2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
38 struct scsi_host_sg_pool {
41 struct kmem_cache *slab;
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
64 SP(SCSI_MAX_SG_SEGMENTS)
68 struct kmem_cache *scsi_sdb_cache;
70 static void scsi_run_queue(struct request_queue *q);
73 * Function: scsi_unprep_request()
75 * Purpose: Remove all preparation done for a request, including its
76 * associated scsi_cmnd, so that it can be requeued.
78 * Arguments: req - request to unprepare
80 * Lock status: Assumed that no locks are held upon entry.
84 static void scsi_unprep_request(struct request *req)
86 struct scsi_cmnd *cmd = req->special;
88 req->cmd_flags &= ~REQ_DONTPREP;
91 scsi_put_command(cmd);
95 * Function: scsi_queue_insert()
97 * Purpose: Insert a command in the midlevel queue.
99 * Arguments: cmd - command that we are adding to queue.
100 * reason - why we are inserting command to queue.
102 * Lock status: Assumed that lock is not held upon entry.
106 * Notes: We do this for one of two cases. Either the host is busy
107 * and it cannot accept any more commands for the time being,
108 * or the device returned QUEUE_FULL and can accept no more
110 * Notes: This could be called either from an interrupt context or a
111 * normal process context.
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
115 struct Scsi_Host *host = cmd->device->host;
116 struct scsi_device *device = cmd->device;
117 struct scsi_target *starget = scsi_target(device);
118 struct request_queue *q = device->request_queue;
122 printk("Inserting command %p into mlqueue\n", cmd));
125 * Set the appropriate busy bit for the device/host.
127 * If the host/device isn't busy, assume that something actually
128 * completed, and that we should be able to queue a command now.
130 * Note that the prior mid-layer assumption that any host could
131 * always queue at least one command is now broken. The mid-layer
132 * will implement a user specifiable stall (see
133 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
134 * if a command is requeued with no other commands outstanding
135 * either for the device or for the host.
138 case SCSI_MLQUEUE_HOST_BUSY:
139 host->host_blocked = host->max_host_blocked;
141 case SCSI_MLQUEUE_DEVICE_BUSY:
142 device->device_blocked = device->max_device_blocked;
144 case SCSI_MLQUEUE_TARGET_BUSY:
145 starget->target_blocked = starget->max_target_blocked;
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
153 scsi_device_unbusy(device);
156 * Requeue this command. It will go before all other commands
157 * that are already in the queue.
159 * NOTE: there is magic here about the way the queue is plugged if
160 * we have no outstanding commands.
162 * Although we *don't* plug the queue, we call the request
163 * function. The SCSI request function detects the blocked condition
164 * and plugs the queue appropriately.
166 spin_lock_irqsave(q->queue_lock, flags);
167 blk_requeue_request(q, cmd->request);
168 spin_unlock_irqrestore(q->queue_lock, flags);
176 * scsi_execute - insert request and wait for the result
179 * @data_direction: data direction
180 * @buffer: data buffer
181 * @bufflen: len of buffer
182 * @sense: optional sense buffer
183 * @timeout: request timeout in seconds
184 * @retries: number of times to retry request
185 * @flags: or into request flags;
187 * returns the req->errors value which is the scsi_cmnd result
190 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
191 int data_direction, void *buffer, unsigned bufflen,
192 unsigned char *sense, int timeout, int retries, int flags)
195 int write = (data_direction == DMA_TO_DEVICE);
196 int ret = DRIVER_ERROR << 24;
198 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
200 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
201 buffer, bufflen, __GFP_WAIT))
204 req->cmd_len = COMMAND_SIZE(cmd[0]);
205 memcpy(req->cmd, cmd, req->cmd_len);
208 req->retries = retries;
209 req->timeout = timeout;
210 req->cmd_type = REQ_TYPE_BLOCK_PC;
211 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
214 * head injection *required* here otherwise quiesce won't work
216 blk_execute_rq(req->q, NULL, req, 1);
219 * Some devices (USB mass-storage in particular) may transfer
220 * garbage data together with a residue indicating that the data
221 * is invalid. Prevent the garbage from being misinterpreted
222 * and prevent security leaks by zeroing out the excess data.
224 if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
225 memset(buffer + (bufflen - req->data_len), 0, req->data_len);
229 blk_put_request(req);
233 EXPORT_SYMBOL(scsi_execute);
236 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
237 int data_direction, void *buffer, unsigned bufflen,
238 struct scsi_sense_hdr *sshdr, int timeout, int retries)
244 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
246 return DRIVER_ERROR << 24;
248 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
249 sense, timeout, retries, 0);
251 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
256 EXPORT_SYMBOL(scsi_execute_req);
258 struct scsi_io_context {
260 void (*done)(void *data, char *sense, int result, int resid);
261 char sense[SCSI_SENSE_BUFFERSIZE];
264 static struct kmem_cache *scsi_io_context_cache;
266 static void scsi_end_async(struct request *req, int uptodate)
268 struct scsi_io_context *sioc = req->end_io_data;
271 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
273 kmem_cache_free(scsi_io_context_cache, sioc);
274 __blk_put_request(req->q, req);
277 static int scsi_merge_bio(struct request *rq, struct bio *bio)
279 struct request_queue *q = rq->q;
281 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
282 if (rq_data_dir(rq) == WRITE)
283 bio->bi_rw |= (1 << BIO_RW);
284 blk_queue_bounce(q, &bio);
286 return blk_rq_append_bio(q, rq, bio);
289 static void scsi_bi_endio(struct bio *bio, int error)
295 * scsi_req_map_sg - map a scatterlist into a request
296 * @rq: request to fill
298 * @nsegs: number of elements
299 * @bufflen: len of buffer
300 * @gfp: memory allocation flags
302 * scsi_req_map_sg maps a scatterlist into a request so that the
303 * request can be sent to the block layer. We do not trust the scatterlist
304 * sent to use, as some ULDs use that struct to only organize the pages.
306 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
307 int nsegs, unsigned bufflen, gfp_t gfp)
309 struct request_queue *q = rq->q;
310 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
311 unsigned int data_len = bufflen, len, bytes, off;
312 struct scatterlist *sg;
314 struct bio *bio = NULL;
315 int i, err, nr_vecs = 0;
317 for_each_sg(sgl, sg, nsegs, i) {
322 while (len > 0 && data_len > 0) {
324 * sg sends a scatterlist that is larger than
325 * the data_len it wants transferred for certain
328 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
329 bytes = min(bytes, data_len);
332 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
335 bio = bio_alloc(gfp, nr_vecs);
340 bio->bi_end_io = scsi_bi_endio;
343 if (bio_add_pc_page(q, bio, page, bytes, off) !=
350 if (bio->bi_vcnt >= nr_vecs) {
351 err = scsi_merge_bio(rq, bio);
366 rq->buffer = rq->data = NULL;
367 rq->data_len = bufflen;
371 while ((bio = rq->bio) != NULL) {
372 rq->bio = bio->bi_next;
374 * call endio instead of bio_put incase it was bounced
383 * scsi_execute_async - insert request
386 * @cmd_len: length of scsi cdb
387 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
388 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
389 * @bufflen: len of buffer
390 * @use_sg: if buffer is a scatterlist this is the number of elements
391 * @timeout: request timeout in seconds
392 * @retries: number of times to retry request
393 * @privdata: data passed to done()
394 * @done: callback function when done
395 * @gfp: memory allocation flags
397 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
398 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
399 int use_sg, int timeout, int retries, void *privdata,
400 void (*done)(void *, char *, int, int), gfp_t gfp)
403 struct scsi_io_context *sioc;
405 int write = (data_direction == DMA_TO_DEVICE);
407 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
409 return DRIVER_ERROR << 24;
411 req = blk_get_request(sdev->request_queue, write, gfp);
414 req->cmd_type = REQ_TYPE_BLOCK_PC;
415 req->cmd_flags |= REQ_QUIET;
418 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
420 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
425 req->cmd_len = cmd_len;
426 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
427 memcpy(req->cmd, cmd, req->cmd_len);
428 req->sense = sioc->sense;
430 req->timeout = timeout;
431 req->retries = retries;
432 req->end_io_data = sioc;
434 sioc->data = privdata;
437 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
441 blk_put_request(req);
443 kmem_cache_free(scsi_io_context_cache, sioc);
444 return DRIVER_ERROR << 24;
446 EXPORT_SYMBOL_GPL(scsi_execute_async);
449 * Function: scsi_init_cmd_errh()
451 * Purpose: Initialize cmd fields related to error handling.
