1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/slab.h>
34 #include <linux/if_ether.h>
36 #include "e1000_mac.h"
37 #include "e1000_82575.h"
39 static s32 igb_get_invariants_82575(struct e1000_hw *);
40 static s32 igb_acquire_phy_82575(struct e1000_hw *);
41 static void igb_release_phy_82575(struct e1000_hw *);
42 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
43 static void igb_release_nvm_82575(struct e1000_hw *);
44 static s32 igb_check_for_link_82575(struct e1000_hw *);
45 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
46 static s32 igb_init_hw_82575(struct e1000_hw *);
47 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
48 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
49 static s32 igb_reset_hw_82575(struct e1000_hw *);
50 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
51 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
52 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *);
53 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
54 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
55 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
56 static s32 igb_configure_pcs_link_82575(struct e1000_hw *);
57 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
59 static s32 igb_get_phy_id_82575(struct e1000_hw *);
60 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
61 static bool igb_sgmii_active_82575(struct e1000_hw *);
62 static s32 igb_reset_init_script_82575(struct e1000_hw *);
63 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
65 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
67 struct e1000_phy_info *phy = &hw->phy;
68 struct e1000_nvm_info *nvm = &hw->nvm;
69 struct e1000_mac_info *mac = &hw->mac;
70 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
76 switch (hw->device_id) {
77 case E1000_DEV_ID_82575EB_COPPER:
78 case E1000_DEV_ID_82575EB_FIBER_SERDES:
79 case E1000_DEV_ID_82575GB_QUAD_COPPER:
80 mac->type = e1000_82575;
82 case E1000_DEV_ID_82576:
83 case E1000_DEV_ID_82576_NS:
84 case E1000_DEV_ID_82576_FIBER:
85 case E1000_DEV_ID_82576_SERDES:
86 mac->type = e1000_82576;
89 return -E1000_ERR_MAC_INIT;
95 * The 82575 uses bits 22:23 for link mode. The mode can be changed
96 * based on the EEPROM. We cannot rely upon device ID. There
97 * is no distinguishable difference between fiber and internal
98 * SerDes mode on the 82575. There can be an external PHY attached
99 * on the SGMII interface. For this, we'll set sgmii_active to true.
101 phy->media_type = e1000_media_type_copper;
102 dev_spec->sgmii_active = false;
104 ctrl_ext = rd32(E1000_CTRL_EXT);
105 if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) ==
106 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) {
107 hw->phy.media_type = e1000_media_type_internal_serdes;
108 ctrl_ext |= E1000_CTRL_I2C_ENA;
109 } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) {
110 dev_spec->sgmii_active = true;
111 ctrl_ext |= E1000_CTRL_I2C_ENA;
113 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
115 wr32(E1000_CTRL_EXT, ctrl_ext);
117 /* Set mta register count */
118 mac->mta_reg_count = 128;
119 /* Set rar entry count */
120 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
121 if (mac->type == e1000_82576)
122 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
123 /* Set if part includes ASF firmware */
124 mac->asf_firmware_present = true;
125 /* Set if manageability features are enabled. */
126 mac->arc_subsystem_valid =
127 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
130 /* physical interface link setup */
131 mac->ops.setup_physical_interface =
132 (hw->phy.media_type == e1000_media_type_copper)
133 ? igb_setup_copper_link_82575
134 : igb_setup_fiber_serdes_link_82575;
136 /* NVM initialization */
137 eecd = rd32(E1000_EECD);
139 nvm->opcode_bits = 8;
141 switch (nvm->override) {
142 case e1000_nvm_override_spi_large:
144 nvm->address_bits = 16;
146 case e1000_nvm_override_spi_small:
148 nvm->address_bits = 8;
151 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
152 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
156 nvm->type = e1000_nvm_eeprom_spi;
158 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
159 E1000_EECD_SIZE_EX_SHIFT);
162 * Added to a constant, "size" becomes the left-shift value
163 * for setting word_size.
