Merge branch 'fix/misc' into for-linus
[linux-2.6] / kernel / power / snapshot.c
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29
30 #include <asm/uaccess.h>
31 #include <asm/mmu_context.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <asm/io.h>
35
36 #include "power.h"
37
38 static int swsusp_page_is_free(struct page *);
39 static void swsusp_set_page_forbidden(struct page *);
40 static void swsusp_unset_page_forbidden(struct page *);
41
42 /*
43  * Preferred image size in bytes (tunable via /sys/power/image_size).
44  * When it is set to N, swsusp will do its best to ensure the image
45  * size will not exceed N bytes, but if that is impossible, it will
46  * try to create the smallest image possible.
47  */
48 unsigned long image_size = 500 * 1024 * 1024;
49
50 /* List of PBEs needed for restoring the pages that were allocated before
51  * the suspend and included in the suspend image, but have also been
52  * allocated by the "resume" kernel, so their contents cannot be written
53  * directly to their "original" page frames.
54  */
55 struct pbe *restore_pblist;
56
57 /* Pointer to an auxiliary buffer (1 page) */
58 static void *buffer;
59
60 /**
61  *      @safe_needed - on resume, for storing the PBE list and the image,
62  *      we can only use memory pages that do not conflict with the pages
63  *      used before suspend.  The unsafe pages have PageNosaveFree set
64  *      and we count them using unsafe_pages.
65  *
66  *      Each allocated image page is marked as PageNosave and PageNosaveFree
67  *      so that swsusp_free() can release it.
68  */
69
70 #define PG_ANY          0
71 #define PG_SAFE         1
72 #define PG_UNSAFE_CLEAR 1
73 #define PG_UNSAFE_KEEP  0
74
75 static unsigned int allocated_unsafe_pages;
76
77 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
78 {
79         void *res;
80
81         res = (void *)get_zeroed_page(gfp_mask);
82         if (safe_needed)
83                 while (res && swsusp_page_is_free(virt_to_page(res))) {
84                         /* The page is unsafe, mark it for swsusp_free() */
85                         swsusp_set_page_forbidden(virt_to_page(res));
86                         allocated_unsafe_pages++;
87                         res = (void *)get_zeroed_page(gfp_mask);
88                 }
89         if (res) {
90                 swsusp_set_page_forbidden(virt_to_page(res));
91                 swsusp_set_page_free(virt_to_page(res));
92         }
93         return res;
94 }
95
96 unsigned long get_safe_page(gfp_t gfp_mask)
97 {
98         return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
99 }
100
101 static struct page *alloc_image_page(gfp_t gfp_mask)
102 {
103         struct page *page;
104
105         page = alloc_page(gfp_mask);
106         if (page) {
107                 swsusp_set_page_forbidden(page);
108                 swsusp_set_page_free(page);
109         }
110         return page;
111 }
112
113 /**
114  *      free_image_page - free page represented by @addr, allocated with
115  *      get_image_page (page flags set by it must be cleared)
116  */
117
118 static inline void free_image_page(void *addr, int clear_nosave_free)
119 {
120         struct page *page;
121
122         BUG_ON(!virt_addr_valid(addr));
123
124         page = virt_to_page(addr);
125
126         swsusp_unset_page_forbidden(page);
127         if (clear_nosave_free)
128                 swsusp_unset_page_free(page);
129
130         __free_page(page);
131 }
132
133 /* struct linked_page is used to build chains of pages */
134
135 #define LINKED_PAGE_DATA_SIZE   (PAGE_SIZE - sizeof(void *))
136
137 struct linked_page {
138         struct linked_page *next;
139         char data[LINKED_PAGE_DATA_SIZE];
140 } __attribute__((packed));
141
142 static inline void
143 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
144 {
145         while (list) {
146                 struct linked_page *lp = list->next;
147
148                 free_image_page(list, clear_page_nosave);
149                 list = lp;
150         }
151 }
152
153 /**
154   *     struct chain_allocator is used for allocating small objects out of
155   *     a linked list of pages called 'the chain'.
156   *
157   *     The chain grows each time when there is no room for a new object in
158   *     the current page.  The allocated objects cannot be freed individually.
159   *     It is only possible to free them all at once, by freeing the entire
160   *     chain.
161   *
162   *     NOTE: The chain allocator may be inefficient if the allocated objects
163   *     are not much smaller than PAGE_SIZE.
164   */
165
166 struct chain_allocator {
167         struct linked_page *chain;      /* the chain */
168         unsigned int used_space;        /* total size of objects allocated out
169                                          * of the current page
170                                          */
171         gfp_t gfp_mask;         /* mask for allocating pages */
172         int safe_needed;        /* if set, only "safe" pages are allocated */
173 };
174
175 static void
176 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
177 {
178         ca->chain = NULL;
179         ca->used_space = LINKED_PAGE_DATA_SIZE;
180         ca->gfp_mask = gfp_mask;
181         ca->safe_needed = safe_needed;
182 }
183
184 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
185 {
186         void *ret;
187
188         if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
189                 struct linked_page *lp;
190
191                 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
192                 if (!lp)
193                         return NULL;
194
195                 lp->next = ca->chain;
196                 ca->chain = lp;
197                 ca->used_space = 0;
198         }
199         ret = ca->chain->data + ca->used_space;
200         ca->used_space += size;
201         return ret;
202 }
203
204 /**
205  *      Data types related to memory bitmaps.
206  *
207  *      Memory bitmap is a structure consiting of many linked lists of
208  *      objects.  The main list's elements are of type struct zone_bitmap
209  *      and each of them corresonds to one zone.  For each zone bitmap
210  *      object there is a list of objects of type struct bm_block that
211  *      represent each blocks of bitmap in which information is stored.
212  *
213  *      struct memory_bitmap contains a pointer to the main list of zone
214  *      bitmap objects, a struct bm_position used for browsing the bitmap,
215  *      and a pointer to the list of pages used for allocating all of the
216  *      zone bitmap objects and bitmap block objects.
217  *
218  *      NOTE: It has to be possible to lay out the bitmap in memory
219  *      using only allocations of order 0.  Additionally, the bitmap is
220  *      designed to work with arbitrary number of zones (this is over the
221  *      top for now, but let's avoid making unnecessary assumptions ;-).
222  *
223  *      struct zone_bitmap contains a pointer to a list of bitmap block
224  *      objects and a pointer to the bitmap block object that has been
225  *      most recently used for setting bits.  Additionally, it contains the
226  *      pfns that correspond to the start and end of the represented zone.
227  *
228  *      struct bm_block contains a pointer to the memory page in which
229  *      information is stored (in the form of a block of bitmap)
230  *      It also contains the pfns that correspond to the start and end of
231  *      the represented memory area.
