2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
44 #include "firmware_exports.h"
48 #define SGE_RX_SM_BUF_SIZE 1536
50 #define SGE_RX_COPY_THRES 256
51 #define SGE_RX_PULL_LEN 128
53 #define SGE_PG_RSVD SMP_CACHE_BYTES
55 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
56 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
59 #define FL0_PG_CHUNK_SIZE 2048
60 #define FL0_PG_ORDER 0
61 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
62 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
63 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
64 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
66 #define SGE_RX_DROP_THRES 16
67 #define RX_RECLAIM_PERIOD (HZ/4)
70 * Max number of Rx buffers we replenish at a time.
72 #define MAX_RX_REFILL 16U
74 * Period of the Tx buffer reclaim timer. This timer does not need to run
75 * frequently as Tx buffers are usually reclaimed by new Tx packets.
77 #define TX_RECLAIM_PERIOD (HZ / 4)
78 #define TX_RECLAIM_TIMER_CHUNK 64U
79 #define TX_RECLAIM_CHUNK 16U
81 /* WR size in bytes */
82 #define WR_LEN (WR_FLITS * 8)
85 * Types of Tx queues in each queue set. Order here matters, do not change.
87 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
89 /* Values for sge_txq.flags */
91 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
92 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
96 __be64 flit[TX_DESC_FLITS];
106 struct tx_sw_desc { /* SW state per Tx descriptor */
108 u8 eop; /* set if last descriptor for packet */
109 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
110 u8 fragidx; /* first page fragment associated with descriptor */
111 s8 sflit; /* start flit of first SGL entry in descriptor */
114 struct rx_sw_desc { /* SW state per Rx descriptor */
117 struct fl_pg_chunk pg_chunk;
119 DECLARE_PCI_UNMAP_ADDR(dma_addr);
122 struct rsp_desc { /* response queue descriptor */
123 struct rss_header rss_hdr;
131 * Holds unmapping information for Tx packets that need deferred unmapping.
132 * This structure lives at skb->head and must be allocated by callers.
134 struct deferred_unmap_info {
135 struct pci_dev *pdev;
136 dma_addr_t addr[MAX_SKB_FRAGS + 1];
140 * Maps a number of flits to the number of Tx descriptors that can hold them.
143 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
145 * HW allows up to 4 descriptors to be combined into a WR.
147 static u8 flit_desc_map[] = {
149 #if SGE_NUM_GENBITS == 1
150 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
151 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
152 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
153 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
154 #elif SGE_NUM_GENBITS == 2
155 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
156 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
157 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
158 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
160 # error "SGE_NUM_GENBITS must be 1 or 2"
164 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
166 return container_of(q, struct sge_qset, fl[qidx]);
169 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
171 return container_of(q, struct sge_qset, rspq);
174 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
176 return container_of(q, struct sge_qset, txq[qidx]);
180 * refill_rspq - replenish an SGE response queue
181 * @adapter: the adapter
182 * @q: the response queue to replenish
183 * @credits: how many new responses to make available
185 * Replenishes a response queue by making the supplied number of responses
188 static inline void refill_rspq(struct adapter *adapter,
189 const struct sge_rspq *q, unsigned int credits)
192 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
193 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
197 * need_skb_unmap - does the platform need unmapping of sk_buffs?
199 * Returns true if the platfrom needs sk_buff unmapping. The compiler
200 * optimizes away unecessary code if this returns true.
202 static inline int need_skb_unmap(void)
205 * This structure is used to tell if the platfrom needs buffer
206 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
209 DECLARE_PCI_UNMAP_ADDR(addr);
212 return sizeof(struct dummy) != 0;
216 * unmap_skb - unmap a packet main body and its page fragments
218 * @q: the Tx queue containing Tx descriptors for the packet
219 * @cidx: index of Tx descriptor
220 * @pdev: the PCI device
222 * Unmap the main body of an sk_buff and its page fragments, if any.
223 * Because of the fairly complicated structure of our SGLs and the desire
224 * to conserve space for metadata, the information necessary to unmap an
225 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
226 * descriptors (the physical addresses of the various data buffers), and
227 * the SW descriptor state (assorted indices). The send functions
228 * initialize the indices for the first packet descriptor so we can unmap
229 * the buffers held in the first Tx descriptor here, and we have enough
230 * information at this point to set the state for the next Tx descriptor.
232 * Note that it is possible to clean up the first descriptor of a packet
233 * before the send routines have written the next descriptors, but this
234 * race does not cause any problem. We just end up writing the unmapping
235 * info for the descriptor first.
237 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
238 unsigned int cidx, struct pci_dev *pdev)
240 const struct sg_ent *sgp;
241 struct tx_sw_desc *d = &q->sdesc[cidx];
242 int nfrags, frag_idx, curflit, j = d->addr_idx;
244 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
245 frag_idx = d->fragidx;
247 if (frag_idx == 0 && skb_headlen(skb)) {
248 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
249 skb_headlen(skb), PCI_DMA_TODEVICE);
253 curflit = d->sflit + 1 + j;
254 nfrags = skb_shinfo(skb)->nr_frags;
256 while (frag_idx < nfrags && curflit < WR_FLITS) {
257 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
258 skb_shinfo(skb)->frags[frag_idx].size,
269 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
270 d = cidx + 1 == q->size ? q->sdesc : d + 1;
271 d->fragidx = frag_idx;
273 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
278 * free_tx_desc - reclaims Tx descriptors and their buffers
279 * @adapter: the adapter
280 * @q: the Tx queue to reclaim descriptors from
281 * @n: the number of descriptors to reclaim
283 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
284 * Tx buffers. Called with the Tx queue lock held.
286 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
289 struct tx_sw_desc *d;
290 struct pci_dev *pdev = adapter->pdev;
291 unsigned int cidx = q->cidx;
293 const int need_unmap = need_skb_unmap() &&
294 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
298 if (d->skb) { /* an SGL is present */
300 unmap_skb(d->skb, q, cidx, pdev);
305 if (++cidx == q->size) {
314 * reclaim_completed_tx - reclaims completed Tx descriptors
315 * @adapter: the adapter
316 * @q: the Tx queue to reclaim completed descriptors from
317 * @chunk: maximum number of descriptors to reclaim
319 * Reclaims Tx descriptors that the SGE has indicated it has processed,
320 * and frees the associated buffers if possible. Called with the Tx
323 static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
327 unsigned int reclaim = q->processed - q->cleaned;
329 reclaim = min(chunk, reclaim);
331 free_tx_desc(adapter, q, reclaim);
332 q->cleaned += reclaim;
333 q->in_use -= reclaim;
335 return q->processed - q->cleaned;
339 * should_restart_tx - are there enough resources to restart a Tx queue?
342 * Checks if there are enough descriptors to restart a suspended Tx queue.
344 static inline int should_restart_tx(const struct sge_txq *q)
346 unsigned int r = q->processed - q->cleaned;
348 return q->in_use - r < (q->size >> 1);
351 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
352 struct rx_sw_desc *d)
354 if (q->use_pages && d->pg_chunk.page) {
355 (*d->pg_chunk.p_cnt)--;
356 if (!*d->pg_chunk.p_cnt)
358 pci_unmap_addr(&d->pg_chunk, mapping),
359 q->alloc_size, PCI_DMA_FROMDEVICE);
361 put_page(d->pg_chunk.page);
362 d->pg_chunk.page = NULL;
364 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
365 q->buf_size, PCI_DMA_FROMDEVICE);
372 * free_rx_bufs - free the Rx buffers on an SGE free list
373 * @pdev: the PCI device associated with the adapter
374 * @rxq: the SGE free list to clean up
376 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
377 * this queue should be stopped before calling this function.
379 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
381 unsigned int cidx = q->cidx;
383 while (q->credits--) {
384 struct rx_sw_desc *d = &q->sdesc[cidx];
387 clear_rx_desc(pdev, q, d);
388 if (++cidx == q->size)
392 if (q->pg_chunk.page) {
393 __free_pages(q->pg_chunk.page, q->order);
394 q->pg_chunk.page = NULL;
399 * add_one_rx_buf - add a packet buffer to a free-buffer list
400 * @va: buffer start VA
401 * @len: the buffer length
402 * @d: the HW Rx descriptor to write
403 * @sd: the SW Rx descriptor to write
404 * @gen: the generation bit value
405 * @pdev: the PCI device associated with the adapter
407 * Add a buffer of the given length to the supplied HW and SW Rx
410 static inline int add_one_rx_buf(void *va, unsigned int len,
411 struct rx_desc *d, struct rx_sw_desc *sd,
412 unsigned int gen, struct pci_dev *pdev)
416 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
417 if (unlikely(pci_dma_mapping_error(pdev, mapping)))
420 pci_unmap_addr_set(sd, dma_addr, mapping);
422 d->addr_lo = cpu_to_be32(mapping);
423 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
425 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
426 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
430 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
433 d->addr_lo = cpu_to_be32(mapping);
434 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
436 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
437 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
441 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
442 struct rx_sw_desc *sd, gfp_t gfp,
445 if (!q->pg_chunk.page) {
448 q->pg_chunk.page = alloc_pages(gfp, order);
449 if (unlikely(!q->pg_chunk.page))
451 q->pg_chunk.va = page_address(q->pg_chunk.page);
452 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
454 q->pg_chunk.offset = 0;
455 mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
456 0, q->alloc_size, PCI_DMA_FROMDEVICE);
457 pci_unmap_addr_set(&q->pg_chunk, mapping, mapping);
459 sd->pg_chunk = q->pg_chunk;
461 prefetch(sd->pg_chunk.p_cnt);
463 q->pg_chunk.offset += q->buf_size;
464 if (q->pg_chunk.offset == (PAGE_SIZE << order))
465 q->pg_chunk.page = NULL;
467 q->pg_chunk.va += q->buf_size;
468 get_page(q->pg_chunk.page);
471 if (sd->pg_chunk.offset == 0)
472 *sd->pg_chunk.p_cnt = 1;
474 *sd->pg_chunk.p_cnt += 1;
479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
481 if (q->pend_cred >= q->credits / 4) {
483 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
488 * refill_fl - refill an SGE free-buffer list
489 * @adapter: the adapter
490 * @q: the free-list to refill
491 * @n: the number of new buffers to allocate
492 * @gfp: the gfp flags for allocating new buffers
494 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
495 * allocated with the supplied gfp flags. The caller must assure that
496 * @n does not exceed the queue's capacity.