165 size += NVM_WORD_SIZE_BASE_SHIFT;
167 /* EEPROM access above 16k is unsupported */
170 nvm->word_size = 1 << size;
172 /* setup PHY parameters */
173 if (phy->media_type != e1000_media_type_copper) {
174 phy->type = e1000_phy_none;
178 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
179 phy->reset_delay_us = 100;
181 /* PHY function pointers */
182 if (igb_sgmii_active_82575(hw)) {
183 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
184 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
185 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
187 phy->ops.reset = igb_phy_hw_reset;
188 phy->ops.read_reg = igb_read_phy_reg_igp;
189 phy->ops.write_reg = igb_write_phy_reg_igp;
192 /* Set phy->phy_addr and phy->id. */
193 ret_val = igb_get_phy_id_82575(hw);
197 /* Verify phy id and set remaining function pointers */
199 case M88E1111_I_PHY_ID:
200 phy->type = e1000_phy_m88;
201 phy->ops.get_phy_info = igb_get_phy_info_m88;
202 phy->ops.get_cable_length = igb_get_cable_length_m88;
203 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
205 case IGP03E1000_E_PHY_ID:
206 phy->type = e1000_phy_igp_3;
207 phy->ops.get_phy_info = igb_get_phy_info_igp;
208 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
209 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
210 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
211 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
214 return -E1000_ERR_PHY;
217 /* if 82576 then initialize mailbox parameters */
218 if (mac->type == e1000_82576)
219 igb_init_mbx_params_pf(hw);
225 * igb_acquire_phy_82575 - Acquire rights to access PHY
226 * @hw: pointer to the HW structure
228 * Acquire access rights to the correct PHY. This is a
229 * function pointer entry point called by the api module.
231 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
235 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
237 return igb_acquire_swfw_sync_82575(hw, mask);
241 * igb_release_phy_82575 - Release rights to access PHY
242 * @hw: pointer to the HW structure
244 * A wrapper to release access rights to the correct PHY. This is a
245 * function pointer entry point called by the api module.
247 static void igb_release_phy_82575(struct e1000_hw *hw)
251 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
252 igb_release_swfw_sync_82575(hw, mask);
256 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
257 * @hw: pointer to the HW structure
258 * @offset: register offset to be read
259 * @data: pointer to the read data
261 * Reads the PHY register at offset using the serial gigabit media independent
262 * interface and stores the retrieved information in data.
264 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
267 struct e1000_phy_info *phy = &hw->phy;
270 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
271 hw_dbg("PHY Address %u is out of range\n", offset);
272 return -E1000_ERR_PARAM;
276 * Set up Op-code, Phy Address, and register address in the I2CCMD
277 * register. The MAC will take care of interfacing with the
278 * PHY to retrieve the desired data.
280 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
281 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
282 (E1000_I2CCMD_OPCODE_READ));
284 wr32(E1000_I2CCMD, i2ccmd);
286 /* Poll the ready bit to see if the I2C read completed */
287 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
289 i2ccmd = rd32(E1000_I2CCMD);
290 if (i2ccmd & E1000_I2CCMD_READY)
293 if (!(i2ccmd & E1000_I2CCMD_READY)) {
294 hw_dbg("I2CCMD Read did not complete\n");
295 return -E1000_ERR_PHY;
297 if (i2ccmd & E1000_I2CCMD_ERROR) {
298 hw_dbg("I2CCMD Error bit set\n");
299 return -E1000_ERR_PHY;
302 /* Need to byte-swap the 16-bit value. */
303 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
309 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
310 * @hw: pointer to the HW structure
311 * @offset: register offset to write to
312 * @data: data to write at register offset
314 * Writes the data to PHY register at the offset using the serial gigabit
315 * media independent interface.
317 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
320 struct e1000_phy_info *phy = &hw->phy;
322 u16 phy_data_swapped;
324 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
325 hw_dbg("PHY Address %d is out of range\n", offset);
326 return -E1000_ERR_PARAM;
329 /* Swap the data bytes for the I2C interface */
330 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
333 * Set up Op-code, Phy Address, and register address in the I2CCMD
334 * register. The MAC will take care of interfacing with the
335 * PHY to retrieve the desired data.
337 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
338 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
339 E1000_I2CCMD_OPCODE_WRITE |
342 wr32(E1000_I2CCMD, i2ccmd);
344 /* Poll the ready bit to see if the I2C read completed */
345 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
347 i2ccmd = rd32(E1000_I2CCMD);
348 if (i2ccmd & E1000_I2CCMD_READY)
351 if (!(i2ccmd & E1000_I2CCMD_READY)) {
352 hw_dbg("I2CCMD Write did not complete\n");
353 return -E1000_ERR_PHY;
355 if (i2ccmd & E1000_I2CCMD_ERROR) {
356 hw_dbg("I2CCMD Error bit set\n");
357 return -E1000_ERR_PHY;
364 * igb_get_phy_id_82575 - Retrieve PHY addr and id
365 * @hw: pointer to the HW structure
367 * Retrieves the PHY address and ID for both PHY's which do and do not use
370 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
372 struct e1000_phy_info *phy = &hw->phy;
377 * For SGMII PHYs, we try the list of possible addresses until
378 * we find one that works. For non-SGMII PHYs
379 * (e.g. integrated copper PHYs), an address of 1 should
380 * work. The result of this function should mean phy->phy_addr
381 * and phy->id are set correctly.
