spi_mpc83xx: handle other Freescale processors
[linux-2.6] / fs / ext4 / mballoc.c
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18
19
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23
24 #include "mballoc.h"
25 #include <trace/events/ext4.h>
26
27 /*
28  * MUSTDO:
29  *   - test ext4_ext_search_left() and ext4_ext_search_right()
30  *   - search for metadata in few groups
31  *
32  * TODO v4:
33  *   - normalization should take into account whether file is still open
34  *   - discard preallocations if no free space left (policy?)
35  *   - don't normalize tails
36  *   - quota
37  *   - reservation for superuser
38  *
39  * TODO v3:
40  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
41  *   - track min/max extents in each group for better group selection
42  *   - mb_mark_used() may allocate chunk right after splitting buddy
43  *   - tree of groups sorted by number of free blocks
44  *   - error handling
45  */
46
47 /*
48  * The allocation request involve request for multiple number of blocks
49  * near to the goal(block) value specified.
50  *
51  * During initialization phase of the allocator we decide to use the
52  * group preallocation or inode preallocation depending on the size of
53  * the file. The size of the file could be the resulting file size we
54  * would have after allocation, or the current file size, which ever
55  * is larger. If the size is less than sbi->s_mb_stream_request we
56  * select to use the group preallocation. The default value of
57  * s_mb_stream_request is 16 blocks. This can also be tuned via
58  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
59  * terms of number of blocks.
60  *
61  * The main motivation for having small file use group preallocation is to
62  * ensure that we have small files closer together on the disk.
63  *
64  * First stage the allocator looks at the inode prealloc list,
65  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
66  * spaces for this particular inode. The inode prealloc space is
67  * represented as:
68  *
69  * pa_lstart -> the logical start block for this prealloc space
70  * pa_pstart -> the physical start block for this prealloc space
71  * pa_len    -> lenght for this prealloc space
72  * pa_free   ->  free space available in this prealloc space
73  *
74  * The inode preallocation space is used looking at the _logical_ start
75  * block. If only the logical file block falls within the range of prealloc
76  * space we will consume the particular prealloc space. This make sure that
77  * that the we have contiguous physical blocks representing the file blocks
78  *
79  * The important thing to be noted in case of inode prealloc space is that
80  * we don't modify the values associated to inode prealloc space except
81  * pa_free.
82  *
83  * If we are not able to find blocks in the inode prealloc space and if we
84  * have the group allocation flag set then we look at the locality group
85  * prealloc space. These are per CPU prealloc list repreasented as
86  *
87  * ext4_sb_info.s_locality_groups[smp_processor_id()]
88  *
89  * The reason for having a per cpu locality group is to reduce the contention
90  * between CPUs. It is possible to get scheduled at this point.
91  *
92  * The locality group prealloc space is used looking at whether we have
93  * enough free space (pa_free) withing the prealloc space.
94  *
95  * If we can't allocate blocks via inode prealloc or/and locality group
96  * prealloc then we look at the buddy cache. The buddy cache is represented
97  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
98  * mapped to the buddy and bitmap information regarding different
99  * groups. The buddy information is attached to buddy cache inode so that
100  * we can access them through the page cache. The information regarding
101  * each group is loaded via ext4_mb_load_buddy.  The information involve
102  * block bitmap and buddy information. The information are stored in the
103  * inode as:
104  *
105  *  {                        page                        }
106  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
107  *
108  *
109  * one block each for bitmap and buddy information.  So for each group we
110  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
111  * blocksize) blocks.  So it can have information regarding groups_per_page
112  * which is blocks_per_page/2
113  *
114  * The buddy cache inode is not stored on disk. The inode is thrown
115  * away when the filesystem is unmounted.
116  *
117  * We look for count number of blocks in the buddy cache. If we were able
118  * to locate that many free blocks we return with additional information
119  * regarding rest of the contiguous physical block available
120  *
121  * Before allocating blocks via buddy cache we normalize the request
122  * blocks. This ensure we ask for more blocks that we needed. The extra
123  * blocks that we get after allocation is added to the respective prealloc
124  * list. In case of inode preallocation we follow a list of heuristics
125  * based on file size. This can be found in ext4_mb_normalize_request. If
126  * we are doing a group prealloc we try to normalize the request to
127  * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
128  * 512 blocks. This can be tuned via
129  * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
130  * terms of number of blocks. If we have mounted the file system with -O
131  * stripe=<value> option the group prealloc request is normalized to the
132  * stripe value (sbi->s_stripe)
133  *
134  * The regular allocator(using the buddy cache) supports few tunables.
135  *
136  * /sys/fs/ext4/<partition>/mb_min_to_scan
137  * /sys/fs/ext4/<partition>/mb_max_to_scan
138  * /sys/fs/ext4/<partition>/mb_order2_req
139  *
140  * The regular allocator uses buddy scan only if the request len is power of
141  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
142  * value of s_mb_order2_reqs can be tuned via
143  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
144  * stripe size (sbi->s_stripe), we try to search for contigous block in
145  * stripe size. This should result in better allocation on RAID setups. If
146  * not, we search in the specific group using bitmap for best extents. The
147  * tunable min_to_scan and max_to_scan control the behaviour here.
148  * min_to_scan indicate how long the mballoc __must__ look for a best
149  * extent and max_to_scan indicates how long the mballoc __can__ look for a
150  * best extent in the found extents. Searching for the blocks starts with
151  * the group specified as the goal value in allocation context via
152  * ac_g_ex. Each group is first checked based on the criteria whether it
153  * can used for allocation. ext4_mb_good_group explains how the groups are
154  * checked.
155  *
156  * Both the prealloc space are getting populated as above. So for the first
157  * request we will hit the buddy cache which will result in this prealloc
158  * space getting filled. The prealloc space is then later used for the
159  * subsequent request.
160  */
161
162 /*
163  * mballoc operates on the following data:
164  *  - on-disk bitmap
165  *  - in-core buddy (actually includes buddy and bitmap)
166  *  - preallocation descriptors (PAs)
167  *
168  * there are two types of preallocations:
169  *  - inode
170  *    assiged to specific inode and can be used for this inode only.
171  *    it describes part of inode's space preallocated to specific
172  *    physical blocks. any block from that preallocated can be used
173  *    independent. the descriptor just tracks number of blocks left
174  *    unused. so, before taking some block from descriptor, one must
175  *    make sure corresponded logical block isn't allocated yet. this
176  *    also means that freeing any block within descriptor's range
177  *    must discard all preallocated blocks.
178  *  - locality group
179  *    assigned to specific locality group which does not translate to
180  *    permanent set of inodes: inode can join and leave group. space
181  *    from this type of preallocation can be used for any inode. thus
182  *    it's consumed from the beginning to the end.
183  *
184  * relation between them can be expressed as:
185  *    in-core buddy = on-disk bitmap + preallocation descriptors
186  *
187  * this mean blocks mballoc considers used are:
188  *  - allocated blocks (persistent)
189  *  - preallocated blocks (non-persistent)
190  *
191  * consistency in mballoc world means that at any time a block is either
192  * free or used in ALL structures. notice: "any time" should not be read
193  * literally -- time is discrete and delimited by locks.
194  *
195  *  to keep it simple, we don't use block numbers, instead we count number of
196  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
197  *
198  * all operations can be expressed as:
199  *  - init buddy:                       buddy = on-disk + PAs
200  *  - new PA:                           buddy += N; PA = N
201  *  - use inode PA:                     on-disk += N; PA -= N
202  *  - discard inode PA                  buddy -= on-disk - PA; PA = 0
203  *  - use locality group PA             on-disk += N; PA -= N
204  *  - discard locality group PA         buddy -= PA; PA = 0
205  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
206  *        is used in real operation because we can't know actual used
207  *        bits from PA, only from on-disk bitmap
208  *
209  * if we follow this strict logic, then all operations above should be atomic.
210  * given some of them can block, we'd have to use something like semaphores
211  * killing performance on high-end SMP hardware. let's try to relax it using
212  * the following knowledge:
213  *  1) if buddy is referenced, it's already initialized
214  *  2) while block is used in buddy and the buddy is referenced,
215  *     nobody can re-allocate that block
216  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
217  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
218  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
219  *     block
220  *
221  * so, now we're building a concurrency table:
222  *  - init buddy vs.
223  *    - new PA
224  *      blocks for PA are allocated in the buddy, buddy must be referenced
225  *      until PA is linked to allocation group to avoid concurrent buddy init
226  *    - use inode PA
227  *      we need to make sure that either on-disk bitmap or PA has uptodate data
228  *      given (3) we care that PA-=N operation doesn't interfere with init
229  *    - discard inode PA
230  *      the simplest way would be to have buddy initialized by the discard
231  *    - use locality group PA
232  *      again PA-=N must be serialized with init
233  *    - discard locality group PA
234  *      the simplest way would be to have buddy initialized by the discard
235  *  - new PA vs.
236  *    - use inode PA
237  *      i_data_sem serializes them
238  *    - discard inode PA
239  *      discard process must wait until PA isn't used by another process
240  *    - use locality group PA
241  *      some mutex should serialize them
242  *    - discard locality group PA
243  *      discard process must wait until PA isn't used by another process
244  *  - use inode PA
245  *    - use inode PA
246  *      i_data_sem or another mutex should serializes them
247  *    - discard inode PA
248  *      discard process must wait until PA isn't used by another process
249  *    - use locality group PA
250  *      nothing wrong here -- they're different PAs covering different blocks
251  *    - discard locality group PA
252  *      discard process must wait until PA isn't used by another process
253  *
254  * now we're ready to make few consequences:
255  *  - PA is referenced and while it is no discard is possible
256  *  - PA is referenced until block isn't marked in on-disk bitmap
257  *  - PA changes only after on-disk bitmap
258  *  - discard must not compete with init. either init is done before
259  *    any discard or they're serialized somehow
260  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
261  *
262  * a special case when we've used PA to emptiness. no need to modify buddy
263  * in this case, but we should care about concurrent init
264  *
265  */
266
267  /*
268  * Logic in few words:
269  *
270  *  - allocation:
271  *    load group
272  *    find blocks
273  *    mark bits in on-disk bitmap
274  *    release group
275  *
276  *  - use preallocation:
277  *    find proper PA (per-inode or group)
278  *    load group
279  *    mark bits in on-disk bitmap
280  *    release group
281  *    release PA
282  *
283  *  - free:
284  *    load group
285  *    mark bits in on-disk bitmap
286  *    release group
287  *
288  *  - discard preallocations in group:
289  *    mark PAs deleted
290  *    move them onto local list
291  *    load on-disk bitmap
292  *    load group
293  *    remove PA from object (inode or locality group)
294  *    mark free blocks in-core
295  *
296  *  - discard inode's preallocations:
297  */
298
299 /*
300  * Locking rules
301  *
302  * Locks:
303  *  - bitlock on a group        (group)
304  *  - object (inode/locality)   (object)
305  *  - per-pa lock               (pa)
306  *
307  * Paths:
308  *  - new pa
309  *    object
310  *    group
311  *
312  *  - find and use pa:
313  *    pa
314  *
315  *  - release consumed pa:
316  *    pa
317  *    group
318  *    object
319  *
320  *  - generate in-core bitmap:
321  *    group
322  *        pa
323  *
324  *  - discard all for given object (inode, locality group):
325  *    object
326  *        pa
327  *    group
328  *
329  *  - discard all for given group:
330  *    group
331  *        pa
332  *    group
333  *        object
334  *
335  */
336 static struct kmem_cache *ext4_pspace_cachep;
337 static struct kmem_cache *ext4_ac_cachep;
338 static struct kmem_cache *ext4_free_ext_cachep;
339 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
340                                         ext4_group_t group);
341 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
342                                                 ext4_group_t group);
343 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
344
345 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
346 {
347 #if BITS_PER_LONG == 64
348         *bit += ((unsigned long) addr & 7UL) << 3;
349         addr = (void *) ((unsigned long) addr & ~7UL);
350 #elif BITS_PER_LONG == 32
351         *bit += ((unsigned long) addr & 3UL) << 3;
352         addr = (void *) ((unsigned long) addr & ~3UL);
353 #else
354 #error "how many bits you are?!"
355 #endif
356         return addr;
357 }
358
359 static inline int mb_test_bit(int bit, void *addr)
360 {
361         /*
362          * ext4_test_bit on architecture like powerpc
363          * needs unsigned long aligned address
364          */
365         addr = mb_correct_addr_and_bit(&bit, addr);
366         return ext4_test_bit(bit, addr);
367 }
368
369 static inline void mb_set_bit(int bit, void *addr)
370 {
371         addr = mb_correct_addr_and_bit(&bit, addr);
372         ext4_set_bit(bit, addr);
373 }
374
375 static inline void mb_clear_bit(int bit, void *addr)
376 {
377         addr = mb_correct_addr_and_bit(&bit, addr);
378         ext4_clear_bit(bit, addr);
379 }
380
381 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
382 {
383         int fix = 0, ret, tmpmax;
384         addr = mb_correct_addr_and_bit(&fix, addr);
385         tmpmax = max + fix;
386         start += fix;
387
388         ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
389         if (ret > max)
390                 return max;
391         return ret;
392 }
393
394 static inline int mb_find_next_bit(void *addr, int max, int start)
395 {
396         int fix = 0, ret, tmpmax;
397         addr = mb_correct_addr_and_bit(&fix, addr);
398         tmpmax = max + fix;
399         start += fix;
400
401         ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
402         if (ret > max)
403                 return max;
404         return ret;
405 }
406
407 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
408 {
409         char *bb;
410
411         BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
412         BUG_ON(max == NULL);
413
414         if (order > e4b->bd_blkbits + 1) {
415                 *max = 0;
416                 return NULL;
417         }
418
419         /* at order 0 we see each particular block */
420         *max = 1 << (e4b->bd_blkbits + 3);
421         if (order == 0)
422                 return EXT4_MB_BITMAP(e4b);
423
424         bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
425         *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
426
427         return bb;
428 }
429
430 #ifdef DOUBLE_CHECK
431 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
432                            int first, int count)
433 {
434         int i;
435         struct super_block *sb = e4b->bd_sb;
436
437         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
438                 return;
439         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
440         for (i = 0; i < count; i++) {
441                 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
442                         ext4_fsblk_t blocknr;
443                         blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
444                         blocknr += first + i;
445                         blocknr +=
446                             le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
447                         ext4_grp_locked_error(sb, e4b->bd_group,
448                                    __func__, "double-free of inode"
449                                    " %lu's block %llu(bit %u in group %u)",
450                                    inode ? inode->i_ino : 0, blocknr,
451                                    first + i, e4b->bd_group);
452                 }
453                 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
454         }
455 }
456
457 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
458 {
459         int i;
460
461         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
462                 return;
463         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
464         for (i = 0; i < count; i++) {
465                 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
466                 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
467         }
468 }
469
470 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
471 {
472         if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
473                 unsigned char *b1, *b2;
474                 int i;
475                 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
476                 b2 = (unsigned char *) bitmap;
477                 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
478                         if (b1[i] != b2[i]) {
479                                 printk(KERN_ERR "corruption in group %u "
480                                        "at byte %u(%u): %x in copy != %x "
481                                        "on disk/prealloc\n",
482                                        e4b->bd_group, i, i * 8, b1[i], b2[i]);
483                                 BUG();
484                         }
485                 }
486         }
487 }
488
489 #else
490 static inline void mb_free_blocks_double(struct inode *inode,
491                                 struct ext4_buddy *e4b, int first, int count)
492 {
493         return;
494 }
495 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
496                                                 int first, int count)
497 {
498         return;
499 }
500 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
501 {
502         return;
503 }
504 #endif
505
506 #ifdef AGGRESSIVE_CHECK
507
508 #define MB_CHECK_ASSERT(assert)                                         \
509 do {                                                                    \
510         if (!(assert)) {                                                \
511                 printk(KERN_EMERG                                       \
512                         "Assertion failure in %s() at %s:%d: \"%s\"\n", \
513                         function, file, line, # assert);                \
514                 BUG();                                                  \
515         }                                                               \
516 } while (0)
517
518 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
519                                 const char *function, int line)
520 {
521         struct super_block *sb = e4b->bd_sb;
522         int order = e4b->bd_blkbits + 1;
523         int max;
524         int max2;
525         int i;
526         int j;
527         int k;
528         int count;
529         struct ext4_group_info *grp;
530         int fragments = 0;
531         int fstart;
532         struct list_head *cur;
533         void *buddy;
534         void *buddy2;
535
536         {
537                 static int mb_check_counter;
538                 if (mb_check_counter++ % 100 != 0)
539                         return 0;
540         }
541
542         while (order > 1) {
543                 buddy = mb_find_buddy(e4b, order, &max);
544                 MB_CHECK_ASSERT(buddy);
545                 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
546                 MB_CHECK_ASSERT(buddy2);
547                 MB_CHECK_ASSERT(buddy != buddy2);
548                 MB_CHECK_ASSERT(max * 2 == max2);
549
550                 count = 0;
551                 for (i = 0; i < max; i++) {
552
553                         if (mb_test_bit(i, buddy)) {
554                                 /* only single bit in buddy2 may be 1 */
555                                 if (!mb_test_bit(i << 1, buddy2)) {
556                                         MB_CHECK_ASSERT(
557                                                 mb_test_bit((i<<1)+1, buddy2));
558                                 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
559                                         MB_CHECK_ASSERT(
560                                                 mb_test_bit(i << 1, buddy2));
561                                 }
562                                 continue;
563                         }
564
565                         /* both bits in buddy2 must be 0 */
566                         MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
567                         MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
568
569                         for (j = 0; j < (1 << order); j++) {
570                                 k = (i * (1 << order)) + j;
571                                 MB_CHECK_ASSERT(
572                                         !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
573                         }
574                         count++;
575                 }
576                 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
577                 order--;
578         }
579
580         fstart = -1;
581         buddy = mb_find_buddy(e4b, 0, &max);
582         for (i = 0; i < max; i++) {
583                 if (!mb_test_bit(i, buddy)) {
584                         MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
585                         if (fstart == -1) {
586                                 fragments++;
587                                 fstart = i;
588                         }
589                         continue;
590                 }
591                 fstart = -1;
592                 /* check used bits only */
593                 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
594                         buddy2 = mb_find_buddy(e4b, j, &max2);
595                         k = i >> j;
596                         MB_CHECK_ASSERT(k < max2);
597                         MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
598                 }
599         }
600         MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
601         MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
602
603         grp = ext4_get_group_info(sb, e4b->bd_group);
604         buddy = mb_find_buddy(e4b, 0, &max);
605         list_for_each(cur, &grp->bb_prealloc_list) {
606                 ext4_group_t groupnr;
607                 struct ext4_prealloc_space *pa;
608                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
609                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
610                 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
611                 for (i = 0; i < pa->pa_len; i++)
612                         MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
613         }
614         return 0;
615 }
616 #undef MB_CHECK_ASSERT
617 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,       \
618                                         __FILE__, __func__, __LINE__)
619 #else
620 #define mb_check_buddy(e4b)
621 #endif
622
623 /* FIXME!! need more doc */
624 static void ext4_mb_mark_free_simple(struct super_block *sb,
625                                 void *buddy, unsigned first, int len,
626                                         struct ext4_group_info *grp)
627 {
628         struct ext4_sb_info *sbi = EXT4_SB(sb);
629         unsigned short min;
630         unsigned short max;
631         unsigned short chunk;
632         unsigned short border;
633
634         BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
635
636         border = 2 << sb->s_blocksize_bits;
637
638         while (len > 0) {
639                 /* find how many blocks can be covered since this position */
640                 max = ffs(first | border) - 1;
641
642                 /* find how many blocks of power 2 we need to mark */
643                 min = fls(len) - 1;
644
645                 if (max < min)
646                         min = max;
647                 chunk = 1 << min;
648
649                 /* mark multiblock chunks only */
650                 grp->bb_counters[min]++;
651                 if (min > 0)
652                         mb_clear_bit(first >> min,
653                                      buddy + sbi->s_mb_offsets[min]);
654
655                 len -= chunk;
656                 first += chunk;
657         }
658 }
659
660 static void ext4_mb_generate_buddy(struct super_block *sb,
661                                 void *buddy, void *bitmap, ext4_group_t group)
662 {
663         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
664         unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
665         unsigned short i = 0;
666         unsigned short first;
667         unsigned short len;
668         unsigned free = 0;
669         unsigned fragments = 0;
670         unsigned long long period = get_cycles();
671
672         /* initialize buddy from bitmap which is aggregation
673          * of on-disk bitmap and preallocations */
674         i = mb_find_next_zero_bit(bitmap, max, 0);
675         grp->bb_first_free = i;
676         while (i < max) {
677                 fragments++;
678                 first = i;
679                 i = mb_find_next_bit(bitmap, max, i);
680                 len = i - first;
681                 free += len;
682                 if (len > 1)
683                         ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
684                 else
685                         grp->bb_counters[0]++;
686                 if (i < max)
687                         i = mb_find_next_zero_bit(bitmap, max, i);
688         }
689         grp->bb_fragments = fragments;
690
691         if (free != grp->bb_free) {
692                 ext4_grp_locked_error(sb, group,  __func__,
693                         "EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
694                         group, free, grp->bb_free);
695                 /*
696                  * If we intent to continue, we consider group descritor
697                  * corrupt and update bb_free using bitmap value
698                  */
699                 grp->bb_free = free;
700         }
701
702         clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
703
704         period = get_cycles() - period;
705         spin_lock(&EXT4_SB(sb)->s_bal_lock);
706         EXT4_SB(sb)->s_mb_buddies_generated++;
707         EXT4_SB(sb)->s_mb_generation_time += period;
708         spin_unlock(&EXT4_SB(sb)->s_bal_lock);
709 }
710
711 /* The buddy information is attached the buddy cache inode
712  * for convenience. The information regarding each group
713  * is loaded via ext4_mb_load_buddy. The information involve
714  * block bitmap and buddy information. The information are
715  * stored in the inode as
716  *
717  * {                        page                        }
718  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
719  *
720  *
721  * one block each for bitmap and buddy information.
