p54: more definitions form lmac_longbow.h and pda.h
[linux-2.6] / drivers / net / wireless / p54 / p54common.c
1 /*
2  * Common code for mac80211 Prism54 drivers
3  *
4  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
5  * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
6  * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7  *
8  * Based on:
9  * - the islsm (softmac prism54) driver, which is:
10  *   Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
11  * - stlc45xx driver
12  * C\ 2  Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18
19 #include <linux/init.h>
20 #include <linux/firmware.h>
21 #include <linux/etherdevice.h>
22
23 #include <net/mac80211.h>
24
25 #include "p54.h"
26 #include "p54common.h"
27
28 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
29 MODULE_DESCRIPTION("Softmac Prism54 common code");
30 MODULE_LICENSE("GPL");
31 MODULE_ALIAS("prism54common");
32
33 static struct ieee80211_rate p54_bgrates[] = {
34         { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
35         { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
36         { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
37         { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
38         { .bitrate = 60, .hw_value = 4, },
39         { .bitrate = 90, .hw_value = 5, },
40         { .bitrate = 120, .hw_value = 6, },
41         { .bitrate = 180, .hw_value = 7, },
42         { .bitrate = 240, .hw_value = 8, },
43         { .bitrate = 360, .hw_value = 9, },
44         { .bitrate = 480, .hw_value = 10, },
45         { .bitrate = 540, .hw_value = 11, },
46 };
47
48 static struct ieee80211_channel p54_bgchannels[] = {
49         { .center_freq = 2412, .hw_value = 1, },
50         { .center_freq = 2417, .hw_value = 2, },
51         { .center_freq = 2422, .hw_value = 3, },
52         { .center_freq = 2427, .hw_value = 4, },
53         { .center_freq = 2432, .hw_value = 5, },
54         { .center_freq = 2437, .hw_value = 6, },
55         { .center_freq = 2442, .hw_value = 7, },
56         { .center_freq = 2447, .hw_value = 8, },
57         { .center_freq = 2452, .hw_value = 9, },
58         { .center_freq = 2457, .hw_value = 10, },
59         { .center_freq = 2462, .hw_value = 11, },
60         { .center_freq = 2467, .hw_value = 12, },
61         { .center_freq = 2472, .hw_value = 13, },
62         { .center_freq = 2484, .hw_value = 14, },
63 };
64
65 static struct ieee80211_supported_band band_2GHz = {
66         .channels = p54_bgchannels,
67         .n_channels = ARRAY_SIZE(p54_bgchannels),
68         .bitrates = p54_bgrates,
69         .n_bitrates = ARRAY_SIZE(p54_bgrates),
70 };
71
72 static struct ieee80211_rate p54_arates[] = {
73         { .bitrate = 60, .hw_value = 4, },
74         { .bitrate = 90, .hw_value = 5, },
75         { .bitrate = 120, .hw_value = 6, },
76         { .bitrate = 180, .hw_value = 7, },
77         { .bitrate = 240, .hw_value = 8, },
78         { .bitrate = 360, .hw_value = 9, },
79         { .bitrate = 480, .hw_value = 10, },
80         { .bitrate = 540, .hw_value = 11, },
81 };
82
83 static struct ieee80211_channel p54_achannels[] = {
84         { .center_freq = 4920 },
85         { .center_freq = 4940 },
86         { .center_freq = 4960 },
87         { .center_freq = 4980 },
88         { .center_freq = 5040 },
89         { .center_freq = 5060 },
90         { .center_freq = 5080 },
91         { .center_freq = 5170 },
92         { .center_freq = 5180 },
93         { .center_freq = 5190 },
94         { .center_freq = 5200 },
95         { .center_freq = 5210 },
96         { .center_freq = 5220 },
97         { .center_freq = 5230 },
98         { .center_freq = 5240 },
99         { .center_freq = 5260 },
100         { .center_freq = 5280 },
101         { .center_freq = 5300 },
102         { .center_freq = 5320 },
103         { .center_freq = 5500 },
104         { .center_freq = 5520 },
105         { .center_freq = 5540 },
106         { .center_freq = 5560 },
107         { .center_freq = 5580 },
108         { .center_freq = 5600 },
109         { .center_freq = 5620 },
110         { .center_freq = 5640 },
111         { .center_freq = 5660 },
112         { .center_freq = 5680 },
113         { .center_freq = 5700 },
114         { .center_freq = 5745 },
115         { .center_freq = 5765 },
116         { .center_freq = 5785 },
117         { .center_freq = 5805 },
118         { .center_freq = 5825 },
119 };
120
121 static struct ieee80211_supported_band band_5GHz = {
122         .channels = p54_achannels,
123         .n_channels = ARRAY_SIZE(p54_achannels),
124         .bitrates = p54_arates,
125         .n_bitrates = ARRAY_SIZE(p54_arates),
126 };
127
128 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
129 {
130         struct p54_common *priv = dev->priv;
131         struct bootrec_exp_if *exp_if;
132         struct bootrec *bootrec;
133         u32 *data = (u32 *)fw->data;
134         u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
135         u8 *fw_version = NULL;
136         size_t len;
137         int i;
138
139         if (priv->rx_start)
140                 return 0;
141
142         while (data < end_data && *data)
143                 data++;
144
145         while (data < end_data && !*data)
146                 data++;
147
148         bootrec = (struct bootrec *) data;
149
150         while (bootrec->data <= end_data &&
151                (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
152                 u32 code = le32_to_cpu(bootrec->code);
153                 switch (code) {
154                 case BR_CODE_COMPONENT_ID:
155                         priv->fw_interface = be32_to_cpup((__be32 *)
156                                              bootrec->data);
157                         switch (priv->fw_interface) {
158                         case FW_FMAC:
159                                 printk(KERN_INFO "p54: FreeMAC firmware\n");
160                                 break;
161                         case FW_LM20:
162                                 printk(KERN_INFO "p54: LM20 firmware\n");
163                                 break;
164                         case FW_LM86:
165                                 printk(KERN_INFO "p54: LM86 firmware\n");
166                                 break;
167                         case FW_LM87:
168                                 printk(KERN_INFO "p54: LM87 firmware\n");
169                                 break;
170                         default:
171                                 printk(KERN_INFO "p54: unknown firmware\n");
172                                 break;
173                         }
174                         break;
175                 case BR_CODE_COMPONENT_VERSION:
176                         /* 24 bytes should be enough for all firmwares */
177                         if (strnlen((unsigned char*)bootrec->data, 24) < 24)
178                                 fw_version = (unsigned char*)bootrec->data;
179                         break;
180                 case BR_CODE_DESCR: {
181                         struct bootrec_desc *desc =
182                                 (struct bootrec_desc *)bootrec->data;
183                         priv->rx_start = le32_to_cpu(desc->rx_start);
184                         /* FIXME add sanity checking */
185                         priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
186                         priv->headroom = desc->headroom;
187                         priv->tailroom = desc->tailroom;
188                         if (le32_to_cpu(bootrec->len) == 11)
189                                 priv->rx_mtu = le16_to_cpu(desc->rx_mtu);
190                         else
191                                 priv->rx_mtu = (size_t)
192                                         0x620 - priv->tx_hdr_len;
193                         break;
194                         }
195                 case BR_CODE_EXPOSED_IF:
196                         exp_if = (struct bootrec_exp_if *) bootrec->data;
197                         for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
198                                 if (exp_if[i].if_id == cpu_to_le16(0x1a))
199                                         priv->fw_var = le16_to_cpu(exp_if[i].variant);
200                         break;
201                 case BR_CODE_DEPENDENT_IF:
202                         break;
203                 case BR_CODE_END_OF_BRA:
204                 case LEGACY_BR_CODE_END_OF_BRA:
205                         end_data = NULL;
206                         break;
207                 default:
208                         break;
209                 }
210                 bootrec = (struct bootrec *)&bootrec->data[len];
211         }
212
213         if (fw_version)
214                 printk(KERN_INFO "p54: FW rev %s - Softmac protocol %x.%x\n",