383 if (!(igb_sgmii_active_82575(hw))) {
385 ret_val = igb_get_phy_id(hw);
390 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
391 * Therefore, we need to test 1-7
393 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
394 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
396 hw_dbg("Vendor ID 0x%08X read at address %u\n",
399 * At the time of this writing, The M88 part is
400 * the only supported SGMII PHY product.
402 if (phy_id == M88_VENDOR)
405 hw_dbg("PHY address %u was unreadable\n", phy->addr);
409 /* A valid PHY type couldn't be found. */
410 if (phy->addr == 8) {
412 ret_val = -E1000_ERR_PHY;
416 ret_val = igb_get_phy_id(hw);
423 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
424 * @hw: pointer to the HW structure
426 * Resets the PHY using the serial gigabit media independent interface.
428 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
433 * This isn't a true "hard" reset, but is the only reset
434 * available to us at this time.
437 hw_dbg("Soft resetting SGMII attached PHY...\n");
440 * SFP documentation requires the following to configure the SPF module
441 * to work on SGMII. No further documentation is given.
443 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
447 ret_val = igb_phy_sw_reset(hw);
454 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
455 * @hw: pointer to the HW structure
456 * @active: true to enable LPLU, false to disable
458 * Sets the LPLU D0 state according to the active flag. When
459 * activating LPLU this function also disables smart speed
460 * and vice versa. LPLU will not be activated unless the
461 * device autonegotiation advertisement meets standards of
462 * either 10 or 10/100 or 10/100/1000 at all duplexes.
463 * This is a function pointer entry point only called by
464 * PHY setup routines.
466 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
468 struct e1000_phy_info *phy = &hw->phy;
472 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
477 data |= IGP02E1000_PM_D0_LPLU;
478 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
483 /* When LPLU is enabled, we should disable SmartSpeed */
484 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
486 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
487 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
492 data &= ~IGP02E1000_PM_D0_LPLU;
493 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
496 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
497 * during Dx states where the power conservation is most
498 * important. During driver activity we should enable
499 * SmartSpeed, so performance is maintained.
501 if (phy->smart_speed == e1000_smart_speed_on) {
502 ret_val = phy->ops.read_reg(hw,
503 IGP01E1000_PHY_PORT_CONFIG, &data);
507 data |= IGP01E1000_PSCFR_SMART_SPEED;
508 ret_val = phy->ops.write_reg(hw,
509 IGP01E1000_PHY_PORT_CONFIG, data);
512 } else if (phy->smart_speed == e1000_smart_speed_off) {
513 ret_val = phy->ops.read_reg(hw,
514 IGP01E1000_PHY_PORT_CONFIG, &data);
518 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
519 ret_val = phy->ops.write_reg(hw,
520 IGP01E1000_PHY_PORT_CONFIG, data);
531 * igb_acquire_nvm_82575 - Request for access to EEPROM
532 * @hw: pointer to the HW structure
534 * Acquire the necessary semaphores for exclusive access to the EEPROM.
535 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
536 * Return successful if access grant bit set, else clear the request for
537 * EEPROM access and return -E1000_ERR_NVM (-1).
539 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
543 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
547 ret_val = igb_acquire_nvm(hw);
550 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
557 * igb_release_nvm_82575 - Release exclusive access to EEPROM
558 * @hw: pointer to the HW structure
560 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
561 * then release the semaphores acquired.
563 static void igb_release_nvm_82575(struct e1000_hw *hw)
566 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
570 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
571 * @hw: pointer to the HW structure
572 * @mask: specifies which semaphore to acquire
574 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
575 * will also specify which port we're acquiring the lock for.
577 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
581 u32 fwmask = mask << 16;
583 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
585 while (i < timeout) {
586 if (igb_get_hw_semaphore(hw)) {
587 ret_val = -E1000_ERR_SWFW_SYNC;
591 swfw_sync = rd32(E1000_SW_FW_SYNC);
592 if (!(swfw_sync & (fwmask | swmask)))
596 * Firmware currently using resource (fwmask)
597 * or other software thread using resource (swmask)
599 igb_put_hw_semaphore(hw);
605 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
606 ret_val = -E1000_ERR_SWFW_SYNC;
611 wr32(E1000_SW_FW_SYNC, swfw_sync);
613 igb_put_hw_semaphore(hw);
620 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
621 * @hw: pointer to the HW structure
622 * @mask: specifies which semaphore to acquire
624 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
625 * will also specify which port we're releasing the lock for.