722  * So for each group we take up 2 blocks. A page can
723  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
724  * So it can have information regarding groups_per_page which
725  * is blocks_per_page/2
726  */
727
728 static int ext4_mb_init_cache(struct page *page, char *incore)
729 {
730         ext4_group_t ngroups;
731         int blocksize;
732         int blocks_per_page;
733         int groups_per_page;
734         int err = 0;
735         int i;
736         ext4_group_t first_group;
737         int first_block;
738         struct super_block *sb;
739         struct buffer_head *bhs;
740         struct buffer_head **bh;
741         struct inode *inode;
742         char *data;
743         char *bitmap;
744
745         mb_debug("init page %lu\n", page->index);
746
747         inode = page->mapping->host;
748         sb = inode->i_sb;
749         ngroups = ext4_get_groups_count(sb);
750         blocksize = 1 << inode->i_blkbits;
751         blocks_per_page = PAGE_CACHE_SIZE / blocksize;
752
753         groups_per_page = blocks_per_page >> 1;
754         if (groups_per_page == 0)
755                 groups_per_page = 1;
756
757         /* allocate buffer_heads to read bitmaps */
758         if (groups_per_page > 1) {
759                 err = -ENOMEM;
760                 i = sizeof(struct buffer_head *) * groups_per_page;
761                 bh = kzalloc(i, GFP_NOFS);
762                 if (bh == NULL)
763                         goto out;
764         } else
765                 bh = &bhs;
766
767         first_group = page->index * blocks_per_page / 2;
768
769         /* read all groups the page covers into the cache */
770         for (i = 0; i < groups_per_page; i++) {
771                 struct ext4_group_desc *desc;
772
773                 if (first_group + i >= ngroups)
774                         break;
775
776                 err = -EIO;
777                 desc = ext4_get_group_desc(sb, first_group + i, NULL);
778                 if (desc == NULL)
779                         goto out;
780
781                 err = -ENOMEM;
782                 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
783                 if (bh[i] == NULL)
784                         goto out;
785
786                 if (bitmap_uptodate(bh[i]))
787                         continue;
788
789                 lock_buffer(bh[i]);
790                 if (bitmap_uptodate(bh[i])) {
791                         unlock_buffer(bh[i]);
792                         continue;
793                 }
794                 ext4_lock_group(sb, first_group + i);
795                 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
796                         ext4_init_block_bitmap(sb, bh[i],
797                                                 first_group + i, desc);
798                         set_bitmap_uptodate(bh[i]);
799                         set_buffer_uptodate(bh[i]);
800                         ext4_unlock_group(sb, first_group + i);
801                         unlock_buffer(bh[i]);
802                         continue;
803                 }
804                 ext4_unlock_group(sb, first_group + i);
805                 if (buffer_uptodate(bh[i])) {
806                         /*
807                          * if not uninit if bh is uptodate,
808                          * bitmap is also uptodate
809                          */
810                         set_bitmap_uptodate(bh[i]);
811                         unlock_buffer(bh[i]);
812                         continue;
813                 }
814                 get_bh(bh[i]);
815                 /*
816                  * submit the buffer_head for read. We can
817                  * safely mark the bitmap as uptodate now.
818                  * We do it here so the bitmap uptodate bit
819                  * get set with buffer lock held.
820                  */
821                 set_bitmap_uptodate(bh[i]);
822                 bh[i]->b_end_io = end_buffer_read_sync;
823                 submit_bh(READ, bh[i]);
824                 mb_debug("read bitmap for group %u\n", first_group + i);
825         }
826
827         /* wait for I/O completion */
828         for (i = 0; i < groups_per_page && bh[i]; i++)
829                 wait_on_buffer(bh[i]);
830
831         err = -EIO;
832         for (i = 0; i < groups_per_page && bh[i]; i++)
833                 if (!buffer_uptodate(bh[i]))
834                         goto out;
835
836         err = 0;
837         first_block = page->index * blocks_per_page;
838         /* init the page  */
839         memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
840         for (i = 0; i < blocks_per_page; i++) {
841                 int group;
842                 struct ext4_group_info *grinfo;
843
844                 group = (first_block + i) >> 1;
845                 if (group >= ngroups)
846                         break;
847
848                 /*
849                  * data carry information regarding this
850                  * particular group in the format specified
851                  * above
852                  *
853                  */
854                 data = page_address(page) + (i * blocksize);
855                 bitmap = bh[group - first_group]->b_data;
856
857                 /*
858                  * We place the buddy block and bitmap block
859                  * close together
860                  */
861                 if ((first_block + i) & 1) {
862                         /* this is block of buddy */
863                         BUG_ON(incore == NULL);
864                         mb_debug("put buddy for group %u in page %lu/%x\n",
865                                 group, page->index, i * blocksize);
866                         grinfo = ext4_get_group_info(sb, group);
867                         grinfo->bb_fragments = 0;
868                         memset(grinfo->bb_counters, 0,
869                                sizeof(unsigned short)*(sb->s_blocksize_bits+2));
870                         /*
871                          * incore got set to the group block bitmap below
872                          */
873                         ext4_lock_group(sb, group);
874                         ext4_mb_generate_buddy(sb, data, incore, group);
875                         ext4_unlock_group(sb, group);
876                         incore = NULL;
877                 } else {
878                         /* this is block of bitmap */
879                         BUG_ON(incore != NULL);
880                         mb_debug("put bitmap for group %u in page %lu/%x\n",
881                                 group, page->index, i * blocksize);
882
883                         /* see comments in ext4_mb_put_pa() */
884                         ext4_lock_group(sb, group);
885                         memcpy(data, bitmap, blocksize);
886
887                         /* mark all preallocated blks used in in-core bitmap */
888                         ext4_mb_generate_from_pa(sb, data, group);
889                         ext4_mb_generate_from_freelist(sb, data, group);
890                         ext4_unlock_group(sb, group);
891
892                         /* set incore so that the buddy information can be
893                          * generated using this
894                          */
895                         incore = data;
896                 }
897         }
898         SetPageUptodate(page);
899
900 out:
901         if (bh) {
902                 for (i = 0; i < groups_per_page && bh[i]; i++)
903                         brelse(bh[i]);
904                 if (bh != &bhs)
905                         kfree(bh);
906         }
907         return err;
908 }
909
910 static noinline_for_stack int
911 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
912                                         struct ext4_buddy *e4b)
913 {
914         int blocks_per_page;
915         int block;
916         int pnum;
917         int poff;
918         struct page *page;
919         int ret;
920         struct ext4_group_info *grp;
921         struct ext4_sb_info *sbi = EXT4_SB(sb);
922         struct inode *inode = sbi->s_buddy_cache;
923
924         mb_debug("load group %u\n", group);
925
926         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
927         grp = ext4_get_group_info(sb, group);
928
929         e4b->bd_blkbits = sb->s_blocksize_bits;
930         e4b->bd_info = ext4_get_group_info(sb, group);
931         e4b->bd_sb = sb;
932         e4b->bd_group = group;
933         e4b->bd_buddy_page = NULL;
934         e4b->bd_bitmap_page = NULL;
935         e4b->alloc_semp = &grp->alloc_sem;
936
937         /* Take the read lock on the group alloc
938          * sem. This would make sure a parallel
939          * ext4_mb_init_group happening on other
940          * groups mapped by the page is blocked
941          * till we are done with allocation
942          */
943         down_read(e4b->alloc_semp);
944
945         /*
946          * the buddy cache inode stores the block bitmap
947          * and buddy information in consecutive blocks.
948          * So for each group we need two blocks.
949          */
950         block = group * 2;
951         pnum = block / blocks_per_page;
952         poff = block % blocks_per_page;
953
954         /* we could use find_or_create_page(), but it locks page
955          * what we'd like to avoid in fast path ... */
956         page = find_get_page(inode->i_mapping, pnum);
957         if (page == NULL || !PageUptodate(page)) {
958                 if (page)
959                         /*
960                          * drop the page reference and try
961                          * to get the page with lock. If we
962                          * are not uptodate that implies
963                          * somebody just created the page but
964                          * is yet to initialize the same. So
965                          * wait for it to initialize.
966                          */
967                         page_cache_release(page);
968                 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
969                 if (page) {
970                         BUG_ON(page->mapping != inode->i_mapping);
971                         if (!PageUptodate(page)) {
972                                 ret = ext4_mb_init_cache(page, NULL);
973                                 if (ret) {
974                                         unlock_page(page);
975                                         goto err;
976                                 }
977                                 mb_cmp_bitmaps(e4b, page_address(page) +
978                                                (poff * sb->s_blocksize));
979                         }
980                         unlock_page(page);
981                 }
982         }
983         if (page == NULL || !PageUptodate(page)) {
984                 ret = -EIO;
985                 goto err;
986         }
987         e4b->bd_bitmap_page = page;
988         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
989         mark_page_accessed(page);
990
991         block++;
992         pnum = block / blocks_per_page;
993         poff = block % blocks_per_page;
994
995         page = find_get_page(inode->i_mapping, pnum);
996         if (page == NULL || !PageUptodate(page)) {
997                 if (page)
998                         page_cache_release(page);
999                 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1000                 if (page) {
1001                         BUG_ON(page->mapping != inode->i_mapping);
1002                         if (!PageUptodate(page)) {
1003                                 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1004                                 if (ret) {
1005                                         unlock_page(page);
1006                                         goto err;
1007                                 }
1008                         }
1009                         unlock_page(page);
1010                 }
1011         }
1012         if (page == NULL || !PageUptodate(page)) {
1013                 ret = -EIO;
1014                 goto err;
1015         }
1016         e4b->bd_buddy_page = page;
1017         e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1018         mark_page_accessed(page);
1019
1020         BUG_ON(e4b->bd_bitmap_page == NULL);
1021         BUG_ON(e4b->bd_buddy_page == NULL);
1022
1023         return 0;
1024
1025 err:
1026         if (e4b->bd_bitmap_page)
1027                 page_cache_release(e4b->bd_bitmap_page);
1028         if (e4b->bd_buddy_page)
1029                 page_cache_release(e4b->bd_buddy_page);
1030         e4b->bd_buddy = NULL;
1031         e4b->bd_bitmap = NULL;
1032
1033         /* Done with the buddy cache */
1034         up_read(e4b->alloc_semp);
1035         return ret;
1036 }
1037
1038 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
1039 {
1040         if (e4b->bd_bitmap_page)
1041                 page_cache_release(e4b->bd_bitmap_page);
1042         if (e4b->bd_buddy_page)
1043                 page_cache_release(e4b->bd_buddy_page);
1044         /* Done with the buddy cache */
1045         if (e4b->alloc_semp)
1046                 up_read(e4b->alloc_semp);
1047 }
1048
1049
1050 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1051 {
1052         int order = 1;
1053         void *bb;
1054
1055         BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1056         BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1057
1058         bb = EXT4_MB_BUDDY(e4b);
1059         while (order <= e4b->bd_blkbits + 1) {
1060                 block = block >> 1;
1061                 if (!mb_test_bit(block, bb)) {
1062                         /* this block is part of buddy of order 'order' */
1063                         return order;
1064                 }
1065                 bb += 1 << (e4b->bd_blkbits - order);
1066                 order++;
1067         }
1068         return 0;
1069 }
1070
1071 static void mb_clear_bits(void *bm, int cur, int len)
1072 {
1073         __u32 *addr;
1074
1075         len = cur + len;
1076         while (cur < len) {
1077                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1078                         /* fast path: clear whole word at once */
1079                         addr = bm + (cur >> 3);
1080                         *addr = 0;
1081                         cur += 32;
1082                         continue;
1083                 }
1084                 mb_clear_bit(cur, bm);
1085                 cur++;
1086         }
1087 }
1088
1089 static void mb_set_bits(void *bm, int cur, int len)
1090 {
1091         __u32 *addr;
1092
1093         len = cur + len;
1094         while (cur < len) {
1095                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1096                         /* fast path: set whole word at once */
1097                         addr = bm + (cur >> 3);
1098                         *addr = 0xffffffff;
1099                         cur += 32;
1100                         continue;
1101                 }
1102                 mb_set_bit(cur, bm);
1103                 cur++;
1104         }
1105 }
1106
1107 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1108                           int first, int count)
1109 {
1110         int block = 0;
1111         int max = 0;
1112         int order;
1113         void *buddy;
1114         void *buddy2;
1115         struct super_block *sb = e4b->bd_sb;
1116
1117         BUG_ON(first + count > (sb->s_blocksize << 3));
1118         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1119         mb_check_buddy(e4b);
1120         mb_free_blocks_double(inode, e4b, first, count);
1121
1122         e4b->bd_info->bb_free += count;
1123         if (first < e4b->bd_info->bb_first_free)
1124                 e4b->bd_info->bb_first_free = first;
1125
1126         /* let's maintain fragments counter */
1127         if (first != 0)
1128                 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1129         if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1130                 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1131         if (block && max)
1132                 e4b->bd_info->bb_fragments--;
1133         else if (!block && !max)
1134                 e4b->bd_info->bb_fragments++;
1135
1136         /* let's maintain buddy itself */
1137         while (count-- > 0) {
1138                 block = first++;
1139                 order = 0;
1140
1141                 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1142                         ext4_fsblk_t blocknr;
1143                         blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1144                         blocknr += block;
1145                         blocknr +=
1146                             le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1147                         ext4_grp_locked_error(sb, e4b->bd_group,
1148                                    __func__, "double-free of inode"
1149                                    " %lu's block %llu(bit %u in group %u)",
1150                                    inode ? inode->i_ino : 0, blocknr, block,
1151                                    e4b->bd_group);
1152                 }
1153                 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1154                 e4b->bd_info->bb_counters[order]++;
1155
1156                 /* start of the buddy */
1157                 buddy = mb_find_buddy(e4b, order, &max);
1158
1159                 do {
1160                         block &= ~1UL;
1161                         if (mb_test_bit(block, buddy) ||
1162                                         mb_test_bit(block + 1, buddy))
1163                                 break;
1164
1165                         /* both the buddies are free, try to coalesce them */
1166                         buddy2 = mb_find_buddy(e4b, order + 1, &max);
1167
1168                         if (!buddy2)
1169                                 break;
1170
1171                         if (order > 0) {
1172                                 /* for special purposes, we don't set
1173                                  * free bits in bitmap */
1174                                 mb_set_bit(block, buddy);
1175                                 mb_set_bit(block + 1, buddy);
1176                         }
1177                         e4b->bd_info->bb_counters[order]--;
1178                         e4b->bd_info->bb_counters[order]--;
1179
1180                         block = block >> 1;
1181                         order++;
1182                         e4b->bd_info->bb_counters[order]++;
1183
1184                         mb_clear_bit(block, buddy2);
1185                         buddy = buddy2;
1186                 } while (1);
1187         }
1188         mb_check_buddy(e4b);
1189 }
1190
1191 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1192                                 int needed, struct ext4_free_extent *ex)
1193 {
1194         int next = block;
1195         int max;
1196         int ord;
1197         void *buddy;
1198
1199         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1200         BUG_ON(ex == NULL);
1201
1202         buddy = mb_find_buddy(e4b, order, &max);
1203         BUG_ON(buddy == NULL);
1204         BUG_ON(block >= max);
1205         if (mb_test_bit(block, buddy)) {
1206                 ex->fe_len = 0;
1207                 ex->fe_start = 0;
1208                 ex->fe_group = 0;
1209                 return 0;
1210         }
1211
1212         /* FIXME dorp order completely ? */
1213         if (likely(order == 0)) {
1214                 /* find actual order */
1215                 order = mb_find_order_for_block(e4b, block);
1216                 block = block >> order;
1217         }
1218
1219         ex->fe_len = 1 << order;
1220         ex->fe_start = block << order;
1221         ex->fe_group = e4b->bd_group;
1222
1223         /* calc difference from given start */
1224         next = next - ex->fe_start;
1225         ex->fe_len -= next;
1226         ex->fe_start += next;
1227
1228         while (needed > ex->fe_len &&
1229                (buddy = mb_find_buddy(e4b, order, &max))) {
1230
1231                 if (block + 1 >= max)
1232                         break;
1233
1234                 next = (block + 1) * (1 << order);
1235                 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1236                         break;
1237
1238                 ord = mb_find_order_for_block(e4b, next);
1239
1240                 order = ord;
1241                 block = next >> order;
1242                 ex->fe_len += 1 << order;
1243         }
1244
1245         BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1246         return ex->fe_len;
1247 }
1248
1249 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1250 {
1251         int ord;
1252         int mlen = 0;
1253         int max = 0;
1254         int cur;
1255         int start = ex->fe_start;
1256         int len = ex->fe_len;
1257         unsigned ret = 0;
1258         int len0 = len;
1259         void *buddy;
1260
1261         BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1262         BUG_ON(e4b->bd_group != ex->fe_group);
1263         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1264         mb_check_buddy(e4b);
1265         mb_mark_used_double(e4b, start, len);
1266
1267         e4b->bd_info->bb_free -= len;
1268         if (e4b->bd_info->bb_first_free == start)
1269                 e4b->bd_info->bb_first_free += len;
1270
1271         /* let's maintain fragments counter */
1272         if (start != 0)
1273                 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1274         if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1275                 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1276         if (mlen && max)
1277                 e4b->bd_info->bb_fragments++;
1278         else if (!mlen && !max)
1279                 e4b->bd_info->bb_fragments--;
1280
1281         /* let's maintain buddy itself */
1282         while (len) {
1283                 ord = mb_find_order_for_block(e4b, start);
1284
1285                 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1286                         /* the whole chunk may be allocated at once! */
1287                         mlen = 1 << ord;
1288                         buddy = mb_find_buddy(e4b, ord, &max);
1289                         BUG_ON((start >> ord) >= max);
1290                         mb_set_bit(start >> ord, buddy);
1291                         e4b->bd_info->bb_counters[ord]--;
1292                         start += mlen;
1293                         len -= mlen;
1294                         BUG_ON(len < 0);
1295                         continue;
1296                 }
1297
1298                 /* store for history */
1299                 if (ret == 0)
1300                         ret = len | (ord << 16);
1301
1302                 /* we have to split large buddy */
1303                 BUG_ON(ord <= 0);
1304                 buddy = mb_find_buddy(e4b, ord, &max);
1305                 mb_set_bit(start >> ord, buddy);
1306                 e4b->bd_info->bb_counters[ord]--;
1307
1308                 ord--;
1309                 cur = (start >> ord) & ~1U;
1310                 buddy = mb_find_buddy(e4b, ord, &max);
1311                 mb_clear_bit(cur, buddy);
1312                 mb_clear_bit(cur + 1, buddy);
1313                 e4b->bd_info->bb_counters[ord]++;
1314                 e4b->bd_info->bb_counters[ord]++;
1315         }
1316
1317         mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1318         mb_check_buddy(e4b);
1319
1320         return ret;
1321 }
1322
1323 /*
1324  * Must be called under group lock!