453 * Arguments: cmd - command that is ready to be queued.
455 * Notes: This function has the job of initializing a number of
456 * fields related to error handling. Typically this will
457 * be called once for each command, as required.
459 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
461 cmd->serial_number = 0;
462 scsi_set_resid(cmd, 0);
463 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
464 if (cmd->cmd_len == 0)
465 cmd->cmd_len = scsi_command_size(cmd->cmnd);
468 void scsi_device_unbusy(struct scsi_device *sdev)
470 struct Scsi_Host *shost = sdev->host;
471 struct scsi_target *starget = scsi_target(sdev);
474 spin_lock_irqsave(shost->host_lock, flags);
476 starget->target_busy--;
477 if (unlikely(scsi_host_in_recovery(shost) &&
478 (shost->host_failed || shost->host_eh_scheduled)))
479 scsi_eh_wakeup(shost);
480 spin_unlock(shost->host_lock);
481 spin_lock(sdev->request_queue->queue_lock);
483 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
487 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
488 * and call blk_run_queue for all the scsi_devices on the target -
489 * including current_sdev first.
491 * Called with *no* scsi locks held.
493 static void scsi_single_lun_run(struct scsi_device *current_sdev)
495 struct Scsi_Host *shost = current_sdev->host;
496 struct scsi_device *sdev, *tmp;
497 struct scsi_target *starget = scsi_target(current_sdev);
500 spin_lock_irqsave(shost->host_lock, flags);
501 starget->starget_sdev_user = NULL;
502 spin_unlock_irqrestore(shost->host_lock, flags);
505 * Call blk_run_queue for all LUNs on the target, starting with
506 * current_sdev. We race with others (to set starget_sdev_user),
507 * but in most cases, we will be first. Ideally, each LU on the
508 * target would get some limited time or requests on the target.
510 blk_run_queue(current_sdev->request_queue);
512 spin_lock_irqsave(shost->host_lock, flags);
513 if (starget->starget_sdev_user)
515 list_for_each_entry_safe(sdev, tmp, &starget->devices,
516 same_target_siblings) {
517 if (sdev == current_sdev)
519 if (scsi_device_get(sdev))
522 spin_unlock_irqrestore(shost->host_lock, flags);
523 blk_run_queue(sdev->request_queue);
524 spin_lock_irqsave(shost->host_lock, flags);
526 scsi_device_put(sdev);
529 spin_unlock_irqrestore(shost->host_lock, flags);
532 static inline int scsi_device_is_busy(struct scsi_device *sdev)
534 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
540 static inline int scsi_target_is_busy(struct scsi_target *starget)
542 return ((starget->can_queue > 0 &&
543 starget->target_busy >= starget->can_queue) ||
544 starget->target_blocked);
547 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
549 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
550 shost->host_blocked || shost->host_self_blocked)
557 * Function: scsi_run_queue()
559 * Purpose: Select a proper request queue to serve next
561 * Arguments: q - last request's queue
565 * Notes: The previous command was completely finished, start
566 * a new one if possible.
568 static void scsi_run_queue(struct request_queue *q)
570 struct scsi_device *starved_head = NULL, *sdev = q->queuedata;
571 struct Scsi_Host *shost = sdev->host;
574 if (scsi_target(sdev)->single_lun)
575 scsi_single_lun_run(sdev);
577 spin_lock_irqsave(shost->host_lock, flags);
578 while (!list_empty(&shost->starved_list) && !scsi_host_is_busy(shost)) {
582 * As long as shost is accepting commands and we have
583 * starved queues, call blk_run_queue. scsi_request_fn
584 * drops the queue_lock and can add us back to the
587 * host_lock protects the starved_list and starved_entry.
588 * scsi_request_fn must get the host_lock before checking
589 * or modifying starved_list or starved_entry.
591 sdev = list_entry(shost->starved_list.next,
592 struct scsi_device, starved_entry);
594 * The *queue_ready functions can add a device back onto the
595 * starved list's tail, so we must check for a infinite loop.
597 if (sdev == starved_head)
602 if (scsi_target_is_busy(scsi_target(sdev))) {
603 list_move_tail(&sdev->starved_entry,
604 &shost->starved_list);
608 list_del_init(&sdev->starved_entry);
609 spin_unlock(shost->host_lock);
611 spin_lock(sdev->request_queue->queue_lock);
612 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
613 !test_bit(QUEUE_FLAG_REENTER,
614 &sdev->request_queue->queue_flags);
616 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
617 __blk_run_queue(sdev->request_queue);
619 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
620 spin_unlock(sdev->request_queue->queue_lock);
622 spin_lock(shost->host_lock);
624 spin_unlock_irqrestore(shost->host_lock, flags);
630 * Function: scsi_requeue_command()
632 * Purpose: Handle post-processing of completed commands.
634 * Arguments: q - queue to operate on
635 * cmd - command that may need to be requeued.
639 * Notes: After command completion, there may be blocks left
640 * over which weren't finished by the previous command
641 * this can be for a number of reasons - the main one is
642 * I/O errors in the middle of the request, in which case
643 * we need to request the blocks that come after the bad
645 * Notes: Upon return, cmd is a stale pointer.
647 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
649 struct request *req = cmd->request;
652 scsi_unprep_request(req);
653 spin_lock_irqsave(q->queue_lock, flags);
654 blk_requeue_request(q, req);
655 spin_unlock_irqrestore(q->queue_lock, flags);
660 void scsi_next_command(struct scsi_cmnd *cmd)
662 struct scsi_device *sdev = cmd->device;
663 struct request_queue *q = sdev->request_queue;
665 /* need to hold a reference on the device before we let go of the cmd */
666 get_device(&sdev->sdev_gendev);
668 scsi_put_command(cmd);
671 /* ok to remove device now */
672 put_device(&sdev->sdev_gendev);
675 void scsi_run_host_queues(struct Scsi_Host *shost)
677 struct scsi_device *sdev;
679 shost_for_each_device(sdev, shost)
680 scsi_run_queue(sdev->request_queue);
684 * Function: scsi_end_request()
686 * Purpose: Post-processing of completed commands (usually invoked at end
687 * of upper level post-processing and scsi_io_completion).