498 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
500 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
501 struct rx_desc *d = &q->desc[q->pidx];
502 unsigned int count = 0;
509 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
511 nomem: q->alloc_failed++;
514 mapping = pci_unmap_addr(&sd->pg_chunk, mapping) +
516 pci_unmap_addr_set(sd, dma_addr, mapping);
518 add_one_rx_chunk(mapping, d, q->gen);
519 pci_dma_sync_single_for_device(adap->pdev, mapping,
520 q->buf_size - SGE_PG_RSVD,
525 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
530 buf_start = skb->data;
531 err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
534 clear_rx_desc(adap->pdev, q, sd);
541 if (++q->pidx == q->size) {
551 q->pend_cred += count;
557 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
559 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
560 GFP_ATOMIC | __GFP_COMP);
564 * recycle_rx_buf - recycle a receive buffer
565 * @adapter: the adapter
566 * @q: the SGE free list
567 * @idx: index of buffer to recycle
569 * Recycles the specified buffer on the given free list by adding it at
570 * the next available slot on the list.
572 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
575 struct rx_desc *from = &q->desc[idx];
576 struct rx_desc *to = &q->desc[q->pidx];
578 q->sdesc[q->pidx] = q->sdesc[idx];
579 to->addr_lo = from->addr_lo; /* already big endian */
580 to->addr_hi = from->addr_hi; /* likewise */
582 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
583 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
585 if (++q->pidx == q->size) {
596 * alloc_ring - allocate resources for an SGE descriptor ring
597 * @pdev: the PCI device
598 * @nelem: the number of descriptors
599 * @elem_size: the size of each descriptor
600 * @sw_size: the size of the SW state associated with each ring element
601 * @phys: the physical address of the allocated ring
602 * @metadata: address of the array holding the SW state for the ring
604 * Allocates resources for an SGE descriptor ring, such as Tx queues,
605 * free buffer lists, or response queues. Each SGE ring requires
606 * space for its HW descriptors plus, optionally, space for the SW state
607 * associated with each HW entry (the metadata). The function returns
608 * three values: the virtual address for the HW ring (the return value
609 * of the function), the physical address of the HW ring, and the address
612 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
613 size_t sw_size, dma_addr_t * phys, void *metadata)
615 size_t len = nelem * elem_size;
617 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
621 if (sw_size && metadata) {
622 s = kcalloc(nelem, sw_size, GFP_KERNEL);
625 dma_free_coherent(&pdev->dev, len, p, *phys);
628 *(void **)metadata = s;
635 * t3_reset_qset - reset a sge qset
638 * Reset the qset structure.
639 * the NAPI structure is preserved in the event of
640 * the qset's reincarnation, for example during EEH recovery.
642 static void t3_reset_qset(struct sge_qset *q)
645 !(q->adap->flags & NAPI_INIT)) {
646 memset(q, 0, sizeof(*q));
651 memset(&q->rspq, 0, sizeof(q->rspq));
652 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
653 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
655 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
656 q->rx_reclaim_timer.function = NULL;
657 q->lro_frag_tbl.nr_frags = q->lro_frag_tbl.len = 0;
662 * free_qset - free the resources of an SGE queue set
663 * @adapter: the adapter owning the queue set
666 * Release the HW and SW resources associated with an SGE queue set, such
667 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
668 * queue set must be quiesced prior to calling this.
670 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
673 struct pci_dev *pdev = adapter->pdev;
675 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
677 spin_lock_irq(&adapter->sge.reg_lock);
678 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
679 spin_unlock_irq(&adapter->sge.reg_lock);
680 free_rx_bufs(pdev, &q->fl[i]);
681 kfree(q->fl[i].sdesc);
682 dma_free_coherent(&pdev->dev,
684 sizeof(struct rx_desc), q->fl[i].desc,
688 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
689 if (q->txq[i].desc) {
690 spin_lock_irq(&adapter->sge.reg_lock);
691 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
692 spin_unlock_irq(&adapter->sge.reg_lock);
693 if (q->txq[i].sdesc) {
694 free_tx_desc(adapter, &q->txq[i],
696 kfree(q->txq[i].sdesc);
698 dma_free_coherent(&pdev->dev,
700 sizeof(struct tx_desc),
701 q->txq[i].desc, q->txq[i].phys_addr);
702 __skb_queue_purge(&q->txq[i].sendq);
706 spin_lock_irq(&adapter->sge.reg_lock);
707 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
708 spin_unlock_irq(&adapter->sge.reg_lock);
709 dma_free_coherent(&pdev->dev,
710 q->rspq.size * sizeof(struct rsp_desc),
711 q->rspq.desc, q->rspq.phys_addr);
718 * init_qset_cntxt - initialize an SGE queue set context info
720 * @id: the queue set id
722 * Initializes the TIDs and context ids for the queues of a queue set.
724 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
726 qs->rspq.cntxt_id = id;
727 qs->fl[0].cntxt_id = 2 * id;
728 qs->fl[1].cntxt_id = 2 * id + 1;
729 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
730 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
731 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
732 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
733 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
737 * sgl_len - calculates the size of an SGL of the given capacity
738 * @n: the number of SGL entries
740 * Calculates the number of flits needed for a scatter/gather list that
741 * can hold the given number of entries.
743 static inline unsigned int sgl_len(unsigned int n)
745 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
746 return (3 * n) / 2 + (n & 1);
750 * flits_to_desc - returns the num of Tx descriptors for the given flits
751 * @n: the number of flits
753 * Calculates the number of Tx descriptors needed for the supplied number
756 static inline unsigned int flits_to_desc(unsigned int n)
758 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
759 return flit_desc_map[n];
763 * get_packet - return the next ingress packet buffer from a free list
764 * @adap: the adapter that received the packet
765 * @fl: the SGE free list holding the packet
766 * @len: the packet length including any SGE padding
767 * @drop_thres: # of remaining buffers before we start dropping packets
769 * Get the next packet from a free list and complete setup of the
770 * sk_buff. If the packet is small we make a copy and recycle the
771 * original buffer, otherwise we use the original buffer itself. If a
772 * positive drop threshold is supplied packets are dropped and their
773 * buffers recycled if (a) the number of remaining buffers is under the
774 * threshold and the packet is too big to copy, or (b) the packet should
775 * be copied but there is no memory for the copy.
777 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
778 unsigned int len, unsigned int drop_thres)
780 struct sk_buff *skb = NULL;
781 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
783 prefetch(sd->skb->data);
786 if (len <= SGE_RX_COPY_THRES) {
787 skb = alloc_skb(len, GFP_ATOMIC);
788 if (likely(skb != NULL)) {
790 pci_dma_sync_single_for_cpu(adap->pdev,
791 pci_unmap_addr(sd, dma_addr), len,
793 memcpy(skb->data, sd->skb->data, len);
794 pci_dma_sync_single_for_device(adap->pdev,
795 pci_unmap_addr(sd, dma_addr), len,
797 } else if (!drop_thres)
800 recycle_rx_buf(adap, fl, fl->cidx);
804 if (unlikely(fl->credits < drop_thres) &&
805 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
806 GFP_ATOMIC | __GFP_COMP) == 0)
810 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
811 fl->buf_size, PCI_DMA_FROMDEVICE);
814 __refill_fl(adap, fl);
819 * get_packet_pg - return the next ingress packet buffer from a free list
820 * @adap: the adapter that received the packet
821 * @fl: the SGE free list holding the packet
822 * @len: the packet length including any SGE padding
823 * @drop_thres: # of remaining buffers before we start dropping packets
825 * Get the next packet from a free list populated with page chunks.
826 * If the packet is small we make a copy and recycle the original buffer,
827 * otherwise we attach the original buffer as a page fragment to a fresh
828 * sk_buff. If a positive drop threshold is supplied packets are dropped
829 * and their buffers recycled if (a) the number of remaining buffers is
830 * under the threshold and the packet is too big to copy, or (b) there's
833 * Note: this function is similar to @get_packet but deals with Rx buffers
834 * that are page chunks rather than sk_buffs.
836 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
837 struct sge_rspq *q, unsigned int len,
838 unsigned int drop_thres)
840 struct sk_buff *newskb, *skb;
841 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
843 dma_addr_t dma_addr = pci_unmap_addr(sd, dma_addr);
845 newskb = skb = q->pg_skb;
846 if (!skb && (len <= SGE_RX_COPY_THRES)) {
847 newskb = alloc_skb(len, GFP_ATOMIC);
848 if (likely(newskb != NULL)) {
849 __skb_put(newskb, len);
850 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
852 memcpy(newskb->data, sd->pg_chunk.va, len);
853 pci_dma_sync_single_for_device(adap->pdev, dma_addr,
856 } else if (!drop_thres)
860 recycle_rx_buf(adap, fl, fl->cidx);
865 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
868 prefetch(sd->pg_chunk.p_cnt);
871 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
873 if (unlikely(!newskb)) {
879 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
881 (*sd->pg_chunk.p_cnt)--;
882 if (!*sd->pg_chunk.p_cnt)
883 pci_unmap_page(adap->pdev,
884 pci_unmap_addr(&sd->pg_chunk, mapping),
888 __skb_put(newskb, SGE_RX_PULL_LEN);
889 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
890 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
891 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
892 len - SGE_RX_PULL_LEN);
894 newskb->data_len = len - SGE_RX_PULL_LEN;
895 newskb->truesize += newskb->data_len;
897 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
899 sd->pg_chunk.offset, len);
901 newskb->data_len += len;
902 newskb->truesize += len;
907 * We do not refill FLs here, we let the caller do it to overlap a
914 * get_imm_packet - return the next ingress packet buffer from a response
915 * @resp: the response descriptor containing the packet data
917 * Return a packet containing the immediate data of the given response.