1325  */
1326 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1327                                         struct ext4_buddy *e4b)
1328 {
1329         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1330         int ret;
1331
1332         BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1333         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1334
1335         ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1336         ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1337         ret = mb_mark_used(e4b, &ac->ac_b_ex);
1338
1339         /* preallocation can change ac_b_ex, thus we store actually
1340          * allocated blocks for history */
1341         ac->ac_f_ex = ac->ac_b_ex;
1342
1343         ac->ac_status = AC_STATUS_FOUND;
1344         ac->ac_tail = ret & 0xffff;
1345         ac->ac_buddy = ret >> 16;
1346
1347         /*
1348          * take the page reference. We want the page to be pinned
1349          * so that we don't get a ext4_mb_init_cache_call for this
1350          * group until we update the bitmap. That would mean we
1351          * double allocate blocks. The reference is dropped
1352          * in ext4_mb_release_context
1353          */
1354         ac->ac_bitmap_page = e4b->bd_bitmap_page;
1355         get_page(ac->ac_bitmap_page);
1356         ac->ac_buddy_page = e4b->bd_buddy_page;
1357         get_page(ac->ac_buddy_page);
1358         /* on allocation we use ac to track the held semaphore */
1359         ac->alloc_semp =  e4b->alloc_semp;
1360         e4b->alloc_semp = NULL;
1361         /* store last allocated for subsequent stream allocation */
1362         if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
1363                 spin_lock(&sbi->s_md_lock);
1364                 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1365                 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1366                 spin_unlock(&sbi->s_md_lock);
1367         }
1368 }
1369
1370 /*
1371  * regular allocator, for general purposes allocation
1372  */
1373
1374 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1375                                         struct ext4_buddy *e4b,
1376                                         int finish_group)
1377 {
1378         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1379         struct ext4_free_extent *bex = &ac->ac_b_ex;
1380         struct ext4_free_extent *gex = &ac->ac_g_ex;
1381         struct ext4_free_extent ex;
1382         int max;
1383
1384         if (ac->ac_status == AC_STATUS_FOUND)
1385                 return;
1386         /*
1387          * We don't want to scan for a whole year
1388          */
1389         if (ac->ac_found > sbi->s_mb_max_to_scan &&
1390                         !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1391                 ac->ac_status = AC_STATUS_BREAK;
1392                 return;
1393         }
1394
1395         /*
1396          * Haven't found good chunk so far, let's continue
1397          */
1398         if (bex->fe_len < gex->fe_len)
1399                 return;
1400
1401         if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1402                         && bex->fe_group == e4b->bd_group) {
1403                 /* recheck chunk's availability - we don't know
1404                  * when it was found (within this lock-unlock
1405                  * period or not) */
1406                 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1407                 if (max >= gex->fe_len) {
1408                         ext4_mb_use_best_found(ac, e4b);
1409                         return;
1410                 }
1411         }
1412 }
1413
1414 /*
1415  * The routine checks whether found extent is good enough. If it is,
1416  * then the extent gets marked used and flag is set to the context
1417  * to stop scanning. Otherwise, the extent is compared with the
1418  * previous found extent and if new one is better, then it's stored
1419  * in the context. Later, the best found extent will be used, if
1420  * mballoc can't find good enough extent.
1421  *
1422  * FIXME: real allocation policy is to be designed yet!
1423  */
1424 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1425                                         struct ext4_free_extent *ex,
1426                                         struct ext4_buddy *e4b)
1427 {
1428         struct ext4_free_extent *bex = &ac->ac_b_ex;
1429         struct ext4_free_extent *gex = &ac->ac_g_ex;
1430
1431         BUG_ON(ex->fe_len <= 0);
1432         BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1433         BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1434         BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1435
1436         ac->ac_found++;
1437
1438         /*
1439          * The special case - take what you catch first
1440          */
1441         if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1442                 *bex = *ex;
1443                 ext4_mb_use_best_found(ac, e4b);
1444                 return;
1445         }
1446
1447         /*
1448          * Let's check whether the chuck is good enough
1449          */
1450         if (ex->fe_len == gex->fe_len) {
1451                 *bex = *ex;
1452                 ext4_mb_use_best_found(ac, e4b);
1453                 return;
1454         }
1455
1456         /*
1457          * If this is first found extent, just store it in the context
1458          */
1459         if (bex->fe_len == 0) {
1460                 *bex = *ex;
1461                 return;
1462         }
1463
1464         /*
1465          * If new found extent is better, store it in the context
1466          */
1467         if (bex->fe_len < gex->fe_len) {
1468                 /* if the request isn't satisfied, any found extent
1469                  * larger than previous best one is better */
1470                 if (ex->fe_len > bex->fe_len)
1471                         *bex = *ex;
1472         } else if (ex->fe_len > gex->fe_len) {
1473                 /* if the request is satisfied, then we try to find
1474                  * an extent that still satisfy the request, but is
1475                  * smaller than previous one */
1476                 if (ex->fe_len < bex->fe_len)
1477                         *bex = *ex;
1478         }
1479
1480         ext4_mb_check_limits(ac, e4b, 0);
1481 }
1482
1483 static int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1484                                         struct ext4_buddy *e4b)
1485 {
1486         struct ext4_free_extent ex = ac->ac_b_ex;
1487         ext4_group_t group = ex.fe_group;
1488         int max;
1489         int err;
1490
1491         BUG_ON(ex.fe_len <= 0);
1492         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1493         if (err)
1494                 return err;
1495
1496         ext4_lock_group(ac->ac_sb, group);
1497         max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1498
1499         if (max > 0) {
1500                 ac->ac_b_ex = ex;
1501                 ext4_mb_use_best_found(ac, e4b);
1502         }
1503
1504         ext4_unlock_group(ac->ac_sb, group);
1505         ext4_mb_release_desc(e4b);
1506
1507         return 0;
1508 }
1509
1510 static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1511                                 struct ext4_buddy *e4b)
1512 {
1513         ext4_group_t group = ac->ac_g_ex.fe_group;
1514         int max;
1515         int err;
1516         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1517         struct ext4_super_block *es = sbi->s_es;
1518         struct ext4_free_extent ex;
1519
1520         if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1521                 return 0;
1522
1523         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1524         if (err)
1525                 return err;
1526
1527         ext4_lock_group(ac->ac_sb, group);
1528         max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1529                              ac->ac_g_ex.fe_len, &ex);
1530
1531         if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1532                 ext4_fsblk_t start;
1533
1534                 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1535                         ex.fe_start + le32_to_cpu(es->s_first_data_block);
1536                 /* use do_div to get remainder (would be 64-bit modulo) */
1537                 if (do_div(start, sbi->s_stripe) == 0) {
1538                         ac->ac_found++;
1539                         ac->ac_b_ex = ex;
1540                         ext4_mb_use_best_found(ac, e4b);
1541                 }
1542         } else if (max >= ac->ac_g_ex.fe_len) {
1543                 BUG_ON(ex.fe_len <= 0);
1544                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1545                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1546                 ac->ac_found++;
1547                 ac->ac_b_ex = ex;
1548                 ext4_mb_use_best_found(ac, e4b);
1549         } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1550                 /* Sometimes, caller may want to merge even small
1551                  * number of blocks to an existing extent */
1552                 BUG_ON(ex.fe_len <= 0);
1553                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1554                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1555                 ac->ac_found++;
1556                 ac->ac_b_ex = ex;
1557                 ext4_mb_use_best_found(ac, e4b);
1558         }
1559         ext4_unlock_group(ac->ac_sb, group);
1560         ext4_mb_release_desc(e4b);
1561
1562         return 0;
1563 }
1564
1565 /*
1566  * The routine scans buddy structures (not bitmap!) from given order
1567  * to max order and tries to find big enough chunk to satisfy the req
1568  */
1569 static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1570                                         struct ext4_buddy *e4b)
1571 {
1572         struct super_block *sb = ac->ac_sb;
1573         struct ext4_group_info *grp = e4b->bd_info;
1574         void *buddy;
1575         int i;
1576         int k;
1577         int max;
1578
1579         BUG_ON(ac->ac_2order <= 0);
1580         for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1581                 if (grp->bb_counters[i] == 0)
1582                         continue;
1583
1584                 buddy = mb_find_buddy(e4b, i, &max);
1585                 BUG_ON(buddy == NULL);
1586
1587                 k = mb_find_next_zero_bit(buddy, max, 0);
1588                 BUG_ON(k >= max);
1589
1590                 ac->ac_found++;
1591
1592                 ac->ac_b_ex.fe_len = 1 << i;
1593                 ac->ac_b_ex.fe_start = k << i;
1594                 ac->ac_b_ex.fe_group = e4b->bd_group;
1595
1596                 ext4_mb_use_best_found(ac, e4b);
1597
1598                 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1599
1600                 if (EXT4_SB(sb)->s_mb_stats)
1601                         atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1602
1603                 break;
1604         }
1605 }
1606
1607 /*
1608  * The routine scans the group and measures all found extents.
1609  * In order to optimize scanning, caller must pass number of
1610  * free blocks in the group, so the routine can know upper limit.
1611  */
1612 static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1613                                         struct ext4_buddy *e4b)
1614 {
1615         struct super_block *sb = ac->ac_sb;
1616         void *bitmap = EXT4_MB_BITMAP(e4b);
1617         struct ext4_free_extent ex;
1618         int i;
1619         int free;
1620
1621         free = e4b->bd_info->bb_free;
1622         BUG_ON(free <= 0);
1623
1624         i = e4b->bd_info->bb_first_free;
1625
1626         while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1627                 i = mb_find_next_zero_bit(bitmap,
1628                                                 EXT4_BLOCKS_PER_GROUP(sb), i);
1629                 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1630                         /*
1631                          * IF we have corrupt bitmap, we won't find any
1632                          * free blocks even though group info says we
1633                          * we have free blocks
1634                          */
1635                         ext4_grp_locked_error(sb, e4b->bd_group,
1636                                         __func__, "%d free blocks as per "
1637                                         "group info. But bitmap says 0",
1638                                         free);
1639                         break;
1640                 }
1641
1642                 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1643                 BUG_ON(ex.fe_len <= 0);
1644                 if (free < ex.fe_len) {
1645                         ext4_grp_locked_error(sb, e4b->bd_group,
1646                                         __func__, "%d free blocks as per "
1647                                         "group info. But got %d blocks",
1648                                         free, ex.fe_len);
1649                         /*
1650                          * The number of free blocks differs. This mostly
1651                          * indicate that the bitmap is corrupt. So exit
1652                          * without claiming the space.
1653                          */
1654                         break;
1655                 }
1656
1657                 ext4_mb_measure_extent(ac, &ex, e4b);
1658
1659                 i += ex.fe_len;
1660                 free -= ex.fe_len;
1661         }
1662
1663         ext4_mb_check_limits(ac, e4b, 1);
1664 }
1665
1666 /*
1667  * This is a special case for storages like raid5
1668  * we try to find stripe-aligned chunks for stripe-size requests
1669  * XXX should do so at least for multiples of stripe size as well
1670  */
1671 static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1672                                  struct ext4_buddy *e4b)
1673 {
1674         struct super_block *sb = ac->ac_sb;
1675         struct ext4_sb_info *sbi = EXT4_SB(sb);
1676         void *bitmap = EXT4_MB_BITMAP(e4b);
1677         struct ext4_free_extent ex;
1678         ext4_fsblk_t first_group_block;
1679         ext4_fsblk_t a;
1680         ext4_grpblk_t i;
1681         int max;
1682
1683         BUG_ON(sbi->s_stripe == 0);
1684
1685         /* find first stripe-aligned block in group */
1686         first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1687                 + le32_to_cpu(sbi->s_es->s_first_data_block);
1688         a = first_group_block + sbi->s_stripe - 1;
1689         do_div(a, sbi->s_stripe);
1690         i = (a * sbi->s_stripe) - first_group_block;
1691
1692         while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1693                 if (!mb_test_bit(i, bitmap)) {
1694                         max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1695                         if (max >= sbi->s_stripe) {
1696                                 ac->ac_found++;
1697                                 ac->ac_b_ex = ex;
1698                                 ext4_mb_use_best_found(ac, e4b);
1699                                 break;
1700                         }
1701                 }
1702                 i += sbi->s_stripe;
1703         }
1704 }
1705
1706 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1707                                 ext4_group_t group, int cr)
1708 {
1709         unsigned free, fragments;
1710         unsigned i, bits;
1711         int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1712         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1713
1714         BUG_ON(cr < 0 || cr >= 4);
1715         BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1716
1717         free = grp->bb_free;
1718         fragments = grp->bb_fragments;
1719         if (free == 0)
1720                 return 0;
1721         if (fragments == 0)
1722                 return 0;
1723
1724         switch (cr) {
1725         case 0:
1726                 BUG_ON(ac->ac_2order == 0);
1727
1728                 /* Avoid using the first bg of a flexgroup for data files */
1729                 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1730                     (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1731                     ((group % flex_size) == 0))
1732                         return 0;
1733
1734                 bits = ac->ac_sb->s_blocksize_bits + 1;
1735                 for (i = ac->ac_2order; i <= bits; i++)
1736                         if (grp->bb_counters[i] > 0)
1737                                 return 1;
1738                 break;
1739         case 1:
1740                 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1741                         return 1;
1742                 break;
1743         case 2:
1744                 if (free >= ac->ac_g_ex.fe_len)
1745                         return 1;
1746                 break;
1747         case 3:
1748                 return 1;
1749         default:
1750                 BUG();
1751         }
1752
1753         return 0;
1754 }
1755
1756 /*
1757  * lock the group_info alloc_sem of all the groups
1758  * belonging to the same buddy cache page. This
1759  * make sure other parallel operation on the buddy
1760  * cache doesn't happen  whild holding the buddy cache
1761  * lock
1762  */
1763 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group)
1764 {
1765         int i;
1766         int block, pnum;
1767         int blocks_per_page;
1768         int groups_per_page;
1769         ext4_group_t ngroups = ext4_get_groups_count(sb);
1770         ext4_group_t first_group;
1771         struct ext4_group_info *grp;
1772
1773         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1774         /*
1775          * the buddy cache inode stores the block bitmap
1776          * and buddy information in consecutive blocks.
1777          * So for each group we need two blocks.
1778          */
1779         block = group * 2;
1780         pnum = block / blocks_per_page;
1781         first_group = pnum * blocks_per_page / 2;
1782
1783         groups_per_page = blocks_per_page >> 1;
1784         if (groups_per_page == 0)
1785                 groups_per_page = 1;
1786         /* read all groups the page covers into the cache */
1787         for (i = 0; i < groups_per_page; i++) {
1788
1789                 if ((first_group + i) >= ngroups)
1790                         break;
1791                 grp = ext4_get_group_info(sb, first_group + i);
1792                 /* take all groups write allocation
1793                  * semaphore. This make sure there is
1794                  * no block allocation going on in any
1795                  * of that groups
1796                  */
1797                 down_write_nested(&grp->alloc_sem, i);
1798         }
1799         return i;
1800 }
1801
1802 void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1803                                         ext4_group_t group, int locked_group)
1804 {
1805         int i;
1806         int block, pnum;
1807         int blocks_per_page;
1808         ext4_group_t first_group;
1809         struct ext4_group_info *grp;
1810
1811         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1812         /*
1813          * the buddy cache inode stores the block bitmap
1814          * and buddy information in consecutive blocks.
1815          * So for each group we need two blocks.
1816          */
1817         block = group * 2;
1818         pnum = block / blocks_per_page;
1819         first_group = pnum * blocks_per_page / 2;
1820         /* release locks on all the groups */
1821         for (i = 0; i < locked_group; i++) {
1822
1823                 grp = ext4_get_group_info(sb, first_group + i);
1824                 /* take all groups write allocation
1825                  * semaphore. This make sure there is
1826                  * no block allocation going on in any
1827                  * of that groups
1828                  */
1829                 up_write(&grp->alloc_sem);
1830         }
1831
1832 }
1833
1834 static int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1835 {
1836
1837         int ret;
1838         void *bitmap;
1839         int blocks_per_page;
1840         int block, pnum, poff;
1841         int num_grp_locked = 0;
1842         struct ext4_group_info *this_grp;
1843         struct ext4_sb_info *sbi = EXT4_SB(sb);
1844         struct inode *inode = sbi->s_buddy_cache;
1845         struct page *page = NULL, *bitmap_page = NULL;
1846
1847         mb_debug("init group %lu\n", group);
1848         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1849         this_grp = ext4_get_group_info(sb, group);
1850         /*
1851          * This ensures we don't add group
1852          * to this buddy cache via resize
1853          */
1854         num_grp_locked =  ext4_mb_get_buddy_cache_lock(sb, group);
1855         if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
1856                 /*
1857                  * somebody initialized the group
1858                  * return without doing anything
1859                  */
1860                 ret = 0;
1861                 goto err;
1862         }
1863         /*
1864          * the buddy cache inode stores the block bitmap
1865          * and buddy information in consecutive blocks.
1866          * So for each group we need two blocks.
1867          */
1868         block = group * 2;
1869         pnum = block / blocks_per_page;
1870         poff = block % blocks_per_page;
1871         page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1872         if (page) {
1873                 BUG_ON(page->mapping != inode->i_mapping);
1874                 ret = ext4_mb_init_cache(page, NULL);
1875                 if (ret) {
1876                         unlock_page(page);
1877                         goto err;
1878                 }
1879                 unlock_page(page);
1880         }
1881         if (page == NULL || !PageUptodate(page)) {
1882                 ret = -EIO;
1883                 goto err;
1884         }
1885         mark_page_accessed(page);
1886         bitmap_page = page;
1887         bitmap = page_address(page) + (poff * sb->s_blocksize);
1888
1889         /* init buddy cache */
1890         block++;
1891         pnum = block / blocks_per_page;
1892         poff = block % blocks_per_page;
1893         page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1894         if (page == bitmap_page) {
1895                 /*
1896                  * If both the bitmap and buddy are in
1897                  * the same page we don't need to force
1898                  * init the buddy
1899                  */
1900                 unlock_page(page);
1901         } else if (page) {
1902                 BUG_ON(page->mapping != inode->i_mapping);
1903                 ret = ext4_mb_init_cache(page, bitmap);
1904                 if (ret) {
1905                         unlock_page(page);
1906                         goto err;
1907                 }
1908                 unlock_page(page);
1909         }
1910         if (page == NULL || !PageUptodate(page)) {
1911                 ret = -EIO;
1912                 goto err;
1913         }
1914         mark_page_accessed(page);
1915 err:
1916         ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
1917         if (bitmap_page)
1918                 page_cache_release(bitmap_page);
1919         if (page)
1920                 page_cache_release(page);
1921         return ret;
1922 }
1923
1924 static noinline_for_stack int
1925 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1926 {
1927         ext4_group_t ngroups, group, i;
1928         int cr;
1929         int err = 0;
1930         int bsbits;
1931         struct ext4_sb_info *sbi;
1932         struct super_block *sb;
1933         struct ext4_buddy e4b;
1934         loff_t size, isize;
1935
1936         sb = ac->ac_sb;
1937         sbi = EXT4_SB(sb);
1938         ngroups = ext4_get_groups_count(sb);
1939         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1940
1941         /* first, try the goal */
1942         err = ext4_mb_find_by_goal(ac, &e4b);
1943         if (err || ac->ac_status == AC_STATUS_FOUND)
1944                 goto out;
1945
1946         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1947                 goto out;
1948
1949         /*
1950          * ac->ac2_order is set only if the fe_len is a power of 2
1951          * if ac2_order is set we also set criteria to 0 so that we
1952          * try exact allocation using buddy.