627 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
631 while (igb_get_hw_semaphore(hw) != 0);
634 swfw_sync = rd32(E1000_SW_FW_SYNC);
636 wr32(E1000_SW_FW_SYNC, swfw_sync);
638 igb_put_hw_semaphore(hw);
642 * igb_get_cfg_done_82575 - Read config done bit
643 * @hw: pointer to the HW structure
645 * Read the management control register for the config done bit for
646 * completion status. NOTE: silicon which is EEPROM-less will fail trying
647 * to read the config done bit, so an error is *ONLY* logged and returns
648 * 0. If we were to return with error, EEPROM-less silicon
649 * would not be able to be reset or change link.
651 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
653 s32 timeout = PHY_CFG_TIMEOUT;
655 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
657 if (hw->bus.func == 1)
658 mask = E1000_NVM_CFG_DONE_PORT_1;
661 if (rd32(E1000_EEMNGCTL) & mask)
667 hw_dbg("MNG configuration cycle has not completed.\n");
669 /* If EEPROM is not marked present, init the PHY manually */
670 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
671 (hw->phy.type == e1000_phy_igp_3))
672 igb_phy_init_script_igp3(hw);
678 * igb_check_for_link_82575 - Check for link
679 * @hw: pointer to the HW structure
681 * If sgmii is enabled, then use the pcs register to determine link, otherwise
682 * use the generic interface for determining link.
684 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
689 /* SGMII link check is done through the PCS register. */
690 if ((hw->phy.media_type != e1000_media_type_copper) ||
691 (igb_sgmii_active_82575(hw))) {
692 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
695 * Use this flag to determine if link needs to be checked or
696 * not. If we have link clear the flag so that we do not
697 * continue to check for link.
699 hw->mac.get_link_status = !hw->mac.serdes_has_link;
701 ret_val = igb_check_for_copper_link(hw);
707 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
708 * @hw: pointer to the HW structure
709 * @speed: stores the current speed
710 * @duplex: stores the current duplex
712 * Using the physical coding sub-layer (PCS), retrieve the current speed and
713 * duplex, then store the values in the pointers provided.
715 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
718 struct e1000_mac_info *mac = &hw->mac;
721 /* Set up defaults for the return values of this function */
722 mac->serdes_has_link = false;
727 * Read the PCS Status register for link state. For non-copper mode,
728 * the status register is not accurate. The PCS status register is
731 pcs = rd32(E1000_PCS_LSTAT);
734 * The link up bit determines when link is up on autoneg. The sync ok
735 * gets set once both sides sync up and agree upon link. Stable link
736 * can be determined by checking for both link up and link sync ok
738 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
739 mac->serdes_has_link = true;
741 /* Detect and store PCS speed */
742 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
744 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
750 /* Detect and store PCS duplex */
751 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
752 *duplex = FULL_DUPLEX;
754 *duplex = HALF_DUPLEX;
762 * igb_init_rx_addrs_82575 - Initialize receive address's
763 * @hw: pointer to the HW structure
764 * @rar_count: receive address registers
766 * Setups the receive address registers by setting the base receive address
767 * register to the devices MAC address and clearing all the other receive
768 * address registers to 0.
770 static void igb_init_rx_addrs_82575(struct e1000_hw *hw, u16 rar_count)
773 u8 addr[6] = {0,0,0,0,0,0};
775 * This function is essentially the same as that of
776 * e1000_init_rx_addrs_generic. However it also takes care
777 * of the special case where the register offset of the
778 * second set of RARs begins elsewhere. This is implicitly taken care by
779 * function e1000_rar_set_generic.
782 hw_dbg("e1000_init_rx_addrs_82575");
784 /* Setup the receive address */
785 hw_dbg("Programming MAC Address into RAR[0]\n");
786 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
788 /* Zero out the other (rar_entry_count - 1) receive addresses */
789 hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
790 for (i = 1; i < rar_count; i++)
791 hw->mac.ops.rar_set(hw, addr, i);
795 * igb_update_mc_addr_list - Update Multicast addresses
796 * @hw: pointer to the HW structure
797 * @mc_addr_list: array of multicast addresses to program
798 * @mc_addr_count: number of multicast addresses to program
799 * @rar_used_count: the first RAR register free to program
800 * @rar_count: total number of supported Receive Address Registers
802 * Updates the Receive Address Registers and Multicast Table Array.
803 * The caller must have a packed mc_addr_list of multicast addresses.
804 * The parameter rar_count will usually be hw->mac.rar_entry_count
805 * unless there are workarounds that change this.