919 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
921 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
924 __skb_put(skb, IMMED_PKT_SIZE);
925 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
931 * calc_tx_descs - calculate the number of Tx descriptors for a packet
934 * Returns the number of Tx descriptors needed for the given Ethernet
935 * packet. Ethernet packets require addition of WR and CPL headers.
937 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
941 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
944 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
945 if (skb_shinfo(skb)->gso_size)
947 return flits_to_desc(flits);
951 * make_sgl - populate a scatter/gather list for a packet
953 * @sgp: the SGL to populate
954 * @start: start address of skb main body data to include in the SGL
955 * @len: length of skb main body data to include in the SGL
956 * @pdev: the PCI device
958 * Generates a scatter/gather list for the buffers that make up a packet
959 * and returns the SGL size in 8-byte words. The caller must size the SGL
962 static inline unsigned int make_sgl(const struct sk_buff *skb,
963 struct sg_ent *sgp, unsigned char *start,
964 unsigned int len, struct pci_dev *pdev)
967 unsigned int i, j = 0, nfrags;
970 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
971 sgp->len[0] = cpu_to_be32(len);
972 sgp->addr[0] = cpu_to_be64(mapping);
976 nfrags = skb_shinfo(skb)->nr_frags;
977 for (i = 0; i < nfrags; i++) {
978 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
980 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
981 frag->size, PCI_DMA_TODEVICE);
982 sgp->len[j] = cpu_to_be32(frag->size);
983 sgp->addr[j] = cpu_to_be64(mapping);
990 return ((nfrags + (len != 0)) * 3) / 2 + j;
994 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
998 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
999 * where the HW is going to sleep just after we checked, however,
1000 * then the interrupt handler will detect the outstanding TX packet
1001 * and ring the doorbell for us.
1003 * When GTS is disabled we unconditionally ring the doorbell.
1005 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1008 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1009 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1010 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1011 t3_write_reg(adap, A_SG_KDOORBELL,
1012 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1015 wmb(); /* write descriptors before telling HW */
1016 t3_write_reg(adap, A_SG_KDOORBELL,
1017 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1021 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1023 #if SGE_NUM_GENBITS == 2
1024 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1029 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
1030 * @ndesc: number of Tx descriptors spanned by the SGL
1031 * @skb: the packet corresponding to the WR
1032 * @d: first Tx descriptor to be written
1033 * @pidx: index of above descriptors
1034 * @q: the SGE Tx queue
1036 * @flits: number of flits to the start of the SGL in the first descriptor
1037 * @sgl_flits: the SGL size in flits
1038 * @gen: the Tx descriptor generation
1039 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
1040 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
1042 * Write a work request header and an associated SGL. If the SGL is
1043 * small enough to fit into one Tx descriptor it has already been written
1044 * and we just need to write the WR header. Otherwise we distribute the
1045 * SGL across the number of descriptors it spans.
1047 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1048 struct tx_desc *d, unsigned int pidx,
1049 const struct sge_txq *q,
1050 const struct sg_ent *sgl,
1051 unsigned int flits, unsigned int sgl_flits,
1052 unsigned int gen, __be32 wr_hi,
1055 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1056 struct tx_sw_desc *sd = &q->sdesc[pidx];
1059 if (need_skb_unmap()) {
1065 if (likely(ndesc == 1)) {
1067 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1068 V_WR_SGLSFLT(flits)) | wr_hi;
1070 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1071 V_WR_GEN(gen)) | wr_lo;
1074 unsigned int ogen = gen;
1075 const u64 *fp = (const u64 *)sgl;
1076 struct work_request_hdr *wp = wrp;
1078 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1079 V_WR_SGLSFLT(flits)) | wr_hi;
1082 unsigned int avail = WR_FLITS - flits;
1084 if (avail > sgl_flits)
1086 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1096 if (++pidx == q->size) {
1104 wrp = (struct work_request_hdr *)d;
1105 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1106 V_WR_SGLSFLT(1)) | wr_hi;
1107 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1109 V_WR_GEN(gen)) | wr_lo;
1114 wrp->wr_hi |= htonl(F_WR_EOP);
1116 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1117 wr_gen2((struct tx_desc *)wp, ogen);
1118 WARN_ON(ndesc != 0);
1123 * write_tx_pkt_wr - write a TX_PKT work request
1124 * @adap: the adapter
1125 * @skb: the packet to send
1126 * @pi: the egress interface
1127 * @pidx: index of the first Tx descriptor to write
1128 * @gen: the generation value to use
1130 * @ndesc: number of descriptors the packet will occupy
1131 * @compl: the value of the COMPL bit to use
1133 * Generate a TX_PKT work request to send the supplied packet.
1135 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1136 const struct port_info *pi,
1137 unsigned int pidx, unsigned int gen,
1138 struct sge_txq *q, unsigned int ndesc,
1141 unsigned int flits, sgl_flits, cntrl, tso_info;
1142 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1143 struct tx_desc *d = &q->desc[pidx];
1144 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1146 cpl->len = htonl(skb->len);
1147 cntrl = V_TXPKT_INTF(pi->port_id);
1149 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1150 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1152 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1155 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1158 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1159 hdr->cntrl = htonl(cntrl);
1160 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1161 CPL_ETH_II : CPL_ETH_II_VLAN;
1162 tso_info |= V_LSO_ETH_TYPE(eth_type) |
1163 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1164 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1165 hdr->lso_info = htonl(tso_info);
1168 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1169 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1170 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1171 cpl->cntrl = htonl(cntrl);
1173 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1174 q->sdesc[pidx].skb = NULL;
1176 skb_copy_from_linear_data(skb, &d->flit[2],
1179 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1181 flits = (skb->len + 7) / 8 + 2;
1182 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1183 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1184 | F_WR_SOP | F_WR_EOP | compl);
1186 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1187 V_WR_TID(q->token));
1196 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1197 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
1199 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1200 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1201 htonl(V_WR_TID(q->token)));
1204 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1205 struct sge_qset *qs, struct sge_txq *q)
1207 netif_tx_stop_queue(txq);
1208 set_bit(TXQ_ETH, &qs->txq_stopped);
1213 * eth_xmit - add a packet to the Ethernet Tx queue
1215 * @dev: the egress net device
1217 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1219 int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1222 unsigned int ndesc, pidx, credits, gen, compl;
1223 const struct port_info *pi = netdev_priv(dev);
1224 struct adapter *adap = pi->adapter;
1225 struct netdev_queue *txq;
1226 struct sge_qset *qs;
1230 * The chip min packet length is 9 octets but play safe and reject
1231 * anything shorter than an Ethernet header.
1233 if (unlikely(skb->len < ETH_HLEN)) {
1235 return NETDEV_TX_OK;
1238 qidx = skb_get_queue_mapping(skb);
1240 q = &qs->txq[TXQ_ETH];
1241 txq = netdev_get_tx_queue(dev, qidx);
1243 spin_lock(&q->lock);
1244 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1246 credits = q->size - q->in_use;
1247 ndesc = calc_tx_descs(skb);
1249 if (unlikely(credits < ndesc)) {
1250 t3_stop_tx_queue(txq, qs, q);
1251 dev_err(&adap->pdev->dev,
1252 "%s: Tx ring %u full while queue awake!\n",
1253 dev->name, q->cntxt_id & 7);
1254 spin_unlock(&q->lock);
1255 return NETDEV_TX_BUSY;
1259 if (unlikely(credits - ndesc < q->stop_thres)) {
1260 t3_stop_tx_queue(txq, qs, q);
1262 if (should_restart_tx(q) &&
1263 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1265 netif_tx_wake_queue(txq);
1270 q->unacked += ndesc;
1271 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1275 if (q->pidx >= q->size) {
1280 /* update port statistics */
1281 if (skb->ip_summed == CHECKSUM_COMPLETE)
1282 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1283 if (skb_shinfo(skb)->gso_size)
1284 qs->port_stats[SGE_PSTAT_TSO]++;
1285 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1286 qs->port_stats[SGE_PSTAT_VLANINS]++;
1288 dev->trans_start = jiffies;
1289 spin_unlock(&q->lock);
1292 * We do not use Tx completion interrupts to free DMAd Tx packets.
1293 * This is good for performamce but means that we rely on new Tx
1294 * packets arriving to run the destructors of completed packets,
1295 * which open up space in their sockets' send queues. Sometimes
1296 * we do not get such new packets causing Tx to stall. A single
1297 * UDP transmitter is a good example of this situation. We have
1298 * a clean up timer that periodically reclaims completed packets
1299 * but it doesn't run often enough (nor do we want it to) to prevent
1300 * lengthy stalls. A solution to this problem is to run the
1301 * destructor early, after the packet is queued but before it's DMAd.
1302 * A cons is that we lie to socket memory accounting, but the amount
1303 * of extra memory is reasonable (limited by the number of Tx
1304 * descriptors), the packets do actually get freed quickly by new
1305 * packets almost always, and for protocols like TCP that wait for
1306 * acks to really free up the data the extra memory is even less.
1307 * On the positive side we run the destructors on the sending CPU
1308 * rather than on a potentially different completing CPU, usually a
1309 * good thing. We also run them without holding our Tx queue lock,
1310 * unlike what reclaim_completed_tx() would otherwise do.