1953          */
1954         i = fls(ac->ac_g_ex.fe_len);
1955         ac->ac_2order = 0;
1956         /*
1957          * We search using buddy data only if the order of the request
1958          * is greater than equal to the sbi_s_mb_order2_reqs
1959          * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1960          */
1961         if (i >= sbi->s_mb_order2_reqs) {
1962                 /*
1963                  * This should tell if fe_len is exactly power of 2
1964                  */
1965                 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1966                         ac->ac_2order = i - 1;
1967         }
1968
1969         bsbits = ac->ac_sb->s_blocksize_bits;
1970         /* if stream allocation is enabled, use global goal */
1971         size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
1972         isize = i_size_read(ac->ac_inode) >> bsbits;
1973         if (size < isize)
1974                 size = isize;
1975
1976         if (size < sbi->s_mb_stream_request &&
1977                         (ac->ac_flags & EXT4_MB_HINT_DATA)) {
1978                 /* TBD: may be hot point */
1979                 spin_lock(&sbi->s_md_lock);
1980                 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1981                 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1982                 spin_unlock(&sbi->s_md_lock);
1983         }
1984         /* Let's just scan groups to find more-less suitable blocks */
1985         cr = ac->ac_2order ? 0 : 1;
1986         /*
1987          * cr == 0 try to get exact allocation,
1988          * cr == 3  try to get anything
1989          */
1990 repeat:
1991         for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1992                 ac->ac_criteria = cr;
1993                 /*
1994                  * searching for the right group start
1995                  * from the goal value specified
1996                  */
1997                 group = ac->ac_g_ex.fe_group;
1998
1999                 for (i = 0; i < ngroups; group++, i++) {
2000                         struct ext4_group_info *grp;
2001                         struct ext4_group_desc *desc;
2002
2003                         if (group == ngroups)
2004                                 group = 0;
2005
2006                         /* quick check to skip empty groups */
2007                         grp = ext4_get_group_info(sb, group);
2008                         if (grp->bb_free == 0)
2009                                 continue;
2010
2011                         /*
2012                          * if the group is already init we check whether it is
2013                          * a good group and if not we don't load the buddy
2014                          */
2015                         if (EXT4_MB_GRP_NEED_INIT(grp)) {
2016                                 /*
2017                                  * we need full data about the group
2018                                  * to make a good selection
2019                                  */
2020                                 err = ext4_mb_init_group(sb, group);
2021                                 if (err)
2022                                         goto out;
2023                         }
2024
2025                         /*
2026                          * If the particular group doesn't satisfy our
2027                          * criteria we continue with the next group
2028                          */
2029                         if (!ext4_mb_good_group(ac, group, cr))
2030                                 continue;
2031
2032                         err = ext4_mb_load_buddy(sb, group, &e4b);
2033                         if (err)
2034                                 goto out;
2035
2036                         ext4_lock_group(sb, group);
2037                         if (!ext4_mb_good_group(ac, group, cr)) {
2038                                 /* someone did allocation from this group */
2039                                 ext4_unlock_group(sb, group);
2040                                 ext4_mb_release_desc(&e4b);
2041                                 continue;
2042                         }
2043
2044                         ac->ac_groups_scanned++;
2045                         desc = ext4_get_group_desc(sb, group, NULL);
2046                         if (cr == 0)
2047                                 ext4_mb_simple_scan_group(ac, &e4b);
2048                         else if (cr == 1 &&
2049                                         ac->ac_g_ex.fe_len == sbi->s_stripe)
2050                                 ext4_mb_scan_aligned(ac, &e4b);
2051                         else
2052                                 ext4_mb_complex_scan_group(ac, &e4b);
2053
2054                         ext4_unlock_group(sb, group);
2055                         ext4_mb_release_desc(&e4b);
2056
2057                         if (ac->ac_status != AC_STATUS_CONTINUE)
2058                                 break;
2059                 }
2060         }
2061
2062         if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2063             !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2064                 /*
2065                  * We've been searching too long. Let's try to allocate
2066                  * the best chunk we've found so far
2067                  */
2068
2069                 ext4_mb_try_best_found(ac, &e4b);
2070                 if (ac->ac_status != AC_STATUS_FOUND) {
2071                         /*
2072                          * Someone more lucky has already allocated it.
2073                          * The only thing we can do is just take first
2074                          * found block(s)
2075                         printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2076                          */
2077                         ac->ac_b_ex.fe_group = 0;
2078                         ac->ac_b_ex.fe_start = 0;
2079                         ac->ac_b_ex.fe_len = 0;
2080                         ac->ac_status = AC_STATUS_CONTINUE;
2081                         ac->ac_flags |= EXT4_MB_HINT_FIRST;
2082                         cr = 3;
2083                         atomic_inc(&sbi->s_mb_lost_chunks);
2084                         goto repeat;
2085                 }
2086         }
2087 out:
2088         return err;
2089 }
2090
2091 #ifdef EXT4_MB_HISTORY
2092 struct ext4_mb_proc_session {
2093         struct ext4_mb_history *history;
2094         struct super_block *sb;
2095         int start;
2096         int max;
2097 };
2098
2099 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
2100                                         struct ext4_mb_history *hs,
2101                                         int first)
2102 {
2103         if (hs == s->history + s->max)
2104                 hs = s->history;
2105         if (!first && hs == s->history + s->start)
2106                 return NULL;
2107         while (hs->orig.fe_len == 0) {
2108                 hs++;
2109                 if (hs == s->history + s->max)
2110                         hs = s->history;
2111                 if (hs == s->history + s->start)
2112                         return NULL;
2113         }
2114         return hs;
2115 }
2116
2117 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
2118 {
2119         struct ext4_mb_proc_session *s = seq->private;
2120         struct ext4_mb_history *hs;
2121         int l = *pos;
2122
2123         if (l == 0)
2124                 return SEQ_START_TOKEN;
2125         hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2126         if (!hs)
2127                 return NULL;
2128         while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
2129         return hs;
2130 }
2131
2132 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
2133                                       loff_t *pos)
2134 {
2135         struct ext4_mb_proc_session *s = seq->private;
2136         struct ext4_mb_history *hs = v;
2137
2138         ++*pos;
2139         if (v == SEQ_START_TOKEN)
2140                 return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2141         else
2142                 return ext4_mb_history_skip_empty(s, ++hs, 0);
2143 }
2144
2145 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
2146 {
2147         char buf[25], buf2[25], buf3[25], *fmt;
2148         struct ext4_mb_history *hs = v;
2149
2150         if (v == SEQ_START_TOKEN) {
2151                 seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
2152                                 "%-5s %-2s %-5s %-5s %-5s %-6s\n",
2153                           "pid", "inode", "original", "goal", "result", "found",
2154                            "grps", "cr", "flags", "merge", "tail", "broken");
2155                 return 0;
2156         }
2157
2158         if (hs->op == EXT4_MB_HISTORY_ALLOC) {
2159                 fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
2160                         "%-5u %-5s %-5u %-6u\n";
2161                 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2162                         hs->result.fe_start, hs->result.fe_len,
2163                         hs->result.fe_logical);
2164                 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2165                         hs->orig.fe_start, hs->orig.fe_len,
2166                         hs->orig.fe_logical);
2167                 sprintf(buf3, "%u/%d/%u@%u", hs->goal.fe_group,
2168                         hs->goal.fe_start, hs->goal.fe_len,
2169                         hs->goal.fe_logical);
2170                 seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
2171                                 hs->found, hs->groups, hs->cr, hs->flags,
2172                                 hs->merged ? "M" : "", hs->tail,
2173                                 hs->buddy ? 1 << hs->buddy : 0);
2174         } else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
2175                 fmt = "%-5u %-8u %-23s %-23s %-23s\n";
2176                 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2177                         hs->result.fe_start, hs->result.fe_len,
2178                         hs->result.fe_logical);
2179                 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2180                         hs->orig.fe_start, hs->orig.fe_len,
2181                         hs->orig.fe_logical);
2182                 seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
2183         } else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
2184                 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2185                         hs->result.fe_start, hs->result.fe_len);
2186                 seq_printf(seq, "%-5u %-8u %-23s discard\n",
2187                                 hs->pid, hs->ino, buf2);
2188         } else if (hs->op == EXT4_MB_HISTORY_FREE) {
2189                 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2190                         hs->result.fe_start, hs->result.fe_len);
2191                 seq_printf(seq, "%-5u %-8u %-23s free\n",
2192                                 hs->pid, hs->ino, buf2);
2193         }
2194         return 0;
2195 }
2196
2197 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
2198 {
2199 }
2200
2201 static struct seq_operations ext4_mb_seq_history_ops = {
2202         .start  = ext4_mb_seq_history_start,
2203         .next   = ext4_mb_seq_history_next,
2204         .stop   = ext4_mb_seq_history_stop,
2205         .show   = ext4_mb_seq_history_show,
2206 };
2207
2208 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
2209 {
2210         struct super_block *sb = PDE(inode)->data;
2211         struct ext4_sb_info *sbi = EXT4_SB(sb);
2212         struct ext4_mb_proc_session *s;
2213         int rc;
2214         int size;
2215
2216         if (unlikely(sbi->s_mb_history == NULL))
2217                 return -ENOMEM;
2218         s = kmalloc(sizeof(*s), GFP_KERNEL);
2219         if (s == NULL)
2220                 return -ENOMEM;
2221         s->sb = sb;
2222         size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
2223         s->history = kmalloc(size, GFP_KERNEL);
2224         if (s->history == NULL) {
2225                 kfree(s);
2226                 return -ENOMEM;
2227         }
2228
2229         spin_lock(&sbi->s_mb_history_lock);
2230         memcpy(s->history, sbi->s_mb_history, size);
2231         s->max = sbi->s_mb_history_max;
2232         s->start = sbi->s_mb_history_cur % s->max;
2233         spin_unlock(&sbi->s_mb_history_lock);
2234
2235         rc = seq_open(file, &ext4_mb_seq_history_ops);
2236         if (rc == 0) {
2237                 struct seq_file *m = (struct seq_file *)file->private_data;
2238                 m->private = s;
2239         } else {
2240                 kfree(s->history);
2241                 kfree(s);
2242         }
2243         return rc;
2244
2245 }
2246
2247 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2248 {
2249         struct seq_file *seq = (struct seq_file *)file->private_data;
2250         struct ext4_mb_proc_session *s = seq->private;
2251         kfree(s->history);
2252         kfree(s);
2253         return seq_release(inode, file);
2254 }
2255
2256 static ssize_t ext4_mb_seq_history_write(struct file *file,
2257                                 const char __user *buffer,
2258                                 size_t count, loff_t *ppos)
2259 {
2260         struct seq_file *seq = (struct seq_file *)file->private_data;
2261         struct ext4_mb_proc_session *s = seq->private;
2262         struct super_block *sb = s->sb;
2263         char str[32];
2264         int value;
2265
2266         if (count >= sizeof(str)) {
2267                 printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2268                                 "mb_history", (int)sizeof(str));
2269                 return -EOVERFLOW;
2270         }
2271
2272         if (copy_from_user(str, buffer, count))
2273                 return -EFAULT;
2274
2275         value = simple_strtol(str, NULL, 0);
2276         if (value < 0)
2277                 return -ERANGE;
2278         EXT4_SB(sb)->s_mb_history_filter = value;
2279
2280         return count;
2281 }
2282
2283 static struct file_operations ext4_mb_seq_history_fops = {
2284         .owner          = THIS_MODULE,
2285         .open           = ext4_mb_seq_history_open,
2286         .read           = seq_read,
2287         .write          = ext4_mb_seq_history_write,
2288         .llseek         = seq_lseek,
2289         .release        = ext4_mb_seq_history_release,
2290 };
2291
2292 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2293 {
2294         struct super_block *sb = seq->private;
2295         ext4_group_t group;
2296
2297         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2298                 return NULL;
2299         group = *pos + 1;
2300         return (void *) ((unsigned long) group);
2301 }
2302
2303 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2304 {
2305         struct super_block *sb = seq->private;
2306         ext4_group_t group;
2307
2308         ++*pos;
2309         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2310                 return NULL;
2311         group = *pos + 1;
2312         return (void *) ((unsigned long) group);
2313 }
2314
2315 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2316 {
2317         struct super_block *sb = seq->private;
2318         ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2319         int i;
2320         int err;
2321         struct ext4_buddy e4b;
2322         struct sg {
2323                 struct ext4_group_info info;
2324                 unsigned short counters[16];
2325         } sg;
2326
2327         group--;
2328         if (group == 0)
2329                 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2330                                 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2331                                   "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2332                            "group", "free", "frags", "first",
2333                            "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2334                            "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2335
2336         i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2337                 sizeof(struct ext4_group_info);
2338         err = ext4_mb_load_buddy(sb, group, &e4b);
2339         if (err) {
2340                 seq_printf(seq, "#%-5u: I/O error\n", group);
2341                 return 0;
2342         }
2343         ext4_lock_group(sb, group);
2344         memcpy(&sg, ext4_get_group_info(sb, group), i);
2345         ext4_unlock_group(sb, group);
2346         ext4_mb_release_desc(&e4b);
2347
2348         seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2349                         sg.info.bb_fragments, sg.info.bb_first_free);
2350         for (i = 0; i <= 13; i++)
2351                 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2352                                 sg.info.bb_counters[i] : 0);
2353         seq_printf(seq, " ]\n");
2354
2355         return 0;
2356 }
2357
2358 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2359 {
2360 }
2361
2362 static struct seq_operations ext4_mb_seq_groups_ops = {
2363         .start  = ext4_mb_seq_groups_start,
2364         .next   = ext4_mb_seq_groups_next,
2365         .stop   = ext4_mb_seq_groups_stop,
2366         .show   = ext4_mb_seq_groups_show,
2367 };
2368
2369 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2370 {
2371         struct super_block *sb = PDE(inode)->data;
2372         int rc;
2373
2374         rc = seq_open(file, &ext4_mb_seq_groups_ops);
2375         if (rc == 0) {
2376                 struct seq_file *m = (struct seq_file *)file->private_data;
2377                 m->private = sb;
2378         }
2379         return rc;
2380
2381 }
2382
2383 static struct file_operations ext4_mb_seq_groups_fops = {
2384         .owner          = THIS_MODULE,
2385         .open           = ext4_mb_seq_groups_open,
2386         .read           = seq_read,
2387         .llseek         = seq_lseek,
2388         .release        = seq_release,
2389 };
2390
2391 static void ext4_mb_history_release(struct super_block *sb)
2392 {
2393         struct ext4_sb_info *sbi = EXT4_SB(sb);
2394
2395         if (sbi->s_proc != NULL) {
2396                 remove_proc_entry("mb_groups", sbi->s_proc);
2397                 if (sbi->s_mb_history_max)
2398                         remove_proc_entry("mb_history", sbi->s_proc);
2399         }
2400         kfree(sbi->s_mb_history);
2401 }
2402
2403 static void ext4_mb_history_init(struct super_block *sb)
2404 {
2405         struct ext4_sb_info *sbi = EXT4_SB(sb);
2406         int i;
2407
2408         if (sbi->s_proc != NULL) {
2409                 if (sbi->s_mb_history_max)
2410                         proc_create_data("mb_history", S_IRUGO, sbi->s_proc,
2411                                          &ext4_mb_seq_history_fops, sb);
2412                 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2413                                  &ext4_mb_seq_groups_fops, sb);
2414         }
2415
2416         sbi->s_mb_history_cur = 0;
2417         spin_lock_init(&sbi->s_mb_history_lock);
2418         i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2419         sbi->s_mb_history = i ? kzalloc(i, GFP_KERNEL) : NULL;
2420         /* if we can't allocate history, then we simple won't use it */
2421 }
2422
2423 static noinline_for_stack void
2424 ext4_mb_store_history(struct ext4_allocation_context *ac)
2425 {
2426         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2427         struct ext4_mb_history h;
2428
2429         if (sbi->s_mb_history == NULL)
2430                 return;
2431
2432         if (!(ac->ac_op & sbi->s_mb_history_filter))
2433                 return;
2434
2435         h.op = ac->ac_op;
2436         h.pid = current->pid;
2437         h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2438         h.orig = ac->ac_o_ex;
2439         h.result = ac->ac_b_ex;
2440         h.flags = ac->ac_flags;
2441         h.found = ac->ac_found;
2442         h.groups = ac->ac_groups_scanned;
2443         h.cr = ac->ac_criteria;
2444         h.tail = ac->ac_tail;
2445         h.buddy = ac->ac_buddy;
2446         h.merged = 0;
2447         if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2448                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2449                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2450                         h.merged = 1;
2451                 h.goal = ac->ac_g_ex;
2452                 h.result = ac->ac_f_ex;
2453         }
2454
2455         spin_lock(&sbi->s_mb_history_lock);
2456         memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2457         if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2458                 sbi->s_mb_history_cur = 0;
2459         spin_unlock(&sbi->s_mb_history_lock);
2460 }
2461
2462 #else
2463 #define ext4_mb_history_release(sb)
2464 #define ext4_mb_history_init(sb)
2465 #endif
2466
2467
2468 /* Create and initialize ext4_group_info data for the given group. */
2469 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2470                           struct ext4_group_desc *desc)
2471 {
2472         int i, len;
2473         int metalen = 0;
2474         struct ext4_sb_info *sbi = EXT4_SB(sb);
2475         struct ext4_group_info **meta_group_info;
2476
2477         /*
2478          * First check if this group is the first of a reserved block.
