific
142 * physical memory areas. Conflicting memory types in different
143 * mappings can cause CPU cache corruption. To avoid this we keep track.
145 * The list is sorted based on starting address and can contain multiple
146 * entries for each address (this allows reference counting for overlapping
147 * areas). All the aliases have the same cache attributes of course.
148 * Zero attributes are represented as holes.
150 * Currently the data structure is a list because the number of mappings
151 * are expected to be relatively small. If this should be a problem
152 * it could be changed to a rbtree or similar.
154 * memtype_lock protects the whole list.
164 static LIST_HEAD(memtype_list);
165 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype list */
168 * Does intersection of PAT memory type and MTRR memory type and returns
169 * the resulting memory type as PAT understands it.
170 * (Type in pat and mtrr will not have same value)
171 * The intersection is based on "Effective Memory Type" tables in IA-32
174 static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
177 * Look for MTRR hint to get the effective type in case where PAT
180 if (req_type == _PAGE_CACHE_WB) {
183 mtrr_type = mtrr_type_lookup(start, end);
184 if (mtrr_type == MTRR_TYPE_UNCACHABLE)
185 return _PAGE_CACHE_UC;
186 if (mtrr_type == MTRR_TYPE_WRCOMB)
187 return _PAGE_CACHE_WC;
194 chk_conflict(struct memtype *new, struct memtype *entry, unsigned long *type)
196 if (new->type != entry->type) {
198 new->type = entry->type;
204 /* check overlaps with more than one entry in the list */
205 list_for_each_entry_continue(entry, &memtype_list, nd) {
206 if (new->end <= entry->start)
208 else if (new->type != entry->type)
214 printk(KERN_INFO "%s:%d conflicting memory types "
215 "%Lx-%Lx %s<->%s\n", current->comm, current->pid, new->start,
216 new->end, cattr_name(new->type), cattr_name(entry->type));
220 static struct memtype *cached_entry;
221 static u64 cached_start;
224 * For RAM pages, mark the pages as non WB memory type using
225 * PageNonWB (PG_arch_1). We allow only one set_memory_uc() or
226 * set_memory_wc() on a RAM page at a time before marking it as WB again.
227 * This is ok, because only one driver will be owning the page and
228 * doing set_memory_*() calls.
230 * For now, we use PageNonWB to track that the RAM page is being mapped
231 * as non WB. In future, we will have to use one more flag
232 * (or some other mechanism in page_struct) to distinguish between
235 static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
236 unsigned long *new_type)
241 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
242 page = pfn_to_page(pfn);
243 if (page_mapped(page) || PageNonWB(page))
252 for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
253 page = pfn_to_page(pfn);
254 ClearPageNonWB(page);
260 static int free_ram_pages_type(u64 start, u64 end)
265 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
266 page = pfn_to_page(pfn);
267 if (page_mapped(page) || !PageNonWB(page))
270 ClearPageNonWB(page);
276 for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
277 page = pfn_to_page(pfn);
284 * req_type typically has one of the:
287 * - _PAGE_CACHE_UC_MINUS
290 * req_type will have a special case value '-1', when requester want to inherit
291 * the memory type from mtrr (if WB), existing PAT, defaulting to UC_MINUS.
293 * If new_type is NULL, function will return an error if it cannot reserve the
294 * region with req_type. If new_type is non-NULL, function will return
295 * available type in new_type in case of no error. In case of any error
296 * it will return a negative return value.
298 int reserve_memtype(u64 start, u64 end, unsigned long req_type,
299 unsigned long *new_type)
301 struct memtype *new, *entry;
302 unsigned long actual_type;
303 struct list_head *where;
307 BUG_ON(start >= end); /* end is exclusive */
310 /* This is identical to page table setting without PAT */
313 *new_type = _PAGE_CACHE_WB;
315 *new_type = req_type & _PAGE_CACHE_MASK;
320 /* Low ISA region is always mapped WB in page table. No need to track */
321 if (is_ISA_range(start, end - 1)) {
323 *new_type = _PAGE_CACHE_WB;
327 if (req_type == -1) {
329 * Call mtrr_lookup to get the type hint. This is an
330 * optimization for /dev/mem mmap'ers into WB memory (BIOS
331 * tools and ACPI tools). Use WB request for WB memory and use
332 * UC_MINUS otherwise.
334 u8 mtrr_type = mtrr_type_lookup(start, end);
336 if (mtrr_type == MTRR_TYPE_WRBACK)
337 actual_type = _PAGE_CACHE_WB;
339 actual_type = _PAGE_CACHE_UC_MINUS;
341 actual_type = pat_x_mtrr_type(start, end,
342 req_type & _PAGE_CACHE_MASK);
346 *new_type = actual_type;
349 * For legacy reasons, some parts of the physical address range in the
350 * legacy 1MB region is treated as non-RAM (even when listed as RAM in
351 * the e820 tables). So we will track the memory attributes of this
352 * legacy 1MB region using the linear memtype_list always.
