2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
127 #include <linux/filter.h>
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
145 static const char *af_family_key_strings[AF_MAX+1] = {
146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
158 "sk_lock-AF_IEEE802154",
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
174 "slock-AF_IEEE802154",
177 static const char *af_family_clock_key_strings[AF_MAX+1] = {
178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
187 "clock-27" , "clock-28" , "clock-AF_CAN" ,
188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
190 "clock-AF_IEEE802154",
195 * sk_callback_lock locking rules are per-address-family,
196 * so split the lock classes by using a per-AF key:
198 static struct lock_class_key af_callback_keys[AF_MAX];
200 /* Take into consideration the size of the struct sk_buff overhead in the
201 * determination of these values, since that is non-constant across
202 * platforms. This makes socket queueing behavior and performance
203 * not depend upon such differences.
205 #define _SK_MEM_PACKETS 256
206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
224 if (optlen < sizeof(tv))
226 if (copy_from_user(&tv, optval, sizeof(tv)))
228 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
232 static int warned __read_mostly;
235 if (warned < 10 && net_ratelimit()) {
237 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238 "tries to set negative timeout\n",
239 current->comm, task_pid_nr(current));
243 *timeo_p = MAX_SCHEDULE_TIMEOUT;
244 if (tv.tv_sec == 0 && tv.tv_usec == 0)
246 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
251 static void sock_warn_obsolete_bsdism(const char *name)
254 static char warncomm[TASK_COMM_LEN];
255 if (strcmp(warncomm, current->comm) && warned < 5) {
256 strcpy(warncomm, current->comm);
257 printk(KERN_WARNING "process `%s' is using obsolete "
258 "%s SO_BSDCOMPAT\n", warncomm, name);
263 static void sock_disable_timestamp(struct sock *sk, int flag)
265 if (sock_flag(sk, flag)) {
266 sock_reset_flag(sk, flag);
267 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269 net_disable_timestamp();
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
280 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
281 number of warnings when compiling with -W --ANK
283 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
284 (unsigned)sk->sk_rcvbuf) {
289 err = sk_filter(sk, skb);
293 if (!sk_rmem_schedule(sk, skb->truesize)) {
299 skb_set_owner_r(skb, sk);
301 /* Cache the SKB length before we tack it onto the receive
302 * queue. Once it is added it no longer belongs to us and
303 * may be freed by other threads of control pulling packets
308 skb_queue_tail(&sk->sk_receive_queue, skb);
310 if (!sock_flag(sk, SOCK_DEAD))
311 sk->sk_data_ready(sk, skb_len);
315 EXPORT_SYMBOL(sock_queue_rcv_skb);
317 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
319 int rc = NET_RX_SUCCESS;
321 if (sk_filter(sk, skb))
322 goto discard_and_relse;
327 bh_lock_sock_nested(sk);
330 if (!sock_owned_by_user(sk)) {
332 * trylock + unlock semantics:
334 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
336 rc = sk_backlog_rcv(sk, skb);
338 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
340 sk_add_backlog(sk, skb);
349 EXPORT_SYMBOL(sk_receive_skb);
351 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
353 struct dst_entry *dst = sk->sk_dst_cache;
355 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
356 sk->sk_dst_cache = NULL;
363 EXPORT_SYMBOL(__sk_dst_check);
365 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
367 struct dst_entry *dst = sk_dst_get(sk);
369 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
377 EXPORT_SYMBOL(sk_dst_check);
379 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
381 int ret = -ENOPROTOOPT;
382 #ifdef CONFIG_NETDEVICES
383 struct net *net = sock_net(sk);
384 char devname[IFNAMSIZ];
389 if (!capable(CAP_NET_RAW))
396 /* Bind this socket to a particular device like "eth0",
397 * as specified in the passed interface name. If the
398 * name is "" or the option length is zero the socket
401 if (optlen > IFNAMSIZ - 1)
402 optlen = IFNAMSIZ - 1;
403 memset(devname, 0, sizeof(devname));
406 if (copy_from_user(devname, optval, optlen))
409 if (devname[0] == '\0') {
412 struct net_device *dev = dev_get_by_name(net, devname);
418 index = dev->ifindex;
423 sk->sk_bound_dev_if = index;
435 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
438 sock_set_flag(sk, bit);
440 sock_reset_flag(sk, bit);
444 * This is meant for all protocols to use and covers goings on
445 * at the socket level. Everything here is generic.
448 int sock_setsockopt(struct socket *sock, int level, int optname,
449 char __user *optval, int optlen)
451 struct sock *sk = sock->sk;
458 * Options without arguments
461 if (optname == SO_BINDTODEVICE)
462 return sock_bindtodevice(sk, optval, optlen);
464 if (optlen < sizeof(int))
467 if (get_user(val, (int __user *)optval))
470 valbool = val ? 1 : 0;
476 if (val && !capable(CAP_NET_ADMIN))
479 sock_valbool_flag(sk, SOCK_DBG, valbool);
482 sk->sk_reuse = valbool;
489 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
492 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
495 /* Don't error on this BSD doesn't and if you think
496 about it this is right. Otherwise apps have to
497 play 'guess the biggest size' games. RCVBUF/SNDBUF
498 are treated in BSD as hints */
500 if (val > sysctl_wmem_max)
501 val = sysctl_wmem_max;
503 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
504 if ((val * 2) < SOCK_MIN_SNDBUF)
505 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
507 sk->sk_sndbuf = val * 2;
510 * Wake up sending tasks if we
513 sk->sk_write_space(sk);
517 if (!capable(CAP_NET_ADMIN)) {
524 /* Don't error on this BSD doesn't and if you think
525 about it this is right. Otherwise apps have to
526 play 'guess the biggest size' games. RCVBUF/SNDBUF
527 are treated in BSD as hints */
529 if (val > sysctl_rmem_max)
530 val = sysctl_rmem_max;
532 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
534 * We double it on the way in to account for
535 * "struct sk_buff" etc. overhead. Applications
536 * assume that the SO_RCVBUF setting they make will
537 * allow that much actual data to be received on that
540 * Applications are unaware that "struct sk_buff" and
541 * other overheads allocate from the receive buffer
542 * during socket buffer allocation.