807 void igb_update_mc_addr_list(struct e1000_hw *hw,
808 u8 *mc_addr_list, u32 mc_addr_count,
809 u32 rar_used_count, u32 rar_count)
813 u8 addr[6] = {0,0,0,0,0,0};
815 * This function is essentially the same as that of
816 * igb_update_mc_addr_list_generic. However it also takes care
817 * of the special case where the register offset of the
818 * second set of RARs begins elsewhere. This is implicitly taken care by
819 * function e1000_rar_set_generic.
823 * Load the first set of multicast addresses into the exact
824 * filters (RAR). If there are not enough to fill the RAR
825 * array, clear the filters.
827 for (i = rar_used_count; i < rar_count; i++) {
829 igb_rar_set(hw, mc_addr_list, i);
831 mc_addr_list += ETH_ALEN;
833 igb_rar_set(hw, addr, i);
837 /* Clear the old settings from the MTA */
838 hw_dbg("Clearing MTA\n");
839 for (i = 0; i < hw->mac.mta_reg_count; i++) {
840 array_wr32(E1000_MTA, i, 0);
844 /* Load any remaining multicast addresses into the hash table. */
845 for (; mc_addr_count > 0; mc_addr_count--) {
846 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
847 hw_dbg("Hash value = 0x%03X\n", hash_value);
848 igb_mta_set(hw, hash_value);
849 mc_addr_list += ETH_ALEN;
854 * igb_shutdown_fiber_serdes_link_82575 - Remove link during power down
855 * @hw: pointer to the HW structure
857 * In the case of fiber serdes, shut down optics and PCS on driver unload
858 * when management pass thru is not enabled.
860 void igb_shutdown_fiber_serdes_link_82575(struct e1000_hw *hw)
864 if (hw->mac.type != e1000_82576 ||
865 (hw->phy.media_type != e1000_media_type_fiber &&
866 hw->phy.media_type != e1000_media_type_internal_serdes))
869 /* if the management interface is not enabled, then power down */
870 if (!igb_enable_mng_pass_thru(hw)) {
871 /* Disable PCS to turn off link */
872 reg = rd32(E1000_PCS_CFG0);
873 reg &= ~E1000_PCS_CFG_PCS_EN;
874 wr32(E1000_PCS_CFG0, reg);
876 /* shutdown the laser */
877 reg = rd32(E1000_CTRL_EXT);
878 reg |= E1000_CTRL_EXT_SDP7_DATA;
879 wr32(E1000_CTRL_EXT, reg);
881 /* flush the write to verify completion */
890 * igb_reset_hw_82575 - Reset hardware
891 * @hw: pointer to the HW structure
893 * This resets the hardware into a known state. This is a
894 * function pointer entry point called by the api module.
896 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
902 * Prevent the PCI-E bus from sticking if there is no TLP connection
903 * on the last TLP read/write transaction when MAC is reset.
905 ret_val = igb_disable_pcie_master(hw);
907 hw_dbg("PCI-E Master disable polling has failed.\n");
909 hw_dbg("Masking off all interrupts\n");
910 wr32(E1000_IMC, 0xffffffff);
913 wr32(E1000_TCTL, E1000_TCTL_PSP);
918 ctrl = rd32(E1000_CTRL);
920 hw_dbg("Issuing a global reset to MAC\n");
921 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
923 ret_val = igb_get_auto_rd_done(hw);
926 * When auto config read does not complete, do not
927 * return with an error. This can happen in situations
928 * where there is no eeprom and prevents getting link.
930 hw_dbg("Auto Read Done did not complete\n");
933 /* If EEPROM is not present, run manual init scripts */
934 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
935 igb_reset_init_script_82575(hw);
937 /* Clear any pending interrupt events. */
938 wr32(E1000_IMC, 0xffffffff);
939 icr = rd32(E1000_ICR);
941 igb_check_alt_mac_addr(hw);
947 * igb_init_hw_82575 - Initialize hardware
948 * @hw: pointer to the HW structure
950 * This inits the hardware readying it for operation.