689 * Arguments: cmd - command that is complete.
690 * error - 0 if I/O indicates success, < 0 for I/O error.
691 * bytes - number of bytes of completed I/O
692 * requeue - indicates whether we should requeue leftovers.
694 * Lock status: Assumed that lock is not held upon entry.
696 * Returns: cmd if requeue required, NULL otherwise.
698 * Notes: This is called for block device requests in order to
699 * mark some number of sectors as complete.
701 * We are guaranteeing that the request queue will be goosed
702 * at some point during this call.
703 * Notes: If cmd was requeued, upon return it will be a stale pointer.
705 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
706 int bytes, int requeue)
708 struct request_queue *q = cmd->device->request_queue;
709 struct request *req = cmd->request;
712 * If there are blocks left over at the end, set up the command
713 * to queue the remainder of them.
715 if (blk_end_request(req, error, bytes)) {
716 int leftover = (req->hard_nr_sectors << 9);
718 if (blk_pc_request(req))
719 leftover = req->data_len;
721 /* kill remainder if no retrys */
722 if (error && scsi_noretry_cmd(cmd))
723 blk_end_request(req, error, leftover);
727 * Bleah. Leftovers again. Stick the
728 * leftovers in the front of the
729 * queue, and goose the queue again.
731 scsi_requeue_command(q, cmd);
739 * This will goose the queue request function at the end, so we don't
740 * need to worry about launching another command.
742 scsi_next_command(cmd);
746 static inline unsigned int scsi_sgtable_index(unsigned short nents)
750 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
755 index = get_count_order(nents) - 3;
760 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
762 struct scsi_host_sg_pool *sgp;
764 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
765 mempool_free(sgl, sgp->pool);
768 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
770 struct scsi_host_sg_pool *sgp;
772 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
773 return mempool_alloc(sgp->pool, gfp_mask);
776 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
783 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
784 gfp_mask, scsi_sg_alloc);
786 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
792 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
794 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
798 * Function: scsi_release_buffers()
800 * Purpose: Completion processing for block device I/O requests.
802 * Arguments: cmd - command that we are bailing.
804 * Lock status: Assumed that no lock is held upon entry.
808 * Notes: In the event that an upper level driver rejects a
809 * command, we must release resources allocated during
810 * the __init_io() function. Primarily this would involve
811 * the scatter-gather table, and potentially any bounce
814 void scsi_release_buffers(struct scsi_cmnd *cmd)
816 if (cmd->sdb.table.nents)
817 scsi_free_sgtable(&cmd->sdb);
819 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
821 if (scsi_bidi_cmnd(cmd)) {
822 struct scsi_data_buffer *bidi_sdb =
823 cmd->request->next_rq->special;
824 scsi_free_sgtable(bidi_sdb);
825 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
826 cmd->request->next_rq->special = NULL;
829 if (scsi_prot_sg_count(cmd))
830 scsi_free_sgtable(cmd->prot_sdb);
832 EXPORT_SYMBOL(scsi_release_buffers);
835 * Bidi commands Must be complete as a whole, both sides at once.
836 * If part of the bytes were written and lld returned
837 * scsi_in()->resid and/or scsi_out()->resid this information will be left
838 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
839 * decide what to do with this information.
841 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
843 struct request *req = cmd->request;
844 unsigned int dlen = req->data_len;
845 unsigned int next_dlen = req->next_rq->data_len;
847 req->data_len = scsi_out(cmd)->resid;
848 req->next_rq->data_len = scsi_in(cmd)->resid;
850 /* The req and req->next_rq have not been completed */
851 BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
853 scsi_release_buffers(cmd);
856 * This will goose the queue request function at the end, so we don't
857 * need to worry about launching another command.
859 scsi_next_command(cmd);
863 * Function: scsi_io_completion()
865 * Purpose: Completion processing for block device I/O requests.
867 * Arguments: cmd - command that is finished.
869 * Lock status: Assumed that no lock is held upon entry.
873 * Notes: This function is matched in terms of capabilities to
874 * the function that created the scatter-gather list.
875 * In other words, if there are no bounce buffers
876 * (the normal case for most drivers), we don't need
877 * the logic to deal with cleaning up afterwards.
879 * We must do one of several things here:
881 * a) Call scsi_end_request. This will finish off the
882 * specified number of sectors. If we are done, the
883 * command block will be released, and the queue
884 * function will be goosed. If we are not done, then
885 * scsi_end_request will directly goose the queue.
887 * b) We can just use scsi_requeue_command() here. This would
888 * be used if we just wanted to retry, for example.
890 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
892 int result = cmd->result;
894 struct request_queue *q = cmd->device->request_queue;
895 struct request *req = cmd->request;
897 struct scsi_sense_hdr sshdr;
899 int sense_deferred = 0;
902 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
904 sense_deferred = scsi_sense_is_deferred(&sshdr);
907 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
908 req->errors = result;
910 if (sense_valid && req->sense) {
912 * SG_IO wants current and deferred errors
914 int len = 8 + cmd->sense_buffer[7];
916 if (len > SCSI_SENSE_BUFFERSIZE)
917 len = SCSI_SENSE_BUFFERSIZE;
918 memcpy(req->sense, cmd->sense_buffer, len);
919 req->sense_len = len;
924 if (scsi_bidi_cmnd(cmd)) {
925 /* will also release_buffers */
926 scsi_end_bidi_request(cmd);
929 req->data_len = scsi_get_resid(cmd);
932 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
933 scsi_release_buffers(cmd);
936 * Next deal with any sectors which we were able to correctly
939 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
941 req->nr_sectors, good_bytes));
943 /* A number of bytes were successfully read. If there
944 * are leftovers and there is some kind of error
945 * (result != 0), retry the rest.
947 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
949 this_count = blk_rq_bytes(req);
951 /* good_bytes = 0, or (inclusive) there were leftovers and
952 * result = 0, so scsi_end_request couldn't retry.
954 if (sense_valid && !sense_deferred) {
955 switch (sshdr.sense_key) {
957 if (cmd->device->removable) {
958 /* Detected disc change. Set a bit
959 * and quietly refuse further access.
961 cmd->device->changed = 1;
962 scsi_end_request(cmd, -EIO, this_count, 1);
965 /* Must have been a power glitch, or a
966 * bus reset. Could not have been a
967 * media change, so we just retry the
968 * request and see what happens.
970 scsi_requeue_command(q, cmd);
974 case ILLEGAL_REQUEST:
975 /* If we had an ILLEGAL REQUEST returned, then
976 * we may have performed an unsupported
977 * command. The only thing this should be
978 * would be a ten byte read where only a six
979 * byte read was supported. Also, on a system
980 * where READ CAPACITY failed, we may have
981 * read past the end of the disk.
983 if ((cmd->device->use_10_for_rw &&
984 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
985 (cmd->cmnd[0] == READ_10 ||
986 cmd->cmnd[0] == WRITE_10)) {
987 cmd->device->use_10_for_rw = 0;
988 /* This will cause a retry with a
991 scsi_requeue_command(q, cmd);
992 } else if (sshdr.asc == 0x10) /* DIX */
993 scsi_end_request(cmd, -EIO, this_count, 0);
995 scsi_end_request(cmd, -EIO, this_count, 1);
997 case ABORTED_COMMAND:
998 if (sshdr.asc == 0x10) { /* DIF */
999 scsi_end_request(cmd, -EIO, this_count, 0);
1004 /* If the device is in the process of becoming
1005 * ready, or has a temporary blockage, retry.
1007 if (sshdr.asc == 0x04) {
1008 switch (sshdr.ascq) {
1009 case 0x01: /* becoming ready */
1010 case 0x04: /* format in progress */
1011 case 0x05: /* rebuild in progress */
1012 case 0x06: /* recalculation in progress */
1013 case 0x07: /* operation in progress */
1014 case 0x08: /* Long write in progress */
1015 case 0x09: /* self test in progress */
1016 scsi_requeue_command(q, cmd);
1022 if (!(req->cmd_flags & REQ_QUIET))
1023 scsi_cmd_print_sense_hdr(cmd,
1027 scsi_end_request(cmd, -EIO, this_count, 1);
1029 case VOLUME_OVERFLOW:
1030 if (!(req->cmd_flags & REQ_QUIET)) {
1031 scmd_printk(KERN_INFO, cmd,
1032 "Volume overflow, CDB: ");
1033 __scsi_print_command(cmd->cmnd);
1034 scsi_print_sense("", cmd);
1036 /* See SSC3rXX or current. */
1037 scsi_end_request(cmd, -EIO, this_count, 1);
1043 if (host_byte(result) == DID_RESET) {
1044 /* Third party bus reset or reset for error recovery
1045 * reasons. Just retry the request and see what
1048 scsi_requeue_command(q, cmd);
1052 if (!(req->cmd_flags & REQ_QUIET)) {
1053 scsi_print_result(cmd);
1054 if (driver_byte(result) & DRIVER_SENSE)
1055 scsi_print_sense("", cmd);
1058 scsi_end_request(cmd, -EIO, this_count, !result);
1061 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1067 * If sg table allocation fails, requeue request later.
1069 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1071 return BLKPREP_DEFER;
1077 * Next, walk the list, and fill in the addresses and sizes of
1080 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1081 BUG_ON(count > sdb->table.nents);
1082 sdb->table.nents = count;
1083 if (blk_pc_request(req))
1084 sdb->length = req->data_len;
1086 sdb->length = req->nr_sectors << 9;
1091 * Function: scsi_init_io()
1093 * Purpose: SCSI I/O initialize function.
1095 * Arguments: cmd - Command descriptor we wish to initialize
1097 * Returns: 0 on success
1098 * BLKPREP_DEFER if the failure is retryable
1099 * BLKPREP_KILL if the failure is fatal
1101 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1103 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1107 if (blk_bidi_rq(cmd->request)) {
1108 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1109 scsi_sdb_cache, GFP_ATOMIC);
1111 error = BLKPREP_DEFER;
1115 cmd->request->next_rq->special = bidi_sdb;
1116 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1122 if (blk_integrity_rq(cmd->request)) {
1123 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1126 BUG_ON(prot_sdb == NULL);
1127 ivecs = blk_rq_count_integrity_sg(cmd->request);
1129 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1130 error = BLKPREP_DEFER;
1134 count = blk_rq_map_integrity_sg(cmd->request,
1135 prot_sdb->table.sgl);
1136 BUG_ON(unlikely(count > ivecs));
1138 cmd->prot_sdb = prot_sdb;
1139 cmd->prot_sdb->table.nents = count;
1145 scsi_release_buffers(cmd);
1146 if (error == BLKPREP_KILL)
1147 scsi_put_command(cmd);
1148 else /* BLKPREP_DEFER */
1149 scsi_unprep_request(cmd->request);
1153 EXPORT_SYMBOL(scsi_init_io);
1155 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1156 struct request *req)
1158 struct scsi_cmnd *cmd;
1160 if (!req->special) {
1161 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1169 /* pull a tag out of the request if we have one */
1170 cmd->tag = req->tag;
1173 cmd->cmnd = req->cmd;
1178 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1180 struct scsi_cmnd *cmd;
1181 int ret = scsi_prep_state_check(sdev, req);
1183 if (ret != BLKPREP_OK)
1186 cmd = scsi_get_cmd_from_req(sdev, req);
1188 return BLKPREP_DEFER;
1191 * BLOCK_PC requests may transfer data, in which case they must
1192 * a bio attached to them. Or they might contain a SCSI command
1193 * that does not transfer data, in which case they may optionally
1194 * submit a request without an attached bio.
1199 BUG_ON(!req->nr_phys_segments);
1201 ret = scsi_init_io(cmd, GFP_ATOMIC);
1205 BUG_ON(req->data_len);
1208 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1212 cmd->cmd_len = req->cmd_len;
1214 cmd->sc_data_direction = DMA_NONE;
1215 else if (rq_data_dir(req) == WRITE)
1216 cmd->sc_data_direction = DMA_TO_DEVICE;
1218 cmd->sc_data_direction = DMA_FROM_DEVICE;
1220 cmd->transfersize = req->data_len;
1221 cmd->allowed = req->retries;
1224 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1227 * Setup a REQ_TYPE_FS command. These are simple read/write request
1228 * from filesystems that still need to be translated to SCSI CDBs from
1231 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1233 struct scsi_cmnd *cmd;
1234 int ret = scsi_prep_state_check(sdev, req);
1236 if (ret != BLKPREP_OK)
1239 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1240 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1241 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1242 if (ret != BLKPREP_OK)
1247 * Filesystem requests must transfer data.
1249 BUG_ON(!req->nr_phys_segments);
1251 cmd = scsi_get_cmd_from_req(sdev, req);
1253 return BLKPREP_DEFER;
1255 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1256 return scsi_init_io(cmd, GFP_ATOMIC);
1258 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1260 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1262 int ret = BLKPREP_OK;
1265 * If the device is not in running state we will reject some
1268 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1269 switch (sdev->sdev_state) {
1272 * If the device is offline we refuse to process any
1273 * commands. The device must be brought online
1274 * before trying any recovery commands.
1276 sdev_printk(KERN_ERR, sdev,
1277 "rejecting I/O to offline device\n");
1282 * If the device is fully deleted, we refuse to
1283 * process any commands as well.
1285 sdev_printk(KERN_ERR, sdev,
1286 "rejecting I/O to dead device\n");
1291 case SDEV_CREATED_BLOCK:
1293 * If the devices is blocked we defer normal commands.
1295 if (!(req->cmd_flags & REQ_PREEMPT))
1296 ret = BLKPREP_DEFER;
1300 * For any other not fully online state we only allow
1301 * special commands. In particular any user initiated
1302 * command is not allowed.
1304 if (!(req->cmd_flags & REQ_PREEMPT))
1311 EXPORT_SYMBOL(scsi_prep_state_check);
1313 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1315 struct scsi_device *sdev = q->queuedata;
1319 req->errors = DID_NO_CONNECT << 16;
1320 /* release the command and kill it */
1322 struct scsi_cmnd *cmd = req->special;
1323 scsi_release_buffers(cmd);
1324 scsi_put_command(cmd);
1325 req->special = NULL;
1330 * If we defer, the elv_next_request() returns NULL, but the
1331 * queue must be restarted, so we plug here if no returning
1332 * command will automatically do that.
1334 if (sdev->device_busy == 0)
1338 req->cmd_flags |= REQ_DONTPREP;
1343 EXPORT_SYMBOL(scsi_prep_return);
1345 int scsi_prep_fn(struct request_queue *q, struct request *req)
1347 struct scsi_device *sdev = q->queuedata;
1348 int ret = BLKPREP_KILL;
1350 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1351 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1352 return scsi_prep_return(q, req, ret);
1356 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1359 * Called with the queue_lock held.
1361 static inline int scsi_dev_queue_ready(struct request_queue *q,
1362 struct scsi_device *sdev)
1364 if (sdev->device_busy == 0 && sdev->device_blocked) {
1366 * unblock after device_blocked iterates to zero
1368 if (--sdev->device_blocked == 0) {
1370 sdev_printk(KERN_INFO, sdev,
1371 "unblocking device at zero depth\n"));
1377 if (scsi_device_is_busy(sdev))
1385 * scsi_target_queue_ready: checks if there we can send commands to target
1386 * @sdev: scsi device on starget to check.
1388 * Called with the host lock held.
1390 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1391 struct scsi_device *sdev)
1393 struct scsi_target *starget = scsi_target(sdev);
1395 if (starget->single_lun) {
1396 if (starget->starget_sdev_user &&
1397 starget->starget_sdev_user != sdev)
1399 starget->starget_sdev_user = sdev;
1402 if (starget->target_busy == 0 && starget->target_blocked) {
1404 * unblock after target_blocked iterates to zero
1406 if (--starget->target_blocked == 0) {
1407 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1408 "unblocking target at zero depth\n"));
1410 blk_plug_device(sdev->request_queue);
1415 if (scsi_target_is_busy(starget)) {
1416 if (list_empty(&sdev->starved_entry)) {
1417 list_add_tail(&sdev->starved_entry,
1418 &shost->starved_list);
1423 /* We're OK to process the command, so we can't be starved */
1424 if (!list_empty(&sdev->starved_entry))
1425 list_del_init(&sdev->starved_entry);
1430 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1431 * return 0. We must end up running the queue again whenever 0 is
1432 * returned, else IO can hang.
1434 * Called with host_lock held.
1436 static inline int scsi_host_queue_ready(struct request_queue *q,
1437 struct Scsi_Host *shost,
1438 struct scsi_device *sdev)
1440 if (scsi_host_in_recovery(shost))
1442 if (shost->host_busy == 0 && shost->host_blocked) {
1444 * unblock after host_blocked iterates to zero
1446 if (--shost->host_blocked == 0) {
1448 printk("scsi%d unblocking host at zero depth\n",
1454 if (scsi_host_is_busy(shost)) {
1455 if (list_empty(&sdev->starved_entry))
1456 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1460 /* We're OK to process the command, so we can't be starved */
1461 if (!list_empty(&sdev->starved_entry))
1462 list_del_init(&sdev->starved_entry);
1468 * Busy state exporting function for request stacking drivers.
1470 * For efficiency, no lock is taken to check the busy state of
1471 * shost/starget/sdev, since the returned value is not guaranteed and
1472 * may be changed after request stacking drivers call the function,
1473 * regardless of taking lock or not.
1475 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1476 * (e.g. !sdev), scsi needs to return 'not busy'.
1477 * Otherwise, request stacking drivers may hold requests forever.
1479 static int scsi_lld_busy(struct request_queue *q)
1481 struct scsi_device *sdev = q->queuedata;
1482 struct Scsi_Host *shost;
1483 struct scsi_target *starget;
1489 starget = scsi_target(sdev);
1491 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1492 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1499 * Kill a request for a dead device
1501 static void scsi_kill_request(struct request *req, struct request_queue *q)
1503 struct scsi_cmnd *cmd = req->special;
1504 struct scsi_device *sdev = cmd->device;
1505 struct scsi_target *starget = scsi_target(sdev);
1506 struct Scsi_Host *shost = sdev->host;
1508 blkdev_dequeue_request(req);
1510 if (unlikely(cmd == NULL)) {
1511 printk(KERN_CRIT "impossible request in %s.\n",
1516 scsi_init_cmd_errh(cmd);
1517 cmd->result = DID_NO_CONNECT << 16;
1518 atomic_inc(&cmd->device->iorequest_cnt);
1521 * SCSI request completion path will do scsi_device_unbusy(),
1522 * bump busy counts. To bump the counters, we need to dance
1523 * with the locks as normal issue path does.
1525 sdev->device_busy++;
1526 spin_unlock(sdev->request_queue->queue_lock);
1527 spin_lock(shost->host_lock);
1529 starget->target_busy++;
1530 spin_unlock(shost->host_lock);
1531 spin_lock(sdev->request_queue->queue_lock);
1533 blk_complete_request(req);
1536 static void scsi_softirq_done(struct request *rq)
1538 struct scsi_cmnd *cmd = rq->special;
1539 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1542 INIT_LIST_HEAD(&cmd->eh_entry);
1545 * Set the serial numbers back to zero
1547 cmd->serial_number = 0;
1549 atomic_inc(&cmd->device->iodone_cnt);
1551 atomic_inc(&cmd->device->ioerr_cnt);
1553 disposition = scsi_decide_disposition(cmd);
1554 if (disposition != SUCCESS &&
1555 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1556 sdev_printk(KERN_ERR, cmd->device,
1557 "timing out command, waited %lus\n",
1559 disposition = SUCCESS;
1562 scsi_log_completion(cmd, disposition);
1564 switch (disposition) {
1566 scsi_finish_command(cmd);
1569 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1571 case ADD_TO_MLQUEUE:
1572 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1575 if (!scsi_eh_scmd_add(cmd, 0))
1576 scsi_finish_command(cmd);
1581 * Function: scsi_request_fn()
1583 * Purpose: Main strategy routine for SCSI.
1585 * Arguments: q - Pointer to actual queue.
1589 * Lock status: IO request lock assumed to be held when called.
1591 static void scsi_request_fn(struct request_queue *q)
1593 struct scsi_device *sdev = q->queuedata;
1594 struct Scsi_Host *shost;
1595 struct scsi_cmnd *cmd;
1596 struct request *req;
1599 printk("scsi: killing requests for dead queue\n");
1600 while ((req = elv_next_request(q)) != NULL)
1601 scsi_kill_request(req, q);
1605 if(!get_device(&sdev->sdev_gendev))
1606 /* We must be tearing the block queue down already */
1610 * To start with, we keep looping until the queue is empty, or until
1611 * the host is no longer able to accept any more requests.
1614 while (!blk_queue_plugged(q)) {
1617 * get next queueable request. We do this early to make sure
1618 * that the request is fully prepared even if we cannot
1621 req = elv_next_request(q);
1622 if (!req || !scsi_dev_queue_ready(q, sdev))
1625 if (unlikely(!scsi_device_online(sdev))) {
1626 sdev_printk(KERN_ERR, sdev,
1627 "rejecting I/O to offline device\n");
1628 scsi_kill_request(req, q);
1634 * Remove the request from the request list.
1636 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1637 blkdev_dequeue_request(req);
1638 sdev->device_busy++;
1640 spin_unlock(q->queue_lock);
1642 if (unlikely(cmd == NULL)) {
1643 printk(KERN_CRIT "impossible request in %s.\n"
1644 "please mail a stack trace to "
1645 "linux-scsi@vger.kernel.org\n",
1647 blk_dump_rq_flags(req, "foo");
1650 spin_lock(shost->host_lock);
1653 * We hit this when the driver is using a host wide
1654 * tag map. For device level tag maps the queue_depth check
1655 * in the device ready fn would prevent us from trying
1656 * to allocate a tag. Since the map is a shared host resource
1657 * we add the dev to the starved list so it eventually gets
1658 * a run when a tag is freed.
1660 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1661 if (list_empty(&sdev->starved_entry))
1662 list_add_tail(&sdev->starved_entry,
1663 &shost->starved_list);
1667 if (!scsi_target_queue_ready(shost, sdev))
1670 if (!scsi_host_queue_ready(q, shost, sdev))
1673 scsi_target(sdev)->target_busy++;
1677 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1678 * take the lock again.
1680 spin_unlock_irq(shost->host_lock);
1683 * Finally, initialize any error handling parameters, and set up
1684 * the timers for timeouts.
1686 scsi_init_cmd_errh(cmd);
1689 * Dispatch the command to the low-level driver.
1691 rtn = scsi_dispatch_cmd(cmd);
1692 spin_lock_irq(q->queue_lock);
1694 /* we're refusing the command; because of
1695 * the way locks get dropped, we need to
1696 * check here if plugging is required */
1697 if(sdev->device_busy == 0)
1707 spin_unlock_irq(shost->host_lock);
1710 * lock q, handle tag, requeue req, and decrement device_busy. We
1711 * must return with queue_lock held.
1713 * Decrementing device_busy without checking it is OK, as all such
1714 * cases (host limits or settings) should run the queue at some
1717 spin_lock_irq(q->queue_lock);
1718 blk_requeue_request(q, req);
1719 sdev->device_busy--;
1720 if(sdev->device_busy == 0)
1723 /* must be careful here...if we trigger the ->remove() function
1724 * we cannot be holding the q lock */
1725 spin_unlock_irq(q->queue_lock);
1726 put_device(&sdev->sdev_gendev);
1727 spin_lock_irq(q->queue_lock);
1730 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1732 struct device *host_dev;
1733 u64 bounce_limit = 0xffffffff;
1735 if (shost->unchecked_isa_dma)
1736 return BLK_BOUNCE_ISA;
1738 * Platforms with virtual-DMA translation
1739 * hardware have no practical limit.
1741 if (!PCI_DMA_BUS_IS_PHYS)
1742 return BLK_BOUNCE_ANY;
1744 host_dev = scsi_get_device(shost);
1745 if (host_dev && host_dev->dma_mask)
1746 bounce_limit = *host_dev->dma_mask;
1748 return bounce_limit;
1750 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1752 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1753 request_fn_proc *request_fn)
1755 struct request_queue *q;
1756 struct device *dev = shost->shost_gendev.parent;
1758 q = blk_init_queue(request_fn, NULL);
1763 * this limit is imposed by hardware restrictions
1765 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1766 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1768 blk_queue_max_sectors(q, shost->max_sectors);
1769 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1770 blk_queue_segment_boundary(q, shost->dma_boundary);
1771 dma_set_seg_boundary(dev, shost->dma_boundary);
1773 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1775 /* New queue, no concurrency on queue_flags */
1776 if (!shost->use_clustering)
1777 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1780 * set a reasonable default alignment on word boundaries: the
1781 * host and device may alter it using
1782 * blk_queue_update_dma_alignment() later.
1784 blk_queue_dma_alignment(q, 0x03);
1788 EXPORT_SYMBOL(__scsi_alloc_queue);
1790 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1792 struct request_queue *q;
1794 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1798 blk_queue_prep_rq(q, scsi_prep_fn);
1799 blk_queue_softirq_done(q, scsi_softirq_done);
1800 blk_queue_rq_timed_out(q, scsi_times_out);
1801 blk_queue_lld_busy(q, scsi_lld_busy);
1805 void scsi_free_queue(struct request_queue *q)
1807 blk_cleanup_queue(q);
1811 * Function: scsi_block_requests()
1813 * Purpose: Utility function used by low-level drivers to prevent further
1814 * commands from being queued to the device.
1816 * Arguments: shost - Host in question
1820 * Lock status: No locks are assumed held.
1822 * Notes: There is no timer nor any other means by which the requests
1823 * get unblocked other than the low-level driver calling
1824 * scsi_unblock_requests().
1826 void scsi_block_requests(struct Scsi_Host *shost)
1828 shost->host_self_blocked = 1;
1830 EXPORT_SYMBOL(scsi_block_requests);
1833 * Function: scsi_unblock_requests()
1835 * Purpose: Utility function used by low-level drivers to allow further
1836 * commands from being queued to the device.
1838 * Arguments: shost - Host in question
1842 * Lock status: No locks are assumed held.
1844 * Notes: There is no timer nor any other means by which the requests
1845 * get unblocked other than the low-level driver calling
1846 * scsi_unblock_requests().
1848 * This is done as an API function so that changes to the
1849 * internals of the scsi mid-layer won't require wholesale
1850 * changes to drivers that use this feature.
1852 void scsi_unblock_requests(struct Scsi_Host *shost)
1854 shost->host_self_blocked = 0;
1855 scsi_run_host_queues(shost);
1857 EXPORT_SYMBOL(scsi_unblock_requests);
1859 int __init scsi_init_queue(void)
1863 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1864 sizeof(struct scsi_io_context),
1866 if (!scsi_io_context_cache) {
1867 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1871 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1872 sizeof(struct scsi_data_buffer),
1874 if (!scsi_sdb_cache) {
1875 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1876 goto cleanup_io_context;
1879 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1880 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1881 int size = sgp->size * sizeof(struct scatterlist);
1883 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1884 SLAB_HWCACHE_ALIGN, NULL);
1886 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1891 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1894 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1903 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1904 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1906 mempool_destroy(sgp->pool);
1908 kmem_cache_destroy(sgp->slab);
1910 kmem_cache_destroy(scsi_sdb_cache);
1912 kmem_cache_destroy(scsi_io_context_cache);
1917 void scsi_exit_queue(void)
1921 kmem_cache_destroy(scsi_io_context_cache);
1922 kmem_cache_destroy(scsi_sdb_cache);
1924 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1925 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1926 mempool_destroy(sgp->pool);
1927 kmem_cache_destroy(sgp->slab);
1932 * scsi_mode_select - issue a mode select
1933 * @sdev: SCSI device to be queried
1934 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1935 * @sp: Save page bit (0 == don't save, 1 == save)
1936 * @modepage: mode page being requested
1937 * @buffer: request buffer (may not be smaller than eight bytes)
1938 * @len: length of request buffer.
1939 * @timeout: command timeout
1940 * @retries: number of retries before failing
1941 * @data: returns a structure abstracting the mode header data
1942 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1943 * must be SCSI_SENSE_BUFFERSIZE big.