2479          * If it's true, we have to allocate a new table of pointers
2480          * to ext4_group_info structures
2481          */
2482         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2483                 metalen = sizeof(*meta_group_info) <<
2484                         EXT4_DESC_PER_BLOCK_BITS(sb);
2485                 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2486                 if (meta_group_info == NULL) {
2487                         printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2488                                "buddy group\n");
2489                         goto exit_meta_group_info;
2490                 }
2491                 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2492                         meta_group_info;
2493         }
2494
2495         /*
2496          * calculate needed size. if change bb_counters size,
2497          * don't forget about ext4_mb_generate_buddy()
2498          */
2499         len = offsetof(typeof(**meta_group_info),
2500                        bb_counters[sb->s_blocksize_bits + 2]);
2501
2502         meta_group_info =
2503                 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2504         i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2505
2506         meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2507         if (meta_group_info[i] == NULL) {
2508                 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2509                 goto exit_group_info;
2510         }
2511         set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2512                 &(meta_group_info[i]->bb_state));
2513
2514         /*
2515          * initialize bb_free to be able to skip
2516          * empty groups without initialization
2517          */
2518         if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2519                 meta_group_info[i]->bb_free =
2520                         ext4_free_blocks_after_init(sb, group, desc);
2521         } else {
2522                 meta_group_info[i]->bb_free =
2523                         ext4_free_blks_count(sb, desc);
2524         }
2525
2526         INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2527         init_rwsem(&meta_group_info[i]->alloc_sem);
2528         meta_group_info[i]->bb_free_root.rb_node = NULL;;
2529
2530 #ifdef DOUBLE_CHECK
2531         {
2532                 struct buffer_head *bh;
2533                 meta_group_info[i]->bb_bitmap =
2534                         kmalloc(sb->s_blocksize, GFP_KERNEL);
2535                 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2536                 bh = ext4_read_block_bitmap(sb, group);
2537                 BUG_ON(bh == NULL);
2538                 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2539                         sb->s_blocksize);
2540                 put_bh(bh);
2541         }
2542 #endif
2543
2544         return 0;
2545
2546 exit_group_info:
2547         /* If a meta_group_info table has been allocated, release it now */
2548         if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2549                 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2550 exit_meta_group_info:
2551         return -ENOMEM;
2552 } /* ext4_mb_add_groupinfo */
2553
2554 /*
2555  * Update an existing group.
2556  * This function is used for online resize
2557  */
2558 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add)
2559 {
2560         grp->bb_free += add;
2561 }
2562
2563 static int ext4_mb_init_backend(struct super_block *sb)
2564 {
2565         ext4_group_t ngroups = ext4_get_groups_count(sb);
2566         ext4_group_t i;
2567         int metalen;
2568         struct ext4_sb_info *sbi = EXT4_SB(sb);
2569         struct ext4_super_block *es = sbi->s_es;
2570         int num_meta_group_infos;
2571         int num_meta_group_infos_max;
2572         int array_size;
2573         struct ext4_group_info **meta_group_info;
2574         struct ext4_group_desc *desc;
2575
2576         /* This is the number of blocks used by GDT */
2577         num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2578                                 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2579
2580         /*
2581          * This is the total number of blocks used by GDT including
2582          * the number of reserved blocks for GDT.
2583          * The s_group_info array is allocated with this value
2584          * to allow a clean online resize without a complex
2585          * manipulation of pointer.
2586          * The drawback is the unused memory when no resize
2587          * occurs but it's very low in terms of pages
2588          * (see comments below)
2589          * Need to handle this properly when META_BG resizing is allowed
2590          */
2591         num_meta_group_infos_max = num_meta_group_infos +
2592                                 le16_to_cpu(es->s_reserved_gdt_blocks);
2593
2594         /*
2595          * array_size is the size of s_group_info array. We round it
2596          * to the next power of two because this approximation is done
2597          * internally by kmalloc so we can have some more memory
2598          * for free here (e.g. may be used for META_BG resize).
2599          */
2600         array_size = 1;
2601         while (array_size < sizeof(*sbi->s_group_info) *
2602                num_meta_group_infos_max)
2603                 array_size = array_size << 1;
2604         /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2605          * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2606          * So a two level scheme suffices for now. */
2607         sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2608         if (sbi->s_group_info == NULL) {
2609                 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2610                 return -ENOMEM;
2611         }
2612         sbi->s_buddy_cache = new_inode(sb);
2613         if (sbi->s_buddy_cache == NULL) {
2614                 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2615                 goto err_freesgi;
2616         }
2617         EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2618
2619         metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
2620         for (i = 0; i < num_meta_group_infos; i++) {
2621                 if ((i + 1) == num_meta_group_infos)
2622                         metalen = sizeof(*meta_group_info) *
2623                                 (ngroups -
2624                                         (i << EXT4_DESC_PER_BLOCK_BITS(sb)));
2625                 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2626                 if (meta_group_info == NULL) {
2627                         printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2628                                "buddy group\n");
2629                         goto err_freemeta;
2630                 }
2631                 sbi->s_group_info[i] = meta_group_info;
2632         }
2633
2634         for (i = 0; i < ngroups; i++) {
2635                 desc = ext4_get_group_desc(sb, i, NULL);
2636                 if (desc == NULL) {
2637                         printk(KERN_ERR
2638                                 "EXT4-fs: can't read descriptor %u\n", i);
2639                         goto err_freebuddy;
2640                 }
2641                 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2642                         goto err_freebuddy;
2643         }
2644
2645         return 0;
2646
2647 err_freebuddy:
2648         while (i-- > 0)
2649                 kfree(ext4_get_group_info(sb, i));
2650         i = num_meta_group_infos;
2651 err_freemeta:
2652         while (i-- > 0)
2653                 kfree(sbi->s_group_info[i]);
2654         iput(sbi->s_buddy_cache);
2655 err_freesgi:
2656         kfree(sbi->s_group_info);
2657         return -ENOMEM;
2658 }
2659
2660 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2661 {
2662         struct ext4_sb_info *sbi = EXT4_SB(sb);
2663         unsigned i, j;
2664         unsigned offset;
2665         unsigned max;
2666         int ret;
2667
2668         i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
2669
2670         sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2671         if (sbi->s_mb_offsets == NULL) {
2672                 return -ENOMEM;
2673         }
2674
2675         i = (sb->s_blocksize_bits + 2) * sizeof(unsigned int);
2676         sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2677         if (sbi->s_mb_maxs == NULL) {
2678                 kfree(sbi->s_mb_offsets);
2679                 return -ENOMEM;
2680         }
2681
2682         /* order 0 is regular bitmap */
2683         sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2684         sbi->s_mb_offsets[0] = 0;
2685
2686         i = 1;
2687         offset = 0;
2688         max = sb->s_blocksize << 2;
2689         do {
2690                 sbi->s_mb_offsets[i] = offset;
2691                 sbi->s_mb_maxs[i] = max;
2692                 offset += 1 << (sb->s_blocksize_bits - i);
2693                 max = max >> 1;
2694                 i++;
2695         } while (i <= sb->s_blocksize_bits + 1);
2696
2697         /* init file for buddy data */
2698         ret = ext4_mb_init_backend(sb);
2699         if (ret != 0) {
2700                 kfree(sbi->s_mb_offsets);
2701                 kfree(sbi->s_mb_maxs);
2702                 return ret;
2703         }
2704
2705         spin_lock_init(&sbi->s_md_lock);
2706         spin_lock_init(&sbi->s_bal_lock);
2707
2708         sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2709         sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2710         sbi->s_mb_stats = MB_DEFAULT_STATS;
2711         sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2712         sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2713         sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2714         sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2715
2716         sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2717         if (sbi->s_locality_groups == NULL) {
2718                 kfree(sbi->s_mb_offsets);
2719                 kfree(sbi->s_mb_maxs);
2720                 return -ENOMEM;
2721         }
2722         for_each_possible_cpu(i) {
2723                 struct ext4_locality_group *lg;
2724                 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2725                 mutex_init(&lg->lg_mutex);
2726                 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2727                         INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2728                 spin_lock_init(&lg->lg_prealloc_lock);
2729         }
2730
2731         ext4_mb_history_init(sb);
2732
2733         if (sbi->s_journal)
2734                 sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2735
2736         printk(KERN_INFO "EXT4-fs: mballoc enabled\n");
2737         return 0;
2738 }
2739
2740 /* need to called with the ext4 group lock held */
2741 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2742 {
2743         struct ext4_prealloc_space *pa;
2744         struct list_head *cur, *tmp;
2745         int count = 0;
2746
2747         list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2748                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2749                 list_del(&pa->pa_group_list);
2750                 count++;
2751                 kmem_cache_free(ext4_pspace_cachep, pa);
2752         }
2753         if (count)
2754                 mb_debug("mballoc: %u PAs left\n", count);
2755
2756 }
2757
2758 int ext4_mb_release(struct super_block *sb)
2759 {
2760         ext4_group_t ngroups = ext4_get_groups_count(sb);
2761         ext4_group_t i;
2762         int num_meta_group_infos;
2763         struct ext4_group_info *grinfo;
2764         struct ext4_sb_info *sbi = EXT4_SB(sb);
2765
2766         if (sbi->s_group_info) {
2767                 for (i = 0; i < ngroups; i++) {
2768                         grinfo = ext4_get_group_info(sb, i);
2769 #ifdef DOUBLE_CHECK
2770                         kfree(grinfo->bb_bitmap);
2771 #endif
2772                         ext4_lock_group(sb, i);
2773                         ext4_mb_cleanup_pa(grinfo);
2774                         ext4_unlock_group(sb, i);
2775                         kfree(grinfo);
2776                 }
2777                 num_meta_group_infos = (ngroups +
2778                                 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2779                         EXT4_DESC_PER_BLOCK_BITS(sb);
2780                 for (i = 0; i < num_meta_group_infos; i++)
2781                         kfree(sbi->s_group_info[i]);
2782                 kfree(sbi->s_group_info);
2783         }
2784         kfree(sbi->s_mb_offsets);
2785         kfree(sbi->s_mb_maxs);
2786         if (sbi->s_buddy_cache)
2787                 iput(sbi->s_buddy_cache);
2788         if (sbi->s_mb_stats) {
2789                 printk(KERN_INFO
2790                        "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2791                                 atomic_read(&sbi->s_bal_allocated),
2792                                 atomic_read(&sbi->s_bal_reqs),
2793                                 atomic_read(&sbi->s_bal_success));
2794                 printk(KERN_INFO
2795                       "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2796                                 "%u 2^N hits, %u breaks, %u lost\n",
2797                                 atomic_read(&sbi->s_bal_ex_scanned),
2798                                 atomic_read(&sbi->s_bal_goals),
2799                                 atomic_read(&sbi->s_bal_2orders),
2800                                 atomic_read(&sbi->s_bal_breaks),
2801                                 atomic_read(&sbi->s_mb_lost_chunks));
2802                 printk(KERN_INFO
2803                        "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2804                                 sbi->s_mb_buddies_generated++,
2805                                 sbi->s_mb_generation_time);
2806                 printk(KERN_INFO
2807                        "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2808                                 atomic_read(&sbi->s_mb_preallocated),
2809                                 atomic_read(&sbi->s_mb_discarded));
2810         }
2811
2812         free_percpu(sbi->s_locality_groups);
2813         ext4_mb_history_release(sb);
2814
2815         return 0;
2816 }
2817
2818 /*
2819  * This function is called by the jbd2 layer once the commit has finished,
2820  * so we know we can free the blocks that were released with that commit.
2821  */
2822 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2823 {
2824         struct super_block *sb = journal->j_private;
2825         struct ext4_buddy e4b;
2826         struct ext4_group_info *db;
2827         int err, count = 0, count2 = 0;
2828         struct ext4_free_data *entry;
2829         ext4_fsblk_t discard_block;
2830         struct list_head *l, *ltmp;
2831
2832         list_for_each_safe(l, ltmp, &txn->t_private_list) {
2833                 entry = list_entry(l, struct ext4_free_data, list);
2834
2835                 mb_debug("gonna free %u blocks in group %u (0x%p):",
2836                          entry->count, entry->group, entry);
2837
2838                 err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2839                 /* we expect to find existing buddy because it's pinned */
2840                 BUG_ON(err != 0);
2841
2842                 db = e4b.bd_info;
2843                 /* there are blocks to put in buddy to make them really free */
2844                 count += entry->count;
2845                 count2++;
2846                 ext4_lock_group(sb, entry->group);
2847                 /* Take it out of per group rb tree */
2848                 rb_erase(&entry->node, &(db->bb_free_root));
2849                 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2850
2851                 if (!db->bb_free_root.rb_node) {
2852                         /* No more items in the per group rb tree
2853                          * balance refcounts from ext4_mb_free_metadata()
2854                          */
2855                         page_cache_release(e4b.bd_buddy_page);
2856                         page_cache_release(e4b.bd_bitmap_page);
2857                 }
2858                 ext4_unlock_group(sb, entry->group);
2859                 discard_block = (ext4_fsblk_t) entry->group * EXT4_BLOCKS_PER_GROUP(sb)
2860                         + entry->start_blk
2861                         + le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
2862                 trace_ext4_discard_blocks(sb, (unsigned long long)discard_block,
2863                                           entry->count);
2864                 sb_issue_discard(sb, discard_block, entry->count);
2865
2866                 kmem_cache_free(ext4_free_ext_cachep, entry);
2867                 ext4_mb_release_desc(&e4b);
2868         }
2869
2870         mb_debug("freed %u blocks in %u structures\n", count, count2);
2871 }
2872
2873 int __init init_ext4_mballoc(void)
2874 {
2875         ext4_pspace_cachep =
2876                 kmem_cache_create("ext4_prealloc_space",
2877                                      sizeof(struct ext4_prealloc_space),
2878                                      0, SLAB_RECLAIM_ACCOUNT, NULL);
2879         if (ext4_pspace_cachep == NULL)
2880                 return -ENOMEM;
2881
2882         ext4_ac_cachep =
2883                 kmem_cache_create("ext4_alloc_context",
2884                                      sizeof(struct ext4_allocation_context),
2885                                      0, SLAB_RECLAIM_ACCOUNT, NULL);
2886         if (ext4_ac_cachep == NULL) {
2887                 kmem_cache_destroy(ext4_pspace_cachep);
2888                 return -ENOMEM;
2889         }
2890
2891         ext4_free_ext_cachep =
2892                 kmem_cache_create("ext4_free_block_extents",
2893                                      sizeof(struct ext4_free_data),
2894                                      0, SLAB_RECLAIM_ACCOUNT, NULL);
2895         if (ext4_free_ext_cachep == NULL) {
2896                 kmem_cache_destroy(ext4_pspace_cachep);
2897                 kmem_cache_destroy(ext4_ac_cachep);
2898                 return -ENOMEM;
2899         }
2900         return 0;
2901 }
2902
2903 void exit_ext4_mballoc(void)
2904 {
2905         /* XXX: synchronize_rcu(); */
2906         kmem_cache_destroy(ext4_pspace_cachep);
2907         kmem_cache_destroy(ext4_ac_cachep);
2908         kmem_cache_destroy(ext4_free_ext_cachep);
2909 }
2910
2911
2912 /*
2913  * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2914  * Returns 0 if success or error code
2915  */
2916 static noinline_for_stack int
2917 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2918                                 handle_t *handle, unsigned int reserv_blks)
2919 {
2920         struct buffer_head *bitmap_bh = NULL;
2921         struct ext4_super_block *es;
2922         struct ext4_group_desc *gdp;
2923         struct buffer_head *gdp_bh;
2924         struct ext4_sb_info *sbi;
2925         struct super_block *sb;
2926         ext4_fsblk_t block;
2927         int err, len;
2928
2929         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2930         BUG_ON(ac->ac_b_ex.fe_len <= 0);
2931
2932         sb = ac->ac_sb;
2933         sbi = EXT4_SB(sb);
2934         es = sbi->s_es;
2935
2936
2937         err = -EIO;
2938         bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2939         if (!bitmap_bh)
2940                 goto out_err;
2941
2942         err = ext4_journal_get_write_access(handle, bitmap_bh);
2943         if (err)
2944                 goto out_err;
2945
2946         err = -EIO;
2947         gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2948         if (!gdp)
2949                 goto out_err;
2950
2951         ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2952                         ext4_free_blks_count(sb, gdp));
2953
2954         err = ext4_journal_get_write_access(handle, gdp_bh);
2955         if (err)
2956                 goto out_err;
2957
2958         block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
2959                 + ac->ac_b_ex.fe_start
2960                 + le32_to_cpu(es->s_first_data_block);
2961
2962         len = ac->ac_b_ex.fe_len;
2963         if (!ext4_data_block_valid(sbi, block, len)) {
2964                 ext4_error(sb, __func__,
2965                            "Allocating blocks %llu-%llu which overlap "
2966                            "fs metadata\n", block, block+len);
2967                 /* File system mounted not to panic on error
2968                  * Fix the bitmap and repeat the block allocation
2969                  * We leak some of the blocks here.
2970                  */
2971                 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2972                 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2973                             ac->ac_b_ex.fe_len);
2974                 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2975                 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2976                 if (!err)
2977                         err = -EAGAIN;
2978                 goto out_err;
2979         }
2980
2981         ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2982 #ifdef AGGRESSIVE_CHECK
2983         {
2984                 int i;
2985                 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2986                         BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2987                                                 bitmap_bh->b_data));
2988                 }
2989         }
2990 #endif
2991         mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len);
2992         if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2993                 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2994                 ext4_free_blks_set(sb, gdp,
2995                                         ext4_free_blocks_after_init(sb,
2996                                         ac->ac_b_ex.fe_group, gdp));
2997         }
2998         len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
2999         ext4_free_blks_set(sb, gdp, len);
3000         gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
3001
3002         ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3003         percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
3004         /*
3005          * Now reduce the dirty block count also. Should not go negative
3006          */
3007         if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3008                 /* release all the reserved blocks if non delalloc */
3009                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
3010         else {
3011                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
3012                                                 ac->ac_b_ex.fe_len);
3013                 /* convert reserved quota blocks to real quota blocks */
3014                 vfs_dq_claim_block(ac->ac_inode, ac->ac_b_ex.fe_len);
3015         }
3016
3017         if (sbi->s_log_groups_per_flex) {
3018                 ext4_group_t flex_group = ext4_flex_group(sbi,
3019                                                           ac->ac_b_ex.fe_group);
3020                 atomic_sub(ac->ac_b_ex.fe_len,
3021                            &sbi->s_flex_groups[flex_group].free_blocks);
3022         }
3023
3024         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3025         if (err)
3026                 goto out_err;
3027         err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3028
3029 out_err:
3030         sb->s_dirt = 1;
3031         brelse(bitmap_bh);
3032         return err;
3033 }
3034
3035 /*
3036  * here we normalize request for locality group
3037  * Group request are normalized to s_strip size if we set the same via mount
3038  * option. If not we set it to s_mb_group_prealloc which can be configured via
3039  * /sys/fs/ext4/<partition>/mb_group_prealloc
3040  *
3041  * XXX: should we try to preallocate more than the group has now?