544 * And after considering the possible alternatives,
545 * returning the value we actually used in getsockopt
546 * is the most desirable behavior.
548 if ((val * 2) < SOCK_MIN_RCVBUF)
549 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
551 sk->sk_rcvbuf = val * 2;
555 if (!capable(CAP_NET_ADMIN)) {
563 if (sk->sk_protocol == IPPROTO_TCP)
564 tcp_set_keepalive(sk, valbool);
566 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
570 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
574 sk->sk_no_check = valbool;
578 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
579 sk->sk_priority = val;
585 if (optlen < sizeof(ling)) {
586 ret = -EINVAL; /* 1003.1g */
589 if (copy_from_user(&ling, optval, sizeof(ling))) {
594 sock_reset_flag(sk, SOCK_LINGER);
596 #if (BITS_PER_LONG == 32)
597 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
598 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
601 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
602 sock_set_flag(sk, SOCK_LINGER);
607 sock_warn_obsolete_bsdism("setsockopt");
612 set_bit(SOCK_PASSCRED, &sock->flags);
614 clear_bit(SOCK_PASSCRED, &sock->flags);
620 if (optname == SO_TIMESTAMP)
621 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
624 sock_set_flag(sk, SOCK_RCVTSTAMP);
625 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
627 sock_reset_flag(sk, SOCK_RCVTSTAMP);
628 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
632 case SO_TIMESTAMPING:
633 if (val & ~SOF_TIMESTAMPING_MASK) {
637 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
638 val & SOF_TIMESTAMPING_TX_HARDWARE);
639 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
640 val & SOF_TIMESTAMPING_TX_SOFTWARE);
641 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
642 val & SOF_TIMESTAMPING_RX_HARDWARE);
643 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
644 sock_enable_timestamp(sk,
645 SOCK_TIMESTAMPING_RX_SOFTWARE);
647 sock_disable_timestamp(sk,
648 SOCK_TIMESTAMPING_RX_SOFTWARE);
649 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
650 val & SOF_TIMESTAMPING_SOFTWARE);
651 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
652 val & SOF_TIMESTAMPING_SYS_HARDWARE);
653 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
654 val & SOF_TIMESTAMPING_RAW_HARDWARE);
660 sk->sk_rcvlowat = val ? : 1;
664 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
668 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
671 case SO_ATTACH_FILTER:
673 if (optlen == sizeof(struct sock_fprog)) {
674 struct sock_fprog fprog;
677 if (copy_from_user(&fprog, optval, sizeof(fprog)))
680 ret = sk_attach_filter(&fprog, sk);
684 case SO_DETACH_FILTER:
685 ret = sk_detach_filter(sk);
690 set_bit(SOCK_PASSSEC, &sock->flags);
692 clear_bit(SOCK_PASSSEC, &sock->flags);
695 if (!capable(CAP_NET_ADMIN))
701 /* We implement the SO_SNDLOWAT etc to
702 not be settable (1003.1g 5.3) */
710 EXPORT_SYMBOL(sock_setsockopt);
713 int sock_getsockopt(struct socket *sock, int level, int optname,
714 char __user *optval, int __user *optlen)
716 struct sock *sk = sock->sk;
724 unsigned int lv = sizeof(int);
727 if (get_user(len, optlen))
732 memset(&v, 0, sizeof(v));
736 v.val = sock_flag(sk, SOCK_DBG);
740 v.val = sock_flag(sk, SOCK_LOCALROUTE);
744 v.val = !!sock_flag(sk, SOCK_BROADCAST);
748 v.val = sk->sk_sndbuf;
752 v.val = sk->sk_rcvbuf;
756 v.val = sk->sk_reuse;
760 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
768 v.val = -sock_error(sk);
770 v.val = xchg(&sk->sk_err_soft, 0);
774 v.val = !!sock_flag(sk, SOCK_URGINLINE);
778 v.val = sk->sk_no_check;
782 v.val = sk->sk_priority;
787 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
788 v.ling.l_linger = sk->sk_lingertime / HZ;
792 sock_warn_obsolete_bsdism("getsockopt");
796 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
797 !sock_flag(sk, SOCK_RCVTSTAMPNS);
801 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
804 case SO_TIMESTAMPING:
806 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
807 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
808 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
809 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
810 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
811 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
812 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
813 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
814 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
815 v.val |= SOF_TIMESTAMPING_SOFTWARE;
816 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
817 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
818 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
819 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
823 lv = sizeof(struct timeval);
824 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
828 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
829 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
834 lv = sizeof(struct timeval);
835 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
839 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
840 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
845 v.val = sk->sk_rcvlowat;
853 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
857 if (len > sizeof(sk->sk_peercred))
858 len = sizeof(sk->sk_peercred);
859 if (copy_to_user(optval, &sk->sk_peercred, len))
867 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
871 if (copy_to_user(optval, address, len))
876 /* Dubious BSD thing... Probably nobody even uses it, but
877 * the UNIX standard wants it for whatever reason... -DaveM
880 v.val = sk->sk_state == TCP_LISTEN;
884 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
888 return security_socket_getpeersec_stream(sock, optval, optlen, len);
900 if (copy_to_user(optval, &v, len))
903 if (put_user(len, optlen))
909 * Initialize an sk_lock.