354 if (end >= ISA_END_ADDRESS) {
355 is_range_ram = pagerange_is_ram(start, end);
356 if (is_range_ram == 1)
357 return reserve_ram_pages_type(start, end, req_type,
359 else if (is_range_ram < 0)
363 new = kmalloc(sizeof(struct memtype), GFP_KERNEL);
369 new->type = actual_type;
371 spin_lock(&memtype_lock);
373 if (cached_entry && start >= cached_start)
374 entry = cached_entry;
376 entry = list_entry(&memtype_list, struct memtype, nd);
378 /* Search for existing mapping that overlaps the current range */
380 list_for_each_entry_continue(entry, &memtype_list, nd) {
381 if (end <= entry->start) {
382 where = entry->nd.prev;
383 cached_entry = list_entry(where, struct memtype, nd);
385 } else if (start <= entry->start) { /* end > entry->start */
386 err = chk_conflict(new, entry, new_type);
388 dprintk("Overlap at 0x%Lx-0x%Lx\n",
389 entry->start, entry->end);
390 where = entry->nd.prev;
391 cached_entry = list_entry(where,
395 } else if (start < entry->end) { /* start > entry->start */
396 err = chk_conflict(new, entry, new_type);
398 dprintk("Overlap at 0x%Lx-0x%Lx\n",
399 entry->start, entry->end);
400 cached_entry = list_entry(entry->nd.prev,
404 * Move to right position in the linked
405 * list to add this new entry
407 list_for_each_entry_continue(entry,
409 if (start <= entry->start) {
410 where = entry->nd.prev;
420 printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, "
421 "track %s, req %s\n",
422 start, end, cattr_name(new->type), cattr_name(req_type));
424 spin_unlock(&memtype_lock);
429 cached_start = start;
432 list_add(&new->nd, where);
434 list_add_tail(&new->nd, &memtype_list);
436 spin_unlock(&memtype_lock);
438 dprintk("reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n",
439 start, end, cattr_name(new->type), cattr_name(req_type),
440 new_type ? cattr_name(*new_type) : "-");
445 int free_memtype(u64 start, u64 end)
447 struct memtype *entry;
454 /* Low ISA region is always mapped WB. No need to track */
455 if (is_ISA_range(start, end - 1))
459 * For legacy reasons, some parts of the physical address range in the
460 * legacy 1MB region is treated as non-RAM (even when listed as RAM in
461 * the e820 tables). So we will track the memory attributes of this
462 * legacy 1MB region using the linear memtype_list always.
464 if (end >= ISA_END_ADDRESS) {
465 is_range_ram = pagerange_is_ram(start, end);
466 if (is_range_ram == 1)
467 return free_ram_pages_type(start, end);
468 else if (is_range_ram < 0)
472 spin_lock(&memtype_lock);
473 list_for_each_entry(entry, &memtype_list, nd) {
474 if (entry->start == start && entry->end == end) {
475 if (cached_entry == entry || cached_start == start)
478 list_del(&entry->nd);
484 spin_unlock(&memtype_lock);
487 printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n",
488 current->comm, current->pid, start, end);
491 dprintk("free_memtype request 0x%Lx-0x%Lx\n", start, end);
497 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
498 unsigned long size, pgprot_t vma_prot)
503 #ifdef CONFIG_STRICT_DEVMEM
504 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
505 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
510 /* This check is needed to avoid cache aliasing when PAT is enabled */
511 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
513 u64 from = ((u64)pfn) << PAGE_SHIFT;
514 u64 to = from + size;
520 while (cursor < to) {
521 if (!devmem_is_allowed(pfn)) {
523 "Program %s tried to access /dev/mem between %Lx->%Lx.\n",
524 current->comm, from, to);
532 #endif /* CONFIG_STRICT_DEVMEM */
534 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
535 unsigned long size, pgprot_t *vma_prot)
537 u64 offset = ((u64) pfn) << PAGE_SHIFT;
538 unsigned long flags = -1;
541 if (!range_is_allowed(pfn, size))
544 if (file->f_flags & O_SYNC) {
545 flags = _PAGE_CACHE_UC_MINUS;
550 * On the PPro and successors, the MTRRs are used to set
551 * memory types for physical addresses outside main memory,
552 * so blindly setting UC or PWT on those pages is wrong.
553 * For Pentiums and earlier, the surround logic should disable
554 * caching for the high addresses through the KEN pin, but
555 * we maintain the tradition of paranoia in this code.