215                         fw_version, priv->fw_var >> 8, priv->fw_var & 0xff);
216
217         if (priv->fw_var < 0x500)
218                 printk(KERN_INFO "p54: you are using an obsolete firmware. "
219                        "visit http://wireless.kernel.org/en/users/Drivers/p54 "
220                        "and grab one for \"kernel >= 2.6.28\"!\n");
221
222         if (priv->fw_var >= 0x300) {
223                 /* Firmware supports QoS, use it! */
224                 priv->tx_stats[4].limit = 3;            /* AC_VO */
225                 priv->tx_stats[5].limit = 4;            /* AC_VI */
226                 priv->tx_stats[6].limit = 3;            /* AC_BE */
227                 priv->tx_stats[7].limit = 2;            /* AC_BK */
228                 dev->queues = 4;
229         }
230
231         return 0;
232 }
233 EXPORT_SYMBOL_GPL(p54_parse_firmware);
234
235 static int p54_convert_rev0(struct ieee80211_hw *dev,
236                             struct pda_pa_curve_data *curve_data)
237 {
238         struct p54_common *priv = dev->priv;
239         struct p54_pa_curve_data_sample *dst;
240         struct pda_pa_curve_data_sample_rev0 *src;
241         size_t cd_len = sizeof(*curve_data) +
242                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
243                  curve_data->channels;
244         unsigned int i, j;
245         void *source, *target;
246
247         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
248         if (!priv->curve_data)
249                 return -ENOMEM;
250
251         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
252         source = curve_data->data;
253         target = priv->curve_data->data;
254         for (i = 0; i < curve_data->channels; i++) {
255                 __le16 *freq = source;
256                 source += sizeof(__le16);
257                 *((__le16 *)target) = *freq;
258                 target += sizeof(__le16);
259                 for (j = 0; j < curve_data->points_per_channel; j++) {
260                         dst = target;
261                         src = source;
262
263                         dst->rf_power = src->rf_power;
264                         dst->pa_detector = src->pa_detector;
265                         dst->data_64qam = src->pcv;
266                         /* "invent" the points for the other modulations */
267 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
268                         dst->data_16qam = SUB(src->pcv, 12);
269                         dst->data_qpsk = SUB(dst->data_16qam, 12);
270                         dst->data_bpsk = SUB(dst->data_qpsk, 12);
271                         dst->data_barker = SUB(dst->data_bpsk, 14);
272 #undef SUB
273                         target += sizeof(*dst);
274                         source += sizeof(*src);
275                 }
276         }
277
278         return 0;
279 }
280
281 static int p54_convert_rev1(struct ieee80211_hw *dev,
282                             struct pda_pa_curve_data *curve_data)
283 {
284         struct p54_common *priv = dev->priv;
285         struct p54_pa_curve_data_sample *dst;
286         struct pda_pa_curve_data_sample_rev1 *src;
287         size_t cd_len = sizeof(*curve_data) +
288                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
289                  curve_data->channels;
290         unsigned int i, j;
291         void *source, *target;
292
293         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
294         if (!priv->curve_data)
295                 return -ENOMEM;
296
297         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
298         source = curve_data->data;
299         target = priv->curve_data->data;
300         for (i = 0; i < curve_data->channels; i++) {
301                 __le16 *freq = source;
302                 source += sizeof(__le16);
303                 *((__le16 *)target) = *freq;
304                 target += sizeof(__le16);
305                 for (j = 0; j < curve_data->points_per_channel; j++) {
306                         memcpy(target, source, sizeof(*src));
307
308                         target += sizeof(*dst);
309                         source += sizeof(*src);
310                 }
311                 source++;
312         }
313
314         return 0;
315 }
316
317 static const char *p54_rf_chips[] = { "NULL", "Duette3", "Duette2",
318                               "Frisbee", "Xbow", "Longbow", "NULL", "NULL" };
319 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
320
321 static int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
322 {
323         struct p54_common *priv = dev->priv;
324         struct eeprom_pda_wrap *wrap = NULL;
325         struct pda_entry *entry;
326         unsigned int data_len, entry_len;
327         void *tmp;
328         int err;
329         u8 *end = (u8 *)eeprom + len;
330         u16 synth = 0;
331
332         wrap = (struct eeprom_pda_wrap *) eeprom;
333         entry = (void *)wrap->data + le16_to_cpu(wrap->len);
334
335         /* verify that at least the entry length/code fits */
336         while ((u8 *)entry <= end - sizeof(*entry)) {
337                 entry_len = le16_to_cpu(entry->len);
338                 data_len = ((entry_len - 1) << 1);
339
340                 /* abort if entry exceeds whole structure */
341                 if ((u8 *)entry + sizeof(*entry) + data_len > end)
342                         break;
343
344                 switch (le16_to_cpu(entry->code)) {
345                 case PDR_MAC_ADDRESS:
346                         SET_IEEE80211_PERM_ADDR(dev, entry->data);
347                         break;
348                 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
349                         if (data_len < 2) {
350                                 err = -EINVAL;
351                                 goto err;
352                         }
353
354                         if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
355                                 err = -EINVAL;
356                                 goto err;
357                         }
358
359                         priv->output_limit = kmalloc(entry->data[1] *
360                                 sizeof(*priv->output_limit), GFP_KERNEL);
361
362                         if (!priv->output_limit) {
363                                 err = -ENOMEM;
364                                 goto err;
365                         }
366
367                         memcpy(priv->output_limit, &entry->data[2],
368                                entry->data[1]*sizeof(*priv->output_limit));
369                         priv->output_limit_len = entry->data[1];
370                         break;
371                 case PDR_PRISM_PA_CAL_CURVE_DATA: {
372                         struct pda_pa_curve_data *curve_data =
373                                 (struct pda_pa_curve_data *)entry->data;
374                         if (data_len < sizeof(*curve_data)) {
375                                 err = -EINVAL;
376                                 goto err;
377                         }
378
379                         switch (curve_data->cal_method_rev) {
380                         case 0:
381                                 err = p54_convert_rev0(dev, curve_data);
382                                 break;
383                         case 1:
384                                 err = p54_convert_rev1(dev, curve_data);
385                                 break;
386                         default:
387                                 printk(KERN_ERR "p54: unknown curve data "
388                                                 "revision %d\n",
389                                                 curve_data->cal_method_rev);
390                                 err = -ENODEV;
391                                 break;
392                         }
393                         if (err)
394                                 goto err;
395
396                 }
397                 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
398                         priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
399                         if (!priv->iq_autocal) {
400                                 err = -ENOMEM;
401                                 goto err;
402                         }
403
404                         memcpy(priv->iq_autocal, entry->data, data_len);
405                         priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
406                         break;
407                 case PDR_INTERFACE_LIST:
408                         tmp = entry->data;
409                         while ((u8 *)tmp < entry->data + data_len) {
410                                 struct bootrec_exp_if *exp_if = tmp;
411                                 if (le16_to_cpu(exp_if->if_id) == 0xf)