911 * (We also register the sk_lock with the lock validator.)
913 static inline void sock_lock_init(struct sock *sk)
915 sock_lock_init_class_and_name(sk,
916 af_family_slock_key_strings[sk->sk_family],
917 af_family_slock_keys + sk->sk_family,
918 af_family_key_strings[sk->sk_family],
919 af_family_keys + sk->sk_family);
922 static void sock_copy(struct sock *nsk, const struct sock *osk)
924 #ifdef CONFIG_SECURITY_NETWORK
925 void *sptr = nsk->sk_security;
928 memcpy(nsk, osk, osk->sk_prot->obj_size);
929 #ifdef CONFIG_SECURITY_NETWORK
930 nsk->sk_security = sptr;
931 security_sk_clone(osk, nsk);
935 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
939 struct kmem_cache *slab;
943 sk = kmem_cache_alloc(slab, priority);
945 sk = kmalloc(prot->obj_size, priority);
948 if (security_sk_alloc(sk, family, priority))
951 if (!try_module_get(prot->owner))
958 security_sk_free(sk);
961 kmem_cache_free(slab, sk);
967 static void sk_prot_free(struct proto *prot, struct sock *sk)
969 struct kmem_cache *slab;
970 struct module *owner;
975 security_sk_free(sk);
977 kmem_cache_free(slab, sk);
984 * sk_alloc - All socket objects are allocated here
985 * @net: the applicable net namespace
986 * @family: protocol family
987 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
988 * @prot: struct proto associated with this new sock instance
990 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
995 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
997 sk->sk_family = family;
999 * See comment in struct sock definition to understand
1000 * why we need sk_prot_creator -acme
1002 sk->sk_prot = sk->sk_prot_creator = prot;
1004 sock_net_set(sk, get_net(net));
1009 EXPORT_SYMBOL(sk_alloc);
1011 static void __sk_free(struct sock *sk)
1013 struct sk_filter *filter;
1015 if (sk->sk_destruct)
1016 sk->sk_destruct(sk);
1018 filter = rcu_dereference(sk->sk_filter);
1020 sk_filter_uncharge(sk, filter);
1021 rcu_assign_pointer(sk->sk_filter, NULL);
1024 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1025 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1027 if (atomic_read(&sk->sk_omem_alloc))
1028 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1029 __func__, atomic_read(&sk->sk_omem_alloc));
1031 put_net(sock_net(sk));
1032 sk_prot_free(sk->sk_prot_creator, sk);
1035 void sk_free(struct sock *sk)
1038 * We substract one from sk_wmem_alloc and can know if
1039 * some packets are still in some tx queue.
1040 * If not null, sock_wfree() will call __sk_free(sk) later
1042 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1045 EXPORT_SYMBOL(sk_free);
1048 * Last sock_put should drop referrence to sk->sk_net. It has already
1049 * been dropped in sk_change_net. Taking referrence to stopping namespace
1051 * Take referrence to a socket to remove it from hash _alive_ and after that
1052 * destroy it in the context of init_net.
1054 void sk_release_kernel(struct sock *sk)
1056 if (sk == NULL || sk->sk_socket == NULL)
1060 sock_release(sk->sk_socket);
1061 release_net(sock_net(sk));
1062 sock_net_set(sk, get_net(&init_net));
1065 EXPORT_SYMBOL(sk_release_kernel);
1067 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1071 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1072 if (newsk != NULL) {
1073 struct sk_filter *filter;
1075 sock_copy(newsk, sk);
1078 get_net(sock_net(newsk));
1079 sk_node_init(&newsk->sk_node);
1080 sock_lock_init(newsk);
1081 bh_lock_sock(newsk);
1082 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1084 atomic_set(&newsk->sk_rmem_alloc, 0);
1086 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1088 atomic_set(&newsk->sk_wmem_alloc, 1);
1089 atomic_set(&newsk->sk_omem_alloc, 0);
1090 skb_queue_head_init(&newsk->sk_receive_queue);
1091 skb_queue_head_init(&newsk->sk_write_queue);
1092 #ifdef CONFIG_NET_DMA
1093 skb_queue_head_init(&newsk->sk_async_wait_queue);
1096 rwlock_init(&newsk->sk_dst_lock);
1097 rwlock_init(&newsk->sk_callback_lock);
1098 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1099 af_callback_keys + newsk->sk_family,
1100 af_family_clock_key_strings[newsk->sk_family]);
1102 newsk->sk_dst_cache = NULL;
1103 newsk->sk_wmem_queued = 0;
1104 newsk->sk_forward_alloc = 0;
1105 newsk->sk_send_head = NULL;
1106 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1108 sock_reset_flag(newsk, SOCK_DONE);
1109 skb_queue_head_init(&newsk->sk_error_queue);
1111 filter = newsk->sk_filter;
1113 sk_filter_charge(newsk, filter);
1115 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1116 /* It is still raw copy of parent, so invalidate
1117 * destructor and make plain sk_free() */
1118 newsk->sk_destruct = NULL;
1125 newsk->sk_priority = 0;
1126 atomic_set(&newsk->sk_refcnt, 2);
1129 * Increment the counter in the same struct proto as the master
1130 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1131 * is the same as sk->sk_prot->socks, as this field was copied
1134 * This _changes_ the previous behaviour, where
1135 * tcp_create_openreq_child always was incrementing the
1136 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1137 * to be taken into account in all callers. -acme
1139 sk_refcnt_debug_inc(newsk);
1140 sk_set_socket(newsk, NULL);
1141 newsk->sk_sleep = NULL;
1143 if (newsk->sk_prot->sockets_allocated)
1144 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1149 EXPORT_SYMBOL_GPL(sk_clone);
1151 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1153 __sk_dst_set(sk, dst);
1154 sk->sk_route_caps = dst->dev->features;
1155 if (sk->sk_route_caps & NETIF_F_GSO)
1156 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1157 if (sk_can_gso(sk)) {
1158 if (dst->header_len) {
1159 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1161 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1162 sk->sk_gso_max_size = dst->dev->gso_max_size;
1166 EXPORT_SYMBOL_GPL(sk_setup_caps);
1168 void __init sk_init(void)
1170 if (num_physpages <= 4096) {
1171 sysctl_wmem_max = 32767;
1172 sysctl_rmem_max = 32767;
1173 sysctl_wmem_default = 32767;
1174 sysctl_rmem_default = 32767;
1175 } else if (num_physpages >= 131072) {
1176 sysctl_wmem_max = 131071;
1177 sysctl_rmem_max = 131071;
1182 * Simple resource managers for sockets.