558 !(boot_cpu_has(X86_FEATURE_MTRR) ||
559 boot_cpu_has(X86_FEATURE_K6_MTRR) ||
560 boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
561 boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
562 (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
563 flags = _PAGE_CACHE_UC;
568 * With O_SYNC, we can only take UC_MINUS mapping. Fail if we cannot.
570 * Without O_SYNC, we want to get
571 * - WB for WB-able memory and no other conflicting mappings
572 * - UC_MINUS for non-WB-able memory with no other conflicting mappings
573 * - Inherit from confliting mappings otherwise
576 retval = reserve_memtype(offset, offset + size, flags, NULL);
578 retval = reserve_memtype(offset, offset + size, -1, &flags);
584 if (((pfn < max_low_pfn_mapped) ||
585 (pfn >= (1UL<<(32 - PAGE_SHIFT)) && pfn < max_pfn_mapped)) &&
586 ioremap_change_attr((unsigned long)__va(offset), size, flags) < 0) {
587 free_memtype(offset, offset + size);
589 "%s:%d /dev/mem ioremap_change_attr failed %s for %Lx-%Lx\n",
590 current->comm, current->pid,
592 offset, (unsigned long long)(offset + size));
596 *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
601 void map_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
603 unsigned long want_flags = (pgprot_val(vma_prot) & _PAGE_CACHE_MASK);
604 u64 addr = (u64)pfn << PAGE_SHIFT;
607 reserve_memtype(addr, addr + size, want_flags, &flags);
608 if (flags != want_flags) {
610 "%s:%d /dev/mem expected mapping type %s for %Lx-%Lx, got %s\n",
611 current->comm, current->pid,
612 cattr_name(want_flags),
613 addr, (unsigned long long)(addr + size),
618 void unmap_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
620 u64 addr = (u64)pfn << PAGE_SHIFT;
622 free_memtype(addr, addr + size);
626 * Internal interface to reserve a range of physical memory with prot.
627 * Reserved non RAM regions only and after successful reserve_memtype,
628 * this func also keeps identity mapping (if any) in sync with this new prot.
630 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
636 unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
638 is_ram = pagerange_is_ram(paddr, paddr + size);
642 * For mapping RAM pages, drivers need to call
643 * set_memory_[uc|wc|wb] directly, for reserve and free, before
644 * setting up the PTE.
650 ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
654 if (flags != want_flags) {
655 if (strict_prot || !is_new_memtype_allowed(want_flags, flags)) {
656 free_memtype(paddr, paddr + size);
657 printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
658 " for %Lx-%Lx, got %s\n",
659 current->comm, current->pid,
660 cattr_name(want_flags),
661 (unsigned long long)paddr,
662 (unsigned long long)(paddr + size),
667 * We allow returning different type than the one requested in
670 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
671 (~_PAGE_CACHE_MASK)) |
675 /* Need to keep identity mapping in sync */
676 if (paddr >= __pa(high_memory))
679 id_sz = (__pa(high_memory) < paddr + size) ?
680 __pa(high_memory) - paddr :
683 if (ioremap_change_attr((unsigned long)__va(paddr), id_sz, flags) < 0) {
684 free_memtype(paddr, paddr + size);
686 "%s:%d reserve_pfn_range ioremap_change_attr failed %s "
688 current->comm, current->pid,
690 (unsigned long long)paddr,
691 (unsigned long long)(paddr + size));
698 * Internal interface to free a range of physical memory.
699 * Frees non RAM regions only.
701 static void free_pfn_range(u64 paddr, unsigned long size)
705 is_ram = pagerange_is_ram(paddr, paddr + size);
707 free_memtype(paddr, paddr + size);
711 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
712 * copied through copy_page_range().
714 * If the vma has a linear pfn mapping for the entire range, we get the prot
715 * from pte and reserve the entire vma range with single reserve_pfn_range call.
716 * Otherwise, we reserve the entire vma range, my ging through the PTEs page
717 * by page to get physical address and protection.
719 int track_pfn_vma_copy(struct vm_area_struct *vma)
723 resource_size_t paddr;
725 unsigned long vma_start = vma->vm_start;
726 unsigned long vma_end = vma->vm_end;
727 unsigned long vma_size = vma_end - vma_start;
733 if (is_linear_pfn_mapping(vma)) {
735 * reserve the whole chunk covered by vma. We need the
736 * starting address and protection from pte.