412                                         synth = le16_to_cpu(exp_if->variant);
413                                 tmp += sizeof(struct bootrec_exp_if);
414                         }
415                         break;
416                 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
417                         priv->version = *(u8 *)(entry->data + 1);
418                         break;
419                 case PDR_END:
420                         /* make it overrun */
421                         entry_len = len;
422                         break;
423                 default:
424                         printk(KERN_INFO "p54: unknown eeprom code : 0x%x\n",
425                                 le16_to_cpu(entry->code));
426                         break;
427                 }
428
429                 entry = (void *)entry + (entry_len + 1)*2;
430         }
431
432         if (!synth || !priv->iq_autocal || !priv->output_limit ||
433             !priv->curve_data) {
434                 printk(KERN_ERR "p54: not all required entries found in eeprom!\n");
435                 err = -EINVAL;
436                 goto err;
437         }
438
439         priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK;
440         if (priv->rxhw == 4)
441                 p54_init_xbow_synth(dev);
442         if (!(synth & PDR_SYNTH_24_GHZ_DISABLED))
443                 dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
444         if (!(synth & PDR_SYNTH_5_GHZ_DISABLED))
445                 dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
446
447         if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
448                 u8 perm_addr[ETH_ALEN];
449
450                 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
451                         wiphy_name(dev->wiphy));
452                 random_ether_addr(perm_addr);
453                 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
454         }
455
456         printk(KERN_INFO "%s: hwaddr %pM, MAC:isl38%02x RF:%s\n",
457                 wiphy_name(dev->wiphy),
458                 dev->wiphy->perm_addr,
459                 priv->version, p54_rf_chips[priv->rxhw]);
460
461         return 0;
462
463   err:
464         if (priv->iq_autocal) {
465                 kfree(priv->iq_autocal);
466                 priv->iq_autocal = NULL;
467         }
468
469         if (priv->output_limit) {
470                 kfree(priv->output_limit);
471                 priv->output_limit = NULL;
472         }
473
474         if (priv->curve_data) {
475                 kfree(priv->curve_data);
476                 priv->curve_data = NULL;
477         }
478
479         printk(KERN_ERR "p54: eeprom parse failed!\n");
480         return err;
481 }
482
483 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
484 {
485         /* TODO: get the rssi_add & rssi_mul data from the eeprom */
486         return ((rssi * 0x83) / 64 - 400) / 4;
487 }
488
489 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
490 {
491         struct p54_common *priv = dev->priv;
492         struct p54_rx_data *hdr = (struct p54_rx_data *) skb->data;
493         struct ieee80211_rx_status rx_status = {0};
494         u16 freq = le16_to_cpu(hdr->freq);
495         size_t header_len = sizeof(*hdr);
496         u32 tsf32;
497
498         if (!(hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_IN_FCS_GOOD))) {
499                 if (priv->filter_flags & FIF_FCSFAIL)
500                         rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
501                 else
502                         return 0;
503         }
504
505         rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
506         rx_status.noise = priv->noise;
507         /* XX correct? */
508         rx_status.qual = (100 * hdr->rssi) / 127;
509         rx_status.rate_idx = (dev->conf.channel->band == IEEE80211_BAND_2GHZ ?
510                         hdr->rate : (hdr->rate - 4)) & 0xf;
511         rx_status.freq = freq;
512         rx_status.band =  dev->conf.channel->band;
513         rx_status.antenna = hdr->antenna;
514
515         tsf32 = le32_to_cpu(hdr->tsf32);
516         if (tsf32 < priv->tsf_low32)
517                 priv->tsf_high32++;
518         rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
519         priv->tsf_low32 = tsf32;
520
521         rx_status.flag |= RX_FLAG_TSFT;
522
523         if (hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
524                 header_len += hdr->align[0];
525
526         skb_pull(skb, header_len);
527         skb_trim(skb, le16_to_cpu(hdr->len));
528
529         ieee80211_rx_irqsafe(dev, skb, &rx_status);
530
531         return -1;
532 }
533
534 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
535 {
536         struct p54_common *priv = dev->priv;
537         int i;
538
539         if (priv->mode == NL80211_IFTYPE_UNSPECIFIED)
540                 return ;
541
542         for (i = 0; i < dev->queues; i++)
543                 if (priv->tx_stats[i + 4].len < priv->tx_stats[i + 4].limit)
544                         ieee80211_wake_queue(dev, i);
545 }
546
547 void p54_free_skb(struct ieee80211_hw *dev, struct sk_buff *skb)
548 {
549         struct p54_common *priv = dev->priv;
550         struct ieee80211_tx_info *info;
551         struct memrecord *range;
552         unsigned long flags;
553         u32 freed = 0, last_addr = priv->rx_start;
554
555         if (!skb || !dev)
556                 return;
557
558         spin_lock_irqsave(&priv->tx_queue.lock, flags);
559         info = IEEE80211_SKB_CB(skb);
560         range = (void *)info->rate_driver_data;
561         if (skb->prev != (struct sk_buff *)&priv->tx_queue) {
562                 struct ieee80211_tx_info *ni;
563                 struct memrecord *mr;
564
565                 ni = IEEE80211_SKB_CB(skb->prev);
566                 mr = (struct memrecord *)ni->rate_driver_data;
567                 last_addr = mr->end_addr;
568         }
569         if (skb->next != (struct sk_buff *)&priv->tx_queue) {
570                 struct ieee80211_tx_info *ni;
571                 struct memrecord *mr;
572
573                 ni = IEEE80211_SKB_CB(skb->next);
574                 mr = (struct memrecord *)ni->rate_driver_data;
575                 freed = mr->start_addr - last_addr;
576         } else
577                 freed = priv->rx_end - last_addr;
578         __skb_unlink(skb, &priv->tx_queue);
579         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
580         kfree_skb(skb);
581
582         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
583                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
584                 p54_wake_free_queues(dev);
585 }
586 EXPORT_SYMBOL_GPL(p54_free_skb);
587
588 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
589 {
590         struct p54_common *priv = dev->priv;
591         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
592         struct p54_frame_sent *payload = (struct p54_frame_sent *) hdr->data;
593         struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
594         u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
595         struct memrecord *range = NULL;
596         u32 freed = 0;
597         u32 last_addr = priv->rx_start;
598         unsigned long flags;
599         int count, idx;
600
601         spin_lock_irqsave(&priv->tx_queue.lock, flags);
602         while (entry != (struct sk_buff *)&priv->tx_queue) {
603                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
604                 struct p54_hdr *entry_hdr;
605                 struct p54_tx_data *entry_data;
606                 int pad = 0;
607
608                 range = (void *)info->rate_driver_data;
609                 if (range->start_addr != addr) {
610                         last_addr = range->end_addr;
611                         entry = entry->next;
612                         continue;
613                 }
614
615                 if (entry->next != (struct sk_buff *)&priv->tx_queue) {
616                         struct ieee80211_tx_info *ni;
617                         struct memrecord *mr;
618
619                         ni = IEEE80211_SKB_CB(entry->next);
620                         mr = (struct memrecord *)ni->rate_driver_data;
621                         freed = mr->start_addr - last_addr;
622                 } else
623                         freed = priv->rx_end - last_addr;
624
625                 last_addr = range->end_addr;
626                 __skb_unlink(entry, &priv->tx_queue);
627                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
628
629                 /*
630                  * Clear manually, ieee80211_tx_info_clear_status would
631                  * clear the counts too and we need them.