1187 * Write buffer destructor automatically called from kfree_skb.
1189 void sock_wfree(struct sk_buff *skb)
1191 struct sock *sk = skb->sk;
1194 /* In case it might be waiting for more memory. */
1195 res = atomic_sub_return(skb->truesize, &sk->sk_wmem_alloc);
1196 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1197 sk->sk_write_space(sk);
1199 * if sk_wmem_alloc reached 0, we are last user and should
1200 * free this sock, as sk_free() call could not do it.
1205 EXPORT_SYMBOL(sock_wfree);
1208 * Read buffer destructor automatically called from kfree_skb.
1210 void sock_rfree(struct sk_buff *skb)
1212 struct sock *sk = skb->sk;
1214 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1215 sk_mem_uncharge(skb->sk, skb->truesize);
1217 EXPORT_SYMBOL(sock_rfree);
1220 int sock_i_uid(struct sock *sk)
1224 read_lock(&sk->sk_callback_lock);
1225 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1226 read_unlock(&sk->sk_callback_lock);
1229 EXPORT_SYMBOL(sock_i_uid);
1231 unsigned long sock_i_ino(struct sock *sk)
1235 read_lock(&sk->sk_callback_lock);
1236 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1237 read_unlock(&sk->sk_callback_lock);
1240 EXPORT_SYMBOL(sock_i_ino);
1243 * Allocate a skb from the socket's send buffer.
1245 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1248 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1249 struct sk_buff *skb = alloc_skb(size, priority);
1251 skb_set_owner_w(skb, sk);
1257 EXPORT_SYMBOL(sock_wmalloc);
1260 * Allocate a skb from the socket's receive buffer.
1262 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1265 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1266 struct sk_buff *skb = alloc_skb(size, priority);
1268 skb_set_owner_r(skb, sk);
1276 * Allocate a memory block from the socket's option memory buffer.
1278 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1280 if ((unsigned)size <= sysctl_optmem_max &&
1281 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1283 /* First do the add, to avoid the race if kmalloc
1286 atomic_add(size, &sk->sk_omem_alloc);
1287 mem = kmalloc(size, priority);
1290 atomic_sub(size, &sk->sk_omem_alloc);
1294 EXPORT_SYMBOL(sock_kmalloc);
1297 * Free an option memory block.
1299 void sock_kfree_s(struct sock *sk, void *mem, int size)
1302 atomic_sub(size, &sk->sk_omem_alloc);
1304 EXPORT_SYMBOL(sock_kfree_s);
1306 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1307 I think, these locks should be removed for datagram sockets.
1309 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1313 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1317 if (signal_pending(current))
1319 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1320 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1321 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1323 if (sk->sk_shutdown & SEND_SHUTDOWN)
1327 timeo = schedule_timeout(timeo);
1329 finish_wait(sk->sk_sleep, &wait);
1335 * Generic send/receive buffer handlers
1338 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1339 unsigned long data_len, int noblock,
1342 struct sk_buff *skb;
1347 gfp_mask = sk->sk_allocation;
1348 if (gfp_mask & __GFP_WAIT)
1349 gfp_mask |= __GFP_REPEAT;
1351 timeo = sock_sndtimeo(sk, noblock);
1353 err = sock_error(sk);
1358 if (sk->sk_shutdown & SEND_SHUTDOWN)
1361 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1362 skb = alloc_skb(header_len, gfp_mask);
1367 /* No pages, we're done... */
1371 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1372 skb->truesize += data_len;
1373 skb_shinfo(skb)->nr_frags = npages;
1374 for (i = 0; i < npages; i++) {
1378 page = alloc_pages(sk->sk_allocation, 0);
1381 skb_shinfo(skb)->nr_frags = i;
1386 frag = &skb_shinfo(skb)->frags[i];
1388 frag->page_offset = 0;
1389 frag->size = (data_len >= PAGE_SIZE ?