3042  */
3043 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3044 {
3045         struct super_block *sb = ac->ac_sb;
3046         struct ext4_locality_group *lg = ac->ac_lg;
3047
3048         BUG_ON(lg == NULL);
3049         if (EXT4_SB(sb)->s_stripe)
3050                 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
3051         else
3052                 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3053         mb_debug("#%u: goal %u blocks for locality group\n",
3054                 current->pid, ac->ac_g_ex.fe_len);
3055 }
3056
3057 /*
3058  * Normalization means making request better in terms of
3059  * size and alignment
3060  */
3061 static noinline_for_stack void
3062 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3063                                 struct ext4_allocation_request *ar)
3064 {
3065         int bsbits, max;
3066         ext4_lblk_t end;
3067         loff_t size, orig_size, start_off;
3068         ext4_lblk_t start, orig_start;
3069         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3070         struct ext4_prealloc_space *pa;
3071
3072         /* do normalize only data requests, metadata requests
3073            do not need preallocation */
3074         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3075                 return;
3076
3077         /* sometime caller may want exact blocks */
3078         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3079                 return;
3080
3081         /* caller may indicate that preallocation isn't
3082          * required (it's a tail, for example) */
3083         if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3084                 return;
3085
3086         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3087                 ext4_mb_normalize_group_request(ac);
3088                 return ;
3089         }
3090
3091         bsbits = ac->ac_sb->s_blocksize_bits;
3092
3093         /* first, let's learn actual file size
3094          * given current request is allocated */
3095         size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3096         size = size << bsbits;
3097         if (size < i_size_read(ac->ac_inode))
3098                 size = i_size_read(ac->ac_inode);
3099
3100         /* max size of free chunks */
3101         max = 2 << bsbits;
3102
3103 #define NRL_CHECK_SIZE(req, size, max, chunk_size)      \
3104                 (req <= (size) || max <= (chunk_size))
3105
3106         /* first, try to predict filesize */
3107         /* XXX: should this table be tunable? */
3108         start_off = 0;
3109         if (size <= 16 * 1024) {
3110                 size = 16 * 1024;
3111         } else if (size <= 32 * 1024) {
3112                 size = 32 * 1024;
3113         } else if (size <= 64 * 1024) {
3114                 size = 64 * 1024;
3115         } else if (size <= 128 * 1024) {
3116                 size = 128 * 1024;
3117         } else if (size <= 256 * 1024) {
3118                 size = 256 * 1024;
3119         } else if (size <= 512 * 1024) {
3120                 size = 512 * 1024;
3121         } else if (size <= 1024 * 1024) {
3122                 size = 1024 * 1024;
3123         } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3124                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3125                                                 (21 - bsbits)) << 21;
3126                 size = 2 * 1024 * 1024;
3127         } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3128                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3129                                                         (22 - bsbits)) << 22;
3130                 size = 4 * 1024 * 1024;
3131         } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3132                                         (8<<20)>>bsbits, max, 8 * 1024)) {
3133                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3134                                                         (23 - bsbits)) << 23;
3135                 size = 8 * 1024 * 1024;
3136         } else {
3137                 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3138                 size      = ac->ac_o_ex.fe_len << bsbits;
3139         }
3140         orig_size = size = size >> bsbits;
3141         orig_start = start = start_off >> bsbits;
3142
3143         /* don't cover already allocated blocks in selected range */
3144         if (ar->pleft && start <= ar->lleft) {
3145                 size -= ar->lleft + 1 - start;
3146                 start = ar->lleft + 1;
3147         }
3148         if (ar->pright && start + size - 1 >= ar->lright)
3149                 size -= start + size - ar->lright;
3150
3151         end = start + size;
3152
3153         /* check we don't cross already preallocated blocks */
3154         rcu_read_lock();
3155         list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3156                 ext4_lblk_t pa_end;
3157
3158                 if (pa->pa_deleted)
3159                         continue;
3160                 spin_lock(&pa->pa_lock);
3161                 if (pa->pa_deleted) {
3162                         spin_unlock(&pa->pa_lock);
3163                         continue;
3164                 }
3165
3166                 pa_end = pa->pa_lstart + pa->pa_len;
3167
3168                 /* PA must not overlap original request */
3169                 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3170                         ac->ac_o_ex.fe_logical < pa->pa_lstart));
3171
3172                 /* skip PA normalized request doesn't overlap with */
3173                 if (pa->pa_lstart >= end) {
3174                         spin_unlock(&pa->pa_lock);
3175                         continue;
3176                 }
3177                 if (pa_end <= start) {
3178                         spin_unlock(&pa->pa_lock);
3179                         continue;
3180                 }
3181                 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3182
3183                 if (pa_end <= ac->ac_o_ex.fe_logical) {
3184                         BUG_ON(pa_end < start);
3185                         start = pa_end;
3186                 }
3187
3188                 if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3189                         BUG_ON(pa->pa_lstart > end);
3190                         end = pa->pa_lstart;
3191                 }
3192                 spin_unlock(&pa->pa_lock);
3193         }
3194         rcu_read_unlock();
3195         size = end - start;
3196
3197         /* XXX: extra loop to check we really don't overlap preallocations */
3198         rcu_read_lock();
3199         list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3200                 ext4_lblk_t pa_end;
3201                 spin_lock(&pa->pa_lock);
3202                 if (pa->pa_deleted == 0) {
3203                         pa_end = pa->pa_lstart + pa->pa_len;
3204                         BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3205                 }
3206                 spin_unlock(&pa->pa_lock);
3207         }
3208         rcu_read_unlock();
3209
3210         if (start + size <= ac->ac_o_ex.fe_logical &&
3211                         start > ac->ac_o_ex.fe_logical) {
3212                 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3213                         (unsigned long) start, (unsigned long) size,
3214                         (unsigned long) ac->ac_o_ex.fe_logical);
3215         }
3216         BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3217                         start > ac->ac_o_ex.fe_logical);
3218         BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3219
3220         /* now prepare goal request */
3221
3222         /* XXX: is it better to align blocks WRT to logical
3223          * placement or satisfy big request as is */
3224         ac->ac_g_ex.fe_logical = start;
3225         ac->ac_g_ex.fe_len = size;
3226
3227         /* define goal start in order to merge */
3228         if (ar->pright && (ar->lright == (start + size))) {
3229                 /* merge to the right */
3230                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3231                                                 &ac->ac_f_ex.fe_group,
3232                                                 &ac->ac_f_ex.fe_start);
3233                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3234         }
3235         if (ar->pleft && (ar->lleft + 1 == start)) {
3236                 /* merge to the left */
3237                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3238                                                 &ac->ac_f_ex.fe_group,
3239                                                 &ac->ac_f_ex.fe_start);
3240                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3241         }
3242
3243         mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
3244                 (unsigned) orig_size, (unsigned) start);
3245 }
3246
3247 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3248 {
3249         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3250
3251         if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3252                 atomic_inc(&sbi->s_bal_reqs);
3253                 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3254                 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3255                         atomic_inc(&sbi->s_bal_success);
3256                 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3257                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3258                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3259                         atomic_inc(&sbi->s_bal_goals);
3260                 if (ac->ac_found > sbi->s_mb_max_to_scan)
3261                         atomic_inc(&sbi->s_bal_breaks);
3262         }
3263
3264         ext4_mb_store_history(ac);
3265 }
3266
3267 /*
3268  * use blocks preallocated to inode
3269  */
3270 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3271                                 struct ext4_prealloc_space *pa)
3272 {
3273         ext4_fsblk_t start;
3274         ext4_fsblk_t end;
3275         int len;
3276
3277         /* found preallocated blocks, use them */
3278         start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3279         end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3280         len = end - start;
3281         ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3282                                         &ac->ac_b_ex.fe_start);
3283         ac->ac_b_ex.fe_len = len;
3284         ac->ac_status = AC_STATUS_FOUND;
3285         ac->ac_pa = pa;
3286
3287         BUG_ON(start < pa->pa_pstart);
3288         BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3289         BUG_ON(pa->pa_free < len);
3290         pa->pa_free -= len;
3291
3292         mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
3293 }
3294
3295 /*
3296  * use blocks preallocated to locality group
3297  */
3298 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3299                                 struct ext4_prealloc_space *pa)
3300 {
3301         unsigned int len = ac->ac_o_ex.fe_len;
3302
3303         ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3304                                         &ac->ac_b_ex.fe_group,
3305                                         &ac->ac_b_ex.fe_start);
3306         ac->ac_b_ex.fe_len = len;
3307         ac->ac_status = AC_STATUS_FOUND;
3308         ac->ac_pa = pa;
3309
3310         /* we don't correct pa_pstart or pa_plen here to avoid
3311          * possible race when the group is being loaded concurrently
3312          * instead we correct pa later, after blocks are marked
3313          * in on-disk bitmap -- see ext4_mb_release_context()
3314          * Other CPUs are prevented from allocating from this pa by lg_mutex
3315          */
3316         mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3317 }
3318
3319 /*
3320  * Return the prealloc space that have minimal distance
3321  * from the goal block. @cpa is the prealloc
3322  * space that is having currently known minimal distance
3323  * from the goal block.
3324  */
3325 static struct ext4_prealloc_space *
3326 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3327                         struct ext4_prealloc_space *pa,
3328                         struct ext4_prealloc_space *cpa)
3329 {
3330         ext4_fsblk_t cur_distance, new_distance;
3331
3332         if (cpa == NULL) {
3333                 atomic_inc(&pa->pa_count);
3334                 return pa;
3335         }
3336         cur_distance = abs(goal_block - cpa->pa_pstart);
3337         new_distance = abs(goal_block - pa->pa_pstart);
3338
3339         if (cur_distance < new_distance)
3340                 return cpa;
3341
3342         /* drop the previous reference */
3343         atomic_dec(&cpa->pa_count);
3344         atomic_inc(&pa->pa_count);
3345         return pa;
3346 }
3347
3348 /*
3349  * search goal blocks in preallocated space
3350  */
3351 static noinline_for_stack int
3352 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3353 {
3354         int order, i;
3355         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3356         struct ext4_locality_group *lg;
3357         struct ext4_prealloc_space *pa, *cpa = NULL;
3358         ext4_fsblk_t goal_block;
3359
3360         /* only data can be preallocated */
3361         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3362                 return 0;
3363
3364         /* first, try per-file preallocation */
3365         rcu_read_lock();
3366         list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3367
3368                 /* all fields in this condition don't change,
3369                  * so we can skip locking for them */
3370                 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3371                         ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3372                         continue;
3373
3374                 /* found preallocated blocks, use them */
3375                 spin_lock(&pa->pa_lock);
3376                 if (pa->pa_deleted == 0 && pa->pa_free) {
3377                         atomic_inc(&pa->pa_count);
3378                         ext4_mb_use_inode_pa(ac, pa);
3379                         spin_unlock(&pa->pa_lock);
3380                         ac->ac_criteria = 10;
3381                         rcu_read_unlock();
3382                         return 1;
3383                 }
3384                 spin_unlock(&pa->pa_lock);
3385         }
3386         rcu_read_unlock();
3387
3388         /* can we use group allocation? */
3389         if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3390                 return 0;
3391
3392         /* inode may have no locality group for some reason */
3393         lg = ac->ac_lg;
3394         if (lg == NULL)
3395                 return 0;
3396         order  = fls(ac->ac_o_ex.fe_len) - 1;
3397         if (order > PREALLOC_TB_SIZE - 1)
3398                 /* The max size of hash table is PREALLOC_TB_SIZE */
3399                 order = PREALLOC_TB_SIZE - 1;
3400
3401         goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3402                      ac->ac_g_ex.fe_start +
3403                      le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3404         /*
3405          * search for the prealloc space that is having
3406          * minimal distance from the goal block.
3407          */
3408         for (i = order; i < PREALLOC_TB_SIZE; i++) {
3409                 rcu_read_lock();
3410                 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3411                                         pa_inode_list) {
3412                         spin_lock(&pa->pa_lock);
3413                         if (pa->pa_deleted == 0 &&
3414                                         pa->pa_free >= ac->ac_o_ex.fe_len) {
3415
3416                                 cpa = ext4_mb_check_group_pa(goal_block,
3417                                                                 pa, cpa);
3418                         }
3419                         spin_unlock(&pa->pa_lock);
3420                 }
3421                 rcu_read_unlock();
3422         }
3423         if (cpa) {
3424                 ext4_mb_use_group_pa(ac, cpa);
3425                 ac->ac_criteria = 20;
3426                 return 1;
3427         }
3428         return 0;
3429 }
3430
3431 /*
3432  * the function goes through all block freed in the group
3433  * but not yet committed and marks them used in in-core bitmap.
3434  * buddy must be generated from this bitmap
3435  * Need to be called with the ext4 group lock held
3436  */
3437 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3438                                                 ext4_group_t group)
3439 {
3440         struct rb_node *n;
3441         struct ext4_group_info *grp;
3442         struct ext4_free_data *entry;
3443
3444         grp = ext4_get_group_info(sb, group);
3445         n = rb_first(&(grp->bb_free_root));
3446
3447         while (n) {
3448                 entry = rb_entry(n, struct ext4_free_data, node);
3449                 mb_set_bits(bitmap, entry->start_blk, entry->count);
3450                 n = rb_next(n);
3451         }
3452         return;
3453 }
3454
3455 /*
3456  * the function goes through all preallocation in this group and marks them
3457  * used in in-core bitmap. buddy must be generated from this bitmap
3458  * Need to be called with ext4 group lock held
3459  */
3460 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3461                                         ext4_group_t group)
3462 {
3463         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3464         struct ext4_prealloc_space *pa;
3465         struct list_head *cur;
3466         ext4_group_t groupnr;
3467         ext4_grpblk_t start;
3468         int preallocated = 0;
3469         int count = 0;
3470         int len;
3471
3472         /* all form of preallocation discards first load group,
3473          * so the only competing code is preallocation use.
3474          * we don't need any locking here
3475          * notice we do NOT ignore preallocations with pa_deleted
3476          * otherwise we could leave used blocks available for
3477          * allocation in buddy when concurrent ext4_mb_put_pa()
3478          * is dropping preallocation
3479          */
3480         list_for_each(cur, &grp->bb_prealloc_list) {
3481                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3482                 spin_lock(&pa->pa_lock);
3483                 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3484                                              &groupnr, &start);
3485                 len = pa->pa_len;
3486                 spin_unlock(&pa->pa_lock);
3487                 if (unlikely(len == 0))
3488                         continue;
3489                 BUG_ON(groupnr != group);
3490                 mb_set_bits(bitmap, start, len);
3491                 preallocated += len;
3492                 count++;
3493         }
3494         mb_debug("prellocated %u for group %u\n", preallocated, group);
3495 }
3496
3497 static void ext4_mb_pa_callback(struct rcu_head *head)
3498 {
3499         struct ext4_prealloc_space *pa;
3500         pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3501         kmem_cache_free(ext4_pspace_cachep, pa);
3502 }
3503
3504 /*
3505  * drops a reference to preallocated space descriptor
3506  * if this was the last reference and the space is consumed
3507  */
3508 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3509                         struct super_block *sb, struct ext4_prealloc_space *pa)
3510 {
3511         ext4_group_t grp;
3512         ext4_fsblk_t grp_blk;
3513
3514         if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3515                 return;
3516
3517         /* in this short window concurrent discard can set pa_deleted */
3518         spin_lock(&pa->pa_lock);
3519         if (pa->pa_deleted == 1) {
3520                 spin_unlock(&pa->pa_lock);
3521                 return;
3522         }
3523
3524         pa->pa_deleted = 1;
3525         spin_unlock(&pa->pa_lock);
3526
3527         grp_blk = pa->pa_pstart;
3528         /* 
3529          * If doing group-based preallocation, pa_pstart may be in the
3530          * next group when pa is used up
3531          */
3532         if (pa->pa_type == MB_GROUP_PA)
3533                 grp_blk--;
3534
3535         ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3536
3537         /*
3538          * possible race:
3539          *
3540          *  P1 (buddy init)                     P2 (regular allocation)
3541          *                                      find block B in PA
3542          *  copy on-disk bitmap to buddy
3543          *                                      mark B in on-disk bitmap
3544          *                                      drop PA from group
3545          *  mark all PAs in buddy
3546          *
3547          * thus, P1 initializes buddy with B available. to prevent this
3548          * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3549          * against that pair
3550          */
3551         ext4_lock_group(sb, grp);
3552         list_del(&pa->pa_group_list);
3553         ext4_unlock_group(sb, grp);
3554
3555         spin_lock(pa->pa_obj_lock);
3556         list_del_rcu(&pa->pa_inode_list);
3557         spin_unlock(pa->pa_obj_lock);
3558
3559         call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3560 }
3561
3562 /*
3563  * creates new preallocated space for given inode
3564  */
3565 static noinline_for_stack int
3566 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3567 {
3568         struct super_block *sb = ac->ac_sb;
3569         struct ext4_prealloc_space *pa;
3570         struct ext4_group_info *grp;
3571         struct ext4_inode_info *ei;
3572
3573         /* preallocate only when found space is larger then requested */
3574         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3575         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3576         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3577
3578         pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3579         if (pa == NULL)
3580                 return -ENOMEM;
3581
3582         if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3583                 int winl;
3584                 int wins;
3585                 int win;
3586                 int offs;
3587
3588                 /* we can't allocate as much as normalizer wants.
3589                  * so, found space must get proper lstart
3590                  * to cover original request */
3591                 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3592                 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3593
3594                 /* we're limited by original request in that
3595                  * logical block must be covered any way
3596                  * winl is window we can move our chunk within */
3597                 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3598
3599                 /* also, we should cover whole original request */
3600                 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3601
3602                 /* the smallest one defines real window */
3603                 win = min(winl, wins);
3604
3605                 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3606                 if (offs && offs < win)
3607                         win = offs;
3608
3609                 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3610                 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3611                 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3612         }
3613
3614         /* preallocation can change ac_b_ex, thus we store actually
3615          * allocated blocks for history */
3616         ac->ac_f_ex = ac->ac_b_ex;
3617
3618         pa->pa_lstart = ac->ac_b_ex.fe_logical;
3619         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3620         pa->pa_len = ac->ac_b_ex.fe_len;
3621         pa->pa_free = pa->pa_len;
3622         atomic_set(&pa->pa_count, 1);
3623         spin_lock_init(&pa->pa_lock);
3624         INIT_LIST_HEAD(&pa->pa_inode_list);
3625         INIT_LIST_HEAD(&pa->pa_group_list);
3626         pa->pa_deleted = 0;
3627         pa->pa_type = MB_INODE_PA;
3628
3629         mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
3630                         pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3631         trace_ext4_mb_new_inode_pa(ac, pa);
3632
3633         ext4_mb_use_inode_pa(ac, pa);
3634         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3635
3636         ei = EXT4_I(ac->ac_inode);
3637         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3638
3639         pa->pa_obj_lock = &ei->i_prealloc_lock;
3640         pa->pa_inode = ac->ac_inode;
3641
3642         ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3643         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3644         ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3645
3646         spin_lock(pa->pa_obj_lock);
3647         list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3648         spin_unlock(pa->pa_obj_lock);
3649
3650         return 0;
3651 }
3652
3653 /*
3654  * creates new preallocated space for locality group inodes belongs to
3655  */
3656 static noinline_for_stack int
3657 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3658 {
3659         struct super_block *sb = ac->ac_sb;
3660         struct ext4_locality_group *lg;
3661         struct ext4_prealloc_space *pa;
3662         struct ext4_group_info *grp;
3663
3664         /* preallocate only when found space is larger then requested */
3665         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3666         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3667         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3668
3669         BUG_ON(ext4_pspace_cachep == NULL);
3670         pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3671         if (pa == NULL)
3672                 return -ENOMEM;
3673
3674         /* preallocation can change ac_b_ex, thus we store actually
3675          * allocated blocks for history */
3676         ac->ac_f_ex = ac->ac_b_ex;
3677
3678         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3679         pa->pa_lstart = pa->pa_pstart;
3680         pa->pa_len = ac->ac_b_ex.fe_len;
3681         pa->pa_free = pa->pa_len;
3682         atomic_set(&pa->pa_count, 1);
3683         spin_lock_init(&pa->pa_lock);
3684         INIT_LIST_HEAD(&pa->pa_inode_list);
3685         INIT_LIST_HEAD(&pa->pa_group_list);
3686         pa->pa_deleted = 0;
3687         pa->pa_type = MB_GROUP_PA;
3688
3689         mb_debug("new group pa %p: %llu/%u for %u\n", pa,
3690                         pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3691         trace_ext4_mb_new_group_pa(ac, pa);
3692
3693         ext4_mb_use_group_pa(ac, pa);
3694         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3695
3696         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3697         lg = ac->ac_lg;
3698         BUG_ON(lg == NULL);
3699
3700         pa->pa_obj_lock = &lg->lg_prealloc_lock;
3701         pa->pa_inode = NULL;
3702
3703         ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3704         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3705         ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3706
3707         /*
3708          * We will later add the new pa to the right bucket
3709          * after updating the pa_free in ext4_mb_release_context
3710          */
3711         return 0;
3712 }
3713
3714 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3715 {
3716         int err;
3717
3718         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3719                 err = ext4_mb_new_group_pa(ac);
3720         else
3721                 err = ext4_mb_new_inode_pa(ac);
3722         return err;
3723 }
3724
3725 /*
3726  * finds all unused blocks in on-disk bitmap, frees them in
3727  * in-core bitmap and buddy.
3728  * @pa must be unlinked from inode and group lists, so that
3729  * nobody else can find/use it.