232  */
233
234 #define BM_END_OF_MAP   (~0UL)
235
236 #define BM_BITS_PER_BLOCK       (PAGE_SIZE << 3)
237
238 struct bm_block {
239         struct list_head hook;  /* hook into a list of bitmap blocks */
240         unsigned long start_pfn;        /* pfn represented by the first bit */
241         unsigned long end_pfn;  /* pfn represented by the last bit plus 1 */
242         unsigned long *data;    /* bitmap representing pages */
243 };
244
245 static inline unsigned long bm_block_bits(struct bm_block *bb)
246 {
247         return bb->end_pfn - bb->start_pfn;
248 }
249
250 /* strcut bm_position is used for browsing memory bitmaps */
251
252 struct bm_position {
253         struct bm_block *block;
254         int bit;
255 };
256
257 struct memory_bitmap {
258         struct list_head blocks;        /* list of bitmap blocks */
259         struct linked_page *p_list;     /* list of pages used to store zone
260                                          * bitmap objects and bitmap block
261                                          * objects
262                                          */
263         struct bm_position cur; /* most recently used bit position */
264 };
265
266 /* Functions that operate on memory bitmaps */
267
268 static void memory_bm_position_reset(struct memory_bitmap *bm)
269 {
270         bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
271         bm->cur.bit = 0;
272 }
273
274 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
275
276 /**
277  *      create_bm_block_list - create a list of block bitmap objects
278  *      @nr_blocks - number of blocks to allocate
279  *      @list - list to put the allocated blocks into
280  *      @ca - chain allocator to be used for allocating memory
281  */
282 static int create_bm_block_list(unsigned long pages,
283                                 struct list_head *list,
284                                 struct chain_allocator *ca)
285 {
286         unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
287
288         while (nr_blocks-- > 0) {
289                 struct bm_block *bb;
290
291                 bb = chain_alloc(ca, sizeof(struct bm_block));
292                 if (!bb)
293                         return -ENOMEM;
294                 list_add(&bb->hook, list);
295         }
296
297         return 0;
298 }
299
300 struct mem_extent {
301         struct list_head hook;
302         unsigned long start;
303         unsigned long end;
304 };
305
306 /**
307  *      free_mem_extents - free a list of memory extents
308  *      @list - list of extents to empty
309  */
310 static void free_mem_extents(struct list_head *list)
311 {
312         struct mem_extent *ext, *aux;
313
314         list_for_each_entry_safe(ext, aux, list, hook) {
315                 list_del(&ext->hook);
316                 kfree(ext);
317         }
318 }
319
320 /**
321  *      create_mem_extents - create a list of memory extents representing
322  *                           contiguous ranges of PFNs
323  *      @list - list to put the extents into
324  *      @gfp_mask - mask to use for memory allocations
325  */
326 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
327 {
328         struct zone *zone;
329
330         INIT_LIST_HEAD(list);
331
332         for_each_populated_zone(zone) {
333                 unsigned long zone_start, zone_end;
334                 struct mem_extent *ext, *cur, *aux;
335
336                 zone_start = zone->zone_start_pfn;
337                 zone_end = zone->zone_start_pfn + zone->spanned_pages;
338
339                 list_for_each_entry(ext, list, hook)
340                         if (zone_start <= ext->end)
341                                 break;
342
343                 if (&ext->hook == list || zone_end < ext->start) {
344                         /* New extent is necessary */
345                         struct mem_extent *new_ext;
346
347                         new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
348                         if (!new_ext) {
349                                 free_mem_extents(list);
350                                 return -ENOMEM;
351                         }
352                         new_ext->start = zone_start;
353                         new_ext->end = zone_end;
354                         list_add_tail(&new_ext->hook, &ext->hook);
355                         continue;
356                 }
357
358                 /* Merge this zone's range of PFNs with the existing one */
359                 if (zone_start < ext->start)
360                         ext->start = zone_start;
361                 if (zone_end > ext->end)
362                         ext->end = zone_end;
363
364                 /* More merging may be possible */
365                 cur = ext;
366                 list_for_each_entry_safe_continue(cur, aux, list, hook) {
367                         if (zone_end < cur->start)
368                                 break;
369                         if (zone_end < cur->end)
370                                 ext->end = cur->end;
371                         list_del(&cur->hook);
372                         kfree(cur);
373                 }
374         }
375
376         return 0;
377 }
378
379 /**
380   *     memory_bm_create - allocate memory for a memory bitmap
381   */
382 static int
383 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
384 {
385         struct chain_allocator ca;
386         struct list_head mem_extents;
387         struct mem_extent *ext;
388         int error;
389
390         chain_init(&ca, gfp_mask, safe_needed);
391         INIT_LIST_HEAD(&bm->blocks);
392
393         error = create_mem_extents(&mem_extents, gfp_mask);
394         if (error)
395                 return error;
396
397         list_for_each_entry(ext, &mem_extents, hook) {
398                 struct bm_block *bb;
399                 unsigned long pfn = ext->start;
400                 unsigned long pages = ext->end - ext->start;
401
402                 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
403
404                 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
405                 if (error)
406                         goto Error;
407
408                 list_for_each_entry_continue(bb, &bm->blocks, hook) {
409                         bb->data = get_image_page(gfp_mask, safe_needed);
410                         if (!bb->data) {
411                                 error = -ENOMEM;
412                                 goto Error;
413                         }
414
415                         bb->start_pfn = pfn;
416                         if (pages >= BM_BITS_PER_BLOCK) {
417                                 pfn += BM_BITS_PER_BLOCK;
418                                 pages -= BM_BITS_PER_BLOCK;
419                         } else {
420                                 /* This is executed only once in the loop */
421                                 pfn += pages;
422                         }
423                         bb->end_pfn = pfn;
424                 }
425         }
426
427         bm->p_list = ca.chain;
428         memory_bm_position_reset(bm);
429  Exit:
430         free_mem_extents(&mem_extents);
431         return error;
432
433  Error:
434         bm->p_list = ca.chain;
435         memory_bm_free(bm, PG_UNSAFE_CLEAR);
436         goto Exit;
437 }
438
439 /**
440   *     memory_bm_free - free memory occupied by the memory bitmap @bm
441   */
442 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
443 {
444         struct bm_block *bb;
445
446         list_for_each_entry(bb, &bm->blocks, hook)
447                 if (bb->data)
448                         free_image_page(bb->data, clear_nosave_free);
449
450         free_list_of_pages(bm->p_list, clear_nosave_free);
451
452         INIT_LIST_HEAD(&bm->blocks);
453 }
454
455 /**
456  *      memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
457  *      to given pfn.  The cur_zone_bm member of @bm and the cur_block member
458  *      of @bm->cur_zone_bm are updated.
459  */
460 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
461                                 void **addr, unsigned int *bit_nr)
462 {
463         struct bm_block *bb;
464
465         /*
466          * Check if the pfn corresponds to the current bitmap block and find
467          * the block where it fits if this is not the case.
468          */
469         bb = bm->cur.block;
470         if (pfn < bb->start_pfn)
471                 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
472                         if (pfn >= bb->start_pfn)
473                                 break;
474
475         if (pfn >= bb->end_pfn)
476                 list_for_each_entry_continue(bb, &bm->blocks, hook)
477                         if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
478                                 break;
479
480         if (&bb->hook == &bm->blocks)
481                 return -EFAULT;
482
483         /* The block has been found */
484         bm->cur.block = bb;
485         pfn -= bb->start_pfn;
486         bm->cur.bit = pfn + 1;
487         *bit_nr = pfn;
488         *addr = bb->data;
489         return 0;
490 }
491
492 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
493 {
494         void *addr;
495         unsigned int bit;
496         int error;
497
498         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
499         BUG_ON(error);
500         set_bit(bit, addr);
501 }
502
503 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
504 {
505         void *addr;
506         unsigned int bit;
507         int error;
508
509         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
510         if (!error)
511                 set_bit(bit, addr);
512         return error;
513 }
514
515 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
516 {
517         void *addr;
518         unsigned int bit;
519         int error;
520
521         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
522         BUG_ON(error);
523         clear_bit(bit, addr);
524 }
525
526 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
527 {
528         void *addr;
529         unsigned int bit;
530         int error;
531
532         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
533         BUG_ON(error);
534         return test_bit(bit, addr);
535 }
536
537 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
538 {
539         void *addr;
540         unsigned int bit;
541
542         return !memory_bm_find_bit(bm, pfn, &addr, &bit);
543 }
544
545 /**
546  *      memory_bm_next_pfn - find the pfn that corresponds to the next set bit
547  *      in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
548  *      returned.
549  *
550  *      It is required to run memory_bm_position_reset() before the first call to
551  *      this function.