952 static s32 igb_init_hw_82575(struct e1000_hw *hw)
954 struct e1000_mac_info *mac = &hw->mac;
956 u16 i, rar_count = mac->rar_entry_count;
958 /* Initialize identification LED */
959 ret_val = igb_id_led_init(hw);
961 hw_dbg("Error initializing identification LED\n");
962 /* This is not fatal and we should not stop init due to this */
965 /* Disabling VLAN filtering */
966 hw_dbg("Initializing the IEEE VLAN\n");
969 /* Setup the receive address */
970 igb_init_rx_addrs_82575(hw, rar_count);
971 /* Zero out the Multicast HASH table */
972 hw_dbg("Zeroing the MTA\n");
973 for (i = 0; i < mac->mta_reg_count; i++)
974 array_wr32(E1000_MTA, i, 0);
976 /* Setup link and flow control */
977 ret_val = igb_setup_link(hw);
980 * Clear all of the statistics registers (clear on read). It is
981 * important that we do this after we have tried to establish link
982 * because the symbol error count will increment wildly if there
985 igb_clear_hw_cntrs_82575(hw);
991 * igb_setup_copper_link_82575 - Configure copper link settings
992 * @hw: pointer to the HW structure
994 * Configures the link for auto-neg or forced speed and duplex. Then we check
995 * for link, once link is established calls to configure collision distance
996 * and flow control are called.
998 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1004 ctrl = rd32(E1000_CTRL);
1005 ctrl |= E1000_CTRL_SLU;
1006 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1007 wr32(E1000_CTRL, ctrl);
1009 switch (hw->phy.type) {
1011 ret_val = igb_copper_link_setup_m88(hw);
1013 case e1000_phy_igp_3:
1014 ret_val = igb_copper_link_setup_igp(hw);
1015 /* Setup activity LED */
1016 led_ctrl = rd32(E1000_LEDCTL);
1017 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1018 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1019 wr32(E1000_LEDCTL, led_ctrl);
1022 ret_val = -E1000_ERR_PHY;
1029 if (hw->mac.autoneg) {
1031 * Setup autoneg and flow control advertisement
1032 * and perform autonegotiation.
1034 ret_val = igb_copper_link_autoneg(hw);
1039 * PHY will be set to 10H, 10F, 100H or 100F
1040 * depending on user settings.
1042 hw_dbg("Forcing Speed and Duplex\n");
1043 ret_val = hw->phy.ops.force_speed_duplex(hw);
1045 hw_dbg("Error Forcing Speed and Duplex\n");
1050 ret_val = igb_configure_pcs_link_82575(hw);
1055 * Check link status. Wait up to 100 microseconds for link to become
1058 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1063 hw_dbg("Valid link established!!!\n");
1064 /* Config the MAC and PHY after link is up */
1065 igb_config_collision_dist(hw);
1066 ret_val = igb_config_fc_after_link_up(hw);
1068 hw_dbg("Unable to establish link!!!\n");
1076 * igb_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
1077 * @hw: pointer to the HW structure
1079 * Configures speed and duplex for fiber and serdes links.
1081 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
1086 * On the 82575, SerDes loopback mode persists until it is
1087 * explicitly turned off or a power cycle is performed. A read to
1088 * the register does not indicate its status. Therefore, we ensure
1089 * loopback mode is disabled during initialization.
1091 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1093 /* Force link up, set 1gb, set both sw defined pins */
1094 reg = rd32(E1000_CTRL);
1095 reg |= E1000_CTRL_SLU |
1096 E1000_CTRL_SPD_1000 |
1098 E1000_CTRL_SWDPIN0 |
1100 wr32(E1000_CTRL, reg);
1102 /* Power on phy for 82576 fiber adapters */
1103 if (hw->mac.type == e1000_82576) {
1104 reg = rd32(E1000_CTRL_EXT);
1105 reg &= ~E1000_CTRL_EXT_SDP7_DATA;
1106 wr32(E1000_CTRL_EXT, reg);
1109 /* Set switch control to serdes energy detect */
1110 reg = rd32(E1000_CONNSW);
1111 reg |= E1000_CONNSW_ENRGSRC;
1112 wr32(E1000_CONNSW, reg);
1115 * New SerDes mode allows for forcing speed or autonegotiating speed
1116 * at 1gb. Autoneg should be default set by most drivers. This is the
1117 * mode that will be compatible with older link partners and switches.
1118 * However, both are supported by the hardware and some drivers/tools.
1120 reg = rd32(E1000_PCS_LCTL);
1122 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1123 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1125 if (hw->mac.autoneg) {
1126 /* Set PCS register for autoneg */
1127 reg |= E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1128 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1129 E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1130 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1131 hw_dbg("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
1133 /* Set PCS register for forced speed */
1134 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1135 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1136 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1137 E1000_PCS_LCTL_FSD | /* Force Speed */
1138 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1139 hw_dbg("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
1142 if (hw->mac.type == e1000_82576) {
1143 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1144 igb_force_mac_fc(hw);
1147 wr32(E1000_PCS_LCTL, reg);
1153 * igb_configure_pcs_link_82575 - Configure PCS link
1154 * @hw: pointer to the HW structure
1156 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1157 * only used on copper connections where the serialized gigabit media
1158 * independent interface (sgmii) is being used. Configures the link
1159 * for auto-negotiation or forces speed/duplex.