1312 * Run the destructor before telling the DMA engine about the packet
1313 * to make sure it doesn't complete and get freed prematurely.
1315 if (likely(!skb_shared(skb)))
1318 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1319 check_ring_tx_db(adap, q);
1320 return NETDEV_TX_OK;
1324 * write_imm - write a packet into a Tx descriptor as immediate data
1325 * @d: the Tx descriptor to write
1327 * @len: the length of packet data to write as immediate data
1328 * @gen: the generation bit value to write
1330 * Writes a packet as immediate data into a Tx descriptor. The packet
1331 * contains a work request at its beginning. We must write the packet
1332 * carefully so the SGE doesn't read it accidentally before it's written
1335 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1336 unsigned int len, unsigned int gen)
1338 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1339 struct work_request_hdr *to = (struct work_request_hdr *)d;
1341 if (likely(!skb->data_len))
1342 memcpy(&to[1], &from[1], len - sizeof(*from));
1344 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1346 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1347 V_WR_BCNTLFLT(len & 7));
1349 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1350 V_WR_LEN((len + 7) / 8));
1356 * check_desc_avail - check descriptor availability on a send queue
1357 * @adap: the adapter
1358 * @q: the send queue
1359 * @skb: the packet needing the descriptors
1360 * @ndesc: the number of Tx descriptors needed
1361 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1363 * Checks if the requested number of Tx descriptors is available on an
1364 * SGE send queue. If the queue is already suspended or not enough
1365 * descriptors are available the packet is queued for later transmission.
1366 * Must be called with the Tx queue locked.
1368 * Returns 0 if enough descriptors are available, 1 if there aren't
1369 * enough descriptors and the packet has been queued, and 2 if the caller
1370 * needs to retry because there weren't enough descriptors at the
1371 * beginning of the call but some freed up in the mean time.
1373 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1374 struct sk_buff *skb, unsigned int ndesc,
1377 if (unlikely(!skb_queue_empty(&q->sendq))) {
1378 addq_exit:__skb_queue_tail(&q->sendq, skb);
1381 if (unlikely(q->size - q->in_use < ndesc)) {
1382 struct sge_qset *qs = txq_to_qset(q, qid);
1384 set_bit(qid, &qs->txq_stopped);
1385 smp_mb__after_clear_bit();
1387 if (should_restart_tx(q) &&
1388 test_and_clear_bit(qid, &qs->txq_stopped))
1398 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1399 * @q: the SGE control Tx queue
1401 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1402 * that send only immediate data (presently just the control queues) and
1403 * thus do not have any sk_buffs to release.
1405 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1407 unsigned int reclaim = q->processed - q->cleaned;
1409 q->in_use -= reclaim;
1410 q->cleaned += reclaim;
1413 static inline int immediate(const struct sk_buff *skb)
1415 return skb->len <= WR_LEN;
1419 * ctrl_xmit - send a packet through an SGE control Tx queue
1420 * @adap: the adapter
1421 * @q: the control queue
1424 * Send a packet through an SGE control Tx queue. Packets sent through
1425 * a control queue must fit entirely as immediate data in a single Tx
1426 * descriptor and have no page fragments.
1428 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1429 struct sk_buff *skb)
1432 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1434 if (unlikely(!immediate(skb))) {
1437 return NET_XMIT_SUCCESS;
1440 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1441 wrp->wr_lo = htonl(V_WR_TID(q->token));
1443 spin_lock(&q->lock);
1444 again:reclaim_completed_tx_imm(q);
1446 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1447 if (unlikely(ret)) {
1449 spin_unlock(&q->lock);
1455 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1458 if (++q->pidx >= q->size) {
1462 spin_unlock(&q->lock);
1464 t3_write_reg(adap, A_SG_KDOORBELL,
1465 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1466 return NET_XMIT_SUCCESS;
1470 * restart_ctrlq - restart a suspended control queue
1471 * @qs: the queue set cotaining the control queue
1473 * Resumes transmission on a suspended Tx control queue.
1475 static void restart_ctrlq(unsigned long data)
1477 struct sk_buff *skb;
1478 struct sge_qset *qs = (struct sge_qset *)data;
1479 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1481 spin_lock(&q->lock);
1482 again:reclaim_completed_tx_imm(q);
1484 while (q->in_use < q->size &&
1485 (skb = __skb_dequeue(&q->sendq)) != NULL) {
1487 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1489 if (++q->pidx >= q->size) {
1496 if (!skb_queue_empty(&q->sendq)) {
1497 set_bit(TXQ_CTRL, &qs->txq_stopped);
1498 smp_mb__after_clear_bit();
1500 if (should_restart_tx(q) &&
1501 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1506 spin_unlock(&q->lock);
1508 t3_write_reg(qs->adap, A_SG_KDOORBELL,
1509 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1513 * Send a management message through control queue 0
1515 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1519 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1526 * deferred_unmap_destructor - unmap a packet when it is freed
1529 * This is the packet destructor used for Tx packets that need to remain
1530 * mapped until they are freed rather than until their Tx descriptors are
1533 static void deferred_unmap_destructor(struct sk_buff *skb)
1536 const dma_addr_t *p;
1537 const struct skb_shared_info *si;
1538 const struct deferred_unmap_info *dui;
1540 dui = (struct deferred_unmap_info *)skb->head;
1543 if (skb->tail - skb->transport_header)
1544 pci_unmap_single(dui->pdev, *p++,
1545 skb->tail - skb->transport_header,
1548 si = skb_shinfo(skb);
1549 for (i = 0; i < si->nr_frags; i++)
1550 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1554 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1555 const struct sg_ent *sgl, int sgl_flits)
1558 struct deferred_unmap_info *dui;
1560 dui = (struct deferred_unmap_info *)skb->head;
1562 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1563 *p++ = be64_to_cpu(sgl->addr[0]);
1564 *p++ = be64_to_cpu(sgl->addr[1]);
1567 *p = be64_to_cpu(sgl->addr[0]);
1571 * write_ofld_wr - write an offload work request
1572 * @adap: the adapter
1573 * @skb: the packet to send
1575 * @pidx: index of the first Tx descriptor to write
1576 * @gen: the generation value to use
1577 * @ndesc: number of descriptors the packet will occupy
1579 * Write an offload work request to send the supplied packet. The packet
1580 * data already carry the work request with most fields populated.
1582 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1583 struct sge_txq *q, unsigned int pidx,
1584 unsigned int gen, unsigned int ndesc)
1586 unsigned int sgl_flits, flits;
1587 struct work_request_hdr *from;
1588 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1589 struct tx_desc *d = &q->desc[pidx];
1591 if (immediate(skb)) {
1592 q->sdesc[pidx].skb = NULL;
1593 write_imm(d, skb, skb->len, gen);
1597 /* Only TX_DATA builds SGLs */
1599 from = (struct work_request_hdr *)skb->data;
1600 memcpy(&d->flit[1], &from[1],
1601 skb_transport_offset(skb) - sizeof(*from));
1603 flits = skb_transport_offset(skb) / 8;
1604 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1605 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
1606 skb->tail - skb->transport_header,
1608 if (need_skb_unmap()) {
1609 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1610 skb->destructor = deferred_unmap_destructor;
1613 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1614 gen, from->wr_hi, from->wr_lo);
1618 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1621 * Returns the number of Tx descriptors needed for the given offload
1622 * packet. These packets are already fully constructed.
1624 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1626 unsigned int flits, cnt;
1628 if (skb->len <= WR_LEN)
1629 return 1; /* packet fits as immediate data */
1631 flits = skb_transport_offset(skb) / 8; /* headers */
1632 cnt = skb_shinfo(skb)->nr_frags;
1633 if (skb->tail != skb->transport_header)
1635 return flits_to_desc(flits + sgl_len(cnt));
1639 * ofld_xmit - send a packet through an offload queue
1640 * @adap: the adapter
1641 * @q: the Tx offload queue
1644 * Send an offload packet through an SGE offload queue.
1646 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1647 struct sk_buff *skb)
1650 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1652 spin_lock(&q->lock);
1653 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1655 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1656 if (unlikely(ret)) {
1658 skb->priority = ndesc; /* save for restart */
1659 spin_unlock(&q->lock);
1669 if (q->pidx >= q->size) {
1673 spin_unlock(&q->lock);
1675 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1676 check_ring_tx_db(adap, q);
1677 return NET_XMIT_SUCCESS;
1681 * restart_offloadq - restart a suspended offload queue
1682 * @qs: the queue set cotaining the offload queue
1684 * Resumes transmission on a suspended Tx offload queue.
1686 static void restart_offloadq(unsigned long data)
1688 struct sk_buff *skb;
1689 struct sge_qset *qs = (struct sge_qset *)data;
1690 struct sge_txq *q = &qs->txq[TXQ_OFLD];
1691 const struct port_info *pi = netdev_priv(qs->netdev);
1692 struct adapter *adap = pi->adapter;
1694 spin_lock(&q->lock);
1695 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1697 while ((skb = skb_peek(&q->sendq)) != NULL) {
1698 unsigned int gen, pidx;
1699 unsigned int ndesc = skb->priority;
1701 if (unlikely(q->size - q->in_use < ndesc)) {
1702 set_bit(TXQ_OFLD, &qs->txq_stopped);
1703 smp_mb__after_clear_bit();
1705 if (should_restart_tx(q) &&
1706 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1716 if (q->pidx >= q->size) {
1720 __skb_unlink(skb, &q->sendq);
1721 spin_unlock(&q->lock);
1723 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1724 spin_lock(&q->lock);
1726 spin_unlock(&q->lock);
1729 set_bit(TXQ_RUNNING, &q->flags);
1730 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1733 t3_write_reg(adap, A_SG_KDOORBELL,
1734 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1738 * queue_set - return the queue set a packet should use
1741 * Maps a packet to the SGE queue set it should use. The desired queue
1742 * set is carried in bits 1-3 in the packet's priority.
1744 static inline int queue_set(const struct sk_buff *skb)
1746 return skb->priority >> 1;
1750 * is_ctrl_pkt - return whether an offload packet is a control packet
1753 * Determines whether an offload packet should use an OFLD or a CTRL
1754 * Tx queue. This is indicated by bit 0 in the packet's priority.
1756 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1758 return skb->priority & 1;
1762 * t3_offload_tx - send an offload packet
1763 * @tdev: the offload device to send to
1766 * Sends an offload packet. We use the packet priority to select the
1767 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1768 * should be sent as regular or control, bits 1-3 select the queue set.
1770 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1772 struct adapter *adap = tdev2adap(tdev);
1773 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1775 if (unlikely(is_ctrl_pkt(skb)))
1776 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1778 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1782 * offload_enqueue - add an offload packet to an SGE offload receive queue
1783 * @q: the SGE response queue
1786 * Add a new offload packet to an SGE response queue's offload packet
1787 * queue. If the packet is the first on the queue it schedules the RX
1788 * softirq to process the queue.
1790 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1792 int was_empty = skb_queue_empty(&q->rx_queue);
1794 __skb_queue_tail(&q->rx_queue, skb);
1797 struct sge_qset *qs = rspq_to_qset(q);
1799 napi_schedule(&qs->napi);
1804 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1805 * @tdev: the offload device that will be receiving the packets
1806 * @q: the SGE response queue that assembled the bundle
1807 * @skbs: the partial bundle
1808 * @n: the number of packets in the bundle
1810 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1812 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1814 struct sk_buff *skbs[], int n)
1817 q->offload_bundles++;
1818 tdev->recv(tdev, skbs, n);
1823 * ofld_poll - NAPI handler for offload packets in interrupt mode
1824 * @dev: the network device doing the polling
1825 * @budget: polling budget
1827 * The NAPI handler for offload packets when a response queue is serviced
1828 * by the hard interrupt handler, i.e., when it's operating in non-polling
1829 * mode. Creates small packet batches and sends them through the offload
1830 * receive handler. Batches need to be of modest size as we do prefetches
1831 * on the packets in each.
1833 static int ofld_poll(struct napi_struct *napi, int budget)
1835 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1836 struct sge_rspq *q = &qs->rspq;
1837 struct adapter *adapter = qs->adap;
1840 while (work_done < budget) {
1841 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1842 struct sk_buff_head queue;
1845 spin_lock_irq(&q->lock);
1846 __skb_queue_head_init(&queue);
1847 skb_queue_splice_init(&q->rx_queue, &queue);
1848 if (skb_queue_empty(&queue)) {
1849 napi_complete(napi);
1850 spin_unlock_irq(&q->lock);
1853 spin_unlock_irq(&q->lock);
1856 skb_queue_walk_safe(&queue, skb, tmp) {
1857 if (work_done >= budget)
1861 __skb_unlink(skb, &queue);
1862 prefetch(skb->data);
1863 skbs[ngathered] = skb;
1864 if (++ngathered == RX_BUNDLE_SIZE) {
1865 q->offload_bundles++;
1866 adapter->tdev.recv(&adapter->tdev, skbs,
1871 if (!skb_queue_empty(&queue)) {
1872 /* splice remaining packets back onto Rx queue */
1873 spin_lock_irq(&q->lock);
1874 skb_queue_splice(&queue, &q->rx_queue);
1875 spin_unlock_irq(&q->lock);
1877 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1884 * rx_offload - process a received offload packet
1885 * @tdev: the offload device receiving the packet
1886 * @rq: the response queue that received the packet
1888 * @rx_gather: a gather list of packets if we are building a bundle
1889 * @gather_idx: index of the next available slot in the bundle
1891 * Process an ingress offload pakcet and add it to the offload ingress
1892 * queue. Returns the index of the next available slot in the bundle.
1894 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1895 struct sk_buff *skb, struct sk_buff *rx_gather[],
1896 unsigned int gather_idx)
1898 skb_reset_mac_header(skb);
1899 skb_reset_network_header(skb);
1900 skb_reset_transport_header(skb);
1903 rx_gather[gather_idx++] = skb;
1904 if (gather_idx == RX_BUNDLE_SIZE) {
1905 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1907 rq->offload_bundles++;
1910 offload_enqueue(rq, skb);
1916 * restart_tx - check whether to restart suspended Tx queues
1917 * @qs: the queue set to resume
1919 * Restarts suspended Tx queues of an SGE queue set if they have enough
1920 * free resources to resume operation.
1922 static void restart_tx(struct sge_qset *qs)
1924 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1925 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1926 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1927 qs->txq[TXQ_ETH].restarts++;
1928 if (netif_running(qs->netdev))
1929 netif_tx_wake_queue(qs->tx_q);
1932 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1933 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1934 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1935 qs->txq[TXQ_OFLD].restarts++;
1936 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1938 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1939 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1940 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1941 qs->txq[TXQ_CTRL].restarts++;
1942 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1947 * cxgb3_arp_process - process an ARP request probing a private IP address
1948 * @adapter: the adapter
1949 * @skb: the skbuff containing the ARP request
1951 * Check if the ARP request is probing the private IP address
1952 * dedicated to iSCSI, generate an ARP reply if so.
1954 static void cxgb3_arp_process(struct adapter *adapter, struct sk_buff *skb)
1956 struct net_device *dev = skb->dev;
1957 struct port_info *pi;
1959 unsigned char *arp_ptr;
1966 skb_reset_network_header(skb);
1969 if (arp->ar_op != htons(ARPOP_REQUEST))
1972 arp_ptr = (unsigned char *)(arp + 1);
1974 arp_ptr += dev->addr_len;
1975 memcpy(&sip, arp_ptr, sizeof(sip));
1976 arp_ptr += sizeof(sip);
1977 arp_ptr += dev->addr_len;
1978 memcpy(&tip, arp_ptr, sizeof(tip));
1980 pi = netdev_priv(dev);
1981 if (tip != pi->iscsi_ipv4addr)
1984 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
1985 dev->dev_addr, sha);
1989 static inline int is_arp(struct sk_buff *skb)
1991 return skb->protocol == htons(ETH_P_ARP);
1995 * rx_eth - process an ingress ethernet packet
1996 * @adap: the adapter
1997 * @rq: the response queue that received the packet
1999 * @pad: amount of padding at the start of the buffer
2001 * Process an ingress ethernet pakcet and deliver it to the stack.
2002 * The padding is 2 if the packet was delivered in an Rx buffer and 0
2003 * if it was immediate data in a response.
2005 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2006 struct sk_buff *skb, int pad, int lro)
2008 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2009 struct sge_qset *qs = rspq_to_qset(rq);
2010 struct port_info *pi;
2012 skb_pull(skb, sizeof(*p) + pad);
2013 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2014 pi = netdev_priv(skb->dev);
2015 if ((pi->rx_offload & T3_RX_CSUM) && p->csum_valid &&
2016 p->csum == htons(0xffff) && !p->fragment) {
2017 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2018 skb->ip_summed = CHECKSUM_UNNECESSARY;
2020 skb->ip_summed = CHECKSUM_NONE;
2021 skb_record_rx_queue(skb, qs - &adap->sge.qs[0]);
2023 if (unlikely(p->vlan_valid)) {
2024 struct vlan_group *grp = pi->vlan_grp;
2026 qs->port_stats[SGE_PSTAT_VLANEX]++;
2029 vlan_gro_receive(&qs->napi, grp,
2030 ntohs(p->vlan), skb);
2032 if (unlikely(pi->iscsi_ipv4addr &&
2034 unsigned short vtag = ntohs(p->vlan) &
2036 skb->dev = vlan_group_get_device(grp,
2038 cxgb3_arp_process(adap, skb);
2040 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
2044 dev_kfree_skb_any(skb);
2045 } else if (rq->polling) {
2047 napi_gro_receive(&qs->napi, skb);
2049 if (unlikely(pi->iscsi_ipv4addr && is_arp(skb)))
2050 cxgb3_arp_process(adap, skb);
2051 netif_receive_skb(skb);
2057 static inline int is_eth_tcp(u32 rss)
2059 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2063 * lro_add_page - add a page chunk to an LRO session
2064 * @adap: the adapter
2065 * @qs: the associated queue set
2066 * @fl: the free list containing the page chunk to add
2067 * @len: packet length
2068 * @complete: Indicates the last fragment of a frame
2070 * Add a received packet contained in a page chunk to an existing LRO
2073 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2074 struct sge_fl *fl, int len, int complete)
2076 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2077 struct cpl_rx_pkt *cpl;
2078 struct skb_frag_struct *rx_frag = qs->lro_frag_tbl.frags;
2079 int nr_frags = qs->lro_frag_tbl.nr_frags;
2080 int frag_len = qs->lro_frag_tbl.len;
2084 offset = 2 + sizeof(struct cpl_rx_pkt);
2085 qs->lro_va = cpl = sd->pg_chunk.va + 2;
2091 pci_dma_sync_single_for_cpu(adap->pdev,
2092 pci_unmap_addr(sd, dma_addr),
2093 fl->buf_size - SGE_PG_RSVD,
2094 PCI_DMA_FROMDEVICE);
2096 (*sd->pg_chunk.p_cnt)--;
2097 if (!*sd->pg_chunk.p_cnt)
2098 pci_unmap_page(adap->pdev,
2099 pci_unmap_addr(&sd->pg_chunk, mapping),
2101 PCI_DMA_FROMDEVICE);
2103 prefetch(qs->lro_va);
2105 rx_frag += nr_frags;
2106 rx_frag->page = sd->pg_chunk.page;
2107 rx_frag->page_offset = sd->pg_chunk.offset + offset;
2108 rx_frag->size = len;
2110 qs->lro_frag_tbl.nr_frags++;
2111 qs->lro_frag_tbl.len = frag_len;
2117 qs->lro_frag_tbl.ip_summed = CHECKSUM_UNNECESSARY;
2120 if (unlikely(cpl->vlan_valid)) {
2121 struct net_device *dev = qs->netdev;
2122 struct port_info *pi = netdev_priv(dev);
2123 struct vlan_group *grp = pi->vlan_grp;
2125 if (likely(grp != NULL)) {
2126 vlan_gro_frags(&qs->napi, grp, ntohs(cpl->vlan),
2131 napi_gro_frags(&qs->napi, &qs->lro_frag_tbl);
2134 qs->lro_frag_tbl.nr_frags = qs->lro_frag_tbl.len = 0;
2138 * handle_rsp_cntrl_info - handles control information in a response
2139 * @qs: the queue set corresponding to the response
2140 * @flags: the response control flags
2142 * Handles the control information of an SGE response, such as GTS
2143 * indications and completion credits for the queue set's Tx queues.
2144 * HW coalesces credits, we don't do any extra SW coalescing.
2146 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2148 unsigned int credits;
2151 if (flags & F_RSPD_TXQ0_GTS)
2152 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2155 credits = G_RSPD_TXQ0_CR(flags);
2157 qs->txq[TXQ_ETH].processed += credits;
2159 credits = G_RSPD_TXQ2_CR(flags);
2161 qs->txq[TXQ_CTRL].processed += credits;
2164 if (flags & F_RSPD_TXQ1_GTS)
2165 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2167 credits = G_RSPD_TXQ1_CR(flags);
2169 qs->txq[TXQ_OFLD].processed += credits;
2173 * check_ring_db - check if we need to ring any doorbells
2174 * @adapter: the adapter
2175 * @qs: the queue set whose Tx queues are to be examined
2176 * @sleeping: indicates which Tx queue sent GTS
2178 * Checks if some of a queue set's Tx queues need to ring their doorbells
2179 * to resume transmission after idling while they still have unprocessed
2182 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2183 unsigned int sleeping)
2185 if (sleeping & F_RSPD_TXQ0_GTS) {
2186 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2188 if (txq->cleaned + txq->in_use != txq->processed &&
2189 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2190 set_bit(TXQ_RUNNING, &txq->flags);
2191 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2192 V_EGRCNTX(txq->cntxt_id));
2196 if (sleeping & F_RSPD_TXQ1_GTS) {
2197 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2199 if (txq->cleaned + txq->in_use != txq->processed &&
2200 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2201 set_bit(TXQ_RUNNING, &txq->flags);
2202 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2203 V_EGRCNTX(txq->cntxt_id));
2209 * is_new_response - check if a response is newly written
2210 * @r: the response descriptor
2211 * @q: the response queue
2213 * Returns true if a response descriptor contains a yet unprocessed
2216 static inline int is_new_response(const struct rsp_desc *r,
2217 const struct sge_rspq *q)
2219 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2222 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2225 q->rx_recycle_buf = 0;
2228 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2229 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2230 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2231 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2232 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2234 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2235 #define NOMEM_INTR_DELAY 2500
2238 * process_responses - process responses from an SGE response queue
2239 * @adap: the adapter
2240 * @qs: the queue set to which the response queue belongs
2241 * @budget: how many responses can be processed in this round
2243 * Process responses from an SGE response queue up to the supplied budget.
2244 * Responses include received packets as well as credits and other events
2245 * for the queues that belong to the response queue's queue set.
2246 * A negative budget is effectively unlimited.
2248 * Additionally choose the interrupt holdoff time for the next interrupt
2249 * on this queue. If the system is under memory shortage use a fairly
2250 * long delay to help recovery.
2252 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2255 struct sge_rspq *q = &qs->rspq;
2256 struct rsp_desc *r = &q->desc[q->cidx];
2257 int budget_left = budget;
2258 unsigned int sleeping = 0;
2259 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2262 q->next_holdoff = q->holdoff_tmr;
2264 while (likely(budget_left && is_new_response(r, q))) {
2265 int packet_complete, eth, ethpad = 2, lro = qs->lro_enabled;
2266 struct sk_buff *skb = NULL;
2267 u32 len, flags = ntohl(r->flags);
2268 __be32 rss_hi = *(const __be32 *)r,
2269 rss_lo = r->rss_hdr.rss_hash_val;
2271 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2273 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2274 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2278 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2279 skb->data[0] = CPL_ASYNC_NOTIF;
2280 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2282 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2283 skb = get_imm_packet(r);
2284 if (unlikely(!skb)) {
2286 q->next_holdoff = NOMEM_INTR_DELAY;
2288 /* consume one credit since we tried */
2294 } else if ((len = ntohl(r->len_cq)) != 0) {
2297 lro &= eth && is_eth_tcp(rss_hi);
2299 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2300 if (fl->use_pages) {
2301 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2303 prefetch(&qs->lro_frag_tbl);
2306 #if L1_CACHE_BYTES < 128
2307 prefetch(addr + L1_CACHE_BYTES);
2309 __refill_fl(adap, fl);
2311 lro_add_page(adap, qs, fl,
2313 flags & F_RSPD_EOP);
2317 skb = get_packet_pg(adap, fl, q,
2320 SGE_RX_DROP_THRES : 0);
2323 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2324 eth ? SGE_RX_DROP_THRES : 0);
2325 if (unlikely(!skb)) {
2329 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2332 if (++fl->cidx == fl->size)
2337 if (flags & RSPD_CTRL_MASK) {
2338 sleeping |= flags & RSPD_GTS_MASK;
2339 handle_rsp_cntrl_info(qs, flags);
2343 if (unlikely(++q->cidx == q->size)) {
2350 if (++q->credits >= (q->size / 4)) {
2351 refill_rspq(adap, q, q->credits);
2355 packet_complete = flags &
2356 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2357 F_RSPD_ASYNC_NOTIF);
2359 if (skb != NULL && packet_complete) {
2361 rx_eth(adap, q, skb, ethpad, lro);
2364 /* Preserve the RSS info in csum & priority */
2366 skb->priority = rss_lo;
2367 ngathered = rx_offload(&adap->tdev, q, skb,
2372 if (flags & F_RSPD_EOP)
2373 clear_rspq_bufstate(q);
2378 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2381 check_ring_db(adap, qs, sleeping);
2383 smp_mb(); /* commit Tx queue .processed updates */
2384 if (unlikely(qs->txq_stopped != 0))
2387 budget -= budget_left;
2391 static inline int is_pure_response(const struct rsp_desc *r)
2393 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2395 return (n | r->len_cq) == 0;
2399 * napi_rx_handler - the NAPI handler for Rx processing
2400 * @napi: the napi instance
2401 * @budget: how many packets we can process in this round
2403 * Handler for new data events when using NAPI.
2405 static int napi_rx_handler(struct napi_struct *napi, int budget)
2407 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2408 struct adapter *adap = qs->adap;
2409 int work_done = process_responses(adap, qs, budget);
2411 if (likely(work_done < budget)) {
2412 napi_complete(napi);
2415 * Because we don't atomically flush the following
2416 * write it is possible that in very rare cases it can
2417 * reach the device in a way that races with a new
2418 * response being written plus an error interrupt
2419 * causing the NAPI interrupt handler below to return
2420 * unhandled status to the OS. To protect against
2421 * this would require flushing the write and doing
2422 * both the write and the flush with interrupts off.
2423 * Way too expensive and unjustifiable given the
2424 * rarity of the race.
2426 * The race cannot happen at all with MSI-X.
2428 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2429 V_NEWTIMER(qs->rspq.next_holdoff) |
2430 V_NEWINDEX(qs->rspq.cidx));
2436 * Returns true if the device is already scheduled for polling.
2438 static inline int napi_is_scheduled(struct napi_struct *napi)
2440 return test_bit(NAPI_STATE_SCHED, &napi->state);
2444 * process_pure_responses - process pure responses from a response queue
2445 * @adap: the adapter
2446 * @qs: the queue set owning the response queue
2447 * @r: the first pure response to process
2449 * A simpler version of process_responses() that handles only pure (i.e.,
2450 * non data-carrying) responses. Such respones are too light-weight to
2451 * justify calling a softirq under NAPI, so we handle them specially in
2452 * the interrupt handler. The function is called with a pointer to a
2453 * response, which the caller must ensure is a valid pure response.
2455 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2457 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2460 struct sge_rspq *q = &qs->rspq;
2461 unsigned int sleeping = 0;
2464 u32 flags = ntohl(r->flags);
2467 if (unlikely(++q->cidx == q->size)) {
2474 if (flags & RSPD_CTRL_MASK) {
2475 sleeping |= flags & RSPD_GTS_MASK;
2476 handle_rsp_cntrl_info(qs, flags);
2480 if (++q->credits >= (q->size / 4)) {
2481 refill_rspq(adap, q, q->credits);
2484 } while (is_new_response(r, q) && is_pure_response(r));
2487 check_ring_db(adap, qs, sleeping);
2489 smp_mb(); /* commit Tx queue .processed updates */
2490 if (unlikely(qs->txq_stopped != 0))
2493 return is_new_response(r, q);
2497 * handle_responses - decide what to do with new responses in NAPI mode
2498 * @adap: the adapter
2499 * @q: the response queue
2501 * This is used by the NAPI interrupt handlers to decide what to do with
2502 * new SGE responses. If there are no new responses it returns -1. If
2503 * there are new responses and they are pure (i.e., non-data carrying)
2504 * it handles them straight in hard interrupt context as they are very
2505 * cheap and don't deliver any packets. Finally, if there are any data
2506 * signaling responses it schedules the NAPI handler. Returns 1 if it
2507 * schedules NAPI, 0 if all new responses were pure.
2509 * The caller must ascertain NAPI is not already running.
2511 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2513 struct sge_qset *qs = rspq_to_qset(q);
2514 struct rsp_desc *r = &q->desc[q->cidx];
2516 if (!is_new_response(r, q))
2518 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2519 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2520 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2523 napi_schedule(&qs->napi);
2528 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2529 * (i.e., response queue serviced in hard interrupt).
2531 irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2533 struct sge_qset *qs = cookie;
2534 struct adapter *adap = qs->adap;
2535 struct sge_rspq *q = &qs->rspq;
2537 spin_lock(&q->lock);
2538 if (process_responses(adap, qs, -1) == 0)
2539 q->unhandled_irqs++;
2540 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2541 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2542 spin_unlock(&q->lock);
2547 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2548 * (i.e., response queue serviced by NAPI polling).
2550 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2552 struct sge_qset *qs = cookie;
2553 struct sge_rspq *q = &qs->rspq;
2555 spin_lock(&q->lock);
2557 if (handle_responses(qs->adap, q) < 0)
2558 q->unhandled_irqs++;
2559 spin_unlock(&q->lock);
2564 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2565 * SGE response queues as well as error and other async events as they all use
2566 * the same MSI vector. We use one SGE response queue per port in this mode
2567 * and protect all response queues with queue 0's lock.
2569 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2571 int new_packets = 0;
2572 struct adapter *adap = cookie;
2573 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2575 spin_lock(&q->lock);
2577 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2578 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2579 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2583 if (adap->params.nports == 2 &&
2584 process_responses(adap, &adap->sge.qs[1], -1)) {
2585 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2587 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2588 V_NEWTIMER(q1->next_holdoff) |
2589 V_NEWINDEX(q1->cidx));
2593 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2594 q->unhandled_irqs++;
2596 spin_unlock(&q->lock);
2600 static int rspq_check_napi(struct sge_qset *qs)
2602 struct sge_rspq *q = &qs->rspq;
2604 if (!napi_is_scheduled(&qs->napi) &&
2605 is_new_response(&q->desc[q->cidx], q)) {
2606 napi_schedule(&qs->napi);
2613 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2614 * by NAPI polling). Handles data events from SGE response queues as well as
2615 * error and other async events as they all use the same MSI vector. We use
2616 * one SGE response queue per port in this mode and protect all response
2617 * queues with queue 0's lock.
2619 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2622 struct adapter *adap = cookie;
2623 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2625 spin_lock(&q->lock);
2627 new_packets = rspq_check_napi(&adap->sge.qs[0]);
2628 if (adap->params.nports == 2)
2629 new_packets += rspq_check_napi(&adap->sge.qs[1]);
2630 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2631 q->unhandled_irqs++;
2633 spin_unlock(&q->lock);
2638 * A helper function that processes responses and issues GTS.
2640 static inline int process_responses_gts(struct adapter *adap,
2641 struct sge_rspq *rq)
2645 work = process_responses(adap, rspq_to_qset(rq), -1);
2646 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2647 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2652 * The legacy INTx interrupt handler. This needs to handle data events from
2653 * SGE response queues as well as error and other async events as they all use
2654 * the same interrupt pin. We use one SGE response queue per port in this mode
2655 * and protect all response queues with queue 0's lock.
2657 static irqreturn_t t3_intr(int irq, void *cookie)
2659 int work_done, w0, w1;
2660 struct adapter *adap = cookie;
2661 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2662 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2664 spin_lock(&q0->lock);
2666 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2667 w1 = adap->params.nports == 2 &&
2668 is_new_response(&q1->desc[q1->cidx], q1);
2670 if (likely(w0 | w1)) {
2671 t3_write_reg(adap, A_PL_CLI, 0);
2672 t3_read_reg(adap, A_PL_CLI); /* flush */
2675 process_responses_gts(adap, q0);
2678 process_responses_gts(adap, q1);
2680 work_done = w0 | w1;
2682 work_done = t3_slow_intr_handler(adap);
2684 spin_unlock(&q0->lock);
2685 return IRQ_RETVAL(work_done != 0);
2689 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2690 * Handles data events from SGE response queues as well as error and other
2691 * async events as they all use the same interrupt pin. We use one SGE
2692 * response queue per port in this mode and protect all response queues with
2695 static irqreturn_t t3b_intr(int irq, void *cookie)
2698 struct adapter *adap = cookie;
2699 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2701 t3_write_reg(adap, A_PL_CLI, 0);
2702 map = t3_read_reg(adap, A_SG_DATA_INTR);
2704 if (unlikely(!map)) /* shared interrupt, most likely */
2707 spin_lock(&q0->lock);
2709 if (unlikely(map & F_ERRINTR))
2710 t3_slow_intr_handler(adap);
2712 if (likely(map & 1))
2713 process_responses_gts(adap, q0);
2716 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2718 spin_unlock(&q0->lock);
2723 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2724 * Handles data events from SGE response queues as well as error and other
2725 * async events as they all use the same interrupt pin. We use one SGE
2726 * response queue per port in this mode and protect all response queues with
2729 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2732 struct adapter *adap = cookie;
2733 struct sge_qset *qs0 = &adap->sge.qs[0];
2734 struct sge_rspq *q0 = &qs0->rspq;
2736 t3_write_reg(adap, A_PL_CLI, 0);
2737 map = t3_read_reg(adap, A_SG_DATA_INTR);
2739 if (unlikely(!map)) /* shared interrupt, most likely */
2742 spin_lock(&q0->lock);
2744 if (unlikely(map & F_ERRINTR))
2745 t3_slow_intr_handler(adap);
2747 if (likely(map & 1))
2748 napi_schedule(&qs0->napi);
2751 napi_schedule(&adap->sge.qs[1].napi);
2753 spin_unlock(&q0->lock);
2758 * t3_intr_handler - select the top-level interrupt handler
2759 * @adap: the adapter
2760 * @polling: whether using NAPI to service response queues
2762 * Selects the top-level interrupt handler based on the type of interrupts
2763 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2766 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2768 if (adap->flags & USING_MSIX)
2769 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2770 if (adap->flags & USING_MSI)
2771 return polling ? t3_intr_msi_napi : t3_intr_msi;
2772 if (adap->params.rev > 0)
2773 return polling ? t3b_intr_napi : t3b_intr;
2777 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2778 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2779 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2780 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2782 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2783 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2787 * t3_sge_err_intr_handler - SGE async event interrupt handler
2788 * @adapter: the adapter
2790 * Interrupt handler for SGE asynchronous (non-data) events.
2792 void t3_sge_err_intr_handler(struct adapter *adapter)
2794 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2797 if (status & SGE_PARERR)
2798 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2799 status & SGE_PARERR);
2800 if (status & SGE_FRAMINGERR)
2801 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2802 status & SGE_FRAMINGERR);
2804 if (status & F_RSPQCREDITOVERFOW)
2805 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2807 if (status & F_RSPQDISABLED) {
2808 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2811 "packet delivered to disabled response queue "
2812 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2815 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2816 CH_ALERT(adapter, "SGE dropped %s priority doorbell\n",
2817 status & F_HIPIODRBDROPERR ? "high" : "lo");
2819 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2820 if (status & SGE_FATALERR)
2821 t3_fatal_err(adapter);
2825 * sge_timer_tx - perform periodic maintenance of an SGE qset
2826 * @data: the SGE queue set to maintain
2828 * Runs periodically from a timer to perform maintenance of an SGE queue
2829 * set. It performs two tasks:
2831 * Cleans up any completed Tx descriptors that may still be pending.
2832 * Normal descriptor cleanup happens when new packets are added to a Tx
2833 * queue so this timer is relatively infrequent and does any cleanup only
2834 * if the Tx queue has not seen any new packets in a while. We make a
2835 * best effort attempt to reclaim descriptors, in that we don't wait
2836 * around if we cannot get a queue's lock (which most likely is because
2837 * someone else is queueing new packets and so will also handle the clean
2838 * up). Since control queues use immediate data exclusively we don't
2839 * bother cleaning them up here.
2842 static void sge_timer_tx(unsigned long data)
2844 struct sge_qset *qs = (struct sge_qset *)data;
2845 struct port_info *pi = netdev_priv(qs->netdev);
2846 struct adapter *adap = pi->adapter;
2847 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2848 unsigned long next_period;
2850 if (spin_trylock(&qs->txq[TXQ_ETH].lock)) {
2851 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2852 TX_RECLAIM_TIMER_CHUNK);
2853 spin_unlock(&qs->txq[TXQ_ETH].lock);
2855 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2856 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2857 TX_RECLAIM_TIMER_CHUNK);
2858 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2861 next_period = TX_RECLAIM_PERIOD >>
2862 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2863 TX_RECLAIM_TIMER_CHUNK);
2864 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2868 * sge_timer_rx - perform periodic maintenance of an SGE qset
2869 * @data: the SGE queue set to maintain
2871 * a) Replenishes Rx queues that have run out due to memory shortage.
2872 * Normally new Rx buffers are added when existing ones are consumed but
2873 * when out of memory a queue can become empty. We try to add only a few
2874 * buffers here, the queue will be replenished fully as these new buffers
2875 * are used up if memory shortage has subsided.
2877 * b) Return coalesced response queue credits in case a response queue is
2881 static void sge_timer_rx(unsigned long data)
2884 struct sge_qset *qs = (struct sge_qset *)data;
2885 struct port_info *pi = netdev_priv(qs->netdev);
2886 struct adapter *adap = pi->adapter;
2889 lock = adap->params.rev > 0 ?