738 if (follow_phys(vma, vma_start, 0, &prot, &paddr)) {
742 pgprot = __pgprot(prot);
743 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
746 /* reserve entire vma page by page, using pfn and prot from pte */
747 for (i = 0; i < vma_size; i += PAGE_SIZE) {
748 if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
751 pgprot = __pgprot(prot);
752 retval = reserve_pfn_range(paddr, PAGE_SIZE, &pgprot, 1);
759 /* Reserve error: Cleanup partial reservation and return error */
760 for (j = 0; j < i; j += PAGE_SIZE) {
761 if (follow_phys(vma, vma_start + j, 0, &prot, &paddr))
764 free_pfn_range(paddr, PAGE_SIZE);
771 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
772 * for physical range indicated by pfn and size.
774 * prot is passed in as a parameter for the new mapping. If the vma has a
775 * linear pfn mapping for the entire range reserve the entire vma range with
776 * single reserve_pfn_range call.
777 * Otherwise, we look t the pfn and size and reserve only the specified range
780 * Note that this function can be called with caller trying to map only a
781 * subrange/page inside the vma.
783 int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
784 unsigned long pfn, unsigned long size)
788 resource_size_t base_paddr;
789 resource_size_t paddr;
790 unsigned long vma_start = vma->vm_start;
791 unsigned long vma_end = vma->vm_end;
792 unsigned long vma_size = vma_end - vma_start;
797 if (is_linear_pfn_mapping(vma)) {
798 /* reserve the whole chunk starting from vm_pgoff */
799 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
800 return reserve_pfn_range(paddr, vma_size, prot, 0);
803 /* reserve page by page using pfn and size */
804 base_paddr = (resource_size_t)pfn << PAGE_SHIFT;
805 for (i = 0; i < size; i += PAGE_SIZE) {
806 paddr = base_paddr + i;
807 retval = reserve_pfn_range(paddr, PAGE_SIZE, prot, 0);
814 /* Reserve error: Cleanup partial reservation and return error */
815 for (j = 0; j < i; j += PAGE_SIZE) {
816 paddr = base_paddr + j;
817 free_pfn_range(paddr, PAGE_SIZE);
824 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
825 * untrack can be called for a specific region indicated by pfn and size or
826 * can be for the entire vma (in which case size can be zero).
828 void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
832 resource_size_t paddr;
834 unsigned long vma_start = vma->vm_start;
835 unsigned long vma_end = vma->vm_end;
836 unsigned long vma_size = vma_end - vma_start;
841 if (is_linear_pfn_mapping(vma)) {
842 /* free the whole chunk starting from vm_pgoff */
843 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
844 free_pfn_range(paddr, vma_size);
848 if (size != 0 && size != vma_size) {
849 /* free page by page, using pfn and size */
850 paddr = (resource_size_t)pfn << PAGE_SHIFT;
851 for (i = 0; i < size; i += PAGE_SIZE) {
853 free_pfn_range(paddr, PAGE_SIZE);
856 /* free entire vma, page by page, using the pfn from pte */
857 for (i = 0; i < vma_size; i += PAGE_SIZE) {
858 if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
861 free_pfn_range(paddr, PAGE_SIZE);
866 pgprot_t pgprot_writecombine(pgprot_t prot)
869 return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
871 return pgprot_noncached(prot);
874 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
876 /* get Nth element of the linked list */
877 static struct memtype *memtype_get_idx(loff_t pos)
879 struct memtype *list_node, *print_entry;
882 print_entry = kmalloc(sizeof(struct memtype), GFP_KERNEL);
886 spin_lock(&memtype_lock);
887 list_for_each_entry(list_node, &memtype_list, nd) {
889 *print_entry = *list_node;
890 spin_unlock(&memtype_lock);
895 spin_unlock(&memtype_lock);
901 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
905 seq_printf(seq, "PAT memtype list:\n");
908 return memtype_get_idx(*pos);
911 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
914 return memtype_get_idx(*pos);
917 static void memtype_seq_stop(struct seq_file *seq, void *v)
921 static int memtype_seq_show(struct seq_file *seq, void *v)
923 struct memtype *print_entry = (struct memtype *)v;
925 seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
926 print_entry->start, print_entry->end);
932 static struct seq_operations memtype_seq_ops = {
933 .start = memtype_seq_start,
934 .next = memtype_seq_next,
935 .stop = memtype_seq_stop,
936 .show = memtype_seq_show,
939 static int memtype_seq_open(struct inode *inode, struct file *file)
941 return seq_open(file, &memtype_seq_ops);
944 static const struct file_operations memtype_fops = {
945 .open = memtype_seq_open,
948 .release = seq_release,
951 static int __init pat_memtype_list_init(void)
953 debugfs_create_file("pat_memtype_list", S_IRUSR, arch_debugfs_dir,
954 NULL, &memtype_fops);
958 late_initcall(pat_memtype_list_init);
960 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */