2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
6 * RAID-5 management functions.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
13 * You should have received a copy of the GNU General Public License
14 * (for example /usr/src/linux/COPYING); if not, write to the Free
15 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 #include <linux/config.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/raid/raid5.h>
23 #include <linux/highmem.h>
24 #include <linux/bitops.h>
25 #include <asm/atomic.h>
27 #include <linux/raid/bitmap.h>
33 #define NR_STRIPES 256
34 #define STRIPE_SIZE PAGE_SIZE
35 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
36 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
37 #define IO_THRESHOLD 1
38 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
39 #define HASH_MASK (NR_HASH - 1)
41 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
43 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
44 * order without overlap. There may be several bio's per stripe+device, and
45 * a bio could span several devices.
46 * When walking this list for a particular stripe+device, we must never proceed
47 * beyond a bio that extends past this device, as the next bio might no longer
49 * This macro is used to determine the 'next' bio in the list, given the sector
50 * of the current stripe+device
52 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
54 * The following can be used to debug the driver
57 #define RAID5_PARANOIA 1
58 #if RAID5_PARANOIA && defined(CONFIG_SMP)
59 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
61 # define CHECK_DEVLOCK()
64 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
70 static void print_raid5_conf (raid5_conf_t *conf);
72 static inline void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
74 if (atomic_dec_and_test(&sh->count)) {
75 if (!list_empty(&sh->lru))
77 if (atomic_read(&conf->active_stripes)==0)
79 if (test_bit(STRIPE_HANDLE, &sh->state)) {
80 if (test_bit(STRIPE_DELAYED, &sh->state))
81 list_add_tail(&sh->lru, &conf->delayed_list);
82 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
83 conf->seq_write == sh->bm_seq)
84 list_add_tail(&sh->lru, &conf->bitmap_list);
86 clear_bit(STRIPE_BIT_DELAY, &sh->state);
87 list_add_tail(&sh->lru, &conf->handle_list);
89 md_wakeup_thread(conf->mddev->thread);
91 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
92 atomic_dec(&conf->preread_active_stripes);
93 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
94 md_wakeup_thread(conf->mddev->thread);
96 list_add_tail(&sh->lru, &conf->inactive_list);
97 atomic_dec(&conf->active_stripes);
98 if (!conf->inactive_blocked ||
99 atomic_read(&conf->active_stripes) < (conf->max_nr_stripes*3/4))
100 wake_up(&conf->wait_for_stripe);
104 static void release_stripe(struct stripe_head *sh)
106 raid5_conf_t *conf = sh->raid_conf;
109 spin_lock_irqsave(&conf->device_lock, flags);
110 __release_stripe(conf, sh);
111 spin_unlock_irqrestore(&conf->device_lock, flags);
114 static inline void remove_hash(struct stripe_head *sh)
116 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
118 hlist_del_init(&sh->hash);
121 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
123 struct hlist_head *hp = stripe_hash(conf, sh->sector);
125 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
128 hlist_add_head(&sh->hash, hp);
132 /* find an idle stripe, make sure it is unhashed, and return it. */
133 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
135 struct stripe_head *sh = NULL;
136 struct list_head *first;
139 if (list_empty(&conf->inactive_list))
141 first = conf->inactive_list.next;
142 sh = list_entry(first, struct stripe_head, lru);
143 list_del_init(first);
145 atomic_inc(&conf->active_stripes);
150 static void shrink_buffers(struct stripe_head *sh, int num)
155 for (i=0; i<num ; i++) {
159 sh->dev[i].page = NULL;
164 static int grow_buffers(struct stripe_head *sh, int num)
168 for (i=0; i<num; i++) {
171 if (!(page = alloc_page(GFP_KERNEL))) {
174 sh->dev[i].page = page;
179 static void raid5_build_block (struct stripe_head *sh, int i);
181 static inline void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx)
183 raid5_conf_t *conf = sh->raid_conf;
184 int disks = conf->raid_disks, i;
186 if (atomic_read(&sh->count) != 0)
188 if (test_bit(STRIPE_HANDLE, &sh->state))
192 PRINTK("init_stripe called, stripe %llu\n",
193 (unsigned long long)sh->sector);
201 for (i=disks; i--; ) {
202 struct r5dev *dev = &sh->dev[i];
204 if (dev->toread || dev->towrite || dev->written ||
205 test_bit(R5_LOCKED, &dev->flags)) {
206 printk("sector=%llx i=%d %p %p %p %d\n",
207 (unsigned long long)sh->sector, i, dev->toread,
208 dev->towrite, dev->written,
209 test_bit(R5_LOCKED, &dev->flags));
213 raid5_build_block(sh, i);
215 insert_hash(conf, sh);
218 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector)
220 struct stripe_head *sh;
221 struct hlist_node *hn;
224 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
225 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
226 if (sh->sector == sector)
228 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
232 static void unplug_slaves(mddev_t *mddev);
233 static void raid5_unplug_device(request_queue_t *q);
235 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector,
236 int pd_idx, int noblock)
238 struct stripe_head *sh;
240 PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
242 spin_lock_irq(&conf->device_lock);
245 wait_event_lock_irq(conf->wait_for_stripe,
247 conf->device_lock, /* nothing */);
248 sh = __find_stripe(conf, sector);
250 if (!conf->inactive_blocked)
251 sh = get_free_stripe(conf);
252 if (noblock && sh == NULL)
255 conf->inactive_blocked = 1;
256 wait_event_lock_irq(conf->wait_for_stripe,
257 !list_empty(&conf->inactive_list) &&
258 (atomic_read(&conf->active_stripes)
259 < (conf->max_nr_stripes *3/4)
260 || !conf->inactive_blocked),
262 unplug_slaves(conf->mddev);
264 conf->inactive_blocked = 0;
266 init_stripe(sh, sector, pd_idx);
268 if (atomic_read(&sh->count)) {
269 if (!list_empty(&sh->lru))
272 if (!test_bit(STRIPE_HANDLE, &sh->state))
273 atomic_inc(&conf->active_stripes);
274 if (list_empty(&sh->lru))
276 list_del_init(&sh->lru);
279 } while (sh == NULL);
282 atomic_inc(&sh->count);
284 spin_unlock_irq(&conf->device_lock);
288 static int grow_one_stripe(raid5_conf_t *conf)
290 struct stripe_head *sh;
291 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
294 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
295 sh->raid_conf = conf;
296 spin_lock_init(&sh->lock);
298 if (grow_buffers(sh, conf->raid_disks)) {
299 shrink_buffers(sh, conf->raid_disks);
300 kmem_cache_free(conf->slab_cache, sh);
303 /* we just created an active stripe so... */
304 atomic_set(&sh->count, 1);
305 atomic_inc(&conf->active_stripes);
306 INIT_LIST_HEAD(&sh->lru);
311 static int grow_stripes(raid5_conf_t *conf, int num)
314 int devs = conf->raid_disks;
316 sprintf(conf->cache_name, "raid5/%s", mdname(conf->mddev));
318 sc = kmem_cache_create(conf->cache_name,
319 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
323 conf->slab_cache = sc;
325 if (!grow_one_stripe(conf))
331 static int drop_one_stripe(raid5_conf_t *conf)
333 struct stripe_head *sh;
335 spin_lock_irq(&conf->device_lock);
336 sh = get_free_stripe(conf);
337 spin_unlock_irq(&conf->device_lock);
340 if (atomic_read(&sh->count))
342 shrink_buffers(sh, conf->raid_disks);
343 kmem_cache_free(conf->slab_cache, sh);
344 atomic_dec(&conf->active_stripes);
348 static void shrink_stripes(raid5_conf_t *conf)
350 while (drop_one_stripe(conf))
353 kmem_cache_destroy(conf->slab_cache);
354 conf->slab_cache = NULL;
357 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
360 struct stripe_head *sh = bi->bi_private;
361 raid5_conf_t *conf = sh->raid_conf;
362 int disks = conf->raid_disks, i;
363 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
368 for (i=0 ; i<disks; i++)
369 if (bi == &sh->dev[i].req)
372 PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
373 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
384 spin_lock_irqsave(&conf->device_lock, flags);
385 /* we can return a buffer if we bypassed the cache or
386 * if the top buffer is not in highmem. If there are
387 * multiple buffers, leave the extra work to
390 buffer = sh->bh_read[i];
392 (!PageHighMem(buffer->b_page)
393 || buffer->b_page == bh->b_page )
395 sh->bh_read[i] = buffer->b_reqnext;
396 buffer->b_reqnext = NULL;
399 spin_unlock_irqrestore(&conf->device_lock, flags);
400 if (sh->bh_page[i]==bh->b_page)
401 set_buffer_uptodate(bh);
403 if (buffer->b_page != bh->b_page)
404 memcpy(buffer->b_data, bh->b_data, bh->b_size);
405 buffer->b_end_io(buffer, 1);
408 set_bit(R5_UPTODATE, &sh->dev[i].flags);
410 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
411 printk(KERN_INFO "raid5: read error corrected!!\n");
412 clear_bit(R5_ReadError, &sh->dev[i].flags);
413 clear_bit(R5_ReWrite, &sh->dev[i].flags);
415 if (atomic_read(&conf->disks[i].rdev->read_errors))
416 atomic_set(&conf->disks[i].rdev->read_errors, 0);
419 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
420 atomic_inc(&conf->disks[i].rdev->read_errors);
421 if (conf->mddev->degraded)
422 printk(KERN_WARNING "raid5: read error not correctable.\n");
423 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
425 printk(KERN_WARNING "raid5: read error NOT corrected!!\n");
426 else if (atomic_read(&conf->disks[i].rdev->read_errors)
427 > conf->max_nr_stripes)
429 "raid5: Too many read errors, failing device.\n");
433 set_bit(R5_ReadError, &sh->dev[i].flags);
435 clear_bit(R5_ReadError, &sh->dev[i].flags);
436 clear_bit(R5_ReWrite, &sh->dev[i].flags);
437 md_error(conf->mddev, conf->disks[i].rdev);
440 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
442 /* must restore b_page before unlocking buffer... */
443 if (sh->bh_page[i] != bh->b_page) {
444 bh->b_page = sh->bh_page[i];
445 bh->b_data = page_address(bh->b_page);
446 clear_buffer_uptodate(bh);
449 clear_bit(R5_LOCKED, &sh->dev[i].flags);
450 set_bit(STRIPE_HANDLE, &sh->state);
455 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
458 struct stripe_head *sh = bi->bi_private;
459 raid5_conf_t *conf = sh->raid_conf;
460 int disks = conf->raid_disks, i;
462 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
467 for (i=0 ; i<disks; i++)
468 if (bi == &sh->dev[i].req)
471 PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
472 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
479 spin_lock_irqsave(&conf->device_lock, flags);
481 md_error(conf->mddev, conf->disks[i].rdev);
483 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
485 clear_bit(R5_LOCKED, &sh->dev[i].flags);
486 set_bit(STRIPE_HANDLE, &sh->state);
487 __release_stripe(conf, sh);
488 spin_unlock_irqrestore(&conf->device_lock, flags);
493 static sector_t compute_blocknr(struct stripe_head *sh, int i);
495 static void raid5_build_block (struct stripe_head *sh, int i)
497 struct r5dev *dev = &sh->dev[i];
500 dev->req.bi_io_vec = &dev->vec;
502 dev->req.bi_max_vecs++;
503 dev->vec.bv_page = dev->page;
504 dev->vec.bv_len = STRIPE_SIZE;
505 dev->vec.bv_offset = 0;
507 dev->req.bi_sector = sh->sector;
508 dev->req.bi_private = sh;
512 dev->sector = compute_blocknr(sh, i);
515 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
517 char b[BDEVNAME_SIZE];
518 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
519 PRINTK("raid5: error called\n");
521 if (!test_bit(Faulty, &rdev->flags)) {
523 if (test_bit(In_sync, &rdev->flags)) {
524 conf->working_disks--;
526 conf->failed_disks++;
527 clear_bit(In_sync, &rdev->flags);
529 * if recovery was running, make sure it aborts.
531 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
533 set_bit(Faulty, &rdev->flags);
535 "raid5: Disk failure on %s, disabling device."
536 " Operation continuing on %d devices\n",
537 bdevname(rdev->bdev,b), conf->working_disks);
542 * Input: a 'big' sector number,
543 * Output: index of the data and parity disk, and the sector # in them.
545 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
546 unsigned int data_disks, unsigned int * dd_idx,
547 unsigned int * pd_idx, raid5_conf_t *conf)
550 unsigned long chunk_number;
551 unsigned int chunk_offset;
553 int sectors_per_chunk = conf->chunk_size >> 9;
555 /* First compute the information on this sector */
558 * Compute the chunk number and the sector offset inside the chunk
560 chunk_offset = sector_div(r_sector, sectors_per_chunk);
561 chunk_number = r_sector;
562 BUG_ON(r_sector != chunk_number);
565 * Compute the stripe number
567 stripe = chunk_number / data_disks;
570 * Compute the data disk and parity disk indexes inside the stripe
572 *dd_idx = chunk_number % data_disks;
575 * Select the parity disk based on the user selected algorithm.
577 if (conf->level == 4)
578 *pd_idx = data_disks;
579 else switch (conf->algorithm) {
580 case ALGORITHM_LEFT_ASYMMETRIC:
581 *pd_idx = data_disks - stripe % raid_disks;
582 if (*dd_idx >= *pd_idx)
585 case ALGORITHM_RIGHT_ASYMMETRIC:
586 *pd_idx = stripe % raid_disks;
587 if (*dd_idx >= *pd_idx)
590 case ALGORITHM_LEFT_SYMMETRIC:
591 *pd_idx = data_disks - stripe % raid_disks;
592 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
594 case ALGORITHM_RIGHT_SYMMETRIC:
595 *pd_idx = stripe % raid_disks;
596 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
599 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
604 * Finally, compute the new sector number
606 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
611 static sector_t compute_blocknr(struct stripe_head *sh, int i)
613 raid5_conf_t *conf = sh->raid_conf;
614 int raid_disks = conf->raid_disks, data_disks = raid_disks - 1;
615 sector_t new_sector = sh->sector, check;
616 int sectors_per_chunk = conf->chunk_size >> 9;
619 int chunk_number, dummy1, dummy2, dd_idx = i;
622 chunk_offset = sector_div(new_sector, sectors_per_chunk);
624 BUG_ON(new_sector != stripe);
627 switch (conf->algorithm) {
628 case ALGORITHM_LEFT_ASYMMETRIC:
629 case ALGORITHM_RIGHT_ASYMMETRIC:
633 case ALGORITHM_LEFT_SYMMETRIC:
634 case ALGORITHM_RIGHT_SYMMETRIC:
637 i -= (sh->pd_idx + 1);
640 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
644 chunk_number = stripe * data_disks + i;
645 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
647 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
648 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
649 printk(KERN_ERR "compute_blocknr: map not correct\n");
658 * Copy data between a page in the stripe cache, and a bio.
659 * There are no alignment or size guarantees between the page or the
660 * bio except that there is some overlap.
661 * All iovecs in the bio must be considered.
663 static void copy_data(int frombio, struct bio *bio,
667 char *pa = page_address(page);
672 if (bio->bi_sector >= sector)
673 page_offset = (signed)(bio->bi_sector - sector) * 512;
675 page_offset = (signed)(sector - bio->bi_sector) * -512;
676 bio_for_each_segment(bvl, bio, i) {
677 int len = bio_iovec_idx(bio,i)->bv_len;
681 if (page_offset < 0) {
682 b_offset = -page_offset;
683 page_offset += b_offset;
687 if (len > 0 && page_offset + len > STRIPE_SIZE)
688 clen = STRIPE_SIZE - page_offset;
692 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
694 memcpy(pa+page_offset, ba+b_offset, clen);
696 memcpy(ba+b_offset, pa+page_offset, clen);
697 __bio_kunmap_atomic(ba, KM_USER0);
699 if (clen < len) /* hit end of page */
705 #define check_xor() do { \
706 if (count == MAX_XOR_BLOCKS) { \
707 xor_block(count, STRIPE_SIZE, ptr); \
713 static void compute_block(struct stripe_head *sh, int dd_idx)
715 raid5_conf_t *conf = sh->raid_conf;
716 int i, count, disks = conf->raid_disks;
717 void *ptr[MAX_XOR_BLOCKS], *p;
719 PRINTK("compute_block, stripe %llu, idx %d\n",
720 (unsigned long long)sh->sector, dd_idx);
722 ptr[0] = page_address(sh->dev[dd_idx].page);
723 memset(ptr[0], 0, STRIPE_SIZE);
725 for (i = disks ; i--; ) {
728 p = page_address(sh->dev[i].page);
729 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
732 printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
733 " not present\n", dd_idx,
734 (unsigned long long)sh->sector, i);
739 xor_block(count, STRIPE_SIZE, ptr);
740 set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
743 static void compute_parity(struct stripe_head *sh, int method)
745 raid5_conf_t *conf = sh->raid_conf;
746 int i, pd_idx = sh->pd_idx, disks = conf->raid_disks, count;
747 void *ptr[MAX_XOR_BLOCKS];
750 PRINTK("compute_parity, stripe %llu, method %d\n",
751 (unsigned long long)sh->sector, method);
754 ptr[0] = page_address(sh->dev[pd_idx].page);
756 case READ_MODIFY_WRITE:
757 if (!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags))
759 for (i=disks ; i-- ;) {
762 if (sh->dev[i].towrite &&
763 test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
764 ptr[count++] = page_address(sh->dev[i].page);
765 chosen = sh->dev[i].towrite;
766 sh->dev[i].towrite = NULL;
768 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
769 wake_up(&conf->wait_for_overlap);
771 if (sh->dev[i].written) BUG();
772 sh->dev[i].written = chosen;
777 case RECONSTRUCT_WRITE:
778 memset(ptr[0], 0, STRIPE_SIZE);
779 for (i= disks; i-- ;)
780 if (i!=pd_idx && sh->dev[i].towrite) {
781 chosen = sh->dev[i].towrite;
782 sh->dev[i].towrite = NULL;
784 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
785 wake_up(&conf->wait_for_overlap);
787 if (sh->dev[i].written) BUG();
788 sh->dev[i].written = chosen;
795 xor_block(count, STRIPE_SIZE, ptr);
799 for (i = disks; i--;)
800 if (sh->dev[i].written) {
801 sector_t sector = sh->dev[i].sector;
802 struct bio *wbi = sh->dev[i].written;
803 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
804 copy_data(1, wbi, sh->dev[i].page, sector);
805 wbi = r5_next_bio(wbi, sector);
808 set_bit(R5_LOCKED, &sh->dev[i].flags);
809 set_bit(R5_UPTODATE, &sh->dev[i].flags);
813 case RECONSTRUCT_WRITE:
817 ptr[count++] = page_address(sh->dev[i].page);
821 case READ_MODIFY_WRITE:
822 for (i = disks; i--;)
823 if (sh->dev[i].written) {
824 ptr[count++] = page_address(sh->dev[i].page);
829 xor_block(count, STRIPE_SIZE, ptr);
831 if (method != CHECK_PARITY) {
832 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
833 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
835 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
839 * Each stripe/dev can have one or more bion attached.
840 * toread/towrite point to the first in a chain.
841 * The bi_next chain must be in order.
843 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
846 raid5_conf_t *conf = sh->raid_conf;
849 PRINTK("adding bh b#%llu to stripe s#%llu\n",
850 (unsigned long long)bi->bi_sector,
851 (unsigned long long)sh->sector);
854 spin_lock(&sh->lock);
855 spin_lock_irq(&conf->device_lock);
857 bip = &sh->dev[dd_idx].towrite;
858 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
861 bip = &sh->dev[dd_idx].toread;
862 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
863 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
865 bip = & (*bip)->bi_next;
867 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
870 if (*bip && bi->bi_next && (*bip) != bi->bi_next)
875 bi->bi_phys_segments ++;
876 spin_unlock_irq(&conf->device_lock);
877 spin_unlock(&sh->lock);
879 PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
880 (unsigned long long)bi->bi_sector,
881 (unsigned long long)sh->sector, dd_idx);
883 if (conf->mddev->bitmap && firstwrite) {
884 sh->bm_seq = conf->seq_write;
885 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
887 set_bit(STRIPE_BIT_DELAY, &sh->state);
891 /* check if page is covered */
892 sector_t sector = sh->dev[dd_idx].sector;
893 for (bi=sh->dev[dd_idx].towrite;
894 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
895 bi && bi->bi_sector <= sector;
896 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
897 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
898 sector = bi->bi_sector + (bi->bi_size>>9);
900 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
901 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
906 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
907 spin_unlock_irq(&conf->device_lock);
908 spin_unlock(&sh->lock);
914 * handle_stripe - do things to a stripe.
916 * We lock the stripe and then examine the state of various bits
917 * to see what needs to be done.
919 * return some read request which now have data
920 * return some write requests which are safely on disc
921 * schedule a read on some buffers
922 * schedule a write of some buffers
923 * return confirmation of parity correctness
925 * Parity calculations are done inside the stripe lock
926 * buffers are taken off read_list or write_list, and bh_cache buffers
927 * get BH_Lock set before the stripe lock is released.
931 static void handle_stripe(struct stripe_head *sh)
933 raid5_conf_t *conf = sh->raid_conf;
934 int disks = conf->raid_disks;
935 struct bio *return_bi= NULL;
939 int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
940 int non_overwrite = 0;
944 PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
945 (unsigned long long)sh->sector, atomic_read(&sh->count),
948 spin_lock(&sh->lock);
949 clear_bit(STRIPE_HANDLE, &sh->state);
950 clear_bit(STRIPE_DELAYED, &sh->state);
952 syncing = test_bit(STRIPE_SYNCING, &sh->state);
953 /* Now to look around and see what can be done */
956 for (i=disks; i--; ) {
959 clear_bit(R5_Insync, &dev->flags);
961 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
962 i, dev->flags, dev->toread, dev->towrite, dev->written);
963 /* maybe we can reply to a read */
964 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
965 struct bio *rbi, *rbi2;
966 PRINTK("Return read for disc %d\n", i);
967 spin_lock_irq(&conf->device_lock);
970 if (test_and_clear_bit(R5_Overlap, &dev->flags))
971 wake_up(&conf->wait_for_overlap);
972 spin_unlock_irq(&conf->device_lock);
973 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
974 copy_data(0, rbi, dev->page, dev->sector);
975 rbi2 = r5_next_bio(rbi, dev->sector);
976 spin_lock_irq(&conf->device_lock);
977 if (--rbi->bi_phys_segments == 0) {
978 rbi->bi_next = return_bi;
981 spin_unlock_irq(&conf->device_lock);
986 /* now count some things */
987 if (test_bit(R5_LOCKED, &dev->flags)) locked++;
988 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
991 if (dev->toread) to_read++;
994 if (!test_bit(R5_OVERWRITE, &dev->flags))
997 if (dev->written) written++;
998 rdev = rcu_dereference(conf->disks[i].rdev);
999 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1000 /* The ReadError flag will just be confusing now */
1001 clear_bit(R5_ReadError, &dev->flags);
1002 clear_bit(R5_ReWrite, &dev->flags);
1004 if (!rdev || !test_bit(In_sync, &rdev->flags)
1005 || test_bit(R5_ReadError, &dev->flags)) {
1009 set_bit(R5_Insync, &dev->flags);
1012 PRINTK("locked=%d uptodate=%d to_read=%d"
1013 " to_write=%d failed=%d failed_num=%d\n",
1014 locked, uptodate, to_read, to_write, failed, failed_num);
1015 /* check if the array has lost two devices and, if so, some requests might
1018 if (failed > 1 && to_read+to_write+written) {
1019 for (i=disks; i--; ) {
1022 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1025 rdev = rcu_dereference(conf->disks[i].rdev);
1026 if (rdev && test_bit(In_sync, &rdev->flags))
1027 /* multiple read failures in one stripe */
1028 md_error(conf->mddev, rdev);
1032 spin_lock_irq(&conf->device_lock);
1033 /* fail all writes first */
1034 bi = sh->dev[i].towrite;
1035 sh->dev[i].towrite = NULL;
1036 if (bi) { to_write--; bitmap_end = 1; }
1038 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1039 wake_up(&conf->wait_for_overlap);
1041 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1042 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1043 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1044 if (--bi->bi_phys_segments == 0) {
1045 md_write_end(conf->mddev);
1046 bi->bi_next = return_bi;
1051 /* and fail all 'written' */
1052 bi = sh->dev[i].written;
1053 sh->dev[i].written = NULL;
1054 if (bi) bitmap_end = 1;
1055 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
1056 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1057 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1058 if (--bi->bi_phys_segments == 0) {
1059 md_write_end(conf->mddev);
1060 bi->bi_next = return_bi;
1066 /* fail any reads if this device is non-operational */
1067 if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1068 test_bit(R5_ReadError, &sh->dev[i].flags)) {
1069 bi = sh->dev[i].toread;
1070 sh->dev[i].toread = NULL;
1071 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1072 wake_up(&conf->wait_for_overlap);
1074 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1075 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1076 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1077 if (--bi->bi_phys_segments == 0) {
1078 bi->bi_next = return_bi;
1084 spin_unlock_irq(&conf->device_lock);
1086 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1087 STRIPE_SECTORS, 0, 0);
1090 if (failed > 1 && syncing) {
1091 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
1092 clear_bit(STRIPE_SYNCING, &sh->state);
1096 /* might be able to return some write requests if the parity block
1097 * is safe, or on a failed drive
1099 dev = &sh->dev[sh->pd_idx];
1101 ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
1102 test_bit(R5_UPTODATE, &dev->flags))
1103 || (failed == 1 && failed_num == sh->pd_idx))
1105 /* any written block on an uptodate or failed drive can be returned.
1106 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1107 * never LOCKED, so we don't need to test 'failed' directly.
1109 for (i=disks; i--; )
1110 if (sh->dev[i].written) {
1112 if (!test_bit(R5_LOCKED, &dev->flags) &&
1113 test_bit(R5_UPTODATE, &dev->flags) ) {
1114 /* We can return any write requests */
1115 struct bio *wbi, *wbi2;
1117 PRINTK("Return write for disc %d\n", i);
1118 spin_lock_irq(&conf->device_lock);
1120 dev->written = NULL;
1121 while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1122 wbi2 = r5_next_bio(wbi, dev->sector);
1123 if (--wbi->bi_phys_segments == 0) {
1124 md_write_end(conf->mddev);
1125 wbi->bi_next = return_bi;
1130 if (dev->towrite == NULL)
1132 spin_unlock_irq(&conf->device_lock);
1134 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1136 !test_bit(STRIPE_DEGRADED, &sh->state), 0);
1141 /* Now we might consider reading some blocks, either to check/generate
1142 * parity, or to satisfy requests
1143 * or to load a block that is being partially written.
1145 if (to_read || non_overwrite || (syncing && (uptodate < disks))) {
1146 for (i=disks; i--;) {
1148 if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1150 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1152 (failed && (sh->dev[failed_num].toread ||
1153 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
1156 /* we would like to get this block, possibly
1157 * by computing it, but we might not be able to
1159 if (uptodate == disks-1) {
1160 PRINTK("Computing block %d\n", i);
1161 compute_block(sh, i);
1163 } else if (test_bit(R5_Insync, &dev->flags)) {
1164 set_bit(R5_LOCKED, &dev->flags);
1165 set_bit(R5_Wantread, &dev->flags);
1167 /* if I am just reading this block and we don't have
1168 a failed drive, or any pending writes then sidestep the cache */
1169 if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
1170 ! syncing && !failed && !to_write) {
1171 sh->bh_cache[i]->b_page = sh->bh_read[i]->b_page;
1172 sh->bh_cache[i]->b_data = sh->bh_read[i]->b_data;
1176 PRINTK("Reading block %d (sync=%d)\n",
1181 set_bit(STRIPE_HANDLE, &sh->state);
1184 /* now to consider writing and what else, if anything should be read */
1187 for (i=disks ; i--;) {
1188 /* would I have to read this buffer for read_modify_write */
1190 if ((dev->towrite || i == sh->pd_idx) &&
1191 (!test_bit(R5_LOCKED, &dev->flags)
1193 || sh->bh_page[i]!=bh->b_page
1196 !test_bit(R5_UPTODATE, &dev->flags)) {
1197 if (test_bit(R5_Insync, &dev->flags)
1198 /* && !(!mddev->insync && i == sh->pd_idx) */
1201 else rmw += 2*disks; /* cannot read it */
1203 /* Would I have to read this buffer for reconstruct_write */
1204 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1205 (!test_bit(R5_LOCKED, &dev->flags)
1207 || sh->bh_page[i] != bh->b_page
1210 !test_bit(R5_UPTODATE, &dev->flags)) {
1211 if (test_bit(R5_Insync, &dev->flags)) rcw++;
1212 else rcw += 2*disks;
1215 PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1216 (unsigned long long)sh->sector, rmw, rcw);
1217 set_bit(STRIPE_HANDLE, &sh->state);
1218 if (rmw < rcw && rmw > 0)
1219 /* prefer read-modify-write, but need to get some data */
1220 for (i=disks; i--;) {
1222 if ((dev->towrite || i == sh->pd_idx) &&
1223 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1224 test_bit(R5_Insync, &dev->flags)) {
1225 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1227 PRINTK("Read_old block %d for r-m-w\n", i);
1228 set_bit(R5_LOCKED, &dev->flags);
1229 set_bit(R5_Wantread, &dev->flags);
1232 set_bit(STRIPE_DELAYED, &sh->state);
1233 set_bit(STRIPE_HANDLE, &sh->state);
1237 if (rcw <= rmw && rcw > 0)
1238 /* want reconstruct write, but need to get some data */
1239 for (i=disks; i--;) {
1241 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1242 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1243 test_bit(R5_Insync, &dev->flags)) {
1244 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1246 PRINTK("Read_old block %d for Reconstruct\n", i);
1247 set_bit(R5_LOCKED, &dev->flags);
1248 set_bit(R5_Wantread, &dev->flags);
1251 set_bit(STRIPE_DELAYED, &sh->state);
1252 set_bit(STRIPE_HANDLE, &sh->state);
1256 /* now if nothing is locked, and if we have enough data, we can start a write request */
1257 if (locked == 0 && (rcw == 0 ||rmw == 0) &&
1258 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1259 PRINTK("Computing parity...\n");
1260 compute_parity(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
1261 /* now every locked buffer is ready to be written */
1263 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1264 PRINTK("Writing block %d\n", i);
1266 set_bit(R5_Wantwrite, &sh->dev[i].flags);
1267 if (!test_bit(R5_Insync, &sh->dev[i].flags)
1268 || (i==sh->pd_idx && failed == 0))
1269 set_bit(STRIPE_INSYNC, &sh->state);
1271 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1272 atomic_dec(&conf->preread_active_stripes);
1273 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
1274 md_wakeup_thread(conf->mddev->thread);
1279 /* maybe we need to check and possibly fix the parity for this stripe
1280 * Any reads will already have been scheduled, so we just see if enough data
1283 if (syncing && locked == 0 &&
1284 !test_bit(STRIPE_INSYNC, &sh->state)) {
1285 set_bit(STRIPE_HANDLE, &sh->state);
1288 if (uptodate != disks)
1290 compute_parity(sh, CHECK_PARITY);
1292 pagea = page_address(sh->dev[sh->pd_idx].page);
1293 if ((*(u32*)pagea) == 0 &&
1294 !memcmp(pagea, pagea+4, STRIPE_SIZE-4)) {
1295 /* parity is correct (on disc, not in buffer any more) */
1296 set_bit(STRIPE_INSYNC, &sh->state);
1298 conf->mddev->resync_mismatches += STRIPE_SECTORS;
1299 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1300 /* don't try to repair!! */
1301 set_bit(STRIPE_INSYNC, &sh->state);
1303 compute_block(sh, sh->pd_idx);
1308 if (!test_bit(STRIPE_INSYNC, &sh->state)) {
1309 /* either failed parity check, or recovery is happening */
1311 failed_num = sh->pd_idx;
1312 dev = &sh->dev[failed_num];
1313 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
1314 BUG_ON(uptodate != disks);
1316 set_bit(R5_LOCKED, &dev->flags);
1317 set_bit(R5_Wantwrite, &dev->flags);
1318 clear_bit(STRIPE_DEGRADED, &sh->state);
1320 set_bit(STRIPE_INSYNC, &sh->state);
1323 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1324 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1325 clear_bit(STRIPE_SYNCING, &sh->state);
1328 /* If the failed drive is just a ReadError, then we might need to progress
1329 * the repair/check process
1331 if (failed == 1 && ! conf->mddev->ro &&
1332 test_bit(R5_ReadError, &sh->dev[failed_num].flags)
1333 && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags)
1334 && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)
1336 dev = &sh->dev[failed_num];
1337 if (!test_bit(R5_ReWrite, &dev->flags)) {
1338 set_bit(R5_Wantwrite, &dev->flags);
1339 set_bit(R5_ReWrite, &dev->flags);
1340 set_bit(R5_LOCKED, &dev->flags);
1342 /* let's read it back */
1343 set_bit(R5_Wantread, &dev->flags);
1344 set_bit(R5_LOCKED, &dev->flags);
1348 spin_unlock(&sh->lock);
1350 while ((bi=return_bi)) {
1351 int bytes = bi->bi_size;
1353 return_bi = bi->bi_next;
1356 bi->bi_end_io(bi, bytes, 0);
1358 for (i=disks; i-- ;) {
1362 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
1364 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1369 bi = &sh->dev[i].req;
1373 bi->bi_end_io = raid5_end_write_request;
1375 bi->bi_end_io = raid5_end_read_request;
1378 rdev = rcu_dereference(conf->disks[i].rdev);
1379 if (rdev && test_bit(Faulty, &rdev->flags))
1382 atomic_inc(&rdev->nr_pending);
1387 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1389 bi->bi_bdev = rdev->bdev;
1390 PRINTK("for %llu schedule op %ld on disc %d\n",
1391 (unsigned long long)sh->sector, bi->bi_rw, i);
1392 atomic_inc(&sh->count);
1393 bi->bi_sector = sh->sector + rdev->data_offset;
1394 bi->bi_flags = 1 << BIO_UPTODATE;
1396 bi->bi_max_vecs = 1;
1398 bi->bi_io_vec = &sh->dev[i].vec;
1399 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1400 bi->bi_io_vec[0].bv_offset = 0;
1401 bi->bi_size = STRIPE_SIZE;
1404 test_bit(R5_ReWrite, &sh->dev[i].flags))
1405 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1406 generic_make_request(bi);
1409 set_bit(STRIPE_DEGRADED, &sh->state);
1410 PRINTK("skip op %ld on disc %d for sector %llu\n",
1411 bi->bi_rw, i, (unsigned long long)sh->sector);
1412 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1413 set_bit(STRIPE_HANDLE, &sh->state);
1418 static inline void raid5_activate_delayed(raid5_conf_t *conf)
1420 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
1421 while (!list_empty(&conf->delayed_list)) {
1422 struct list_head *l = conf->delayed_list.next;
1423 struct stripe_head *sh;
1424 sh = list_entry(l, struct stripe_head, lru);
1426 clear_bit(STRIPE_DELAYED, &sh->state);
1427 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1428 atomic_inc(&conf->preread_active_stripes);
1429 list_add_tail(&sh->lru, &conf->handle_list);
1434 static inline void activate_bit_delay(raid5_conf_t *conf)
1436 /* device_lock is held */
1437 struct list_head head;
1438 list_add(&head, &conf->bitmap_list);
1439 list_del_init(&conf->bitmap_list);
1440 while (!list_empty(&head)) {
1441 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
1442 list_del_init(&sh->lru);
1443 atomic_inc(&sh->count);
1444 __release_stripe(conf, sh);
1448 static void unplug_slaves(mddev_t *mddev)
1450 raid5_conf_t *conf = mddev_to_conf(mddev);
1454 for (i=0; i<mddev->raid_disks; i++) {
1455 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
1456 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
1457 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
1459 atomic_inc(&rdev->nr_pending);
1462 if (r_queue->unplug_fn)
1463 r_queue->unplug_fn(r_queue);
1465 rdev_dec_pending(rdev, mddev);
1472 static void raid5_unplug_device(request_queue_t *q)
1474 mddev_t *mddev = q->queuedata;
1475 raid5_conf_t *conf = mddev_to_conf(mddev);
1476 unsigned long flags;
1478 spin_lock_irqsave(&conf->device_lock, flags);
1480 if (blk_remove_plug(q)) {
1482 raid5_activate_delayed(conf);
1484 md_wakeup_thread(mddev->thread);
1486 spin_unlock_irqrestore(&conf->device_lock, flags);
1488 unplug_slaves(mddev);
1491 static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
1492 sector_t *error_sector)
1494 mddev_t *mddev = q->queuedata;
1495 raid5_conf_t *conf = mddev_to_conf(mddev);
1499 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
1500 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
1501 if (rdev && !test_bit(Faulty, &rdev->flags)) {
1502 struct block_device *bdev = rdev->bdev;
1503 request_queue_t *r_queue = bdev_get_queue(bdev);
1505 if (!r_queue->issue_flush_fn)
1508 atomic_inc(&rdev->nr_pending);
1510 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
1512 rdev_dec_pending(rdev, mddev);
1521 static inline void raid5_plug_device(raid5_conf_t *conf)
1523 spin_lock_irq(&conf->device_lock);
1524 blk_plug_device(conf->mddev->queue);
1525 spin_unlock_irq(&conf->device_lock);
1528 static int make_request (request_queue_t *q, struct bio * bi)
1530 mddev_t *mddev = q->queuedata;
1531 raid5_conf_t *conf = mddev_to_conf(mddev);
1532 const unsigned int raid_disks = conf->raid_disks;
1533 const unsigned int data_disks = raid_disks - 1;
1534 unsigned int dd_idx, pd_idx;
1535 sector_t new_sector;
1536 sector_t logical_sector, last_sector;
1537 struct stripe_head *sh;
1538 const int rw = bio_data_dir(bi);
1540 if (unlikely(bio_barrier(bi))) {
1541 bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
1545 md_write_start(mddev, bi);
1547 disk_stat_inc(mddev->gendisk, ios[rw]);
1548 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
1550 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
1551 last_sector = bi->bi_sector + (bi->bi_size>>9);
1553 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
1555 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
1558 new_sector = raid5_compute_sector(logical_sector,
1559 raid_disks, data_disks, &dd_idx, &pd_idx, conf);
1561 PRINTK("raid5: make_request, sector %llu logical %llu\n",
1562 (unsigned long long)new_sector,
1563 (unsigned long long)logical_sector);
1566 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1567 sh = get_active_stripe(conf, new_sector, pd_idx, (bi->bi_rw&RWA_MASK));
1569 if (!add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
1570 /* Add failed due to overlap. Flush everything
1573 raid5_unplug_device(mddev->queue);
1578 finish_wait(&conf->wait_for_overlap, &w);
1579 raid5_plug_device(conf);
1584 /* cannot get stripe for read-ahead, just give-up */
1585 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1586 finish_wait(&conf->wait_for_overlap, &w);
1591 spin_lock_irq(&conf->device_lock);
1592 if (--bi->bi_phys_segments == 0) {
1593 int bytes = bi->bi_size;
1595 if ( bio_data_dir(bi) == WRITE )
1596 md_write_end(mddev);
1598 bi->bi_end_io(bi, bytes, 0);
1600 spin_unlock_irq(&conf->device_lock);
1604 /* FIXME go_faster isn't used */
1605 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1607 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1608 struct stripe_head *sh;
1609 int sectors_per_chunk = conf->chunk_size >> 9;
1611 unsigned long stripe;
1614 sector_t first_sector;
1615 int raid_disks = conf->raid_disks;
1616 int data_disks = raid_disks-1;
1617 sector_t max_sector = mddev->size << 1;
1620 if (sector_nr >= max_sector) {
1621 /* just being told to finish up .. nothing much to do */
1622 unplug_slaves(mddev);
1624 if (mddev->curr_resync < max_sector) /* aborted */
1625 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1627 else /* compelted sync */
1629 bitmap_close_sync(mddev->bitmap);
1633 /* if there is 1 or more failed drives and we are trying
1634 * to resync, then assert that we are finished, because there is
1635 * nothing we can do.
1637 if (mddev->degraded >= 1 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1638 sector_t rv = (mddev->size << 1) - sector_nr;
1642 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1643 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1644 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
1645 /* we can skip this block, and probably more */
1646 sync_blocks /= STRIPE_SECTORS;
1648 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
1652 chunk_offset = sector_div(x, sectors_per_chunk);
1654 BUG_ON(x != stripe);
1656 first_sector = raid5_compute_sector((sector_t)stripe*data_disks*sectors_per_chunk
1657 + chunk_offset, raid_disks, data_disks, &dd_idx, &pd_idx, conf);
1658 sh = get_active_stripe(conf, sector_nr, pd_idx, 1);
1660 sh = get_active_stripe(conf, sector_nr, pd_idx, 0);
1661 /* make sure we don't swamp the stripe cache if someone else
1662 * is trying to get access
1664 schedule_timeout_uninterruptible(1);
1666 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 0);
1667 spin_lock(&sh->lock);
1668 set_bit(STRIPE_SYNCING, &sh->state);
1669 clear_bit(STRIPE_INSYNC, &sh->state);
1670 spin_unlock(&sh->lock);
1675 return STRIPE_SECTORS;
1679 * This is our raid5 kernel thread.
1681 * We scan the hash table for stripes which can be handled now.
1682 * During the scan, completed stripes are saved for us by the interrupt
1683 * handler, so that they will not have to wait for our next wakeup.
1685 static void raid5d (mddev_t *mddev)
1687 struct stripe_head *sh;
1688 raid5_conf_t *conf = mddev_to_conf(mddev);
1691 PRINTK("+++ raid5d active\n");
1693 md_check_recovery(mddev);
1696 spin_lock_irq(&conf->device_lock);
1698 struct list_head *first;
1700 if (conf->seq_flush - conf->seq_write > 0) {
1701 int seq = conf->seq_flush;
1702 spin_unlock_irq(&conf->device_lock);
1703 bitmap_unplug(mddev->bitmap);
1704 spin_lock_irq(&conf->device_lock);
1705 conf->seq_write = seq;
1706 activate_bit_delay(conf);
1709 if (list_empty(&conf->handle_list) &&
1710 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
1711 !blk_queue_plugged(mddev->queue) &&
1712 !list_empty(&conf->delayed_list))
1713 raid5_activate_delayed(conf);
1715 if (list_empty(&conf->handle_list))
1718 first = conf->handle_list.next;
1719 sh = list_entry(first, struct stripe_head, lru);
1721 list_del_init(first);
1722 atomic_inc(&sh->count);
1723 if (atomic_read(&sh->count)!= 1)
1725 spin_unlock_irq(&conf->device_lock);
1731 spin_lock_irq(&conf->device_lock);
1733 PRINTK("%d stripes handled\n", handled);
1735 spin_unlock_irq(&conf->device_lock);
1737 unplug_slaves(mddev);
1739 PRINTK("--- raid5d inactive\n");
1743 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
1745 raid5_conf_t *conf = mddev_to_conf(mddev);
1747 return sprintf(page, "%d\n", conf->max_nr_stripes);
1753 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
1755 raid5_conf_t *conf = mddev_to_conf(mddev);
1758 if (len >= PAGE_SIZE)
1763 new = simple_strtoul(page, &end, 10);
1764 if (!*page || (*end && *end != '\n') )
1766 if (new <= 16 || new > 32768)
1768 while (new < conf->max_nr_stripes) {
1769 if (drop_one_stripe(conf))
1770 conf->max_nr_stripes--;
1774 while (new > conf->max_nr_stripes) {
1775 if (grow_one_stripe(conf))
1776 conf->max_nr_stripes++;
1782 static struct md_sysfs_entry
1783 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
1784 raid5_show_stripe_cache_size,
1785 raid5_store_stripe_cache_size);
1788 stripe_cache_active_show(mddev_t *mddev, char *page)
1790 raid5_conf_t *conf = mddev_to_conf(mddev);
1792 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
1797 static struct md_sysfs_entry
1798 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
1800 static struct attribute *raid5_attrs[] = {
1801 &raid5_stripecache_size.attr,
1802 &raid5_stripecache_active.attr,
1805 static struct attribute_group raid5_attrs_group = {
1807 .attrs = raid5_attrs,
1810 static int run(mddev_t *mddev)
1813 int raid_disk, memory;
1815 struct disk_info *disk;
1816 struct list_head *tmp;
1818 if (mddev->level != 5 && mddev->level != 4) {
1819 printk(KERN_ERR "raid5: %s: raid level not set to 4/5 (%d)\n",
1820 mdname(mddev), mddev->level);
1824 mddev->private = kzalloc(sizeof (raid5_conf_t)
1825 + mddev->raid_disks * sizeof(struct disk_info),
1827 if ((conf = mddev->private) == NULL)
1830 conf->mddev = mddev;
1832 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1835 spin_lock_init(&conf->device_lock);
1836 init_waitqueue_head(&conf->wait_for_stripe);
1837 init_waitqueue_head(&conf->wait_for_overlap);
1838 INIT_LIST_HEAD(&conf->handle_list);
1839 INIT_LIST_HEAD(&conf->delayed_list);
1840 INIT_LIST_HEAD(&conf->bitmap_list);
1841 INIT_LIST_HEAD(&conf->inactive_list);
1842 atomic_set(&conf->active_stripes, 0);
1843 atomic_set(&conf->preread_active_stripes, 0);
1845 PRINTK("raid5: run(%s) called.\n", mdname(mddev));
1847 ITERATE_RDEV(mddev,rdev,tmp) {
1848 raid_disk = rdev->raid_disk;
1849 if (raid_disk >= mddev->raid_disks
1852 disk = conf->disks + raid_disk;
1856 if (test_bit(In_sync, &rdev->flags)) {
1857 char b[BDEVNAME_SIZE];
1858 printk(KERN_INFO "raid5: device %s operational as raid"
1859 " disk %d\n", bdevname(rdev->bdev,b),
1861 conf->working_disks++;
1865 conf->raid_disks = mddev->raid_disks;
1867 * 0 for a fully functional array, 1 for a degraded array.