552  */
553
554 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
555 {
556         struct bm_block *bb;
557         int bit;
558
559         bb = bm->cur.block;
560         do {
561                 bit = bm->cur.bit;
562                 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
563                 if (bit < bm_block_bits(bb))
564                         goto Return_pfn;
565
566                 bb = list_entry(bb->hook.next, struct bm_block, hook);
567                 bm->cur.block = bb;
568                 bm->cur.bit = 0;
569         } while (&bb->hook != &bm->blocks);
570
571         memory_bm_position_reset(bm);
572         return BM_END_OF_MAP;
573
574  Return_pfn:
575         bm->cur.bit = bit + 1;
576         return bb->start_pfn + bit;
577 }
578
579 /**
580  *      This structure represents a range of page frames the contents of which
581  *      should not be saved during the suspend.
582  */
583
584 struct nosave_region {
585         struct list_head list;
586         unsigned long start_pfn;
587         unsigned long end_pfn;
588 };
589
590 static LIST_HEAD(nosave_regions);
591
592 /**
593  *      register_nosave_region - register a range of page frames the contents
594  *      of which should not be saved during the suspend (to be used in the early
595  *      initialization code)
596  */
597
598 void __init
599 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
600                          int use_kmalloc)
601 {
602         struct nosave_region *region;
603
604         if (start_pfn >= end_pfn)
605                 return;
606
607         if (!list_empty(&nosave_regions)) {
608                 /* Try to extend the previous region (they should be sorted) */
609                 region = list_entry(nosave_regions.prev,
610                                         struct nosave_region, list);
611                 if (region->end_pfn == start_pfn) {
612                         region->end_pfn = end_pfn;
613                         goto Report;
614                 }
615         }
616         if (use_kmalloc) {
617                 /* during init, this shouldn't fail */
618                 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
619                 BUG_ON(!region);
620         } else
621                 /* This allocation cannot fail */
622                 region = alloc_bootmem_low(sizeof(struct nosave_region));
623         region->start_pfn = start_pfn;
624         region->end_pfn = end_pfn;
625         list_add_tail(&region->list, &nosave_regions);
626  Report:
627         printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
628                 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
629 }
630
631 /*
632  * Set bits in this map correspond to the page frames the contents of which
633  * should not be saved during the suspend.
634  */
635 static struct memory_bitmap *forbidden_pages_map;
636
637 /* Set bits in this map correspond to free page frames. */
638 static struct memory_bitmap *free_pages_map;
639
640 /*
641  * Each page frame allocated for creating the image is marked by setting the
642  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
643  */
644
645 void swsusp_set_page_free(struct page *page)
646 {
647         if (free_pages_map)
648                 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
649 }
650
651 static int swsusp_page_is_free(struct page *page)
652 {
653         return free_pages_map ?
654                 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
655 }
656
657 void swsusp_unset_page_free(struct page *page)
658 {
659         if (free_pages_map)
660                 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
661 }
662
663 static void swsusp_set_page_forbidden(struct page *page)
664 {
665         if (forbidden_pages_map)
666                 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
667 }
668
669 int swsusp_page_is_forbidden(struct page *page)
670 {
671         return forbidden_pages_map ?
672                 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
673 }
674
675 static void swsusp_unset_page_forbidden(struct page *page)
676 {
677         if (forbidden_pages_map)
678                 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
679 }
680
681 /**
682  *      mark_nosave_pages - set bits corresponding to the page frames the
683  *      contents of which should not be saved in a given bitmap.
684  */
685
686 static void mark_nosave_pages(struct memory_bitmap *bm)
687 {
688         struct nosave_region *region;
689
690         if (list_empty(&nosave_regions))
691                 return;
692
693         list_for_each_entry(region, &nosave_regions, list) {
694                 unsigned long pfn;
695
696                 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
697                                 region->start_pfn << PAGE_SHIFT,
698                                 region->end_pfn << PAGE_SHIFT);
699
700                 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
701                         if (pfn_valid(pfn)) {
702                                 /*
703                                  * It is safe to ignore the result of
704                                  * mem_bm_set_bit_check() here, since we won't
705                                  * touch the PFNs for which the error is
706                                  * returned anyway.
707                                  */
708                                 mem_bm_set_bit_check(bm, pfn);
709                         }
710         }
711 }
712
713 /**
714  *      create_basic_memory_bitmaps - create bitmaps needed for marking page
715  *      frames that should not be saved and free page frames.  The pointers
716  *      forbidden_pages_map and free_pages_map are only modified if everything
717  *      goes well, because we don't want the bits to be used before both bitmaps
718  *      are set up.
719  */
720
721 int create_basic_memory_bitmaps(void)
722 {
723         struct memory_bitmap *bm1, *bm2;
724         int error = 0;
725
726         BUG_ON(forbidden_pages_map || free_pages_map);
727
728         bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
729         if (!bm1)
730                 return -ENOMEM;
731
732         error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
733         if (error)
734                 goto Free_first_object;
735
736         bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
737         if (!bm2)
738                 goto Free_first_bitmap;
739
740         error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
741         if (error)
742                 goto Free_second_object;
743
744         forbidden_pages_map = bm1;
745         free_pages_map = bm2;
746         mark_nosave_pages(forbidden_pages_map);
747
748         pr_debug("PM: Basic memory bitmaps created\n");
749
750         return 0;
751
752  Free_second_object:
753         kfree(bm2);
754  Free_first_bitmap:
755         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
756  Free_first_object:
757         kfree(bm1);
758         return -ENOMEM;
759 }
760
761 /**
762  *      free_basic_memory_bitmaps - free memory bitmaps allocated by
763  *      create_basic_memory_bitmaps().  The auxiliary pointers are necessary
764  *      so that the bitmaps themselves are not referred to while they are being
765  *      freed.
766  */
767
768 void free_basic_memory_bitmaps(void)
769 {
770         struct memory_bitmap *bm1, *bm2;
771
772         BUG_ON(!(forbidden_pages_map && free_pages_map));
773
774         bm1 = forbidden_pages_map;
775         bm2 = free_pages_map;
776         forbidden_pages_map = NULL;
777         free_pages_map = NULL;
778         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
779         kfree(bm1);
780         memory_bm_free(bm2, PG_UNSAFE_CLEAR);
781         kfree(bm2);
782
783         pr_debug("PM: Basic memory bitmaps freed\n");
784 }
785
786 /**
787  *      snapshot_additional_pages - estimate the number of additional pages
788  *      be needed for setting up the suspend image data structures for given
789  *      zone (usually the returned value is greater than the exact number)
790  */
791
792 unsigned int snapshot_additional_pages(struct zone *zone)
793 {
794         unsigned int res;
795
796         res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
797         res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
798         return 2 * res;
799 }
800
801 #ifdef CONFIG_HIGHMEM
802 /**
803  *      count_free_highmem_pages - compute the total number of free highmem
804  *      pages, system-wide.
805  */
806
807 static unsigned int count_free_highmem_pages(void)
808 {
809         struct zone *zone;
810         unsigned int cnt = 0;
811
812         for_each_populated_zone(zone)
813                 if (is_highmem(zone))
814                         cnt += zone_page_state(zone, NR_FREE_PAGES);
815
816         return cnt;
817 }
818
819 /**
820  *      saveable_highmem_page - Determine whether a highmem page should be
821  *      included in the suspend image.
822  *
823  *      We should save the page if it isn't Nosave or NosaveFree, or Reserved,
824  *      and it isn't a part of a free chunk of pages.
825  */
826 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
827 {
828         struct page *page;
829
830         if (!pfn_valid(pfn))
831                 return NULL;
832
833         page = pfn_to_page(pfn);
834         if (page_zone(page) != zone)
835                 return NULL;
836
837         BUG_ON(!PageHighMem(page));
838
839         if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
840             PageReserved(page))
841                 return NULL;
842
843         return page;
844 }
845
846 /**
847  *      count_highmem_pages - compute the total number of saveable highmem
848  *      pages.
849  */
850
851 static unsigned int count_highmem_pages(void)
852 {
853         struct zone *zone;
854         unsigned int n = 0;
855
856         for_each_zone(zone) {
857                 unsigned long pfn, max_zone_pfn;
858
859                 if (!is_highmem(zone))
860                         continue;
861
862                 mark_free_pages(zone);
863                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
864                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
865                         if (saveable_highmem_page(zone, pfn))
866                                 n++;
867         }
868         return n;
869 }
870 #else
871 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
872 {
873         return NULL;
874 }
875 #endif /* CONFIG_HIGHMEM */
876
877 /**
878  *      saveable_page - Determine whether a non-highmem page should be included
879  *      in the suspend image.
880  *
881  *      We should save the page if it isn't Nosave, and is not in the range
882  *      of pages statically defined as 'unsaveable', and it isn't a part of
883  *      a free chunk of pages.
884  */
885 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
886 {
887         struct page *page;
888
889         if (!pfn_valid(pfn))
890                 return NULL;
891
892         page = pfn_to_page(pfn);
893         if (page_zone(page) != zone)
894                 return NULL;
895
896         BUG_ON(PageHighMem(page));
897
898         if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
899                 return NULL;
900
901         if (PageReserved(page)
902             && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
903                 return NULL;
904
905         return page;
906 }
907
908 /**
909  *      count_data_pages - compute the total number of saveable non-highmem
910  *      pages.
911  */
912
913 static unsigned int count_data_pages(void)
914 {
915         struct zone *zone;
916         unsigned long pfn, max_zone_pfn;
917         unsigned int n = 0;
918
919         for_each_zone(zone) {
920                 if (is_highmem(zone))
921                         continue;
922
923                 mark_free_pages(zone);
924                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
925                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
926                         if (saveable_page(zone, pfn))
927                                 n++;
928         }
929         return n;
930 }
931
932 /* This is needed, because copy_page and memcpy are not usable for copying
933  * task structs.
934  */
935 static inline void do_copy_page(long *dst, long *src)
936 {
937         int n;
938
939         for (n = PAGE_SIZE / sizeof(long); n; n--)
940                 *dst++ = *src++;
941 }
942
943
944 /**
945  *      safe_copy_page - check if the page we are going to copy is marked as
946  *              present in the kernel page tables (this always is the case if
947  *              CONFIG_DEBUG_PAGEALLOC is not set and in that case
948  *              kernel_page_present() always returns 'true').
949  */
950 static void safe_copy_page(void *dst, struct page *s_page)
951 {
952         if (kernel_page_present(s_page)) {
953                 do_copy_page(dst, page_address(s_page));
954         } else {
955                 kernel_map_pages(s_page, 1, 1);
956                 do_copy_page(dst, page_address(s_page));
957                 kernel_map_pages(s_page, 1, 0);
958         }
959 }
960
961
962 #ifdef CONFIG_HIGHMEM
963 static inline struct page *
964 page_is_saveable(struct zone *zone, unsigned long pfn)
965 {
966         return is_highmem(zone) ?
967                 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
968 }
969
970 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
971 {
972         struct page *s_page, *d_page;
973         void *src, *dst;
974
975         s_page = pfn_to_page(src_pfn);
976         d_page = pfn_to_page(dst_pfn);
977         if (PageHighMem(s_page)) {
978                 src = kmap_atomic(s_page, KM_USER0);
979                 dst = kmap_atomic(d_page, KM_USER1);
980                 do_copy_page(dst, src);
981                 kunmap_atomic(src, KM_USER0);
982                 kunmap_atomic(dst, KM_USER1);
983         } else {
984                 if (PageHighMem(d_page)) {
985                         /* Page pointed to by src may contain some kernel
986                          * data modified by kmap_atomic()
987                          */
988                         safe_copy_page(buffer, s_page);
989                         dst = kmap_atomic(d_page, KM_USER0);
990                         memcpy(dst, buffer, PAGE_SIZE);
991                         kunmap_atomic(dst, KM_USER0);
992                 } else {
993                         safe_copy_page(page_address(d_page), s_page);
994                 }
995         }
996 }
997 #else
998 #define page_is_saveable(zone, pfn)     saveable_page(zone, pfn)
999
1000 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1001 {
1002         safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1003                                 pfn_to_page(src_pfn));
1004 }
1005 #endif /* CONFIG_HIGHMEM */
1006
1007 static void
1008 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1009 {
1010         struct zone *zone;
1011         unsigned long pfn;
1012
1013         for_each_zone(zone) {
1014                 unsigned long max_zone_pfn;
1015
1016                 mark_free_pages(zone);
1017                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1018                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1019                         if (page_is_saveable(zone, pfn))
1020                                 memory_bm_set_bit(orig_bm, pfn);
1021         }
1022         memory_bm_position_reset(orig_bm);
1023         memory_bm_position_reset(copy_bm);
1024         for(;;) {
1025                 pfn = memory_bm_next_pfn(orig_bm);
1026                 if (unlikely(pfn == BM_END_OF_MAP))
1027                         break;
1028                 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1029         }
1030 }
1031
1032 /* Total number of image pages */
1033 static unsigned int nr_copy_pages;
1034 /* Number of pages needed for saving the original pfns of the image pages */
1035 static unsigned int nr_meta_pages;
1036
1037 /**
1038  *      swsusp_free - free pages allocated for the suspend.
1039  *
1040  *      Suspend pages are alocated before the atomic copy is made, so we
1041  *      need to release them after the resume.
1042  */
1043
1044 void swsusp_free(void)
1045 {
1046         struct zone *zone;
1047         unsigned long pfn, max_zone_pfn;
1048
1049         for_each_zone(zone) {
1050                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1051                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1052                         if (pfn_valid(pfn)) {
1053                                 struct page *page = pfn_to_page(pfn);
1054
1055                                 if (swsusp_page_is_forbidden(page) &&
1056                                     swsusp_page_is_free(page)) {
1057                                         swsusp_unset_page_forbidden(page);
1058                                         swsusp_unset_page_free(page);
1059                                         __free_page(page);
1060                                 }
1061                         }
1062         }
1063         nr_copy_pages = 0;
1064         nr_meta_pages = 0;
1065         restore_pblist = NULL;
1066         buffer = NULL;
1067 }
1068
1069 /**
1070  *      swsusp_shrink_memory -  Try to free as much memory as needed
1071  *
1072  *      ... but do not OOM-kill anyone
1073  *
1074  *      Notice: all userland should be stopped before it is called, or
1075  *      livelock is possible.
1076  */
1077
1078 #define SHRINK_BITE     10000
1079 static inline unsigned long __shrink_memory(long tmp)
1080 {
1081         if (tmp > SHRINK_BITE)
1082                 tmp = SHRINK_BITE;
1083         return shrink_all_memory(tmp);
1084 }
1085
1086 int swsusp_shrink_memory(void)
1087 {
1088         long tmp;
1089         struct zone *zone;
1090         unsigned long pages = 0;
1091         unsigned int i = 0;
1092         char *p = "-\\|/";
1093         struct timeval start, stop;
1094
1095         printk(KERN_INFO "PM: Shrinking memory...  ");
1096         do_gettimeofday(&start);
1097         do {
1098                 long size, highmem_size;
1099
1100                 highmem_size = count_highmem_pages();
1101                 size = count_data_pages() + PAGES_FOR_IO + SPARE_PAGES;
1102                 tmp = size;
1103                 size += highmem_size;
1104                 for_each_populated_zone(zone) {
1105                         tmp += snapshot_additional_pages(zone);
1106                         if (is_highmem(zone)) {
1107                                 highmem_size -=
1108                                         zone_page_state(zone, NR_FREE_PAGES);
1109                         } else {
1110                                 tmp -= zone_page_state(zone, NR_FREE_PAGES);
1111                                 tmp += zone->lowmem_reserve[ZONE_NORMAL];
1112                         }
1113                 }
1114
1115                 if (highmem_size < 0)
1116                         highmem_size = 0;
1117
1118                 tmp += highmem_size;
1119                 if (tmp > 0) {
1120                         tmp = __shrink_memory(tmp);
1121                         if (!tmp)
1122                                 return -ENOMEM;
1123                         pages += tmp;
1124                 } else if (size > image_size / PAGE_SIZE) {
1125                         tmp = __shrink_memory(size - (image_size / PAGE_SIZE));
1126                         pages += tmp;
1127                 }
1128                 printk("\b%c", p[i++%4]);
1129         } while (tmp > 0);
1130         do_gettimeofday(&stop);
1131         printk("\bdone (%lu pages freed)\n", pages);
1132         swsusp_show_speed(&start, &stop, pages, "Freed");
1133
1134         return 0;
1135 }
1136
1137 #ifdef CONFIG_HIGHMEM
1138 /**
1139   *     count_pages_for_highmem - compute the number of non-highmem pages
1140   *     that will be necessary for creating copies of highmem pages.
1141   */
1142
1143 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1144 {
1145         unsigned int free_highmem = count_free_highmem_pages();
1146
1147         if (free_highmem >= nr_highmem)
1148                 nr_highmem = 0;
1149         else
1150                 nr_highmem -= free_highmem;
1151
1152         return nr_highmem;
1153 }
1154 #else
1155 static unsigned int
1156 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1157 #endif /* CONFIG_HIGHMEM */
1158
1159 /**
1160  *      enough_free_mem - Make sure we have enough free memory for the
1161  *      snapshot image.
1162  */
1163
1164 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1165 {
1166         struct zone *zone;
1167         unsigned int free = 0, meta = 0;
1168
1169         for_each_zone(zone) {
1170                 meta += snapshot_additional_pages(zone);
1171                 if (!is_highmem(zone))
1172                         free += zone_page_state(zone, NR_FREE_PAGES);
1173         }
1174
1175         nr_pages += count_pages_for_highmem(nr_highmem);
1176         pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n",
1177                 nr_pages, PAGES_FOR_IO, meta, free);
1178
1179         return free > nr_pages + PAGES_FOR_IO + meta;
1180 }
1181
1182 #ifdef CONFIG_HIGHMEM
1183 /**
1184  *      get_highmem_buffer - if there are some highmem pages in the suspend
1185  *      image, we may need the buffer to copy them and/or load their data.
1186  */
1187
1188 static inline int get_highmem_buffer(int safe_needed)
1189 {
1190         buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1191         return buffer ? 0 : -ENOMEM;
1192 }
1193
1194 /**
1195  *      alloc_highmem_image_pages - allocate some highmem pages for the image.
1196  *      Try to allocate as many pages as needed, but if the number of free
1197  *      highmem pages is lesser than that, allocate them all.
1198  */
1199
1200 static inline unsigned int
1201 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1202 {
1203         unsigned int to_alloc = count_free_highmem_pages();
1204
1205         if (to_alloc > nr_highmem)
1206                 to_alloc = nr_highmem;
1207
1208         nr_highmem -= to_alloc;
1209         while (to_alloc-- > 0) {
1210                 struct page *page;
1211
1212                 page = alloc_image_page(__GFP_HIGHMEM);
1213                 memory_bm_set_bit(bm, page_to_pfn(page));
1214         }
1215         return nr_highmem;
1216 }
1217 #else
1218 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1219
1220 static inline unsigned int
1221 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1222 #endif /* CONFIG_HIGHMEM */
1223
1224 /**
1225  *      swsusp_alloc - allocate memory for the suspend image
1226  *
1227  *      We first try to allocate as many highmem pages as there are
1228  *      saveable highmem pages in the system.  If that fails, we allocate
1229  *      non-highmem pages for the copies of the remaining highmem ones.
1230  *
1231  *      In this approach it is likely that the copies of highmem pages will
1232  *      also be located in the high memory, because of the way in which
1233  *      copy_data_pages() works.
1234  */
1235
1236 static int
1237 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1238                 unsigned int nr_pages, unsigned int nr_highmem)
1239 {
1240         int error;
1241
1242         error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1243         if (error)
1244                 goto Free;
1245
1246         error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1247         if (error)
1248                 goto Free;
1249
1250         if (nr_highmem > 0) {
1251                 error = get_highmem_buffer(PG_ANY);
1252                 if (error)
1253                         goto Free;
1254
1255                 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
1256         }
1257         while (nr_pages-- > 0) {
1258                 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1259
1260                 if (!page)
1261                         goto Free;
1262
1263                 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1264         }
1265         return 0;
1266
1267  Free:
1268         swsusp_free();
1269         return -ENOMEM;
1270 }
1271
1272 /* Memory bitmap used for marking saveable pages (during suspend) or the
1273  * suspend image pages (during resume)
1274  */
1275 static struct memory_bitmap orig_bm;
1276 /* Memory bitmap used on suspend for marking allocated pages that will contain
1277  * the copies of saveable pages.  During resume it is initially used for
1278  * marking the suspend image pages, but then its set bits are duplicated in
1279  * @orig_bm and it is released.  Next, on systems with high memory, it may be
1280  * used for marking "safe" highmem pages, but it has to be reinitialized for
1281  * this purpose.
1282  */
1283 static struct memory_bitmap copy_bm;
1284
1285 asmlinkage int swsusp_save(void)
1286 {
1287         unsigned int nr_pages, nr_highmem;
1288
1289         printk(KERN_INFO "PM: Creating hibernation image: \n");
1290
1291         drain_local_pages(NULL);
1292         nr_pages = count_data_pages();
1293         nr_highmem = count_highmem_pages();
1294         printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1295
1296         if (!enough_free_mem(nr_pages, nr_highmem)) {
1297                 printk(KERN_ERR "PM: Not enough free memory\n");
1298                 return -ENOMEM;
1299         }
1300
1301         if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1302                 printk(KERN_ERR "PM: Memory allocation failed\n");
1303                 return -ENOMEM;
1304         }
1305
1306         /* During allocating of suspend pagedir, new cold pages may appear.
1307          * Kill them.
1308          */
1309         drain_local_pages(NULL);
1310         copy_data_pages(&copy_bm, &orig_bm);
1311
1312         /*
1313          * End of critical section. From now on, we can write to memory,
1314          * but we should not touch disk. This specially means we must _not_
1315          * touch swap space! Except we must write out our image of course.
1316          */
1317
1318         nr_pages += nr_highmem;
1319         nr_copy_pages = nr_pages;
1320         nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1321
1322         printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1323                 nr_pages);
1324
1325         return 0;
1326 }
1327
1328 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1329 static int init_header_complete(struct swsusp_info *info)
1330 {
1331         memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1332         info->version_code = LINUX_VERSION_CODE;
1333         return 0;
1334 }
1335
1336 static char *check_image_kernel(struct swsusp_info *info)
1337 {
1338         if (info->version_code != LINUX_VERSION_CODE)
1339                 return "kernel version";
1340         if (strcmp(info->uts.sysname,init_utsname()->sysname))
1341                 return "system type";
1342         if (strcmp(info->uts.release,init_utsname()->release))
1343                 return "kernel release";
1344         if (strcmp(info->uts.version,init_utsname()->version))
1345                 return "version";
1346         if (strcmp(info->uts.machine,init_utsname()->machine))
1347                 return "machine";
1348         return NULL;
1349 }
1350 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1351
1352 unsigned long snapshot_get_image_size(void)
1353 {
1354         return nr_copy_pages + nr_meta_pages + 1;
1355 }
1356
1357 static int init_header(struct swsusp_info *info)
1358 {
1359         memset(info, 0, sizeof(struct swsusp_info));
1360         info->num_physpages = num_physpages;
1361         info->image_pages = nr_copy_pages;
1362         info->pages = snapshot_get_image_size();
1363         info->size = info->pages;
1364         info->size <<= PAGE_SHIFT;
1365         return init_header_complete(info);
1366 }
1367
1368 /**
1369  *      pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1370  *      are stored in the array @buf[] (1 page at a time)
1371  */
1372
1373 static inline void
1374 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1375 {
1376         int j;
1377
1378         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1379                 buf[j] = memory_bm_next_pfn(bm);
1380                 if (unlikely(buf[j] == BM_END_OF_MAP))
1381                         break;
1382         }
1383 }
1384
1385 /**
1386  *      snapshot_read_next - used for reading the system memory snapshot.
1387  *
1388  *      On the first call to it @handle should point to a zeroed
1389  *      snapshot_handle structure.  The structure gets updated and a pointer
1390  *      to it should be passed to this function every next time.
1391  *
1392  *      The @count parameter should contain the number of bytes the caller
1393  *      wants to read from the snapshot.  It must not be zero.
1394  *
1395  *      On success the function returns a positive number.  Then, the caller
1396  *      is allowed to read up to the returned number of bytes from the memory
1397  *      location computed by the data_of() macro.  The number returned
1398  *      may be smaller than @count, but this only happens if the read would
1399  *      cross a page boundary otherwise.
1400  *
1401  *      The function returns 0 to indicate the end of data stream condition,
1402  *      and a negative number is returned on error.  In such cases the
1403  *      structure pointed to by @handle is not updated and should not be used
1404  *      any more.
1405  */
1406
1407 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1408 {
1409         if (handle->cur > nr_meta_pages + nr_copy_pages)
1410                 return 0;
1411
1412         if (!buffer) {
1413                 /* This makes the buffer be freed by swsusp_free() */
1414                 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1415                 if (!buffer)
1416                         return -ENOMEM;
1417         }
1418         if (!handle->offset) {
1419                 int error;
1420
1421                 error = init_header((struct swsusp_info *)buffer);
1422                 if (error)
1423                         return error;
1424                 handle->buffer = buffer;
1425                 memory_bm_position_reset(&orig_bm);
1426                 memory_bm_position_reset(&copy_bm);
1427         }
1428         if (handle->prev < handle->cur) {
1429                 if (handle->cur <= nr_meta_pages) {
1430                         memset(buffer, 0, PAGE_SIZE);
1431                         pack_pfns(buffer, &orig_bm);
1432                 } else {
1433                         struct page *page;
1434
1435                         page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1436                         if (PageHighMem(page)) {
1437                                 /* Highmem pages are copied to the buffer,
1438                                  * because we can't return with a kmapped
1439                                  * highmem page (we may not be called again).
1440                                  */
1441                                 void *kaddr;
1442
1443                                 kaddr = kmap_atomic(page, KM_USER0);
1444                                 memcpy(buffer, kaddr, PAGE_SIZE);
1445                                 kunmap_atomic(kaddr, KM_USER0);
1446                                 handle->buffer = buffer;
1447                         } else {
1448                                 handle->buffer = page_address(page);
1449                         }
1450                 }
1451                 handle->prev = handle->cur;
1452         }
1453         handle->buf_offset = handle->cur_offset;
1454         if (handle->cur_offset + count >= PAGE_SIZE) {
1455                 count = PAGE_SIZE - handle->cur_offset;
1456                 handle->cur_offset = 0;
1457                 handle->cur++;
1458         } else {
1459                 handle->cur_offset += count;
1460         }
1461         handle->offset += count;
1462         return count;
1463 }
1464
1465 /**
1466  *      mark_unsafe_pages - mark the pages that cannot be used for storing
1467  *      the image during resume, because they conflict with the pages that
1468  *      had been used before suspend
1469  */
1470
1471 static int mark_unsafe_pages(struct memory_bitmap *bm)
1472 {
1473         struct zone *zone;
1474         unsigned long pfn, max_zone_pfn;
1475
1476         /* Clear page flags */
1477         for_each_zone(zone) {
1478                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1479                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1480                         if (pfn_valid(pfn))
1481                                 swsusp_unset_page_free(pfn_to_page(pfn));
1482         }
1483
1484         /* Mark pages that correspond to the "original" pfns as "unsafe" */
1485         memory_bm_position_reset(bm);
1486         do {
1487                 pfn = memory_bm_next_pfn(bm);
1488                 if (likely(pfn != BM_END_OF_MAP)) {
1489                         if (likely(pfn_valid(pfn)))
1490                                 swsusp_set_page_free(pfn_to_page(pfn));
1491                         else
1492                                 return -EFAULT;
1493                 }
1494         } while (pfn != BM_END_OF_MAP);
1495
1496         allocated_unsafe_pages = 0;
1497
1498         return 0;
1499 }
1500
1501 static void
1502 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1503 {
1504         unsigned long pfn;
1505
1506         memory_bm_position_reset(src);
1507         pfn = memory_bm_next_pfn(src);
1508         while (pfn != BM_END_OF_MAP) {
1509                 memory_bm_set_bit(dst, pfn);
1510                 pfn = memory_bm_next_pfn(src);
1511         }
1512 }
1513
1514 static int check_header(struct swsusp_info *info)
1515 {
1516         char *reason;
1517
1518         reason = check_image_kernel(info);
1519         if (!reason && info->num_physpages != num_physpages)
1520                 reason = "memory size";
1521         if (reason) {
1522                 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1523                 return -EPERM;
1524         }
1525         return 0;
1526 }
1527
1528 /**
1529  *      load header - check the image header and copy data from it
1530  */
1531
1532 static int
1533 load_header(struct swsusp_info *info)
1534 {
1535         int error;
1536
1537         restore_pblist = NULL;
1538         error = check_header(info);
1539         if (!error) {
1540                 nr_copy_pages = info->image_pages;
1541                 nr_meta_pages = info->pages - info->image_pages - 1;
1542         }
1543         return error;
1544 }
1545
1546 /**
1547  *      unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1548  *      the corresponding bit in the memory bitmap @bm
1549  */
1550 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1551 {
1552         int j;
1553
1554         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1555                 if (unlikely(buf[j] == BM_END_OF_MAP))
1556                         break;
1557
1558                 if (memory_bm_pfn_present(bm, buf[j]))
1559                         memory_bm_set_bit(bm, buf[j]);
1560                 else
1561                         return -EFAULT;
1562         }
1563
1564         return 0;
1565 }
1566
1567 /* List of "safe" pages that may be used to store data loaded from the suspend
1568  * image
1569  */
1570 static struct linked_page *safe_pages_list;
1571
1572 #ifdef CONFIG_HIGHMEM
1573 /* struct highmem_pbe is used for creating the list of highmem pages that
1574  * should be restored atomically during the resume from disk, because the page
1575  * frames they have occupied before the suspend are in use.
1576  */
1577 struct highmem_pbe {
1578         struct page *copy_page; /* data is here now */
1579         struct page *orig_page; /* data was here before the suspend */
1580         struct highmem_pbe *next;
1581 };
1582
1583 /* List of highmem PBEs needed for restoring the highmem pages that were
1584  * allocated before the suspend and included in the suspend image, but have
1585  * also been allocated by the "resume" kernel, so their contents cannot be
1586  * written directly to their "original" page frames.
1587  */
1588 static struct highmem_pbe *highmem_pblist;
1589
1590 /**
1591  *      count_highmem_image_pages - compute the number of highmem pages in the
1592  *      suspend image.  The bits in the memory bitmap @bm that correspond to the
1593  *      image pages are assumed to be set.
1594  */
1595
1596 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1597 {
1598         unsigned long pfn;
1599         unsigned int cnt = 0;
1600
1601         memory_bm_position_reset(bm);
1602         pfn = memory_bm_next_pfn(bm);
1603         while (pfn != BM_END_OF_MAP) {
1604                 if (PageHighMem(pfn_to_page(pfn)))
1605                         cnt++;
1606
1607                 pfn = memory_bm_next_pfn(bm);
1608         }
1609         return cnt;
1610 }
1611
1612 /**
1613  *      prepare_highmem_image - try to allocate as many highmem pages as
1614  *      there are highmem image pages (@nr_highmem_p points to the variable
1615  *      containing the number of highmem image pages).  The pages that are
1616  *      "safe" (ie. will not be overwritten when the suspend image is
1617  *      restored) have the corresponding bits set in @bm (it must be
1618  *      unitialized).