1161 static s32 igb_configure_pcs_link_82575(struct e1000_hw *hw)
1163 struct e1000_mac_info *mac = &hw->mac;
1166 if (hw->phy.media_type != e1000_media_type_copper ||
1167 !(igb_sgmii_active_82575(hw)))
1170 /* For SGMII, we need to issue a PCS autoneg restart */
1171 reg = rd32(E1000_PCS_LCTL);
1173 /* AN time out should be disabled for SGMII mode */
1174 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1177 /* Make sure forced speed and force link are not set */
1178 reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1181 * The PHY should be setup prior to calling this function.
1182 * All we need to do is restart autoneg and enable autoneg.
1184 reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE;
1186 /* Set PCS register for forced speed */
1188 /* Turn off bits for full duplex, speed, and autoneg */
1189 reg &= ~(E1000_PCS_LCTL_FSV_1000 |
1190 E1000_PCS_LCTL_FSV_100 |
1191 E1000_PCS_LCTL_FDV_FULL |
1192 E1000_PCS_LCTL_AN_ENABLE);
1194 /* Check for duplex first */
1195 if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX)
1196 reg |= E1000_PCS_LCTL_FDV_FULL;
1199 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED)
1200 reg |= E1000_PCS_LCTL_FSV_100;
1202 /* Force speed and force link */
1203 reg |= E1000_PCS_LCTL_FSD |
1204 E1000_PCS_LCTL_FORCE_LINK |
1205 E1000_PCS_LCTL_FLV_LINK_UP;
1207 hw_dbg("Wrote 0x%08X to PCS_LCTL to configure forced link\n",
1210 wr32(E1000_PCS_LCTL, reg);
1217 * igb_sgmii_active_82575 - Return sgmii state
1218 * @hw: pointer to the HW structure
1220 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1221 * which can be enabled for use in the embedded applications. Simply
1222 * return the current state of the sgmii interface.
1224 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1226 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1228 if (hw->mac.type != e1000_82575 && hw->mac.type != e1000_82576)
1231 return dev_spec->sgmii_active;
1235 * igb_reset_init_script_82575 - Inits HW defaults after reset
1236 * @hw: pointer to the HW structure
1238 * Inits recommended HW defaults after a reset when there is no EEPROM
1239 * detected. This is only for the 82575.
1241 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1243 if (hw->mac.type == e1000_82575) {
1244 hw_dbg("Running reset init script for 82575\n");
1245 /* SerDes configuration via SERDESCTRL */
1246 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1247 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1248 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1249 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1251 /* CCM configuration via CCMCTL register */
1252 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1253 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1255 /* PCIe lanes configuration */
1256 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1257 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1258 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1259 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1261 /* PCIe PLL Configuration */
1262 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1263 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1264 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1271 * igb_read_mac_addr_82575 - Read device MAC address
1272 * @hw: pointer to the HW structure
1274 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1278 if (igb_check_alt_mac_addr(hw))
1279 ret_val = igb_read_mac_addr(hw);
1285 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1286 * @hw: pointer to the HW structure
1288 * Clears the hardware counters by reading the counter registers.