632                  */
633                 memset(&info->status.ampdu_ack_len, 0,
634                        sizeof(struct ieee80211_tx_info) -
635                        offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
636                 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info,
637                                       status.ampdu_ack_len) != 23);
638
639                 entry_hdr = (struct p54_hdr *) entry->data;
640                 entry_data = (struct p54_tx_data *) entry_hdr->data;
641                 if (entry_hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
642                         pad = entry_data->align[0];
643
644                 /* walk through the rates array and adjust the counts */
645                 count = payload->tries;
646                 for (idx = 0; idx < 4; idx++) {
647                         if (count >= info->status.rates[idx].count) {
648                                 count -= info->status.rates[idx].count;
649                         } else if (count > 0) {
650                                 info->status.rates[idx].count = count;
651                                 count = 0;
652                         } else {
653                                 info->status.rates[idx].idx = -1;
654                                 info->status.rates[idx].count = 0;
655                         }
656                 }
657
658                 priv->tx_stats[entry_data->hw_queue].len--;
659                 if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
660                      (!payload->status))
661                         info->flags |= IEEE80211_TX_STAT_ACK;
662                 if (payload->status & P54_TX_PSM_CANCELLED)
663                         info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
664                 info->status.ack_signal = p54_rssi_to_dbm(dev,
665                                 (int)payload->ack_rssi);
666                 skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
667                 ieee80211_tx_status_irqsafe(dev, entry);
668                 goto out;
669         }
670         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
671
672 out:
673         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
674                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
675                 p54_wake_free_queues(dev);
676 }
677
678 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
679                                    struct sk_buff *skb)
680 {
681         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
682         struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
683         struct p54_common *priv = dev->priv;
684
685         if (!priv->eeprom)
686                 return ;
687
688         memcpy(priv->eeprom, eeprom->data, le16_to_cpu(eeprom->len));
689
690         complete(&priv->eeprom_comp);
691 }
692
693 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
694 {
695         struct p54_common *priv = dev->priv;
696         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
697         struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
698         u32 tsf32 = le32_to_cpu(stats->tsf32);
699
700         if (tsf32 < priv->tsf_low32)
701                 priv->tsf_high32++;
702         priv->tsf_low32 = tsf32;
703
704         priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
705         priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
706         priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
707
708         priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
709         complete(&priv->stats_comp);
710
711         mod_timer(&priv->stats_timer, jiffies + 5 * HZ);
712 }
713
714 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
715 {
716         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
717
718         switch (le16_to_cpu(hdr->type)) {
719         case P54_CONTROL_TYPE_TXDONE:
720                 p54_rx_frame_sent(dev, skb);
721                 break;
722         case P54_CONTROL_TYPE_BBP:
723                 break;
724         case P54_CONTROL_TYPE_STAT_READBACK:
725                 p54_rx_stats(dev, skb);
726                 break;
727         case P54_CONTROL_TYPE_EEPROM_READBACK:
728                 p54_rx_eeprom_readback(dev, skb);
729                 break;
730         default:
731                 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
732                        wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
733                 break;
734         }
735
736         return 0;
737 }
738
739 /* returns zero if skb can be reused */
740 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
741 {
742         u16 type = le16_to_cpu(*((__le16 *)skb->data));
743
744         if (type & P54_HDR_FLAG_CONTROL)
745                 return p54_rx_control(dev, skb);
746         else
747                 return p54_rx_data(dev, skb);
748 }
749 EXPORT_SYMBOL_GPL(p54_rx);
750
751 /*
752  * So, the firmware is somewhat stupid and doesn't know what places in its
753  * memory incoming data should go to. By poking around in the firmware, we
754  * can find some unused memory to upload our packets to. However, data that we
755  * want the card to TX needs to stay intact until the card has told us that
756  * it is done with it. This function finds empty places we can upload to and
757  * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
758  * allocated areas.
759  */
760 static int p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
761                                struct p54_hdr *data, u32 len)
762 {
763         struct p54_common *priv = dev->priv;
764         struct sk_buff *entry = priv->tx_queue.next;
765         struct sk_buff *target_skb = NULL;
766         struct ieee80211_tx_info *info;
767         struct memrecord *range;
768         u32 last_addr = priv->rx_start;
769         u32 largest_hole = 0;
770         u32 target_addr = priv->rx_start;
771         unsigned long flags;
772         unsigned int left;
773         len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
774
775         if (!skb)
776                 return -EINVAL;
777
778         spin_lock_irqsave(&priv->tx_queue.lock, flags);
779         left = skb_queue_len(&priv->tx_queue);
780         while (left--) {
781                 u32 hole_size;
782                 info = IEEE80211_SKB_CB(entry);
783                 range = (void *)info->rate_driver_data;
784                 hole_size = range->start_addr - last_addr;
785                 if (!target_skb && hole_size >= len) {
786                         target_skb = entry->prev;
787                         hole_size -= len;
788                         target_addr = last_addr;
789                 }
790                 largest_hole = max(largest_hole, hole_size);
791                 last_addr = range->end_addr;
792                 entry = entry->next;
793         }
794         if (!target_skb && priv->rx_end - last_addr >= len) {
795                 target_skb = priv->tx_queue.prev;
796                 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
797                 if (!skb_queue_empty(&priv->tx_queue)) {
798                         info = IEEE80211_SKB_CB(target_skb);
799                         range = (void *)info->rate_driver_data;
800                         target_addr = range->end_addr;
801                 }
802         } else
803                 largest_hole = max(largest_hole, priv->rx_end - last_addr);
804
805         if (!target_skb) {
806                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