1619  *
1620  *      NOTE: This function should not be called if there are no highmem
1621  *      image pages.
1622  */
1623
1624 static unsigned int safe_highmem_pages;
1625
1626 static struct memory_bitmap *safe_highmem_bm;
1627
1628 static int
1629 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1630 {
1631         unsigned int to_alloc;
1632
1633         if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1634                 return -ENOMEM;
1635
1636         if (get_highmem_buffer(PG_SAFE))
1637                 return -ENOMEM;
1638
1639         to_alloc = count_free_highmem_pages();
1640         if (to_alloc > *nr_highmem_p)
1641                 to_alloc = *nr_highmem_p;
1642         else
1643                 *nr_highmem_p = to_alloc;
1644
1645         safe_highmem_pages = 0;
1646         while (to_alloc-- > 0) {
1647                 struct page *page;
1648
1649                 page = alloc_page(__GFP_HIGHMEM);
1650                 if (!swsusp_page_is_free(page)) {
1651                         /* The page is "safe", set its bit the bitmap */
1652                         memory_bm_set_bit(bm, page_to_pfn(page));
1653                         safe_highmem_pages++;
1654                 }
1655                 /* Mark the page as allocated */
1656                 swsusp_set_page_forbidden(page);
1657                 swsusp_set_page_free(page);
1658         }
1659         memory_bm_position_reset(bm);
1660         safe_highmem_bm = bm;
1661         return 0;
1662 }
1663
1664 /**
1665  *      get_highmem_page_buffer - for given highmem image page find the buffer
1666  *      that suspend_write_next() should set for its caller to write to.
1667  *
1668  *      If the page is to be saved to its "original" page frame or a copy of
1669  *      the page is to be made in the highmem, @buffer is returned.  Otherwise,
1670  *      the copy of the page is to be made in normal memory, so the address of
1671  *      the copy is returned.
1672  *
1673  *      If @buffer is returned, the caller of suspend_write_next() will write
1674  *      the page's contents to @buffer, so they will have to be copied to the
1675  *      right location on the next call to suspend_write_next() and it is done
1676  *      with the help of copy_last_highmem_page().  For this purpose, if
1677  *      @buffer is returned, @last_highmem page is set to the page to which
1678  *      the data will have to be copied from @buffer.
1679  */
1680
1681 static struct page *last_highmem_page;
1682
1683 static void *
1684 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1685 {
1686         struct highmem_pbe *pbe;
1687         void *kaddr;
1688
1689         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1690                 /* We have allocated the "original" page frame and we can
1691                  * use it directly to store the loaded page.
1692                  */
1693                 last_highmem_page = page;
1694                 return buffer;
1695         }
1696         /* The "original" page frame has not been allocated and we have to
1697          * use a "safe" page frame to store the loaded page.
1698          */
1699         pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1700         if (!pbe) {
1701                 swsusp_free();
1702                 return ERR_PTR(-ENOMEM);
1703         }
1704         pbe->orig_page = page;
1705         if (safe_highmem_pages > 0) {
1706                 struct page *tmp;
1707
1708                 /* Copy of the page will be stored in high memory */
1709                 kaddr = buffer;
1710                 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1711                 safe_highmem_pages--;
1712                 last_highmem_page = tmp;
1713                 pbe->copy_page = tmp;
1714         } else {
1715                 /* Copy of the page will be stored in normal memory */
1716                 kaddr = safe_pages_list;
1717                 safe_pages_list = safe_pages_list->next;
1718                 pbe->copy_page = virt_to_page(kaddr);
1719         }
1720         pbe->next = highmem_pblist;
1721         highmem_pblist = pbe;
1722         return kaddr;
1723 }
1724
1725 /**
1726  *      copy_last_highmem_page - copy the contents of a highmem image from
1727  *      @buffer, where the caller of snapshot_write_next() has place them,
1728  *      to the right location represented by @last_highmem_page .
1729  */
1730
1731 static void copy_last_highmem_page(void)
1732 {
1733         if (last_highmem_page) {
1734                 void *dst;
1735
1736                 dst = kmap_atomic(last_highmem_page, KM_USER0);
1737                 memcpy(dst, buffer, PAGE_SIZE);
1738                 kunmap_atomic(dst, KM_USER0);
1739                 last_highmem_page = NULL;
1740         }
1741 }
1742
1743 static inline int last_highmem_page_copied(void)
1744 {
1745         return !last_highmem_page;
1746 }
1747
1748 static inline void free_highmem_data(void)
1749 {
1750         if (safe_highmem_bm)
1751                 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1752
1753         if (buffer)
1754                 free_image_page(buffer, PG_UNSAFE_CLEAR);
1755 }
1756 #else
1757 static inline int get_safe_write_buffer(void) { return 0; }
1758
1759 static unsigned int
1760 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1761
1762 static inline int
1763 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1764 {
1765         return 0;
1766 }
1767
1768 static inline void *
1769 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1770 {
1771         return ERR_PTR(-EINVAL);
1772 }
1773
1774 static inline void copy_last_highmem_page(void) {}
1775 static inline int last_highmem_page_copied(void) { return 1; }
1776 static inline void free_highmem_data(void) {}
1777 #endif /* CONFIG_HIGHMEM */
1778
1779 /**
1780  *      prepare_image - use the memory bitmap @bm to mark the pages that will
1781  *      be overwritten in the process of restoring the system memory state
1782  *      from the suspend image ("unsafe" pages) and allocate memory for the
1783  *      image.
1784  *
1785  *      The idea is to allocate a new memory bitmap first and then allocate
1786  *      as many pages as needed for the image data, but not to assign these
1787  *      pages to specific tasks initially.  Instead, we just mark them as
1788  *      allocated and create a lists of "safe" pages that will be used
1789  *      later.  On systems with high memory a list of "safe" highmem pages is
1790  *      also created.
1791  */
1792
1793 #define PBES_PER_LINKED_PAGE    (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1794
1795 static int
1796 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1797 {
1798         unsigned int nr_pages, nr_highmem;
1799         struct linked_page *sp_list, *lp;
1800         int error;
1801
1802         /* If there is no highmem, the buffer will not be necessary */
1803         free_image_page(buffer, PG_UNSAFE_CLEAR);
1804         buffer = NULL;
1805
1806         nr_highmem = count_highmem_image_pages(bm);
1807         error = mark_unsafe_pages(bm);
1808         if (error)
1809                 goto Free;
1810
1811         error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1812         if (error)
1813                 goto Free;
1814
1815         duplicate_memory_bitmap(new_bm, bm);
1816         memory_bm_free(bm, PG_UNSAFE_KEEP);
1817         if (nr_highmem > 0) {
1818                 error = prepare_highmem_image(bm, &nr_highmem);
1819                 if (error)
1820                         goto Free;
1821         }
1822         /* Reserve some safe pages for potential later use.
1823          *
1824          * NOTE: This way we make sure there will be enough safe pages for the
1825          * chain_alloc() in get_buffer().  It is a bit wasteful, but
1826          * nr_copy_pages cannot be greater than 50% of the memory anyway.