1392 data_len -= PAGE_SIZE;
1395 /* Full success... */
1401 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1402 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1406 if (signal_pending(current))
1408 timeo = sock_wait_for_wmem(sk, timeo);
1411 skb_set_owner_w(skb, sk);
1415 err = sock_intr_errno(timeo);
1420 EXPORT_SYMBOL(sock_alloc_send_pskb);
1422 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1423 int noblock, int *errcode)
1425 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1427 EXPORT_SYMBOL(sock_alloc_send_skb);
1429 static void __lock_sock(struct sock *sk)
1434 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1435 TASK_UNINTERRUPTIBLE);
1436 spin_unlock_bh(&sk->sk_lock.slock);
1438 spin_lock_bh(&sk->sk_lock.slock);
1439 if (!sock_owned_by_user(sk))
1442 finish_wait(&sk->sk_lock.wq, &wait);
1445 static void __release_sock(struct sock *sk)
1447 struct sk_buff *skb = sk->sk_backlog.head;
1450 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1454 struct sk_buff *next = skb->next;
1457 sk_backlog_rcv(sk, skb);
1460 * We are in process context here with softirqs
1461 * disabled, use cond_resched_softirq() to preempt.
1462 * This is safe to do because we've taken the backlog
1465 cond_resched_softirq();
1468 } while (skb != NULL);
1471 } while ((skb = sk->sk_backlog.head) != NULL);
1475 * sk_wait_data - wait for data to arrive at sk_receive_queue
1476 * @sk: sock to wait on
1477 * @timeo: for how long
1479 * Now socket state including sk->sk_err is changed only under lock,
1480 * hence we may omit checks after joining wait queue.
1481 * We check receive queue before schedule() only as optimization;
1482 * it is very likely that release_sock() added new data.
1484 int sk_wait_data(struct sock *sk, long *timeo)
1489 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1490 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1491 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1492 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1493 finish_wait(sk->sk_sleep, &wait);
1496 EXPORT_SYMBOL(sk_wait_data);
1499 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1501 * @size: memory size to allocate
1502 * @kind: allocation type
1504 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1505 * rmem allocation. This function assumes that protocols which have
1506 * memory_pressure use sk_wmem_queued as write buffer accounting.
1508 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1510 struct proto *prot = sk->sk_prot;
1511 int amt = sk_mem_pages(size);
1514 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1515 allocated = atomic_add_return(amt, prot->memory_allocated);
1518 if (allocated <= prot->sysctl_mem[0]) {
1519 if (prot->memory_pressure && *prot->memory_pressure)
1520 *prot->memory_pressure = 0;
1524 /* Under pressure. */
1525 if (allocated > prot->sysctl_mem[1])
1526 if (prot->enter_memory_pressure)
1527 prot->enter_memory_pressure(sk);
1529 /* Over hard limit. */
1530 if (allocated > prot->sysctl_mem[2])
1531 goto suppress_allocation;
1533 /* guarantee minimum buffer size under pressure */
1534 if (kind == SK_MEM_RECV) {
1535 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1537 } else { /* SK_MEM_SEND */
1538 if (sk->sk_type == SOCK_STREAM) {
1539 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1541 } else if (atomic_read(&sk->sk_wmem_alloc) <
1542 prot->sysctl_wmem[0])
1546 if (prot->memory_pressure) {
1549 if (!*prot->memory_pressure)
1551 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1552 if (prot->sysctl_mem[2] > alloc *
1553 sk_mem_pages(sk->sk_wmem_queued +
1554 atomic_read(&sk->sk_rmem_alloc) +
1555 sk->sk_forward_alloc))
1559 suppress_allocation:
1561 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1562 sk_stream_moderate_sndbuf(sk);
1564 /* Fail only if socket is _under_ its sndbuf.
1565 * In this case we cannot block, so that we have to fail.
1567 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1571 /* Alas. Undo changes. */
1572 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1573 atomic_sub(amt, prot->memory_allocated);
1576 EXPORT_SYMBOL(__sk_mem_schedule);
1579 * __sk_reclaim - reclaim memory_allocated
1582 void __sk_mem_reclaim(struct sock *sk)
1584 struct proto *prot = sk->sk_prot;
1586 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1587 prot->memory_allocated);
1588 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1590 if (prot->memory_pressure && *prot->memory_pressure &&
1591 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1592 *prot->memory_pressure = 0;
1594 EXPORT_SYMBOL(__sk_mem_reclaim);
1598 * Set of default routines for initialising struct proto_ops when
1599 * the protocol does not support a particular function. In certain
1600 * cases where it makes no sense for a protocol to have a "do nothing"
1601 * function, some default processing is provided.