807                 ieee80211_stop_queues(dev);
808                 return -ENOMEM;
809         }
810
811         info = IEEE80211_SKB_CB(skb);
812         range = (void *)info->rate_driver_data;
813         range->start_addr = target_addr;
814         range->end_addr = target_addr + len;
815         __skb_queue_after(&priv->tx_queue, target_skb, skb);
816         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
817
818         if (largest_hole < priv->headroom + sizeof(struct p54_hdr) +
819                            48 + IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
820                 ieee80211_stop_queues(dev);
821
822         data->req_id = cpu_to_le32(target_addr + priv->headroom);
823         return 0;
824 }
825
826 static struct sk_buff *p54_alloc_skb(struct ieee80211_hw *dev,
827                 u16 hdr_flags, u16 len, u16 type, gfp_t memflags)
828 {
829         struct p54_common *priv = dev->priv;
830         struct p54_hdr *hdr;
831         struct sk_buff *skb;
832
833         skb = __dev_alloc_skb(len + priv->tx_hdr_len, memflags);
834         if (!skb)
835                 return NULL;
836         skb_reserve(skb, priv->tx_hdr_len);
837
838         hdr = (struct p54_hdr *) skb_put(skb, sizeof(*hdr));
839         hdr->flags = cpu_to_le16(hdr_flags);
840         hdr->len = cpu_to_le16(len - sizeof(*hdr));
841         hdr->type = cpu_to_le16(type);
842         hdr->tries = hdr->rts_tries = 0;
843
844         if (unlikely(p54_assign_address(dev, skb, hdr, len))) {
845                 kfree_skb(skb);
846                 return NULL;
847         }
848         return skb;
849 }
850
851 int p54_read_eeprom(struct ieee80211_hw *dev)
852 {
853         struct p54_common *priv = dev->priv;
854         struct p54_hdr *hdr = NULL;
855         struct p54_eeprom_lm86 *eeprom_hdr;
856         struct sk_buff *skb;
857         size_t eeprom_size = 0x2020, offset = 0, blocksize;
858         int ret = -ENOMEM;
859         void *eeprom = NULL;
860
861         skb = p54_alloc_skb(dev, 0x8000, sizeof(*hdr) + sizeof(*eeprom_hdr) +
862                             EEPROM_READBACK_LEN,
863                             P54_CONTROL_TYPE_EEPROM_READBACK, GFP_KERNEL);
864         if (!skb)
865                 goto free;
866         priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
867         if (!priv->eeprom)
868                 goto free;
869         eeprom = kzalloc(eeprom_size, GFP_KERNEL);
870         if (!eeprom)
871                 goto free;
872
873         eeprom_hdr = (struct p54_eeprom_lm86 *) skb_put(skb,
874                      sizeof(*eeprom_hdr) + EEPROM_READBACK_LEN);
875
876         while (eeprom_size) {
877                 blocksize = min(eeprom_size, (size_t)EEPROM_READBACK_LEN);
878                 eeprom_hdr->offset = cpu_to_le16(offset);
879                 eeprom_hdr->len = cpu_to_le16(blocksize);
880                 priv->tx(dev, skb, 0);
881
882                 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
883                         printk(KERN_ERR "%s: device does not respond!\n",
884                                 wiphy_name(dev->wiphy));
885                         ret = -EBUSY;
886                         goto free;
887                 }
888
889                 memcpy(eeprom + offset, priv->eeprom, blocksize);
890                 offset += blocksize;
891                 eeprom_size -= blocksize;
892         }
893
894         ret = p54_parse_eeprom(dev, eeprom, offset);
895 free:
896         kfree(priv->eeprom);
897         priv->eeprom = NULL;
898         p54_free_skb(dev, skb);
899         kfree(eeprom);
900
901         return ret;
902 }
903 EXPORT_SYMBOL_GPL(p54_read_eeprom);
904
905 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
906 {
907         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
908         struct ieee80211_tx_queue_stats *current_queue = NULL;
909         struct p54_common *priv = dev->priv;
910         struct p54_hdr *hdr;
911         struct p54_tx_data *txhdr;
912         size_t padding, len;
913         int i, j, ridx;
914         u16 hdr_flags = 0;
915         u8 rate;
916         u8 cts_rate = 0x20;
917         u8 rc_flags;
918         u8 calculated_tries[4];
919         u8 nrates = 0, nremaining = 8;
920
921         current_queue = &priv->tx_stats[skb_get_queue_mapping(skb) + 4];
922         if (unlikely(current_queue->len > current_queue->limit))
923                 return NETDEV_TX_BUSY;
924         current_queue->len++;
925         current_queue->count++;
926         if (current_queue->len == current_queue->limit)
927                 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
928
929         padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
930         len = skb->len;
931
932         txhdr = (struct p54_tx_data *) skb_push(skb, sizeof(*txhdr) + padding);
933         hdr = (struct p54_hdr *) skb_push(skb, sizeof(*hdr));
934
935         if (padding)
936                 hdr_flags |= P54_HDR_FLAG_DATA_ALIGN;
937         hdr->len = cpu_to_le16(len);
938         hdr->type = (info->flags & IEEE80211_TX_CTL_NO_ACK) ? 0 : cpu_to_le16(1);
939         hdr->rts_tries = info->control.rates[0].count;
940
941         /*
942          * we register the rates in perfect order, and
943          * RTS/CTS won't happen on 5 GHz
944          */
945         cts_rate = info->control.rts_cts_rate_idx;
946
947         memset(&txhdr->rateset, 0, sizeof(txhdr->rateset));
948
949         /* see how many rates got used */
950         for (i = 0; i < 4; i++) {
951                 if (info->control.rates[i].idx < 0)
952                         break;
953                 nrates++;
954         }
955
956         /* limit tries to 8/nrates per rate */
957         for (i = 0; i < nrates; i++) {
958                 /*
959                  * The magic expression here is equivalent to 8/nrates for
960                  * all values that matter, but avoids division and jumps.
961                  * Note that nrates can only take the values 1 through 4.
962                  */
963                 calculated_tries[i] = min_t(int, ((15 >> nrates) | 1) + 1,
964                                                  info->control.rates[i].count);
965                 nremaining -= calculated_tries[i];
966         }
967
968         /* if there are tries left, distribute from back to front */
969         for (i = nrates - 1; nremaining > 0 && i >= 0; i--) {
970                 int tmp = info->control.rates[i].count - calculated_tries[i];
971
972                 if (tmp <= 0)
973                         continue;
974                 /* RC requested more tries at this rate */
975
976                 tmp = min_t(int, tmp, nremaining);
977                 calculated_tries[i] += tmp;
978                 nremaining -= tmp;
979         }
980
981         ridx = 0;
982         for (i = 0; i < nrates && ridx < 8; i++) {
983                 /* we register the rates in perfect order */
984                 rate = info->control.rates[i].idx;
985                 if (info->band == IEEE80211_BAND_5GHZ)
986                         rate += 4;
987
988                 /* store the count we actually calculated for TX status */
989                 info->control.rates[i].count = calculated_tries[i];
990
991                 rc_flags = info->control.rates[i].flags;
992                 if (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) {
993                         rate |= 0x10;
994                         cts_rate |= 0x10;
995                 }
996                 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
997                         rate |= 0x40;