1827          */
1828         sp_list = NULL;
1829         /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1830         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1831         nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1832         while (nr_pages > 0) {
1833                 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1834                 if (!lp) {
1835                         error = -ENOMEM;
1836                         goto Free;
1837                 }
1838                 lp->next = sp_list;
1839                 sp_list = lp;
1840                 nr_pages--;
1841         }
1842         /* Preallocate memory for the image */
1843         safe_pages_list = NULL;
1844         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1845         while (nr_pages > 0) {
1846                 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1847                 if (!lp) {
1848                         error = -ENOMEM;
1849                         goto Free;
1850                 }
1851                 if (!swsusp_page_is_free(virt_to_page(lp))) {
1852                         /* The page is "safe", add it to the list */
1853                         lp->next = safe_pages_list;
1854                         safe_pages_list = lp;
1855                 }
1856                 /* Mark the page as allocated */
1857                 swsusp_set_page_forbidden(virt_to_page(lp));
1858                 swsusp_set_page_free(virt_to_page(lp));
1859                 nr_pages--;
1860         }
1861         /* Free the reserved safe pages so that chain_alloc() can use them */
1862         while (sp_list) {
1863                 lp = sp_list->next;
1864                 free_image_page(sp_list, PG_UNSAFE_CLEAR);
1865                 sp_list = lp;
1866         }
1867         return 0;
1868
1869  Free:
1870         swsusp_free();
1871         return error;
1872 }
1873
1874 /**
1875  *      get_buffer - compute the address that snapshot_write_next() should
1876  *      set for its caller to write to.
1877  */
1878
1879 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1880 {
1881         struct pbe *pbe;
1882         struct page *page;
1883         unsigned long pfn = memory_bm_next_pfn(bm);
1884
1885         if (pfn == BM_END_OF_MAP)
1886                 return ERR_PTR(-EFAULT);
1887
1888         page = pfn_to_page(pfn);
1889         if (PageHighMem(page))
1890                 return get_highmem_page_buffer(page, ca);
1891
1892         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
1893                 /* We have allocated the "original" page frame and we can
1894                  * use it directly to store the loaded page.
1895                  */
1896                 return page_address(page);
1897
1898         /* The "original" page frame has not been allocated and we have to
1899          * use a "safe" page frame to store the loaded page.
1900          */
1901         pbe = chain_alloc(ca, sizeof(struct pbe));
1902         if (!pbe) {
1903                 swsusp_free();
1904                 return ERR_PTR(-ENOMEM);
1905         }
1906         pbe->orig_address = page_address(page);
1907         pbe->address = safe_pages_list;
1908         safe_pages_list = safe_pages_list->next;
1909         pbe->next = restore_pblist;
1910         restore_pblist = pbe;
1911         return pbe->address;
1912 }
1913
1914 /**
1915  *      snapshot_write_next - used for writing the system memory snapshot.
1916  *
1917  *      On the first call to it @handle should point to a zeroed
1918  *      snapshot_handle structure.  The structure gets updated and a pointer
1919  *      to it should be passed to this function every next time.
1920  *
1921  *      The @count parameter should contain the number of bytes the caller
1922  *      wants to write to the image.  It must not be zero.
1923  *
1924  *      On success the function returns a positive number.  Then, the caller
1925  *      is allowed to write up to the returned number of bytes to the memory
1926  *      location computed by the data_of() macro.  The number returned
1927  *      may be smaller than @count, but this only happens if the write would
1928  *      cross a page boundary otherwise.
1929  *
1930  *      The function returns 0 to indicate the "end of file" condition,
1931  *      and a negative number is returned on error.  In such cases the
1932  *      structure pointed to by @handle is not updated and should not be used
1933  *      any more.
1934  */
1935
1936 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1937 {
1938         static struct chain_allocator ca;
1939         int error = 0;
1940
1941         /* Check if we have already loaded the entire image */
1942         if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1943                 return 0;
1944
1945         if (handle->offset == 0) {
1946                 if (!buffer)
1947                         /* This makes the buffer be freed by swsusp_free() */
1948                         buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1949
1950                 if (!buffer)
1951                         return -ENOMEM;
1952
1953                 handle->buffer = buffer;
1954         }
1955         handle->sync_read = 1;
1956         if (handle->prev < handle->cur) {
1957                 if (handle->prev == 0) {
1958                         error = load_header(buffer);
1959                         if (error)
1960                                 return error;
1961
1962                         error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1963                         if (error)
1964                                 return error;
1965
1966                 } else if (handle->prev <= nr_meta_pages) {
1967                         error = unpack_orig_pfns(buffer, &copy_bm);
1968                         if (error)
1969                                 return error;
1970
1971                         if (handle->prev == nr_meta_pages) {
1972                                 error = prepare_image(&orig_bm, &copy_bm);
1973                                 if (error)
1974                                         return error;
1975
1976                                 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1977                                 memory_bm_position_reset(&orig_bm);
1978                                 restore_pblist = NULL;
1979                                 handle->buffer = get_buffer(&orig_bm, &ca);
1980                                 handle->sync_read = 0;
1981                                 if (IS_ERR(handle->buffer))
1982                                         return PTR_ERR(handle->buffer);
1983                         }
1984                 } else {
1985                         copy_last_highmem_page();
1986                         handle->buffer = get_buffer(&orig_bm, &ca);
1987                         if (IS_ERR(handle->buffer))
1988                                 return PTR_ERR(handle->buffer);
1989                         if (handle->buffer != buffer)
1990                                 handle->sync_read = 0;
1991                 }
1992                 handle->prev = handle->cur;
1993         }
1994         handle->buf_offset = handle->cur_offset;
1995         if (handle->cur_offset + count >= PAGE_SIZE) {
1996                 count = PAGE_SIZE - handle->cur_offset;
1997                 handle->cur_offset = 0;
1998                 handle->cur++;
1999         } else {
2000                 handle->cur_offset += count;
2001         }
2002         handle->offset += count;
2003         return count;
2004 }
2005
2006 /**
2007  *      snapshot_write_finalize - must be called after the last call to
2008  *      snapshot_write_next() in case the last page in the image happens
2009  *      to be a highmem page and its contents should be stored in the
2010  *      highmem.  Additionally, it releases the memory that will not be
2011  *      used any more.
2012  */
2013
2014 void snapshot_write_finalize(struct snapshot_handle *handle)
2015 {
2016         copy_last_highmem_page();
2017         /* Free only if we have loaded the image entirely */
2018         if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
2019                 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2020                 free_highmem_data();
2021         }
2022 }
2023
2024 int snapshot_image_loaded(struct snapshot_handle *handle)
2025 {
2026         return !(!nr_copy_pages || !last_highmem_page_copied() ||
2027                         handle->cur <= nr_meta_pages + nr_copy_pages);
2028 }
2029
2030 #ifdef CONFIG_HIGHMEM
2031 /* Assumes that @buf is ready and points to a "safe" page */
2032 static inline void
2033 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2034 {
2035         void *kaddr1, *kaddr2;
2036
2037         kaddr1 = kmap_atomic(p1, KM_USER0);
2038         kaddr2 = kmap_atomic(p2, KM_USER1);
2039         memcpy(buf, kaddr1, PAGE_SIZE);
2040         memcpy(kaddr1, kaddr2, PAGE_SIZE);
2041         memcpy(kaddr2, buf, PAGE_SIZE);
2042         kunmap_atomic(kaddr1, KM_USER0);
2043         kunmap_atomic(kaddr2, KM_USER1);
2044 }
2045
2046 /**
2047  *      restore_highmem - for each highmem page that was allocated before
2048  *      the suspend and included in the suspend image, and also has been
2049  *      allocated by the "resume" kernel swap its current (ie. "before
2050  *      resume") contents with the previous (ie. "before suspend") one.
2051  *
2052  *      If the resume eventually fails, we can call this function once
2053  *      again and restore the "before resume" highmem state.
2054  */
2055
2056 int restore_highmem(void)
2057 {
2058         struct highmem_pbe *pbe = highmem_pblist;
2059         void *buf;
2060
2061         if (!pbe)
2062                 return 0;
2063
2064         buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2065         if (!buf)
2066                 return -ENOMEM;
2067
2068         while (pbe) {
2069                 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2070                 pbe = pbe->next;
2071         }
2072         free_image_page(buf, PG_UNSAFE_CLEAR);
2073         return 0;
2074 }
2075 #endif /* CONFIG_HIGHMEM */