3730  * the caller MUST hold group/inode locks.
3731  * TODO: optimize the case when there are no in-core structures yet
3732  */
3733 static noinline_for_stack int
3734 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3735                         struct ext4_prealloc_space *pa,
3736                         struct ext4_allocation_context *ac)
3737 {
3738         struct super_block *sb = e4b->bd_sb;
3739         struct ext4_sb_info *sbi = EXT4_SB(sb);
3740         unsigned int end;
3741         unsigned int next;
3742         ext4_group_t group;
3743         ext4_grpblk_t bit;
3744         unsigned long long grp_blk_start;
3745         sector_t start;
3746         int err = 0;
3747         int free = 0;
3748
3749         BUG_ON(pa->pa_deleted == 0);
3750         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3751         grp_blk_start = pa->pa_pstart - bit;
3752         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3753         end = bit + pa->pa_len;
3754
3755         if (ac) {
3756                 ac->ac_sb = sb;
3757                 ac->ac_inode = pa->pa_inode;
3758                 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3759         }
3760
3761         while (bit < end) {
3762                 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3763                 if (bit >= end)
3764                         break;
3765                 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3766                 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3767                                 le32_to_cpu(sbi->s_es->s_first_data_block);
3768                 mb_debug("    free preallocated %u/%u in group %u\n",
3769                                 (unsigned) start, (unsigned) next - bit,
3770                                 (unsigned) group);
3771                 free += next - bit;
3772
3773                 if (ac) {
3774                         ac->ac_b_ex.fe_group = group;
3775                         ac->ac_b_ex.fe_start = bit;
3776                         ac->ac_b_ex.fe_len = next - bit;
3777                         ac->ac_b_ex.fe_logical = 0;
3778                         ext4_mb_store_history(ac);
3779                 }
3780
3781                 trace_ext4_mb_release_inode_pa(ac, pa, grp_blk_start + bit,
3782                                                next - bit);
3783                 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3784                 bit = next + 1;
3785         }
3786         if (free != pa->pa_free) {
3787                 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3788                         pa, (unsigned long) pa->pa_lstart,
3789                         (unsigned long) pa->pa_pstart,
3790                         (unsigned long) pa->pa_len);
3791                 ext4_grp_locked_error(sb, group,
3792                                         __func__, "free %u, pa_free %u",
3793                                         free, pa->pa_free);
3794                 /*
3795                  * pa is already deleted so we use the value obtained
3796                  * from the bitmap and continue.
3797                  */
3798         }
3799         atomic_add(free, &sbi->s_mb_discarded);
3800
3801         return err;
3802 }
3803
3804 static noinline_for_stack int
3805 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3806                                 struct ext4_prealloc_space *pa,
3807                                 struct ext4_allocation_context *ac)
3808 {
3809         struct super_block *sb = e4b->bd_sb;
3810         ext4_group_t group;
3811         ext4_grpblk_t bit;
3812
3813         if (ac)
3814                 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3815
3816         trace_ext4_mb_release_group_pa(ac, pa);
3817         BUG_ON(pa->pa_deleted == 0);
3818         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3819         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3820         mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3821         atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3822
3823         if (ac) {
3824                 ac->ac_sb = sb;
3825                 ac->ac_inode = NULL;
3826                 ac->ac_b_ex.fe_group = group;
3827                 ac->ac_b_ex.fe_start = bit;
3828                 ac->ac_b_ex.fe_len = pa->pa_len;
3829                 ac->ac_b_ex.fe_logical = 0;
3830                 ext4_mb_store_history(ac);
3831         }
3832
3833         return 0;
3834 }
3835
3836 /*
3837  * releases all preallocations in given group
3838  *
3839  * first, we need to decide discard policy:
3840  * - when do we discard
3841  *   1) ENOSPC
3842  * - how many do we discard
3843  *   1) how many requested
3844  */
3845 static noinline_for_stack int
3846 ext4_mb_discard_group_preallocations(struct super_block *sb,
3847                                         ext4_group_t group, int needed)
3848 {
3849         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3850         struct buffer_head *bitmap_bh = NULL;
3851         struct ext4_prealloc_space *pa, *tmp;
3852         struct ext4_allocation_context *ac;
3853         struct list_head list;
3854         struct ext4_buddy e4b;
3855         int err;
3856         int busy = 0;
3857         int free = 0;
3858
3859         mb_debug("discard preallocation for group %u\n", group);
3860
3861         if (list_empty(&grp->bb_prealloc_list))
3862                 return 0;
3863
3864         bitmap_bh = ext4_read_block_bitmap(sb, group);
3865         if (bitmap_bh == NULL) {
3866                 ext4_error(sb, __func__, "Error in reading block "
3867                                 "bitmap for %u", group);
3868                 return 0;
3869         }
3870
3871         err = ext4_mb_load_buddy(sb, group, &e4b);
3872         if (err) {
3873                 ext4_error(sb, __func__, "Error in loading buddy "
3874                                 "information for %u", group);
3875                 put_bh(bitmap_bh);
3876                 return 0;
3877         }
3878
3879         if (needed == 0)
3880                 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3881
3882         INIT_LIST_HEAD(&list);
3883         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3884         if (ac)
3885                 ac->ac_sb = sb;
3886 repeat:
3887         ext4_lock_group(sb, group);
3888         list_for_each_entry_safe(pa, tmp,
3889                                 &grp->bb_prealloc_list, pa_group_list) {
3890                 spin_lock(&pa->pa_lock);
3891                 if (atomic_read(&pa->pa_count)) {
3892                         spin_unlock(&pa->pa_lock);
3893                         busy = 1;
3894                         continue;
3895                 }
3896                 if (pa->pa_deleted) {
3897                         spin_unlock(&pa->pa_lock);
3898                         continue;
3899                 }
3900
3901                 /* seems this one can be freed ... */
3902                 pa->pa_deleted = 1;
3903
3904                 /* we can trust pa_free ... */
3905                 free += pa->pa_free;
3906
3907                 spin_unlock(&pa->pa_lock);
3908
3909                 list_del(&pa->pa_group_list);
3910                 list_add(&pa->u.pa_tmp_list, &list);
3911         }
3912
3913         /* if we still need more blocks and some PAs were used, try again */
3914         if (free < needed && busy) {
3915                 busy = 0;
3916                 ext4_unlock_group(sb, group);
3917                 /*
3918                  * Yield the CPU here so that we don't get soft lockup
3919                  * in non preempt case.
3920                  */
3921                 yield();
3922                 goto repeat;
3923         }
3924
3925         /* found anything to free? */
3926         if (list_empty(&list)) {
3927                 BUG_ON(free != 0);
3928                 goto out;
3929         }
3930
3931         /* now free all selected PAs */
3932         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3933
3934                 /* remove from object (inode or locality group) */
3935                 spin_lock(pa->pa_obj_lock);
3936                 list_del_rcu(&pa->pa_inode_list);
3937                 spin_unlock(pa->pa_obj_lock);
3938
3939                 if (pa->pa_type == MB_GROUP_PA)
3940                         ext4_mb_release_group_pa(&e4b, pa, ac);
3941                 else
3942                         ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3943
3944                 list_del(&pa->u.pa_tmp_list);
3945                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3946         }
3947
3948 out:
3949         ext4_unlock_group(sb, group);
3950         if (ac)
3951                 kmem_cache_free(ext4_ac_cachep, ac);
3952         ext4_mb_release_desc(&e4b);
3953         put_bh(bitmap_bh);
3954         return free;
3955 }
3956
3957 /*
3958  * releases all non-used preallocated blocks for given inode
3959  *
3960  * It's important to discard preallocations under i_data_sem
3961  * We don't want another block to be served from the prealloc
3962  * space when we are discarding the inode prealloc space.
3963  *
3964  * FIXME!! Make sure it is valid at all the call sites
3965  */
3966 void ext4_discard_preallocations(struct inode *inode)
3967 {
3968         struct ext4_inode_info *ei = EXT4_I(inode);
3969         struct super_block *sb = inode->i_sb;
3970         struct buffer_head *bitmap_bh = NULL;
3971         struct ext4_prealloc_space *pa, *tmp;
3972         struct ext4_allocation_context *ac;
3973         ext4_group_t group = 0;
3974         struct list_head list;
3975         struct ext4_buddy e4b;
3976         int err;
3977
3978         if (!S_ISREG(inode->i_mode)) {
3979                 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3980                 return;
3981         }
3982
3983         mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
3984         trace_ext4_discard_preallocations(inode);
3985
3986         INIT_LIST_HEAD(&list);
3987
3988         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3989         if (ac) {
3990                 ac->ac_sb = sb;
3991                 ac->ac_inode = inode;
3992         }
3993 repeat:
3994         /* first, collect all pa's in the inode */
3995         spin_lock(&ei->i_prealloc_lock);
3996         while (!list_empty(&ei->i_prealloc_list)) {
3997                 pa = list_entry(ei->i_prealloc_list.next,
3998                                 struct ext4_prealloc_space, pa_inode_list);
3999                 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4000                 spin_lock(&pa->pa_lock);
4001                 if (atomic_read(&pa->pa_count)) {
4002                         /* this shouldn't happen often - nobody should
4003                          * use preallocation while we're discarding it */
4004                         spin_unlock(&pa->pa_lock);
4005                         spin_unlock(&ei->i_prealloc_lock);
4006                         printk(KERN_ERR "uh-oh! used pa while discarding\n");
4007                         WARN_ON(1);
4008                         schedule_timeout_uninterruptible(HZ);
4009                         goto repeat;
4010
4011                 }
4012                 if (pa->pa_deleted == 0) {
4013                         pa->pa_deleted = 1;
4014                         spin_unlock(&pa->pa_lock);
4015                         list_del_rcu(&pa->pa_inode_list);
4016                         list_add(&pa->u.pa_tmp_list, &list);
4017                         continue;
4018                 }
4019
4020                 /* someone is deleting pa right now */
4021                 spin_unlock(&pa->pa_lock);
4022                 spin_unlock(&ei->i_prealloc_lock);
4023
4024                 /* we have to wait here because pa_deleted
4025                  * doesn't mean pa is already unlinked from
4026                  * the list. as we might be called from
4027                  * ->clear_inode() the inode will get freed
4028                  * and concurrent thread which is unlinking
4029                  * pa from inode's list may access already
4030                  * freed memory, bad-bad-bad */
4031
4032                 /* XXX: if this happens too often, we can
4033                  * add a flag to force wait only in case
4034                  * of ->clear_inode(), but not in case of
4035                  * regular truncate */
4036                 schedule_timeout_uninterruptible(HZ);
4037                 goto repeat;
4038         }
4039         spin_unlock(&ei->i_prealloc_lock);
4040
4041         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4042                 BUG_ON(pa->pa_type != MB_INODE_PA);
4043                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4044
4045                 err = ext4_mb_load_buddy(sb, group, &e4b);
4046                 if (err) {
4047                         ext4_error(sb, __func__, "Error in loading buddy "
4048                                         "information for %u", group);
4049                         continue;
4050                 }
4051
4052                 bitmap_bh = ext4_read_block_bitmap(sb, group);
4053                 if (bitmap_bh == NULL) {
4054                         ext4_error(sb, __func__, "Error in reading block "
4055                                         "bitmap for %u", group);
4056                         ext4_mb_release_desc(&e4b);
4057                         continue;
4058                 }
4059
4060                 ext4_lock_group(sb, group);
4061                 list_del(&pa->pa_group_list);
4062                 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4063                 ext4_unlock_group(sb, group);
4064
4065                 ext4_mb_release_desc(&e4b);
4066                 put_bh(bitmap_bh);
4067
4068                 list_del(&pa->u.pa_tmp_list);
4069                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4070         }
4071         if (ac)
4072                 kmem_cache_free(ext4_ac_cachep, ac);
4073 }
4074
4075 /*
4076  * finds all preallocated spaces and return blocks being freed to them
4077  * if preallocated space becomes full (no block is used from the space)
4078  * then the function frees space in buddy
4079  * XXX: at the moment, truncate (which is the only way to free blocks)
4080  * discards all preallocations
4081  */
4082 static void ext4_mb_return_to_preallocation(struct inode *inode,
4083                                         struct ext4_buddy *e4b,
4084                                         sector_t block, int count)
4085 {
4086         BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
4087 }
4088 #ifdef MB_DEBUG
4089 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4090 {
4091         struct super_block *sb = ac->ac_sb;
4092         ext4_group_t ngroups, i;
4093
4094         printk(KERN_ERR "EXT4-fs: Can't allocate:"
4095                         " Allocation context details:\n");
4096         printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
4097                         ac->ac_status, ac->ac_flags);
4098         printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
4099                         "best %lu/%lu/%lu@%lu cr %d\n",
4100                         (unsigned long)ac->ac_o_ex.fe_group,
4101                         (unsigned long)ac->ac_o_ex.fe_start,
4102                         (unsigned long)ac->ac_o_ex.fe_len,
4103                         (unsigned long)ac->ac_o_ex.fe_logical,
4104                         (unsigned long)ac->ac_g_ex.fe_group,
4105                         (unsigned long)ac->ac_g_ex.fe_start,
4106                         (unsigned long)ac->ac_g_ex.fe_len,
4107                         (unsigned long)ac->ac_g_ex.fe_logical,
4108                         (unsigned long)ac->ac_b_ex.fe_group,
4109                         (unsigned long)ac->ac_b_ex.fe_start,
4110                         (unsigned long)ac->ac_b_ex.fe_len,
4111                         (unsigned long)ac->ac_b_ex.fe_logical,
4112                         (int)ac->ac_criteria);
4113         printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
4114                 ac->ac_found);
4115         printk(KERN_ERR "EXT4-fs: groups: \n");
4116         ngroups = ext4_get_groups_count(sb);
4117         for (i = 0; i < ngroups; i++) {
4118                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4119                 struct ext4_prealloc_space *pa;
4120                 ext4_grpblk_t start;
4121                 struct list_head *cur;
4122                 ext4_lock_group(sb, i);
4123                 list_for_each(cur, &grp->bb_prealloc_list) {
4124                         pa = list_entry(cur, struct ext4_prealloc_space,
4125                                         pa_group_list);
4126                         spin_lock(&pa->pa_lock);
4127                         ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4128                                                      NULL, &start);
4129                         spin_unlock(&pa->pa_lock);
4130                         printk(KERN_ERR "PA:%lu:%d:%u \n", i,
4131                                                         start, pa->pa_len);
4132                 }
4133                 ext4_unlock_group(sb, i);
4134
4135                 if (grp->bb_free == 0)
4136                         continue;
4137                 printk(KERN_ERR "%lu: %d/%d \n",
4138                        i, grp->bb_free, grp->bb_fragments);
4139         }
4140         printk(KERN_ERR "\n");
4141 }
4142 #else
4143 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4144 {
4145         return;
4146 }
4147 #endif
4148
4149 /*
4150  * We use locality group preallocation for small size file. The size of the
4151  * file is determined by the current size or the resulting size after
4152  * allocation which ever is larger
4153  *
4154  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4155  */
4156 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4157 {
4158         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4159         int bsbits = ac->ac_sb->s_blocksize_bits;
4160         loff_t size, isize;
4161
4162         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4163                 return;
4164
4165         size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
4166         isize = i_size_read(ac->ac_inode) >> bsbits;
4167         size = max(size, isize);
4168
4169         /* don't use group allocation for large files */
4170         if (size >= sbi->s_mb_stream_request)
4171                 return;
4172
4173         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4174                 return;
4175
4176         BUG_ON(ac->ac_lg != NULL);
4177         /*
4178          * locality group prealloc space are per cpu. The reason for having
4179          * per cpu locality group is to reduce the contention between block
4180          * request from multiple CPUs.
4181          */
4182         ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id());
4183
4184         /* we're going to use group allocation */
4185         ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4186
4187         /* serialize all allocations in the group */
4188         mutex_lock(&ac->ac_lg->lg_mutex);
4189 }
4190
4191 static noinline_for_stack int
4192 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4193                                 struct ext4_allocation_request *ar)
4194 {
4195         struct super_block *sb = ar->inode->i_sb;
4196         struct ext4_sb_info *sbi = EXT4_SB(sb);
4197         struct ext4_super_block *es = sbi->s_es;
4198         ext4_group_t group;
4199         unsigned int len;
4200         ext4_fsblk_t goal;
4201         ext4_grpblk_t block;
4202
4203         /* we can't allocate > group size */
4204         len = ar->len;
4205
4206         /* just a dirty hack to filter too big requests  */
4207         if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4208                 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4209
4210         /* start searching from the goal */
4211         goal = ar->goal;
4212         if (goal < le32_to_cpu(es->s_first_data_block) ||
4213                         goal >= ext4_blocks_count(es))
4214                 goal = le32_to_cpu(es->s_first_data_block);
4215         ext4_get_group_no_and_offset(sb, goal, &group, &block);
4216
4217         /* set up allocation goals */
4218         ac->ac_b_ex.fe_logical = ar->logical;
4219         ac->ac_b_ex.fe_group = 0;
4220         ac->ac_b_ex.fe_start = 0;
4221         ac->ac_b_ex.fe_len = 0;
4222         ac->ac_status = AC_STATUS_CONTINUE;
4223         ac->ac_groups_scanned = 0;
4224         ac->ac_ex_scanned = 0;
4225         ac->ac_found = 0;
4226         ac->ac_sb = sb;
4227         ac->ac_inode = ar->inode;
4228         ac->ac_o_ex.fe_logical = ar->logical;
4229         ac->ac_o_ex.fe_group = group;
4230         ac->ac_o_ex.fe_start = block;
4231         ac->ac_o_ex.fe_len = len;
4232         ac->ac_g_ex.fe_logical = ar->logical;
4233         ac->ac_g_ex.fe_group = group;
4234         ac->ac_g_ex.fe_start = block;
4235         ac->ac_g_ex.fe_len = len;
4236         ac->ac_f_ex.fe_len = 0;
4237         ac->ac_flags = ar->flags;
4238         ac->ac_2order = 0;
4239         ac->ac_criteria = 0;
4240         ac->ac_pa = NULL;
4241         ac->ac_bitmap_page = NULL;
4242         ac->ac_buddy_page = NULL;
4243         ac->alloc_semp = NULL;
4244         ac->ac_lg = NULL;
4245
4246         /* we have to define context: we'll we work with a file or
4247          * locality group. this is a policy, actually */
4248         ext4_mb_group_or_file(ac);
4249
4250         mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4251                         "left: %u/%u, right %u/%u to %swritable\n",
4252                         (unsigned) ar->len, (unsigned) ar->logical,
4253                         (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4254                         (unsigned) ar->lleft, (unsigned) ar->pleft,
4255                         (unsigned) ar->lright, (unsigned) ar->pright,
4256                         atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4257         return 0;
4258
4259 }
4260
4261 static noinline_for_stack void
4262 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4263                                         struct ext4_locality_group *lg,
4264                                         int order, int total_entries)
4265 {
4266         ext4_group_t group = 0;
4267         struct ext4_buddy e4b;
4268         struct list_head discard_list;
4269         struct ext4_prealloc_space *pa, *tmp;
4270         struct ext4_allocation_context *ac;
4271
4272         mb_debug("discard locality group preallocation\n");
4273
4274         INIT_LIST_HEAD(&discard_list);
4275         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4276         if (ac)
4277                 ac->ac_sb = sb;
4278
4279         spin_lock(&lg->lg_prealloc_lock);
4280         list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4281                                                 pa_inode_list) {
4282                 spin_lock(&pa->pa_lock);
4283                 if (atomic_read(&pa->pa_count)) {
4284                         /*
4285                          * This is the pa that we just used
4286                          * for block allocation. So don't
4287                          * free that
4288                          */
4289                         spin_unlock(&pa->pa_lock);
4290                         continue;
4291                 }
4292                 if (pa->pa_deleted) {
4293                         spin_unlock(&pa->pa_lock);
4294                         continue;
4295                 }
4296                 /* only lg prealloc space */
4297                 BUG_ON(pa->pa_type != MB_GROUP_PA);
4298
4299                 /* seems this one can be freed ... */
4300                 pa->pa_deleted = 1;
4301                 spin_unlock(&pa->pa_lock);
4302
4303                 list_del_rcu(&pa->pa_inode_list);
4304                 list_add(&pa->u.pa_tmp_list, &discard_list);
4305
4306                 total_entries--;
4307                 if (total_entries <= 5) {
4308                         /*
4309                          * we want to keep only 5 entries
4310                          * allowing it to grow to 8. This
4311                          * mak sure we don't call discard
4312                          * soon for this list.