998                 else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
999                         rate |= 0x20;
1000                 for (j = 0; j < calculated_tries[i] && ridx < 8; j++) {
1001                         txhdr->rateset[ridx] = rate;
1002                         ridx++;
1003                 }
1004         }
1005
1006         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)
1007                 hdr_flags |= P54_HDR_FLAG_DATA_OUT_SEQNR;
1008
1009         /* TODO: enable bursting */
1010         hdr->flags = cpu_to_le16(hdr_flags);
1011         hdr->tries = ridx;
1012         txhdr->crypt_offset = 0;
1013         txhdr->rts_rate_idx = 0;
1014         txhdr->key_type = 0;
1015         txhdr->key_len = 0;
1016         txhdr->hw_queue = skb_get_queue_mapping(skb) + 4;
1017         txhdr->backlog = 32;
1018         memset(txhdr->durations, 0, sizeof(txhdr->durations));
1019         txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
1020                 2 : info->antenna_sel_tx - 1;
1021         txhdr->output_power = priv->output_power;
1022         txhdr->cts_rate = cts_rate;
1023         if (padding)
1024                 txhdr->align[0] = padding;
1025
1026         /* modifies skb->cb and with it info, so must be last! */
1027         if (unlikely(p54_assign_address(dev, skb, hdr, skb->len))) {
1028                 skb_pull(skb, sizeof(*hdr) + sizeof(*txhdr) + padding);
1029                 if (current_queue) {
1030                         current_queue->len--;
1031                         current_queue->count--;
1032                 }
1033                 return NETDEV_TX_BUSY;
1034         }
1035         priv->tx(dev, skb, 0);
1036         return 0;
1037 }
1038
1039 static int p54_setup_mac(struct ieee80211_hw *dev, u16 mode, const u8 *bssid)
1040 {
1041         struct p54_common *priv = dev->priv;
1042         struct sk_buff *skb;
1043         struct p54_setup_mac *setup;
1044
1045         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*setup) +
1046                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SETUP,
1047                             GFP_ATOMIC);
1048         if (!skb)
1049                 return -ENOMEM;
1050
1051         setup = (struct p54_setup_mac *) skb_put(skb, sizeof(*setup));
1052         priv->mac_mode = mode;
1053         setup->mac_mode = cpu_to_le16(mode);
1054         memcpy(setup->mac_addr, priv->mac_addr, ETH_ALEN);
1055         if (!bssid)
1056                 memset(setup->bssid, ~0, ETH_ALEN);
1057         else
1058                 memcpy(setup->bssid, bssid, ETH_ALEN);
1059         setup->rx_antenna = priv->rx_antenna;
1060         if (priv->fw_var < 0x500) {
1061                 setup->v1.basic_rate_mask = cpu_to_le32(0x15f);
1062                 setup->v1.rx_addr = cpu_to_le32(priv->rx_end);
1063                 setup->v1.max_rx = cpu_to_le16(priv->rx_mtu);
1064                 setup->v1.rxhw = cpu_to_le16(priv->rxhw);
1065                 setup->v1.wakeup_timer = cpu_to_le16(500);
1066                 setup->v1.unalloc0 = cpu_to_le16(0);
1067         } else {
1068                 setup->v2.rx_addr = cpu_to_le32(priv->rx_end);
1069                 setup->v2.max_rx = cpu_to_le16(priv->rx_mtu);
1070                 setup->v2.rxhw = cpu_to_le16(priv->rxhw);
1071                 setup->v2.timer = cpu_to_le16(1000);
1072                 setup->v2.truncate = cpu_to_le16(48896);
1073                 setup->v2.basic_rate_mask = cpu_to_le32(0x15f);
1074                 setup->v2.sbss_offset = 0;
1075                 setup->v2.mcast_window = 0;
1076                 setup->v2.rx_rssi_threshold = 0;
1077                 setup->v2.rx_ed_threshold = 0;
1078                 setup->v2.ref_clock = cpu_to_le32(644245094);
1079                 setup->v2.lpf_bandwidth = cpu_to_le16(65535);
1080                 setup->v2.osc_start_delay = cpu_to_le16(65535);
1081         }
1082         priv->tx(dev, skb, 1);
1083         return 0;
1084 }
1085
1086 static int p54_set_freq(struct ieee80211_hw *dev, u16 frequency)
1087 {
1088         struct p54_common *priv = dev->priv;
1089         struct sk_buff *skb;
1090         struct p54_scan *chan;
1091         unsigned int i;
1092         void *entry;
1093         __le16 freq = cpu_to_le16(frequency);
1094
1095         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*chan) +
1096                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SCAN,
1097                             GFP_ATOMIC);
1098         if (!skb)
1099                 return -ENOMEM;
1100
1101         chan = (struct p54_scan *) skb_put(skb, sizeof(*chan));
1102         memset(chan->padding1, 0, sizeof(chan->padding1));
1103         chan->mode = cpu_to_le16(P54_SCAN_EXIT);
1104         chan->dwell = cpu_to_le16(0x0);
1105
1106         for (i = 0; i < priv->iq_autocal_len; i++) {
1107                 if (priv->iq_autocal[i].freq != freq)
1108                         continue;
1109
1110                 memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
1111                        sizeof(*priv->iq_autocal));
1112                 break;
1113         }
1114         if (i == priv->iq_autocal_len)
1115                 goto err;
1116
1117         for (i = 0; i < priv->output_limit_len; i++) {
1118                 if (priv->output_limit[i].freq != freq)
1119                         continue;
1120
1121                 chan->val_barker = 0x38;
1122                 chan->val_bpsk = chan->dup_bpsk =
1123                         priv->output_limit[i].val_bpsk;
1124                 chan->val_qpsk = chan->dup_qpsk =
1125                         priv->output_limit[i].val_qpsk;
1126                 chan->val_16qam = chan->dup_16qam =
1127                         priv->output_limit[i].val_16qam;
1128                 chan->val_64qam = chan->dup_64qam =
1129                         priv->output_limit[i].val_64qam;
1130                 break;
1131         }
1132         if (i == priv->output_limit_len)
1133                 goto err;
1134
1135         entry = priv->curve_data->data;
1136         for (i = 0; i < priv->curve_data->channels; i++) {
1137                 if (*((__le16 *)entry) != freq) {
1138                         entry += sizeof(__le16);
1139                         entry += sizeof(struct p54_pa_curve_data_sample) *
1140                                  priv->curve_data->points_per_channel;
1141                         continue;
1142                 }
1143
1144                 entry += sizeof(__le16);
1145                 chan->pa_points_per_curve =
1146                         min(priv->curve_data->points_per_channel, (u8) 8);
1147
1148                 memcpy(chan->curve_data, entry, sizeof(*chan->curve_data) *
1149                        chan->pa_points_per_curve);
1150                 break;
1151         }
1152
1153         if (priv->fw_var < 0x500) {
1154                 chan->v1.rssical_mul = cpu_to_le16(130);
1155                 chan->v1.rssical_add = cpu_to_le16(0xfe70);
1156         } else {
1157                 chan->v2.rssical_mul = cpu_to_le16(130);
1158                 chan->v2.rssical_add = cpu_to_le16(0xfe70);
1159                 chan->v2.basic_rate_mask = cpu_to_le32(0x15f);
1160                 memset(chan->v2.rts_rates, 0, 8);
1161         }
1162         priv->tx(dev, skb, 1);
1163         return 0;
1164
1165  err:
1166         printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1167         kfree_skb(skb);
1168         return -EINVAL;
1169 }
1170
1171 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
1172 {
1173         struct p54_common *priv = dev->priv;