1604 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1608 EXPORT_SYMBOL(sock_no_bind);
1610 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1615 EXPORT_SYMBOL(sock_no_connect);
1617 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1621 EXPORT_SYMBOL(sock_no_socketpair);
1623 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1627 EXPORT_SYMBOL(sock_no_accept);
1629 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1634 EXPORT_SYMBOL(sock_no_getname);
1636 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1640 EXPORT_SYMBOL(sock_no_poll);
1642 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1646 EXPORT_SYMBOL(sock_no_ioctl);
1648 int sock_no_listen(struct socket *sock, int backlog)
1652 EXPORT_SYMBOL(sock_no_listen);
1654 int sock_no_shutdown(struct socket *sock, int how)
1658 EXPORT_SYMBOL(sock_no_shutdown);
1660 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1661 char __user *optval, int optlen)
1665 EXPORT_SYMBOL(sock_no_setsockopt);
1667 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1668 char __user *optval, int __user *optlen)
1672 EXPORT_SYMBOL(sock_no_getsockopt);
1674 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1679 EXPORT_SYMBOL(sock_no_sendmsg);
1681 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1682 size_t len, int flags)
1686 EXPORT_SYMBOL(sock_no_recvmsg);
1688 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1690 /* Mirror missing mmap method error code */
1693 EXPORT_SYMBOL(sock_no_mmap);
1695 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1698 struct msghdr msg = {.msg_flags = flags};
1700 char *kaddr = kmap(page);
1701 iov.iov_base = kaddr + offset;
1703 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1707 EXPORT_SYMBOL(sock_no_sendpage);
1710 * Default Socket Callbacks
1713 static void sock_def_wakeup(struct sock *sk)
1715 read_lock(&sk->sk_callback_lock);
1716 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1717 wake_up_interruptible_all(sk->sk_sleep);
1718 read_unlock(&sk->sk_callback_lock);
1721 static void sock_def_error_report(struct sock *sk)
1723 read_lock(&sk->sk_callback_lock);
1724 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1725 wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1726 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1727 read_unlock(&sk->sk_callback_lock);
1730 static void sock_def_readable(struct sock *sk, int len)
1732 read_lock(&sk->sk_callback_lock);
1733 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1734 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1735 POLLRDNORM | POLLRDBAND);
1736 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1737 read_unlock(&sk->sk_callback_lock);
1740 static void sock_def_write_space(struct sock *sk)
1742 read_lock(&sk->sk_callback_lock);
1744 /* Do not wake up a writer until he can make "significant"
1747 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1748 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1749 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1750 POLLWRNORM | POLLWRBAND);
1752 /* Should agree with poll, otherwise some programs break */
1753 if (sock_writeable(sk))
1754 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1757 read_unlock(&sk->sk_callback_lock);
1760 static void sock_def_destruct(struct sock *sk)
1762 kfree(sk->sk_protinfo);
1765 void sk_send_sigurg(struct sock *sk)
1767 if (sk->sk_socket && sk->sk_socket->file)
1768 if (send_sigurg(&sk->sk_socket->file->f_owner))
1769 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1771 EXPORT_SYMBOL(sk_send_sigurg);
1773 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1774 unsigned long expires)
1776 if (!mod_timer(timer, expires))
1779 EXPORT_SYMBOL(sk_reset_timer);
1781 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1783 if (timer_pending(timer) && del_timer(timer))
1786 EXPORT_SYMBOL(sk_stop_timer);
1788 void sock_init_data(struct socket *sock, struct sock *sk)
1790 skb_queue_head_init(&sk->sk_receive_queue);
1791 skb_queue_head_init(&sk->sk_write_queue);
1792 skb_queue_head_init(&sk->sk_error_queue);
1793 #ifdef CONFIG_NET_DMA
1794 skb_queue_head_init(&sk->sk_async_wait_queue);
1797 sk->sk_send_head = NULL;
1799 init_timer(&sk->sk_timer);
1801 sk->sk_allocation = GFP_KERNEL;
1802 sk->sk_rcvbuf = sysctl_rmem_default;
1803 sk->sk_sndbuf = sysctl_wmem_default;
1804 sk->sk_state = TCP_CLOSE;
1805 sk_set_socket(sk, sock);
1807 sock_set_flag(sk, SOCK_ZAPPED);
1810 sk->sk_type = sock->type;
1811 sk->sk_sleep = &sock->wait;
1814 sk->sk_sleep = NULL;
1816 rwlock_init(&sk->sk_dst_lock);
1817 rwlock_init(&sk->sk_callback_lock);
1818 lockdep_set_class_and_name(&sk->sk_callback_lock,
1819 af_callback_keys + sk->sk_family,
1820 af_family_clock_key_strings[sk->sk_family]);
1822 sk->sk_state_change = sock_def_wakeup;
1823 sk->sk_data_ready = sock_def_readable;
1824 sk->sk_write_space = sock_def_write_space;
1825 sk->sk_error_report = sock_def_error_report;
1826 sk->sk_destruct = sock_def_destruct;
1828 sk->sk_sndmsg_page = NULL;
1829 sk->sk_sndmsg_off = 0;
1831 sk->sk_peercred.pid = 0;
1832 sk->sk_peercred.uid = -1;
1833 sk->sk_peercred.gid = -1;
1834 sk->sk_write_pending = 0;
1835 sk->sk_rcvlowat = 1;
1836 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1837 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1839 sk->sk_stamp = ktime_set(-1L, 0);
1841 atomic_set(&sk->sk_refcnt, 1);
1842 atomic_set(&sk->sk_wmem_alloc, 1);
1843 atomic_set(&sk->sk_drops, 0);
1845 EXPORT_SYMBOL(sock_init_data);
1847 void lock_sock_nested(struct sock *sk, int subclass)
1850 spin_lock_bh(&sk->sk_lock.slock);
1851 if (sk->sk_lock.owned)
1853 sk->sk_lock.owned = 1;
1854 spin_unlock(&sk->sk_lock.slock);
1856 * The sk_lock has mutex_lock() semantics here:
1858 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1861 EXPORT_SYMBOL(lock_sock_nested);
1863 void release_sock(struct sock *sk)
1866 * The sk_lock has mutex_unlock() semantics:
1868 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1870 spin_lock_bh(&sk->sk_lock.slock);
1871 if (sk->sk_backlog.tail)
1873 sk->sk_lock.owned = 0;
1874 if (waitqueue_active(&sk->sk_lock.wq))
1875 wake_up(&sk->sk_lock.wq);
1876 spin_unlock_bh(&sk->sk_lock.slock);
1878 EXPORT_SYMBOL(release_sock);
1880 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1883 if (!sock_flag(sk, SOCK_TIMESTAMP))
1884 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1885 tv = ktime_to_timeval(sk->sk_stamp);
1886 if (tv.tv_sec == -1)
1888 if (tv.tv_sec == 0) {
1889 sk->sk_stamp = ktime_get_real();
1890 tv = ktime_to_timeval(sk->sk_stamp);
1892 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1894 EXPORT_SYMBOL(sock_get_timestamp);
1896 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1899 if (!sock_flag(sk, SOCK_TIMESTAMP))
1900 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1901 ts = ktime_to_timespec(sk->sk_stamp);
1902 if (ts.tv_sec == -1)
1904 if (ts.tv_sec == 0) {
1905 sk->sk_stamp = ktime_get_real();
1906 ts = ktime_to_timespec(sk->sk_stamp);
1908 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1910 EXPORT_SYMBOL(sock_get_timestampns);
1912 void sock_enable_timestamp(struct sock *sk, int flag)
1914 if (!sock_flag(sk, flag)) {
1915 sock_set_flag(sk, flag);
1917 * we just set one of the two flags which require net
1918 * time stamping, but time stamping might have been on
1919 * already because of the other one
1922 flag == SOCK_TIMESTAMP ?