1945 * Returns zero if successful; negative error number or scsi
1950 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1951 unsigned char *buffer, int len, int timeout, int retries,
1952 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1954 unsigned char cmd[10];
1955 unsigned char *real_buffer;
1958 memset(cmd, 0, sizeof(cmd));
1959 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1961 if (sdev->use_10_for_ms) {
1964 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1967 memcpy(real_buffer + 8, buffer, len);
1971 real_buffer[2] = data->medium_type;
1972 real_buffer[3] = data->device_specific;
1973 real_buffer[4] = data->longlba ? 0x01 : 0;
1975 real_buffer[6] = data->block_descriptor_length >> 8;
1976 real_buffer[7] = data->block_descriptor_length;
1978 cmd[0] = MODE_SELECT_10;
1982 if (len > 255 || data->block_descriptor_length > 255 ||
1986 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1989 memcpy(real_buffer + 4, buffer, len);
1992 real_buffer[1] = data->medium_type;
1993 real_buffer[2] = data->device_specific;
1994 real_buffer[3] = data->block_descriptor_length;
1997 cmd[0] = MODE_SELECT;
2001 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2002 sshdr, timeout, retries);
2006 EXPORT_SYMBOL_GPL(scsi_mode_select);
2009 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2010 * @sdev: SCSI device to be queried
2011 * @dbd: set if mode sense will allow block descriptors to be returned
2012 * @modepage: mode page being requested
2013 * @buffer: request buffer (may not be smaller than eight bytes)
2014 * @len: length of request buffer.
2015 * @timeout: command timeout
2016 * @retries: number of retries before failing
2017 * @data: returns a structure abstracting the mode header data
2018 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2019 * must be SCSI_SENSE_BUFFERSIZE big.
2021 * Returns zero if unsuccessful, or the header offset (either 4
2022 * or 8 depending on whether a six or ten byte command was
2023 * issued) if successful.
2026 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2027 unsigned char *buffer, int len, int timeout, int retries,
2028 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2030 unsigned char cmd[12];
2034 struct scsi_sense_hdr my_sshdr;
2036 memset(data, 0, sizeof(*data));
2037 memset(&cmd[0], 0, 12);
2038 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2041 /* caller might not be interested in sense, but we need it */
2046 use_10_for_ms = sdev->use_10_for_ms;
2048 if (use_10_for_ms) {
2052 cmd[0] = MODE_SENSE_10;
2059 cmd[0] = MODE_SENSE;
2064 memset(buffer, 0, len);
2066 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2067 sshdr, timeout, retries);
2069 /* This code looks awful: what it's doing is making sure an
2070 * ILLEGAL REQUEST sense return identifies the actual command
2071 * byte as the problem. MODE_SENSE commands can return
2072 * ILLEGAL REQUEST if the code page isn't supported */
2074 if (use_10_for_ms && !scsi_status_is_good(result) &&
2075 (driver_byte(result) & DRIVER_SENSE)) {
2076 if (scsi_sense_valid(sshdr)) {
2077 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2078 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2080 * Invalid command operation code
2082 sdev->use_10_for_ms = 0;
2088 if(scsi_status_is_good(result)) {
2089 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2090 (modepage == 6 || modepage == 8))) {
2091 /* Initio breakage? */
2094 data->medium_type = 0;
2095 data->device_specific = 0;
2097 data->block_descriptor_length = 0;
2098 } else if(use_10_for_ms) {
2099 data->length = buffer[0]*256 + buffer[1] + 2;
2100 data->medium_type = buffer[2];
2101 data->device_specific = buffer[3];
2102 data->longlba = buffer[4] & 0x01;
2103 data->block_descriptor_length = buffer[6]*256
2106 data->length = buffer[0] + 1;
2107 data->medium_type = buffer[1];
2108 data->device_specific = buffer[2];
2109 data->block_descriptor_length = buffer[3];
2111 data->header_length = header_length;
2116 EXPORT_SYMBOL(scsi_mode_sense);
2119 * scsi_test_unit_ready - test if unit is ready
2120 * @sdev: scsi device to change the state of.
2121 * @timeout: command timeout
2122 * @retries: number of retries before failing
2123 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2124 * returning sense. Make sure that this is cleared before passing
2127 * Returns zero if unsuccessful or an error if TUR failed. For
2128 * removable media, a return of NOT_READY or UNIT_ATTENTION is
2129 * translated to success, with the ->changed flag updated.
2132 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2133 struct scsi_sense_hdr *sshdr_external)
2136 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2138 struct scsi_sense_hdr *sshdr;
2141 if (!sshdr_external)
2142 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2144 sshdr = sshdr_external;
2146 /* try to eat the UNIT_ATTENTION if there are enough retries */
2148 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2150 if (sdev->removable && scsi_sense_valid(sshdr) &&
2151 sshdr->sense_key == UNIT_ATTENTION)
2153 } while (scsi_sense_valid(sshdr) &&
2154 sshdr->sense_key == UNIT_ATTENTION && --retries);
2157 /* could not allocate sense buffer, so can't process it */
2160 if (sdev->removable && scsi_sense_valid(sshdr) &&
2161 (sshdr->sense_key == UNIT_ATTENTION ||
2162 sshdr->sense_key == NOT_READY)) {
2166 if (!sshdr_external)
2170 EXPORT_SYMBOL(scsi_test_unit_ready);
2173 * scsi_device_set_state - Take the given device through the device state model.
2174 * @sdev: scsi device to change the state of.
2175 * @state: state to change to.
2177 * Returns zero if unsuccessful or an error if the requested
2178 * transition is illegal.
2181 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2183 enum scsi_device_state oldstate = sdev->sdev_state;
2185 if (state == oldstate)
2191 case SDEV_CREATED_BLOCK:
2235 case SDEV_CREATED_BLOCK:
2242 case SDEV_CREATED_BLOCK:
2277 sdev->sdev_state = state;
2281 SCSI_LOG_ERROR_RECOVERY(1,
2282 sdev_printk(KERN_ERR, sdev,
2283 "Illegal state transition %s->%s\n",
2284 scsi_device_state_name(oldstate),
2285 scsi_device_state_name(state))
2289 EXPORT_SYMBOL(scsi_device_set_state);
2292 * sdev_evt_emit - emit a single SCSI device uevent
2293 * @sdev: associated SCSI device
2294 * @evt: event to emit
2296 * Send a single uevent (scsi_event) to the associated scsi_device.
2298 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2303 switch (evt->evt_type) {
2304 case SDEV_EVT_MEDIA_CHANGE:
2305 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2315 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2319 * sdev_evt_thread - send a uevent for each scsi event
2320 * @work: work struct for scsi_device
2322 * Dispatch queued events to their associated scsi_device kobjects
2325 void scsi_evt_thread(struct work_struct *work)
2327 struct scsi_device *sdev;
2328 LIST_HEAD(event_list);
2330 sdev = container_of(work, struct scsi_device, event_work);
2333 struct scsi_event *evt;
2334 struct list_head *this, *tmp;
2335 unsigned long flags;
2337 spin_lock_irqsave(&sdev->list_lock, flags);
2338 list_splice_init(&sdev->event_list, &event_list);
2339 spin_unlock_irqrestore(&sdev->list_lock, flags);
2341 if (list_empty(&event_list))
2344 list_for_each_safe(this, tmp, &event_list) {
2345 evt = list_entry(this, struct scsi_event, node);
2346 list_del(&evt->node);
2347 scsi_evt_emit(sdev, evt);
2354 * sdev_evt_send - send asserted event to uevent thread
2355 * @sdev: scsi_device event occurred on
2356 * @evt: event to send
2358 * Assert scsi device event asynchronously.
2360 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2362 unsigned long flags;
2365 /* FIXME: currently this check eliminates all media change events
2366 * for polled devices. Need to update to discriminate between AN
2367 * and polled events */
2368 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2374 spin_lock_irqsave(&sdev->list_lock, flags);
2375 list_add_tail(&evt->node, &sdev->event_list);
2376 schedule_work(&sdev->event_work);
2377 spin_unlock_irqrestore(&sdev->list_lock, flags);
2379 EXPORT_SYMBOL_GPL(sdev_evt_send);
2382 * sdev_evt_alloc - allocate a new scsi event
2383 * @evt_type: type of event to allocate
2384 * @gfpflags: GFP flags for allocation
2386 * Allocates and returns a new scsi_event.