1174         struct sk_buff *skb;
1175         struct p54_led *led;
1176
1177         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*led) +
1178                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_LED,
1179                         GFP_ATOMIC);
1180         if (!skb)
1181                 return -ENOMEM;
1182
1183         led = (struct p54_led *)skb_put(skb, sizeof(*led));
1184         led->mode = cpu_to_le16(mode);
1185         led->led_permanent = cpu_to_le16(link);
1186         led->led_temporary = cpu_to_le16(act);
1187         led->duration = cpu_to_le16(1000);
1188         priv->tx(dev, skb, 1);
1189         return 0;
1190 }
1191
1192 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop)      \
1193 do {                                                            \
1194         queue.aifs = cpu_to_le16(ai_fs);                        \
1195         queue.cwmin = cpu_to_le16(cw_min);                      \
1196         queue.cwmax = cpu_to_le16(cw_max);                      \
1197         queue.txop = cpu_to_le16(_txop);                        \
1198 } while(0)
1199
1200 static int p54_set_edcf(struct ieee80211_hw *dev)
1201 {
1202         struct p54_common *priv = dev->priv;
1203         struct sk_buff *skb;
1204         struct p54_edcf *edcf;
1205
1206         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*edcf) +
1207                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_DCFINIT,
1208                         GFP_ATOMIC);
1209         if (!skb)
1210                 return -ENOMEM;
1211
1212         edcf = (struct p54_edcf *)skb_put(skb, sizeof(*edcf));
1213         if (priv->use_short_slot) {
1214                 edcf->slottime = 9;
1215                 edcf->sifs = 0x10;
1216                 edcf->eofpad = 0x00;
1217         } else {
1218                 edcf->slottime = 20;
1219                 edcf->sifs = 0x0a;
1220                 edcf->eofpad = 0x06;
1221         }
1222         /* (see prism54/isl_oid.h for further details) */
1223         edcf->frameburst = cpu_to_le16(0);
1224         edcf->round_trip_delay = cpu_to_le16(0);
1225         memset(edcf->mapping, 0, sizeof(edcf->mapping));
1226         memcpy(edcf->queue, priv->qos_params, sizeof(edcf->queue));
1227         priv->tx(dev, skb, 1);
1228         return 0;
1229 }
1230
1231 static int p54_init_stats(struct ieee80211_hw *dev)
1232 {
1233         struct p54_common *priv = dev->priv;
1234
1235         priv->cached_stats = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL,
1236                         sizeof(struct p54_hdr) + sizeof(struct p54_statistics),
1237                         P54_CONTROL_TYPE_STAT_READBACK, GFP_KERNEL);
1238         if (!priv->cached_stats)
1239                         return -ENOMEM;
1240
1241         mod_timer(&priv->stats_timer, jiffies + HZ);
1242         return 0;
1243 }
1244
1245 static int p54_start(struct ieee80211_hw *dev)
1246 {
1247         struct p54_common *priv = dev->priv;
1248         int err;
1249
1250         mutex_lock(&priv->conf_mutex);
1251         err = priv->open(dev);
1252         if (!err)
1253                 priv->mode = NL80211_IFTYPE_MONITOR;
1254         P54_SET_QUEUE(priv->qos_params[0], 0x0002, 0x0003, 0x0007, 47);
1255         P54_SET_QUEUE(priv->qos_params[1], 0x0002, 0x0007, 0x000f, 94);
1256         P54_SET_QUEUE(priv->qos_params[2], 0x0003, 0x000f, 0x03ff, 0);
1257         P54_SET_QUEUE(priv->qos_params[3], 0x0007, 0x000f, 0x03ff, 0);
1258         err = p54_set_edcf(dev);
1259         if (!err)
1260                 err = p54_init_stats(dev);
1261
1262         mutex_unlock(&priv->conf_mutex);
1263         return err;
1264 }
1265
1266 static void p54_stop(struct ieee80211_hw *dev)
1267 {
1268         struct p54_common *priv = dev->priv;
1269         struct sk_buff *skb;
1270
1271         mutex_lock(&priv->conf_mutex);
1272         del_timer(&priv->stats_timer);
1273         p54_free_skb(dev, priv->cached_stats);
1274         priv->cached_stats = NULL;
1275         while ((skb = skb_dequeue(&priv->tx_queue)))
1276                 kfree_skb(skb);
1277
1278         priv->stop(dev);
1279         priv->tsf_high32 = priv->tsf_low32 = 0;
1280         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1281         mutex_unlock(&priv->conf_mutex);
1282 }
1283
1284 static int p54_add_interface(struct ieee80211_hw *dev,
1285                              struct ieee80211_if_init_conf *conf)
1286 {
1287         struct p54_common *priv = dev->priv;
1288
1289         mutex_lock(&priv->conf_mutex);
1290         if (priv->mode != NL80211_IFTYPE_MONITOR) {
1291                 mutex_unlock(&priv->conf_mutex);
1292                 return -EOPNOTSUPP;
1293         }
1294
1295         switch (conf->type) {
1296         case NL80211_IFTYPE_STATION:
1297                 priv->mode = conf->type;
1298                 break;
1299         default:
1300                 mutex_unlock(&priv->conf_mutex);
1301                 return -EOPNOTSUPP;
1302         }
1303
1304         memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
1305
1306         p54_setup_mac(dev, P54_FILTER_TYPE_NONE, NULL);
1307
1308         switch (conf->type) {
1309         case NL80211_IFTYPE_STATION:
1310                 p54_setup_mac(dev, P54_FILTER_TYPE_STATION, NULL);
1311                 break;
1312         default:
1313                 BUG();  /* impossible */
1314                 break;
1315         }
1316
1317         p54_set_leds(dev, 1, 0, 0);
1318
1319         mutex_unlock(&priv->conf_mutex);
1320         return 0;
1321 }
1322
1323 static void p54_remove_interface(struct ieee80211_hw *dev,
1324                                  struct ieee80211_if_init_conf *conf)
1325 {
1326         struct p54_common *priv = dev->priv;
1327
1328         mutex_lock(&priv->conf_mutex);
1329         p54_setup_mac(dev, P54_FILTER_TYPE_NONE, NULL);
1330         priv->mode = NL80211_IFTYPE_MONITOR;
1331         memset(priv->mac_addr, 0, ETH_ALEN);
1332         mutex_unlock(&priv->conf_mutex);
1333 }
1334
1335 static int p54_config(struct ieee80211_hw *dev, u32 changed)
1336 {
1337         int ret;
1338         struct p54_common *priv = dev->priv;
1339         struct ieee80211_conf *conf = &dev->conf;
1340
1341         mutex_lock(&priv->conf_mutex);
1342         priv->rx_antenna = 2; /* automatic */
1343         priv->output_power = conf->power_level << 2;
1344         ret = p54_set_freq(dev, conf->channel->center_freq);
1345         if (!ret)
1346                 ret = p54_set_edcf(dev);
1347         mutex_unlock(&priv->conf_mutex);
1348         return ret;
1349 }
1350
1351 static int p54_config_interface(struct ieee80211_hw *dev,
1352                                 struct ieee80211_vif *vif,
1353                                 struct ieee80211_if_conf *conf)
1354 {
1355         struct p54_common *priv = dev->priv;
1356
1357         mutex_lock(&priv->conf_mutex);
1358         p54_setup_mac(dev, P54_FILTER_TYPE_STATION, conf->bssid);
1359         p54_set_leds(dev, 1, !is_multicast_ether_addr(conf->bssid), 0);
1360         memcpy(priv->bssid, conf->bssid, ETH_ALEN);
1361         mutex_unlock(&priv->conf_mutex);
1362         return 0;
1363 }
1364
1365 static void p54_configure_filter(struct ieee80211_hw *dev,
1366                                  unsigned int changed_flags,
1367                                  unsigned int *total_flags,
1368                                  int mc_count, struct dev_mc_list *mclist)
1369 {
1370         struct p54_common *priv = dev->priv;
1371
1372         *total_flags &= FIF_BCN_PRBRESP_PROMISC |
1373                         FIF_PROMISC_IN_BSS |