1290 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1294 igb_clear_hw_cntrs_base(hw);
1296 temp = rd32(E1000_PRC64);
1297 temp = rd32(E1000_PRC127);
1298 temp = rd32(E1000_PRC255);
1299 temp = rd32(E1000_PRC511);
1300 temp = rd32(E1000_PRC1023);
1301 temp = rd32(E1000_PRC1522);
1302 temp = rd32(E1000_PTC64);
1303 temp = rd32(E1000_PTC127);
1304 temp = rd32(E1000_PTC255);
1305 temp = rd32(E1000_PTC511);
1306 temp = rd32(E1000_PTC1023);
1307 temp = rd32(E1000_PTC1522);
1309 temp = rd32(E1000_ALGNERRC);
1310 temp = rd32(E1000_RXERRC);
1311 temp = rd32(E1000_TNCRS);
1312 temp = rd32(E1000_CEXTERR);
1313 temp = rd32(E1000_TSCTC);
1314 temp = rd32(E1000_TSCTFC);
1316 temp = rd32(E1000_MGTPRC);
1317 temp = rd32(E1000_MGTPDC);
1318 temp = rd32(E1000_MGTPTC);
1320 temp = rd32(E1000_IAC);
1321 temp = rd32(E1000_ICRXOC);
1323 temp = rd32(E1000_ICRXPTC);
1324 temp = rd32(E1000_ICRXATC);
1325 temp = rd32(E1000_ICTXPTC);
1326 temp = rd32(E1000_ICTXATC);
1327 temp = rd32(E1000_ICTXQEC);
1328 temp = rd32(E1000_ICTXQMTC);
1329 temp = rd32(E1000_ICRXDMTC);
1331 temp = rd32(E1000_CBTMPC);
1332 temp = rd32(E1000_HTDPMC);
1333 temp = rd32(E1000_CBRMPC);
1334 temp = rd32(E1000_RPTHC);
1335 temp = rd32(E1000_HGPTC);
1336 temp = rd32(E1000_HTCBDPC);
1337 temp = rd32(E1000_HGORCL);
1338 temp = rd32(E1000_HGORCH);
1339 temp = rd32(E1000_HGOTCL);
1340 temp = rd32(E1000_HGOTCH);
1341 temp = rd32(E1000_LENERRS);
1343 /* This register should not be read in copper configurations */
1344 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1345 temp = rd32(E1000_SCVPC);
1349 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1350 * @hw: pointer to the HW structure
1352 * After rx enable if managability is enabled then there is likely some
1353 * bad data at the start of the fifo and possibly in the DMA fifo. This
1354 * function clears the fifos and flushes any packets that came in as rx was
1357 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1359 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1362 if (hw->mac.type != e1000_82575 ||
1363 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1366 /* Disable all RX queues */
1367 for (i = 0; i < 4; i++) {
1368 rxdctl[i] = rd32(E1000_RXDCTL(i));
1369 wr32(E1000_RXDCTL(i),
1370 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1372 /* Poll all queues to verify they have shut down */
1373 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1376 for (i = 0; i < 4; i++)
1377 rx_enabled |= rd32(E1000_RXDCTL(i));
1378 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1383 hw_dbg("Queue disable timed out after 10ms\n");
1385 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1386 * incoming packets are rejected. Set enable and wait 2ms so that
1387 * any packet that was coming in as RCTL.EN was set is flushed
1389 rfctl = rd32(E1000_RFCTL);
1390 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1392 rlpml = rd32(E1000_RLPML);
1393 wr32(E1000_RLPML, 0);
1395 rctl = rd32(E1000_RCTL);
1396 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1397 temp_rctl |= E1000_RCTL_LPE;
1399 wr32(E1000_RCTL, temp_rctl);
1400 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1404 /* Enable RX queues that were previously enabled and restore our
1407 for (i = 0; i < 4; i++)
1408 wr32(E1000_RXDCTL(i), rxdctl[i]);
1409 wr32(E1000_RCTL, rctl);
1412 wr32(E1000_RLPML, rlpml);
1413 wr32(E1000_RFCTL, rfctl);
1415 /* Flush receive errors generated by workaround */
1422 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1423 * @hw: pointer to the hardware struct
1424 * @enable: state to enter, either enabled or disabled
1426 * enables/disables L2 switch loopback functionality.
1428 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1430 u32 dtxswc = rd32(E1000_DTXSWC);
1433 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1435 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1437 wr32(E1000_DTXSWC, dtxswc);
1441 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1442 * @hw: pointer to the hardware struct
1443 * @enable: state to enter, either enabled or disabled
1445 * enables/disables replication of packets across multiple pools.
1447 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1449 u32 vt_ctl = rd32(E1000_VT_CTL);
1452 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1454 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1456 wr32(E1000_VT_CTL, vt_ctl);
1459 static struct e1000_mac_operations e1000_mac_ops_82575 = {
1460 .reset_hw = igb_reset_hw_82575,
1461 .init_hw = igb_init_hw_82575,
1462 .check_for_link = igb_check_for_link_82575,
1463 .rar_set = igb_rar_set,
1464 .read_mac_addr = igb_read_mac_addr_82575,
1465 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1468 static struct e1000_phy_operations e1000_phy_ops_82575 = {
1469 .acquire = igb_acquire_phy_82575,
1470 .get_cfg_done = igb_get_cfg_done_82575,
1471 .release = igb_release_phy_82575,
1474 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
1475 .acquire = igb_acquire_nvm_82575,
1476 .read = igb_read_nvm_eerd,
1477 .release = igb_release_nvm_82575,
1478 .write = igb_write_nvm_spi,
1481 const struct e1000_info e1000_82575_info = {
1482 .get_invariants = igb_get_invariants_82575,
1483 .mac_ops = &e1000_mac_ops_82575,
1484 .phy_ops = &e1000_phy_ops_82575,
1485 .nvm_ops = &e1000_nvm_ops_82575,