1923 SOCK_TIMESTAMPING_RX_SOFTWARE :
1925 net_enable_timestamp();
1930 * Get a socket option on an socket.
1932 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1933 * asynchronous errors should be reported by getsockopt. We assume
1934 * this means if you specify SO_ERROR (otherwise whats the point of it).
1936 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1937 char __user *optval, int __user *optlen)
1939 struct sock *sk = sock->sk;
1941 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1943 EXPORT_SYMBOL(sock_common_getsockopt);
1945 #ifdef CONFIG_COMPAT
1946 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1947 char __user *optval, int __user *optlen)
1949 struct sock *sk = sock->sk;
1951 if (sk->sk_prot->compat_getsockopt != NULL)
1952 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1954 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1956 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1959 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1960 struct msghdr *msg, size_t size, int flags)
1962 struct sock *sk = sock->sk;
1966 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1967 flags & ~MSG_DONTWAIT, &addr_len);
1969 msg->msg_namelen = addr_len;
1972 EXPORT_SYMBOL(sock_common_recvmsg);
1975 * Set socket options on an inet socket.
1977 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1978 char __user *optval, int optlen)
1980 struct sock *sk = sock->sk;
1982 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1984 EXPORT_SYMBOL(sock_common_setsockopt);
1986 #ifdef CONFIG_COMPAT
1987 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1988 char __user *optval, int optlen)
1990 struct sock *sk = sock->sk;
1992 if (sk->sk_prot->compat_setsockopt != NULL)
1993 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1995 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1997 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2000 void sk_common_release(struct sock *sk)
2002 if (sk->sk_prot->destroy)
2003 sk->sk_prot->destroy(sk);
2006 * Observation: when sock_common_release is called, processes have
2007 * no access to socket. But net still has.
2008 * Step one, detach it from networking:
2010 * A. Remove from hash tables.
2013 sk->sk_prot->unhash(sk);
2016 * In this point socket cannot receive new packets, but it is possible
2017 * that some packets are in flight because some CPU runs receiver and
2018 * did hash table lookup before we unhashed socket. They will achieve
2019 * receive queue and will be purged by socket destructor.
2021 * Also we still have packets pending on receive queue and probably,
2022 * our own packets waiting in device queues. sock_destroy will drain
2023 * receive queue, but transmitted packets will delay socket destruction
2024 * until the last reference will be released.
2029 xfrm_sk_free_policy(sk);
2031 sk_refcnt_debug_release(sk);
2034 EXPORT_SYMBOL(sk_common_release);
2036 static DEFINE_RWLOCK(proto_list_lock);
2037 static LIST_HEAD(proto_list);
2039 #ifdef CONFIG_PROC_FS
2040 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2042 int val[PROTO_INUSE_NR];
2045 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2047 #ifdef CONFIG_NET_NS
2048 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2050 int cpu = smp_processor_id();
2051 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2053 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2055 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2057 int cpu, idx = prot->inuse_idx;
2060 for_each_possible_cpu(cpu)
2061 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2063 return res >= 0 ? res : 0;
2065 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2067 static int sock_inuse_init_net(struct net *net)
2069 net->core.inuse = alloc_percpu(struct prot_inuse);
2070 return net->core.inuse ? 0 : -ENOMEM;
2073 static void sock_inuse_exit_net(struct net *net)
2075 free_percpu(net->core.inuse);
2078 static struct pernet_operations net_inuse_ops = {
2079 .init = sock_inuse_init_net,
2080 .exit = sock_inuse_exit_net,
2083 static __init int net_inuse_init(void)
2085 if (register_pernet_subsys(&net_inuse_ops))
2086 panic("Cannot initialize net inuse counters");
2091 core_initcall(net_inuse_init);
2093 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2095 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2097 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2099 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2101 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2103 int cpu, idx = prot->inuse_idx;
2106 for_each_possible_cpu(cpu)
2107 res += per_cpu(prot_inuse, cpu).val[idx];
2109 return res >= 0 ? res : 0;
2111 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2114 static void assign_proto_idx(struct proto *prot)
2116 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2118 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2119 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2123 set_bit(prot->inuse_idx, proto_inuse_idx);
2126 static void release_proto_idx(struct proto *prot)
2128 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2129 clear_bit(prot->inuse_idx, proto_inuse_idx);
2132 static inline void assign_proto_idx(struct proto *prot)
2136 static inline void release_proto_idx(struct proto *prot)
2141 int proto_register(struct proto *prot, int alloc_slab)
2144 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2145 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2148 if (prot->slab == NULL) {