4313                          */
4314                         break;
4315                 }
4316         }
4317         spin_unlock(&lg->lg_prealloc_lock);
4318
4319         list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4320
4321                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4322                 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4323                         ext4_error(sb, __func__, "Error in loading buddy "
4324                                         "information for %u", group);
4325                         continue;
4326                 }
4327                 ext4_lock_group(sb, group);
4328                 list_del(&pa->pa_group_list);
4329                 ext4_mb_release_group_pa(&e4b, pa, ac);
4330                 ext4_unlock_group(sb, group);
4331
4332                 ext4_mb_release_desc(&e4b);
4333                 list_del(&pa->u.pa_tmp_list);
4334                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4335         }
4336         if (ac)
4337                 kmem_cache_free(ext4_ac_cachep, ac);
4338 }
4339
4340 /*
4341  * We have incremented pa_count. So it cannot be freed at this
4342  * point. Also we hold lg_mutex. So no parallel allocation is
4343  * possible from this lg. That means pa_free cannot be updated.
4344  *
4345  * A parallel ext4_mb_discard_group_preallocations is possible.
4346  * which can cause the lg_prealloc_list to be updated.
4347  */
4348
4349 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4350 {
4351         int order, added = 0, lg_prealloc_count = 1;
4352         struct super_block *sb = ac->ac_sb;
4353         struct ext4_locality_group *lg = ac->ac_lg;
4354         struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4355
4356         order = fls(pa->pa_free) - 1;
4357         if (order > PREALLOC_TB_SIZE - 1)
4358                 /* The max size of hash table is PREALLOC_TB_SIZE */
4359                 order = PREALLOC_TB_SIZE - 1;
4360         /* Add the prealloc space to lg */
4361         rcu_read_lock();
4362         list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4363                                                 pa_inode_list) {
4364                 spin_lock(&tmp_pa->pa_lock);
4365                 if (tmp_pa->pa_deleted) {
4366                         spin_unlock(&tmp_pa->pa_lock);
4367                         continue;
4368                 }
4369                 if (!added && pa->pa_free < tmp_pa->pa_free) {
4370                         /* Add to the tail of the previous entry */
4371                         list_add_tail_rcu(&pa->pa_inode_list,
4372                                                 &tmp_pa->pa_inode_list);
4373                         added = 1;
4374                         /*
4375                          * we want to count the total
4376                          * number of entries in the list
4377                          */
4378                 }
4379                 spin_unlock(&tmp_pa->pa_lock);
4380                 lg_prealloc_count++;
4381         }
4382         if (!added)
4383                 list_add_tail_rcu(&pa->pa_inode_list,
4384                                         &lg->lg_prealloc_list[order]);
4385         rcu_read_unlock();
4386
4387         /* Now trim the list to be not more than 8 elements */
4388         if (lg_prealloc_count > 8) {
4389                 ext4_mb_discard_lg_preallocations(sb, lg,
4390                                                 order, lg_prealloc_count);
4391                 return;
4392         }
4393         return ;
4394 }
4395
4396 /*
4397  * release all resource we used in allocation
4398  */
4399 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4400 {
4401         struct ext4_prealloc_space *pa = ac->ac_pa;
4402         if (pa) {
4403                 if (pa->pa_type == MB_GROUP_PA) {
4404                         /* see comment in ext4_mb_use_group_pa() */
4405                         spin_lock(&pa->pa_lock);
4406                         pa->pa_pstart += ac->ac_b_ex.fe_len;
4407                         pa->pa_lstart += ac->ac_b_ex.fe_len;
4408                         pa->pa_free -= ac->ac_b_ex.fe_len;
4409                         pa->pa_len -= ac->ac_b_ex.fe_len;
4410                         spin_unlock(&pa->pa_lock);
4411                 }
4412         }
4413         if (ac->alloc_semp)
4414                 up_read(ac->alloc_semp);
4415         if (pa) {
4416                 /*
4417                  * We want to add the pa to the right bucket.
4418                  * Remove it from the list and while adding
4419                  * make sure the list to which we are adding
4420                  * doesn't grow big.  We need to release
4421                  * alloc_semp before calling ext4_mb_add_n_trim()
4422                  */
4423                 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4424                         spin_lock(pa->pa_obj_lock);
4425                         list_del_rcu(&pa->pa_inode_list);
4426                         spin_unlock(pa->pa_obj_lock);
4427                         ext4_mb_add_n_trim(ac);
4428                 }
4429                 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4430         }
4431         if (ac->ac_bitmap_page)
4432                 page_cache_release(ac->ac_bitmap_page);
4433         if (ac->ac_buddy_page)
4434                 page_cache_release(ac->ac_buddy_page);
4435         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4436                 mutex_unlock(&ac->ac_lg->lg_mutex);
4437         ext4_mb_collect_stats(ac);
4438         return 0;
4439 }
4440
4441 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4442 {
4443         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4444         int ret;
4445         int freed = 0;
4446
4447         trace_ext4_mb_discard_preallocations(sb, needed);
4448         for (i = 0; i < ngroups && needed > 0; i++) {
4449                 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4450                 freed += ret;
4451                 needed -= ret;
4452         }
4453
4454         return freed;
4455 }
4456
4457 /*
4458  * Main entry point into mballoc to allocate blocks
4459  * it tries to use preallocation first, then falls back
4460  * to usual allocation
4461  */
4462 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4463                                  struct ext4_allocation_request *ar, int *errp)
4464 {
4465         int freed;
4466         struct ext4_allocation_context *ac = NULL;
4467         struct ext4_sb_info *sbi;
4468         struct super_block *sb;
4469         ext4_fsblk_t block = 0;
4470         unsigned int inquota = 0;
4471         unsigned int reserv_blks = 0;
4472
4473         sb = ar->inode->i_sb;
4474         sbi = EXT4_SB(sb);
4475
4476         trace_ext4_request_blocks(ar);
4477
4478         /*
4479          * For delayed allocation, we could skip the ENOSPC and
4480          * EDQUOT check, as blocks and quotas have been already
4481          * reserved when data being copied into pagecache.
4482          */
4483         if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4484                 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4485         else {
4486                 /* Without delayed allocation we need to verify
4487                  * there is enough free blocks to do block allocation
4488                  * and verify allocation doesn't exceed the quota limits.
4489                  */
4490                 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4491                         /* let others to free the space */
4492                         yield();
4493                         ar->len = ar->len >> 1;
4494                 }
4495                 if (!ar->len) {
4496                         *errp = -ENOSPC;
4497                         return 0;
4498                 }
4499                 reserv_blks = ar->len;
4500                 while (ar->len && vfs_dq_alloc_block(ar->inode, ar->len)) {
4501                         ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4502                         ar->len--;
4503                 }
4504                 inquota = ar->len;
4505                 if (ar->len == 0) {
4506                         *errp = -EDQUOT;
4507                         goto out3;
4508                 }
4509         }
4510
4511         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4512         if (ac) {
4513                 ac->ac_sb = sb;
4514                 ac->ac_inode = ar->inode;
4515         } else {
4516                 ar->len = 0;
4517                 *errp = -ENOMEM;
4518                 goto out1;
4519         }
4520
4521         *errp = ext4_mb_initialize_context(ac, ar);
4522         if (*errp) {
4523                 ar->len = 0;
4524                 goto out2;
4525         }
4526
4527         ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4528         if (!ext4_mb_use_preallocated(ac)) {
4529                 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4530                 ext4_mb_normalize_request(ac, ar);
4531 repeat:
4532                 /* allocate space in core */
4533                 ext4_mb_regular_allocator(ac);
4534
4535                 /* as we've just preallocated more space than
4536                  * user requested orinally, we store allocated
4537                  * space in a special descriptor */
4538                 if (ac->ac_status == AC_STATUS_FOUND &&
4539                                 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4540                         ext4_mb_new_preallocation(ac);
4541         }
4542         if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4543                 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4544                 if (*errp ==  -EAGAIN) {
4545                         /*
4546                          * drop the reference that we took
4547                          * in ext4_mb_use_best_found
4548                          */
4549                         ext4_mb_release_context(ac);
4550                         ac->ac_b_ex.fe_group = 0;
4551                         ac->ac_b_ex.fe_start = 0;
4552                         ac->ac_b_ex.fe_len = 0;
4553                         ac->ac_status = AC_STATUS_CONTINUE;
4554                         goto repeat;
4555                 } else if (*errp) {
4556                         ac->ac_b_ex.fe_len = 0;
4557                         ar->len = 0;
4558                         ext4_mb_show_ac(ac);
4559                 } else {
4560                         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4561                         ar->len = ac->ac_b_ex.fe_len;
4562                 }
4563         } else {
4564                 freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4565                 if (freed)
4566                         goto repeat;
4567                 *errp = -ENOSPC;
4568                 ac->ac_b_ex.fe_len = 0;
4569                 ar->len = 0;
4570                 ext4_mb_show_ac(ac);
4571         }
4572
4573         ext4_mb_release_context(ac);
4574
4575 out2:
4576         kmem_cache_free(ext4_ac_cachep, ac);
4577 out1:
4578         if (inquota && ar->len < inquota)
4579                 vfs_dq_free_block(ar->inode, inquota - ar->len);
4580 out3:
4581         if (!ar->len) {
4582                 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4583                         /* release all the reserved blocks if non delalloc */
4584                         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4585                                                 reserv_blks);
4586         }
4587
4588         trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4589
4590         return block;
4591 }
4592
4593 /*
4594  * We can merge two free data extents only if the physical blocks
4595  * are contiguous, AND the extents were freed by the same transaction,
4596  * AND the blocks are associated with the same group.
4597  */
4598 static int can_merge(struct ext4_free_data *entry1,
4599                         struct ext4_free_data *entry2)
4600 {
4601         if ((entry1->t_tid == entry2->t_tid) &&
4602             (entry1->group == entry2->group) &&
4603             ((entry1->start_blk + entry1->count) == entry2->start_blk))
4604                 return 1;
4605         return 0;
4606 }
4607
4608 static noinline_for_stack int
4609 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4610                       struct ext4_free_data *new_entry)
4611 {
4612         ext4_grpblk_t block;
4613         struct ext4_free_data *entry;
4614         struct ext4_group_info *db = e4b->bd_info;
4615         struct super_block *sb = e4b->bd_sb;
4616         struct ext4_sb_info *sbi = EXT4_SB(sb);
4617         struct rb_node **n = &db->bb_free_root.rb_node, *node;
4618         struct rb_node *parent = NULL, *new_node;
4619
4620         BUG_ON(!ext4_handle_valid(handle));
4621         BUG_ON(e4b->bd_bitmap_page == NULL);
4622         BUG_ON(e4b->bd_buddy_page == NULL);
4623
4624         new_node = &new_entry->node;
4625         block = new_entry->start_blk;
4626
4627         if (!*n) {
4628                 /* first free block exent. We need to
4629                    protect buddy cache from being freed,
4630                  * otherwise we'll refresh it from
4631                  * on-disk bitmap and lose not-yet-available
4632                  * blocks */
4633                 page_cache_get(e4b->bd_buddy_page);
4634                 page_cache_get(e4b->bd_bitmap_page);
4635         }
4636         while (*n) {
4637                 parent = *n;
4638                 entry = rb_entry(parent, struct ext4_free_data, node);
4639                 if (block < entry->start_blk)
4640                         n = &(*n)->rb_left;
4641                 else if (block >= (entry->start_blk + entry->count))
4642                         n = &(*n)->rb_right;
4643                 else {
4644                         ext4_grp_locked_error(sb, e4b->bd_group, __func__,
4645                                         "Double free of blocks %d (%d %d)",
4646                                         block, entry->start_blk, entry->count);
4647                         return 0;
4648                 }
4649         }
4650
4651         rb_link_node(new_node, parent, n);
4652         rb_insert_color(new_node, &db->bb_free_root);
4653
4654         /* Now try to see the extent can be merged to left and right */
4655         node = rb_prev(new_node);
4656         if (node) {
4657                 entry = rb_entry(node, struct ext4_free_data, node);
4658                 if (can_merge(entry, new_entry)) {
4659                         new_entry->start_blk = entry->start_blk;
4660                         new_entry->count += entry->count;
4661                         rb_erase(node, &(db->bb_free_root));
4662                         spin_lock(&sbi->s_md_lock);
4663                         list_del(&entry->list);
4664                         spin_unlock(&sbi->s_md_lock);
4665                         kmem_cache_free(ext4_free_ext_cachep, entry);
4666                 }
4667         }
4668
4669         node = rb_next(new_node);
4670         if (node) {
4671                 entry = rb_entry(node, struct ext4_free_data, node);
4672                 if (can_merge(new_entry, entry)) {
4673                         new_entry->count += entry->count;
4674                         rb_erase(node, &(db->bb_free_root));
4675                         spin_lock(&sbi->s_md_lock);
4676                         list_del(&entry->list);
4677                         spin_unlock(&sbi->s_md_lock);
4678                         kmem_cache_free(ext4_free_ext_cachep, entry);
4679                 }
4680         }
4681         /* Add the extent to transaction's private list */
4682         spin_lock(&sbi->s_md_lock);
4683         list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4684         spin_unlock(&sbi->s_md_lock);
4685         return 0;
4686 }
4687
4688 /*
4689  * Main entry point into mballoc to free blocks
4690  */
4691 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4692                         ext4_fsblk_t block, unsigned long count,
4693                         int metadata, unsigned long *freed)
4694 {
4695         struct buffer_head *bitmap_bh = NULL;
4696         struct super_block *sb = inode->i_sb;
4697         struct ext4_allocation_context *ac = NULL;
4698         struct ext4_group_desc *gdp;
4699         struct ext4_super_block *es;
4700         unsigned int overflow;
4701         ext4_grpblk_t bit;
4702         struct buffer_head *gd_bh;
4703         ext4_group_t block_group;
4704         struct ext4_sb_info *sbi;
4705         struct ext4_buddy e4b;
4706         int err = 0;
4707         int ret;
4708
4709         *freed = 0;
4710
4711         sbi = EXT4_SB(sb);
4712         es = EXT4_SB(sb)->s_es;
4713         if (block < le32_to_cpu(es->s_first_data_block) ||
4714             block + count < block ||
4715             block + count > ext4_blocks_count(es)) {
4716                 ext4_error(sb, __func__,
4717                             "Freeing blocks not in datazone - "
4718                             "block = %llu, count = %lu", block, count);
4719                 goto error_return;
4720         }
4721
4722         ext4_debug("freeing block %llu\n", block);
4723         trace_ext4_free_blocks(inode, block, count, metadata);
4724
4725         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4726         if (ac) {
4727                 ac->ac_op = EXT4_MB_HISTORY_FREE;
4728                 ac->ac_inode = inode;
4729                 ac->ac_sb = sb;
4730         }
4731
4732 do_more:
4733         overflow = 0;
4734         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4735
4736         /*
4737          * Check to see if we are freeing blocks across a group
4738          * boundary.
4739          */
4740         if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4741                 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4742                 count -= overflow;
4743         }
4744         bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4745         if (!bitmap_bh) {
4746                 err = -EIO;
4747                 goto error_return;
4748         }
4749         gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4750         if (!gdp) {
4751                 err = -EIO;
4752                 goto error_return;
4753         }
4754
4755         if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4756             in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4757             in_range(block, ext4_inode_table(sb, gdp),
4758                       EXT4_SB(sb)->s_itb_per_group) ||
4759             in_range(block + count - 1, ext4_inode_table(sb, gdp),
4760                       EXT4_SB(sb)->s_itb_per_group)) {
4761
4762                 ext4_error(sb, __func__,
4763                            "Freeing blocks in system zone - "
4764                            "Block = %llu, count = %lu", block, count);
4765                 /* err = 0. ext4_std_error should be a no op */
4766                 goto error_return;
4767         }
4768
4769         BUFFER_TRACE(bitmap_bh, "getting write access");
4770         err = ext4_journal_get_write_access(handle, bitmap_bh);
4771         if (err)
4772                 goto error_return;
4773
4774         /*
4775          * We are about to modify some metadata.  Call the journal APIs
4776          * to unshare ->b_data if a currently-committing transaction is
4777          * using it
4778          */
4779         BUFFER_TRACE(gd_bh, "get_write_access");
4780         err = ext4_journal_get_write_access(handle, gd_bh);
4781         if (err)
4782                 goto error_return;
4783 #ifdef AGGRESSIVE_CHECK
4784         {
4785                 int i;
4786                 for (i = 0; i < count; i++)
4787                         BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4788         }
4789 #endif
4790         if (ac) {
4791                 ac->ac_b_ex.fe_group = block_group;
4792                 ac->ac_b_ex.fe_start = bit;
4793                 ac->ac_b_ex.fe_len = count;
4794                 ext4_mb_store_history(ac);
4795         }
4796
4797         err = ext4_mb_load_buddy(sb, block_group, &e4b);
4798         if (err)
4799                 goto error_return;
4800         if (metadata && ext4_handle_valid(handle)) {
4801                 struct ext4_free_data *new_entry;
4802                 /*
4803                  * blocks being freed are metadata. these blocks shouldn't
4804                  * be used until this transaction is committed
4805                  */
4806                 new_entry  = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4807                 new_entry->start_blk = bit;
4808                 new_entry->group  = block_group;
4809                 new_entry->count = count;
4810                 new_entry->t_tid = handle->h_transaction->t_tid;
4811
4812                 ext4_lock_group(sb, block_group);
4813                 mb_clear_bits(bitmap_bh->b_data, bit, count);
4814                 ext4_mb_free_metadata(handle, &e4b, new_entry);
4815         } else {
4816                 /* need to update group_info->bb_free and bitmap
4817                  * with group lock held. generate_buddy look at
4818                  * them with group lock_held
4819                  */
4820                 ext4_lock_group(sb, block_group);
4821                 mb_clear_bits(bitmap_bh->b_data, bit, count);
4822                 mb_free_blocks(inode, &e4b, bit, count);
4823                 ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4824         }
4825
4826         ret = ext4_free_blks_count(sb, gdp) + count;
4827         ext4_free_blks_set(sb, gdp, ret);
4828         gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4829         ext4_unlock_group(sb, block_group);
4830         percpu_counter_add(&sbi->s_freeblocks_counter, count);
4831
4832         if (sbi->s_log_groups_per_flex) {
4833                 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4834                 atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4835         }
4836
4837         ext4_mb_release_desc(&e4b);
4838
4839         *freed += count;
4840
4841         /* We dirtied the bitmap block */
4842         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4843         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4844
4845         /* And the group descriptor block */
4846         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4847         ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4848         if (!err)
4849                 err = ret;
4850
4851         if (overflow && !err) {
4852                 block += count;
4853                 count = overflow;
4854                 put_bh(bitmap_bh);
4855                 goto do_more;
4856         }
4857         sb->s_dirt = 1;
4858 error_return:
4859         brelse(bitmap_bh);
4860         ext4_std_error(sb, err);
4861         if (ac)
4862                 kmem_cache_free(ext4_ac_cachep, ac);
4863         return;
4864 }