1374                         FIF_FCSFAIL;
1375
1376         priv->filter_flags = *total_flags;
1377
1378         if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
1379                 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
1380                         p54_setup_mac(dev, priv->mac_mode, NULL);
1381                 else
1382                         p54_setup_mac(dev, priv->mac_mode, priv->bssid);
1383         }
1384
1385         if (changed_flags & FIF_PROMISC_IN_BSS) {
1386                 if (*total_flags & FIF_PROMISC_IN_BSS)
1387                         p54_setup_mac(dev, priv->mac_mode | 0x8, NULL);
1388                 else
1389                         p54_setup_mac(dev, priv->mac_mode & ~0x8, priv->bssid);
1390         }
1391 }
1392
1393 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
1394                        const struct ieee80211_tx_queue_params *params)
1395 {
1396         struct p54_common *priv = dev->priv;
1397         int ret;
1398
1399         mutex_lock(&priv->conf_mutex);
1400         if ((params) && !(queue > 4)) {
1401                 P54_SET_QUEUE(priv->qos_params[queue], params->aifs,
1402                         params->cw_min, params->cw_max, params->txop);
1403         } else
1404                 ret = -EINVAL;
1405         if (!ret)
1406                 ret = p54_set_edcf(dev);
1407         mutex_unlock(&priv->conf_mutex);
1408         return ret;
1409 }
1410
1411 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
1412 {
1413         struct p54_common *priv = dev->priv;
1414         struct sk_buff *skb;
1415         struct p54_xbow_synth *xbow;
1416
1417         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*xbow) +
1418                             sizeof(struct p54_hdr),
1419                             P54_CONTROL_TYPE_XBOW_SYNTH_CFG,
1420                             GFP_KERNEL);
1421         if (!skb)
1422                 return -ENOMEM;
1423
1424         xbow = (struct p54_xbow_synth *)skb_put(skb, sizeof(*xbow));
1425         xbow->magic1 = cpu_to_le16(0x1);
1426         xbow->magic2 = cpu_to_le16(0x2);
1427         xbow->freq = cpu_to_le16(5390);
1428         memset(xbow->padding, 0, sizeof(xbow->padding));
1429         priv->tx(dev, skb, 1);
1430         return 0;
1431 }
1432
1433 static void p54_statistics_timer(unsigned long data)
1434 {
1435         struct ieee80211_hw *dev = (struct ieee80211_hw *) data;
1436         struct p54_common *priv = dev->priv;
1437
1438         BUG_ON(!priv->cached_stats);
1439
1440         priv->tx(dev, priv->cached_stats, 0);
1441 }
1442
1443 static int p54_get_stats(struct ieee80211_hw *dev,
1444                          struct ieee80211_low_level_stats *stats)
1445 {
1446         struct p54_common *priv = dev->priv;
1447
1448         del_timer(&priv->stats_timer);
1449         p54_statistics_timer((unsigned long)dev);
1450
1451         if (!wait_for_completion_interruptible_timeout(&priv->stats_comp, HZ)) {
1452                 printk(KERN_ERR "%s: device does not respond!\n",
1453                         wiphy_name(dev->wiphy));
1454                 return -EBUSY;
1455         }
1456
1457         memcpy(stats, &priv->stats, sizeof(*stats));
1458
1459         return 0;
1460 }
1461
1462 static int p54_get_tx_stats(struct ieee80211_hw *dev,
1463                             struct ieee80211_tx_queue_stats *stats)
1464 {
1465         struct p54_common *priv = dev->priv;
1466
1467         memcpy(stats, &priv->tx_stats[4], sizeof(stats[0]) * dev->queues);
1468
1469         return 0;
1470 }
1471
1472 static void p54_bss_info_changed(struct ieee80211_hw *dev,
1473                                  struct ieee80211_vif *vif,
1474                                  struct ieee80211_bss_conf *info,
1475                                  u32 changed)
1476 {
1477         struct p54_common *priv = dev->priv;
1478
1479         if (changed & BSS_CHANGED_ERP_SLOT) {
1480                 priv->use_short_slot = info->use_short_slot;
1481                 p54_set_edcf(dev);
1482         }
1483 }
1484
1485 static const struct ieee80211_ops p54_ops = {
1486         .tx                     = p54_tx,
1487         .start                  = p54_start,
1488         .stop                   = p54_stop,
1489         .add_interface          = p54_add_interface,
1490         .remove_interface       = p54_remove_interface,
1491         .config                 = p54_config,
1492         .config_interface       = p54_config_interface,
1493         .bss_info_changed       = p54_bss_info_changed,
1494         .configure_filter       = p54_configure_filter,
1495         .conf_tx                = p54_conf_tx,
1496         .get_stats              = p54_get_stats,
1497         .get_tx_stats           = p54_get_tx_stats
1498 };
1499
1500 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
1501 {
1502         struct ieee80211_hw *dev;
1503         struct p54_common *priv;
1504
1505         dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
1506         if (!dev)
1507                 return NULL;
1508
1509         priv = dev->priv;
1510         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1511         skb_queue_head_init(&priv->tx_queue);
1512         dev->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | /* not sure */
1513                      IEEE80211_HW_RX_INCLUDES_FCS |
1514                      IEEE80211_HW_SIGNAL_DBM |
1515                      IEEE80211_HW_NOISE_DBM;
1516
1517         dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1518
1519         dev->channel_change_time = 1000;        /* TODO: find actual value */
1520         priv->tx_stats[0].limit = 1;            /* Beacon queue */
1521         priv->tx_stats[1].limit = 1;            /* Probe queue for HW scan */
1522         priv->tx_stats[2].limit = 3;            /* queue for MLMEs */
1523         priv->tx_stats[3].limit = 3;            /* Broadcast / MC queue */
1524         priv->tx_stats[4].limit = 5;            /* Data */
1525         dev->queues = 1;
1526         priv->noise = -94;
1527         /*
1528          * We support at most 8 tries no matter which rate they're at,
1529          * we cannot support max_rates * max_rate_tries as we set it
1530          * here, but setting it correctly to 4/2 or so would limit us
1531          * artificially if the RC algorithm wants just two rates, so
1532          * let's say 4/7, we'll redistribute it at TX time, see the
1533          * comments there.
1534          */
1535         dev->max_rates = 4;
1536         dev->max_rate_tries = 7;
1537         dev->extra_tx_headroom = sizeof(struct p54_hdr) + 4 +
1538                                  sizeof(struct p54_tx_data);
1539
1540         mutex_init(&priv->conf_mutex);
1541         init_completion(&priv->eeprom_comp);
1542         init_completion(&priv->stats_comp);
1543         setup_timer(&priv->stats_timer, p54_statistics_timer,
1544                 (unsigned long)dev);
1545
1546         return dev;
1547 }
1548 EXPORT_SYMBOL_GPL(p54_init_common);
1549
1550 void p54_free_common(struct ieee80211_hw *dev)
1551 {
1552         struct p54_common *priv = dev->priv;
1553         del_timer(&priv->stats_timer);
1554         kfree_skb(priv->cached_stats);
1555         kfree(priv->iq_autocal);
1556         kfree(priv->output_limit);
1557         kfree(priv->curve_data);
1558 }
1559 EXPORT_SYMBOL_GPL(p54_free_common);
1560
1561 static int __init p54_init(void)
1562 {
1563         return 0;
1564 }
1565
1566 static void __exit p54_exit(void)
1567 {
1568 }
1569
1570 module_init(p54_init);
1571 module_exit(p54_exit);