2149 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2154 if (prot->rsk_prot != NULL) {
2155 static const char mask[] = "request_sock_%s";
2157 prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2158 if (prot->rsk_prot->slab_name == NULL)
2159 goto out_free_sock_slab;
2161 sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2162 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2163 prot->rsk_prot->obj_size, 0,
2164 SLAB_HWCACHE_ALIGN, NULL);
2166 if (prot->rsk_prot->slab == NULL) {
2167 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2169 goto out_free_request_sock_slab_name;
2173 if (prot->twsk_prot != NULL) {
2174 static const char mask[] = "tw_sock_%s";
2176 prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2178 if (prot->twsk_prot->twsk_slab_name == NULL)
2179 goto out_free_request_sock_slab;
2181 sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2182 prot->twsk_prot->twsk_slab =
2183 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2184 prot->twsk_prot->twsk_obj_size,
2186 SLAB_HWCACHE_ALIGN |
2189 if (prot->twsk_prot->twsk_slab == NULL)
2190 goto out_free_timewait_sock_slab_name;
2194 write_lock(&proto_list_lock);
2195 list_add(&prot->node, &proto_list);
2196 assign_proto_idx(prot);
2197 write_unlock(&proto_list_lock);
2200 out_free_timewait_sock_slab_name:
2201 kfree(prot->twsk_prot->twsk_slab_name);
2202 out_free_request_sock_slab:
2203 if (prot->rsk_prot && prot->rsk_prot->slab) {
2204 kmem_cache_destroy(prot->rsk_prot->slab);
2205 prot->rsk_prot->slab = NULL;
2207 out_free_request_sock_slab_name:
2208 kfree(prot->rsk_prot->slab_name);
2210 kmem_cache_destroy(prot->slab);
2215 EXPORT_SYMBOL(proto_register);
2217 void proto_unregister(struct proto *prot)
2219 write_lock(&proto_list_lock);
2220 release_proto_idx(prot);
2221 list_del(&prot->node);
2222 write_unlock(&proto_list_lock);
2224 if (prot->slab != NULL) {
2225 kmem_cache_destroy(prot->slab);
2229 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2230 kmem_cache_destroy(prot->rsk_prot->slab);
2231 kfree(prot->rsk_prot->slab_name);
2232 prot->rsk_prot->slab = NULL;
2235 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2236 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2237 kfree(prot->twsk_prot->twsk_slab_name);
2238 prot->twsk_prot->twsk_slab = NULL;
2241 EXPORT_SYMBOL(proto_unregister);
2243 #ifdef CONFIG_PROC_FS
2244 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2245 __acquires(proto_list_lock)
2247 read_lock(&proto_list_lock);
2248 return seq_list_start_head(&proto_list, *pos);
2251 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2253 return seq_list_next(v, &proto_list, pos);
2256 static void proto_seq_stop(struct seq_file *seq, void *v)
2257 __releases(proto_list_lock)
2259 read_unlock(&proto_list_lock);
2262 static char proto_method_implemented(const void *method)
2264 return method == NULL ? 'n' : 'y';
2267 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2269 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2270 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2273 sock_prot_inuse_get(seq_file_net(seq), proto),
2274 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2275 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2277 proto->slab == NULL ? "no" : "yes",
2278 module_name(proto->owner),
2279 proto_method_implemented(proto->close),
2280 proto_method_implemented(proto->connect),
2281 proto_method_implemented(proto->disconnect),
2282 proto_method_implemented(proto->accept),
2283 proto_method_implemented(proto->ioctl),
2284 proto_method_implemented(proto->init),
2285 proto_method_implemented(proto->destroy),
2286 proto_method_implemented(proto->shutdown),
2287 proto_method_implemented(proto->setsockopt),
2288 proto_method_implemented(proto->getsockopt),
2289 proto_method_implemented(proto->sendmsg),
2290 proto_method_implemented(proto->recvmsg),
2291 proto_method_implemented(proto->sendpage),
2292 proto_method_implemented(proto->bind),
2293 proto_method_implemented(proto->backlog_rcv),
2294 proto_method_implemented(proto->hash),
2295 proto_method_implemented(proto->unhash),
2296 proto_method_implemented(proto->get_port),
2297 proto_method_implemented(proto->enter_memory_pressure));
2300 static int proto_seq_show(struct seq_file *seq, void *v)
2302 if (v == &proto_list)
2303 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2312 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2314 proto_seq_printf(seq, list_entry(v, struct proto, node));
2318 static const struct seq_operations proto_seq_ops = {
2319 .start = proto_seq_start,
2320 .next = proto_seq_next,
2321 .stop = proto_seq_stop,
2322 .show = proto_seq_show,
2325 static int proto_seq_open(struct inode *inode, struct file *file)
2327 return seq_open_net(inode, file, &proto_seq_ops,
2328 sizeof(struct seq_net_private));
2331 static const struct file_operations proto_seq_fops = {
2332 .owner = THIS_MODULE,
2333 .open = proto_seq_open,
2335 .llseek = seq_lseek,
2336 .release = seq_release_net,
2339 static __net_init int proto_init_net(struct net *net)
2341 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2347 static __net_exit void proto_exit_net(struct net *net)
2349 proc_net_remove(net, "protocols");
2353 static __net_initdata struct pernet_operations proto_net_ops = {
2354 .init = proto_init_net,
2355 .exit = proto_exit_net,
2358 static int __init proto_init(void)
2360 return register_pernet_subsys(&proto_net_ops);
2363 subsys_initcall(proto_init);
2365 #endif /* PROC_FS */