2890 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2892 if (!spin_trylock_irq(lock))
2895 if (napi_is_scheduled(&qs->napi))
2898 if (adap->params.rev < 4) {
2899 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2901 if (status & (1 << qs->rspq.cntxt_id)) {
2903 if (qs->rspq.credits) {
2905 refill_rspq(adap, &qs->rspq, 1);
2906 qs->rspq.restarted++;
2907 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2908 1 << qs->rspq.cntxt_id);
2913 if (qs->fl[0].credits < qs->fl[0].size)
2914 __refill_fl(adap, &qs->fl[0]);
2915 if (qs->fl[1].credits < qs->fl[1].size)
2916 __refill_fl(adap, &qs->fl[1]);
2919 spin_unlock_irq(lock);
2921 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
2925 * t3_update_qset_coalesce - update coalescing settings for a queue set
2926 * @qs: the SGE queue set
2927 * @p: new queue set parameters
2929 * Update the coalescing settings for an SGE queue set. Nothing is done
2930 * if the queue set is not initialized yet.
2932 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2934 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2935 qs->rspq.polling = p->polling;
2936 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
2940 * t3_sge_alloc_qset - initialize an SGE queue set
2941 * @adapter: the adapter
2942 * @id: the queue set id
2943 * @nports: how many Ethernet ports will be using this queue set
2944 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2945 * @p: configuration parameters for this queue set
2946 * @ntxq: number of Tx queues for the queue set
2947 * @netdev: net device associated with this queue set
2948 * @netdevq: net device TX queue associated with this queue set
2950 * Allocate resources and initialize an SGE queue set. A queue set
2951 * comprises a response queue, two Rx free-buffer queues, and up to 3
2952 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2953 * queue, offload queue, and control queue.
2955 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2956 int irq_vec_idx, const struct qset_params *p,
2957 int ntxq, struct net_device *dev,
2958 struct netdev_queue *netdevq)
2960 int i, avail, ret = -ENOMEM;
2961 struct sge_qset *q = &adapter->sge.qs[id];
2963 init_qset_cntxt(q, id);
2964 setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q);
2965 setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q);
2967 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2968 sizeof(struct rx_desc),
2969 sizeof(struct rx_sw_desc),
2970 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2974 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2975 sizeof(struct rx_desc),
2976 sizeof(struct rx_sw_desc),
2977 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2981 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2982 sizeof(struct rsp_desc), 0,
2983 &q->rspq.phys_addr, NULL);
2987 for (i = 0; i < ntxq; ++i) {
2989 * The control queue always uses immediate data so does not
2990 * need to keep track of any sk_buffs.
2992 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
2994 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
2995 sizeof(struct tx_desc), sz,
2996 &q->txq[i].phys_addr,
2998 if (!q->txq[i].desc)
3002 q->txq[i].size = p->txq_size[i];
3003 spin_lock_init(&q->txq[i].lock);
3004 skb_queue_head_init(&q->txq[i].sendq);
3007 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
3009 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
3012 q->fl[0].gen = q->fl[1].gen = 1;
3013 q->fl[0].size = p->fl_size;
3014 q->fl[1].size = p->jumbo_size;
3017 q->rspq.size = p->rspq_size;
3018 spin_lock_init(&q->rspq.lock);
3019 skb_queue_head_init(&q->rspq.rx_queue);
3021 q->txq[TXQ_ETH].stop_thres = nports *
3022 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3024 #if FL0_PG_CHUNK_SIZE > 0
3025 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3027 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3029 #if FL1_PG_CHUNK_SIZE > 0
3030 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3032 q->fl[1].buf_size = is_offload(adapter) ?
3033 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3034 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3037 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3038 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3039 q->fl[0].order = FL0_PG_ORDER;
3040 q->fl[1].order = FL1_PG_ORDER;
3041 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3042 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3044 spin_lock_irq(&adapter->sge.reg_lock);
3046 /* FL threshold comparison uses < */
3047 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3048 q->rspq.phys_addr, q->rspq.size,
3049 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3053 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3054 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3055 q->fl[i].phys_addr, q->fl[i].size,
3056 q->fl[i].buf_size - SGE_PG_RSVD,
3057 p->cong_thres, 1, 0);
3062 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3063 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3064 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3070 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3071 USE_GTS, SGE_CNTXT_OFLD, id,
3072 q->txq[TXQ_OFLD].phys_addr,
3073 q->txq[TXQ_OFLD].size, 0, 1, 0);
3079 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3081 q->txq[TXQ_CTRL].phys_addr,
3082 q->txq[TXQ_CTRL].size,
3083 q->txq[TXQ_CTRL].token, 1, 0);
3088 spin_unlock_irq(&adapter->sge.reg_lock);
3093 t3_update_qset_coalesce(q, p);
3095 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3096 GFP_KERNEL | __GFP_COMP);
3098 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3101 if (avail < q->fl[0].size)
3102 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3105 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3106 GFP_KERNEL | __GFP_COMP);
3107 if (avail < q->fl[1].size)
3108 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3110 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3112 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3113 V_NEWTIMER(q->rspq.holdoff_tmr));
3118 spin_unlock_irq(&adapter->sge.reg_lock);
3120 t3_free_qset(adapter, q);
3125 * t3_start_sge_timers - start SGE timer call backs
3126 * @adap: the adapter
3128 * Starts each SGE queue set's timer call back
3130 void t3_start_sge_timers(struct adapter *adap)
3134 for (i = 0; i < SGE_QSETS; ++i) {
3135 struct sge_qset *q = &adap->sge.qs[i];
3137 if (q->tx_reclaim_timer.function)
3138 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
3140 if (q->rx_reclaim_timer.function)
3141 mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3146 * t3_stop_sge_timers - stop SGE timer call backs
3147 * @adap: the adapter
3149 * Stops each SGE queue set's timer call back
3151 void t3_stop_sge_timers(struct adapter *adap)
3155 for (i = 0; i < SGE_QSETS; ++i) {
3156 struct sge_qset *q = &adap->sge.qs[i];
3158 if (q->tx_reclaim_timer.function)
3159 del_timer_sync(&q->tx_reclaim_timer);
3160 if (q->rx_reclaim_timer.function)
3161 del_timer_sync(&q->rx_reclaim_timer);
3166 * t3_free_sge_resources - free SGE resources
3167 * @adap: the adapter
3169 * Frees resources used by the SGE queue sets.
3171 void t3_free_sge_resources(struct adapter *adap)
3175 for (i = 0; i < SGE_QSETS; ++i)
3176 t3_free_qset(adap, &adap->sge.qs[i]);
3180 * t3_sge_start - enable SGE
3181 * @adap: the adapter
3183 * Enables the SGE for DMAs. This is the last step in starting packet
3186 void t3_sge_start(struct adapter *adap)
3188 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3192 * t3_sge_stop - disable SGE operation
3193 * @adap: the adapter
3195 * Disables the DMA engine. This can be called in emeregencies (e.g.,
3196 * from error interrupts) or from normal process context. In the latter
3197 * case it also disables any pending queue restart tasklets. Note that
3198 * if it is called in interrupt context it cannot disable the restart
3199 * tasklets as it cannot wait, however the tasklets will have no effect
3200 * since the doorbells are disabled and the driver will call this again
3201 * later from process context, at which time the tasklets will be stopped
3202 * if they are still running.
3204 void t3_sge_stop(struct adapter *adap)
3206 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3207 if (!in_interrupt()) {
3210 for (i = 0; i < SGE_QSETS; ++i) {
3211 struct sge_qset *qs = &adap->sge.qs[i];
3213 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3214 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3220 * t3_sge_init - initialize SGE
3221 * @adap: the adapter
3222 * @p: the SGE parameters
3224 * Performs SGE initialization needed every time after a chip reset.
3225 * We do not initialize any of the queue sets here, instead the driver
3226 * top-level must request those individually. We also do not enable DMA
3227 * here, that should be done after the queues have been set up.
3229 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3231 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3233 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3234 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3235 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3236 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3237 #if SGE_NUM_GENBITS == 1
3238 ctrl |= F_EGRGENCTRL;
3240 if (adap->params.rev > 0) {
3241 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3242 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3244 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3245 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3246 V_LORCQDRBTHRSH(512));
3247 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3248 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3249 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3250 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3251 adap->params.rev < T3_REV_C ? 1000 : 500);
3252 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3253 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3254 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3255 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3256 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3260 * t3_sge_prep - one-time SGE initialization
3261 * @adap: the associated adapter
3262 * @p: SGE parameters
3264 * Performs one-time initialization of SGE SW state. Includes determining
3265 * defaults for the assorted SGE parameters, which admins can change until
3266 * they are used to initialize the SGE.
3268 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3272 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3273 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3275 for (i = 0; i < SGE_QSETS; ++i) {
3276 struct qset_params *q = p->qset + i;
3278 q->polling = adap->params.rev > 0;
3279 q->coalesce_usecs = 5;
3280 q->rspq_size = 1024;
3282 q->jumbo_size = 512;
3283 q->txq_size[TXQ_ETH] = 1024;
3284 q->txq_size[TXQ_OFLD] = 1024;
3285 q->txq_size[TXQ_CTRL] = 256;
3289 spin_lock_init(&adap->sge.reg_lock);
3293 * t3_get_desc - dump an SGE descriptor for debugging purposes
3294 * @qs: the queue set
3295 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
3296 * @idx: the descriptor index in the queue
3297 * @data: where to dump the descriptor contents
3299 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
3300 * size of the descriptor.
3302 int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
3303 unsigned char *data)
3309 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
3311 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
3312 return sizeof(struct tx_desc);
3316 if (!qs->rspq.desc || idx >= qs->rspq.size)
3318 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
3319 return sizeof(struct rsp_desc);
3323 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
3325 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
3326 return sizeof(struct rx_desc);