2388 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2391 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2395 evt->evt_type = evt_type;
2396 INIT_LIST_HEAD(&evt->node);
2398 /* evt_type-specific initialization, if any */
2400 case SDEV_EVT_MEDIA_CHANGE:
2408 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2411 * sdev_evt_send_simple - send asserted event to uevent thread
2412 * @sdev: scsi_device event occurred on
2413 * @evt_type: type of event to send
2414 * @gfpflags: GFP flags for allocation
2416 * Assert scsi device event asynchronously, given an event type.
2418 void sdev_evt_send_simple(struct scsi_device *sdev,
2419 enum scsi_device_event evt_type, gfp_t gfpflags)
2421 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2423 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2428 sdev_evt_send(sdev, evt);
2430 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2433 * scsi_device_quiesce - Block user issued commands.
2434 * @sdev: scsi device to quiesce.
2436 * This works by trying to transition to the SDEV_QUIESCE state
2437 * (which must be a legal transition). When the device is in this
2438 * state, only special requests will be accepted, all others will
2439 * be deferred. Since special requests may also be requeued requests,
2440 * a successful return doesn't guarantee the device will be
2441 * totally quiescent.
2443 * Must be called with user context, may sleep.
2445 * Returns zero if unsuccessful or an error if not.
2448 scsi_device_quiesce(struct scsi_device *sdev)
2450 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2454 scsi_run_queue(sdev->request_queue);
2455 while (sdev->device_busy) {
2456 msleep_interruptible(200);
2457 scsi_run_queue(sdev->request_queue);
2461 EXPORT_SYMBOL(scsi_device_quiesce);
2464 * scsi_device_resume - Restart user issued commands to a quiesced device.
2465 * @sdev: scsi device to resume.
2467 * Moves the device from quiesced back to running and restarts the
2470 * Must be called with user context, may sleep.
2473 scsi_device_resume(struct scsi_device *sdev)
2475 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2477 scsi_run_queue(sdev->request_queue);
2479 EXPORT_SYMBOL(scsi_device_resume);
2482 device_quiesce_fn(struct scsi_device *sdev, void *data)
2484 scsi_device_quiesce(sdev);
2488 scsi_target_quiesce(struct scsi_target *starget)
2490 starget_for_each_device(starget, NULL, device_quiesce_fn);
2492 EXPORT_SYMBOL(scsi_target_quiesce);
2495 device_resume_fn(struct scsi_device *sdev, void *data)
2497 scsi_device_resume(sdev);
2501 scsi_target_resume(struct scsi_target *starget)
2503 starget_for_each_device(starget, NULL, device_resume_fn);
2505 EXPORT_SYMBOL(scsi_target_resume);
2508 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2509 * @sdev: device to block
2511 * Block request made by scsi lld's to temporarily stop all
2512 * scsi commands on the specified device. Called from interrupt
2513 * or normal process context.
2515 * Returns zero if successful or error if not
2518 * This routine transitions the device to the SDEV_BLOCK state
2519 * (which must be a legal transition). When the device is in this
2520 * state, all commands are deferred until the scsi lld reenables
2521 * the device with scsi_device_unblock or device_block_tmo fires.
2522 * This routine assumes the host_lock is held on entry.
2525 scsi_internal_device_block(struct scsi_device *sdev)
2527 struct request_queue *q = sdev->request_queue;
2528 unsigned long flags;
2531 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2533 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2540 * The device has transitioned to SDEV_BLOCK. Stop the
2541 * block layer from calling the midlayer with this device's
2544 spin_lock_irqsave(q->queue_lock, flags);
2546 spin_unlock_irqrestore(q->queue_lock, flags);
2550 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2553 * scsi_internal_device_unblock - resume a device after a block request
2554 * @sdev: device to resume
2556 * Called by scsi lld's or the midlayer to restart the device queue
2557 * for the previously suspended scsi device. Called from interrupt or
2558 * normal process context.
2560 * Returns zero if successful or error if not.
2563 * This routine transitions the device to the SDEV_RUNNING state
2564 * (which must be a legal transition) allowing the midlayer to
2565 * goose the queue for this device. This routine assumes the
2566 * host_lock is held upon entry.
2569 scsi_internal_device_unblock(struct scsi_device *sdev)
2571 struct request_queue *q = sdev->request_queue;
2573 unsigned long flags;
2576 * Try to transition the scsi device to SDEV_RUNNING
2577 * and goose the device queue if successful.
2579 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2581 err = scsi_device_set_state(sdev, SDEV_CREATED);
2587 spin_lock_irqsave(q->queue_lock, flags);
2589 spin_unlock_irqrestore(q->queue_lock, flags);
2593 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2596 device_block(struct scsi_device *sdev, void *data)
2598 scsi_internal_device_block(sdev);
2602 target_block(struct device *dev, void *data)
2604 if (scsi_is_target_device(dev))
2605 starget_for_each_device(to_scsi_target(dev), NULL,
2611 scsi_target_block(struct device *dev)
2613 if (scsi_is_target_device(dev))
2614 starget_for_each_device(to_scsi_target(dev), NULL,
2617 device_for_each_child(dev, NULL, target_block);
2619 EXPORT_SYMBOL_GPL(scsi_target_block);
2622 device_unblock(struct scsi_device *sdev, void *data)
2624 scsi_internal_device_unblock(sdev);
2628 target_unblock(struct device *dev, void *data)
2630 if (scsi_is_target_device(dev))
2631 starget_for_each_device(to_scsi_target(dev), NULL,
2637 scsi_target_unblock(struct device *dev)
2639 if (scsi_is_target_device(dev))
2640 starget_for_each_device(to_scsi_target(dev), NULL,
2643 device_for_each_child(dev, NULL, target_unblock);
2645 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2648 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2649 * @sgl: scatter-gather list
2650 * @sg_count: number of segments in sg
2651 * @offset: offset in bytes into sg, on return offset into the mapped area
2652 * @len: bytes to map, on return number of bytes mapped
2654 * Returns virtual address of the start of the mapped page
2656 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2657 size_t *offset, size_t *len)
2660 size_t sg_len = 0, len_complete = 0;
2661 struct scatterlist *sg;
2664 WARN_ON(!irqs_disabled());
2666 for_each_sg(sgl, sg, sg_count, i) {
2667 len_complete = sg_len; /* Complete sg-entries */
2668 sg_len += sg->length;
2669 if (sg_len > *offset)
2673 if (unlikely(i == sg_count)) {
2674 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2676 __func__, sg_len, *offset, sg_count);
2681 /* Offset starting from the beginning of first page in this sg-entry */
2682 *offset = *offset - len_complete + sg->offset;
2684 /* Assumption: contiguous pages can be accessed as "page + i" */
2685 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2686 *offset &= ~PAGE_MASK;
2688 /* Bytes in this sg-entry from *offset to the end of the page */
2689 sg_len = PAGE_SIZE - *offset;
2693 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2695 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2698 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2699 * @virt: virtual address to be unmapped
2701 void scsi_kunmap_atomic_sg(void *virt)
2703 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2705 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);