1869 mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks;
1870 conf->mddev = mddev;
1871 conf->chunk_size = mddev->chunk_size;
1872 conf->level = mddev->level;
1873 conf->algorithm = mddev->layout;
1874 conf->max_nr_stripes = NR_STRIPES;
1876 /* device size must be a multiple of chunk size */
1877 mddev->size &= ~(mddev->chunk_size/1024 -1);
1878 mddev->resync_max_sectors = mddev->size << 1;
1880 if (!conf->chunk_size || conf->chunk_size % 4) {
1881 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
1882 conf->chunk_size, mdname(mddev));
1885 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
1887 "raid5: unsupported parity algorithm %d for %s\n",
1888 conf->algorithm, mdname(mddev));
1891 if (mddev->degraded > 1) {
1892 printk(KERN_ERR "raid5: not enough operational devices for %s"
1893 " (%d/%d failed)\n",
1894 mdname(mddev), conf->failed_disks, conf->raid_disks);
1898 if (mddev->degraded == 1 &&
1899 mddev->recovery_cp != MaxSector) {
1900 if (mddev->ok_start_degraded)
1902 "raid5: starting dirty degraded array: %s"
1903 "- data corruption possible.\n",
1907 "raid5: cannot start dirty degraded array for %s\n",
1914 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
1915 if (!mddev->thread) {
1917 "raid5: couldn't allocate thread for %s\n",
1922 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
1923 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
1924 if (grow_stripes(conf, conf->max_nr_stripes)) {
1926 "raid5: couldn't allocate %dkB for buffers\n", memory);
1927 shrink_stripes(conf);
1928 md_unregister_thread(mddev->thread);
1931 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
1932 memory, mdname(mddev));
1934 if (mddev->degraded == 0)
1935 printk("raid5: raid level %d set %s active with %d out of %d"
1936 " devices, algorithm %d\n", conf->level, mdname(mddev),
1937 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
1940 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
1941 " out of %d devices, algorithm %d\n", conf->level,
1942 mdname(mddev), mddev->raid_disks - mddev->degraded,
1943 mddev->raid_disks, conf->algorithm);
1945 print_raid5_conf(conf);
1947 /* read-ahead size must cover two whole stripes, which is
1948 * 2 * (n-1) * chunksize where 'n' is the number of raid devices
1951 int stripe = (mddev->raid_disks-1) * mddev->chunk_size
1953 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
1954 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
1957 /* Ok, everything is just fine now */
1958 sysfs_create_group(&mddev->kobj, &raid5_attrs_group);
1960 mddev->queue->unplug_fn = raid5_unplug_device;
1961 mddev->queue->issue_flush_fn = raid5_issue_flush;
1963 mddev->array_size = mddev->size * (mddev->raid_disks - 1);
1967 print_raid5_conf(conf);
1968 kfree(conf->stripe_hashtbl);
1971 mddev->private = NULL;
1972 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
1978 static int stop(mddev_t *mddev)
1980 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1982 md_unregister_thread(mddev->thread);
1983 mddev->thread = NULL;
1984 shrink_stripes(conf);
1985 kfree(conf->stripe_hashtbl);
1986 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1987 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
1989 mddev->private = NULL;
1994 static void print_sh (struct stripe_head *sh)
1998 printk("sh %llu, pd_idx %d, state %ld.\n",
1999 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
2000 printk("sh %llu, count %d.\n",
2001 (unsigned long long)sh->sector, atomic_read(&sh->count));
2002 printk("sh %llu, ", (unsigned long long)sh->sector);
2003 for (i = 0; i < sh->raid_conf->raid_disks; i++) {
2004 printk("(cache%d: %p %ld) ",
2005 i, sh->dev[i].page, sh->dev[i].flags);
2010 static void printall (raid5_conf_t *conf)
2012 struct stripe_head *sh;
2013 struct hlist_node *hn;
2016 spin_lock_irq(&conf->device_lock);
2017 for (i = 0; i < NR_HASH; i++) {
2018 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
2019 if (sh->raid_conf != conf)
2024 spin_unlock_irq(&conf->device_lock);
2028 static void status (struct seq_file *seq, mddev_t *mddev)
2030 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2033 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
2034 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks);
2035 for (i = 0; i < conf->raid_disks; i++)
2036 seq_printf (seq, "%s",
2037 conf->disks[i].rdev &&
2038 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
2039 seq_printf (seq, "]");
2042 seq_printf (seq, "<"#x":%d>", atomic_read(&conf->x))
2047 static void print_raid5_conf (raid5_conf_t *conf)
2050 struct disk_info *tmp;
2052 printk("RAID5 conf printout:\n");
2054 printk("(conf==NULL)\n");
2057 printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks,
2058 conf->working_disks, conf->failed_disks);
2060 for (i = 0; i < conf->raid_disks; i++) {
2061 char b[BDEVNAME_SIZE];
2062 tmp = conf->disks + i;
2064 printk(" disk %d, o:%d, dev:%s\n",
2065 i, !test_bit(Faulty, &tmp->rdev->flags),
2066 bdevname(tmp->rdev->bdev,b));
2070 static int raid5_spare_active(mddev_t *mddev)
2073 raid5_conf_t *conf = mddev->private;
2074 struct disk_info *tmp;
2076 for (i = 0; i < conf->raid_disks; i++) {
2077 tmp = conf->disks + i;
2079 && !test_bit(Faulty, &tmp->rdev->flags)
2080 && !test_bit(In_sync, &tmp->rdev->flags)) {
2082 conf->failed_disks--;
2083 conf->working_disks++;
2084 set_bit(In_sync, &tmp->rdev->flags);
2087 print_raid5_conf(conf);
2091 static int raid5_remove_disk(mddev_t *mddev, int number)
2093 raid5_conf_t *conf = mddev->private;
2096 struct disk_info *p = conf->disks + number;
2098 print_raid5_conf(conf);
2101 if (test_bit(In_sync, &rdev->flags) ||
2102 atomic_read(&rdev->nr_pending)) {
2108 if (atomic_read(&rdev->nr_pending)) {
2109 /* lost the race, try later */
2116 print_raid5_conf(conf);
2120 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
2122 raid5_conf_t *conf = mddev->private;
2125 struct disk_info *p;
2127 if (mddev->degraded > 1)
2128 /* no point adding a device */
2134 for (disk=0; disk < mddev->raid_disks; disk++)
2135 if ((p=conf->disks + disk)->rdev == NULL) {
2136 clear_bit(In_sync, &rdev->flags);
2137 rdev->raid_disk = disk;
2139 if (rdev->saved_raid_disk != disk)
2141 rcu_assign_pointer(p->rdev, rdev);
2144 print_raid5_conf(conf);
2148 static int raid5_resize(mddev_t *mddev, sector_t sectors)
2150 /* no resync is happening, and there is enough space
2151 * on all devices, so we can resize.
2152 * We need to make sure resync covers any new space.
2153 * If the array is shrinking we should possibly wait until
2154 * any io in the removed space completes, but it hardly seems
2157 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
2158 mddev->array_size = (sectors * (mddev->raid_disks-1))>>1;
2159 set_capacity(mddev->gendisk, mddev->array_size << 1);
2161 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
2162 mddev->recovery_cp = mddev->size << 1;
2163 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2165 mddev->size = sectors /2;
2166 mddev->resync_max_sectors = sectors;
2170 static void raid5_quiesce(mddev_t *mddev, int state)
2172 raid5_conf_t *conf = mddev_to_conf(mddev);
2175 case 1: /* stop all writes */
2176 spin_lock_irq(&conf->device_lock);
2178 wait_event_lock_irq(conf->wait_for_stripe,
2179 atomic_read(&conf->active_stripes) == 0,
2180 conf->device_lock, /* nothing */);
2181 spin_unlock_irq(&conf->device_lock);
2184 case 0: /* re-enable writes */
2185 spin_lock_irq(&conf->device_lock);
2187 wake_up(&conf->wait_for_stripe);
2188 spin_unlock_irq(&conf->device_lock);
2193 static struct mdk_personality raid5_personality =
2197 .owner = THIS_MODULE,
2198 .make_request = make_request,
2202 .error_handler = error,
2203 .hot_add_disk = raid5_add_disk,
2204 .hot_remove_disk= raid5_remove_disk,
2205 .spare_active = raid5_spare_active,
2206 .sync_request = sync_request,
2207 .resize = raid5_resize,
2208 .quiesce = raid5_quiesce,
2211 static struct mdk_personality raid4_personality =
2215 .owner = THIS_MODULE,
2216 .make_request = make_request,
2220 .error_handler = error,
2221 .hot_add_disk = raid5_add_disk,
2222 .hot_remove_disk= raid5_remove_disk,
2223 .spare_active = raid5_spare_active,
2224 .sync_request = sync_request,
2225 .resize = raid5_resize,
2226 .quiesce = raid5_quiesce,
2229 static int __init raid5_init(void)
2231 register_md_personality(&raid5_personality);
2232 register_md_personality(&raid4_personality);
2236 static void raid5_exit(void)
2238 unregister_md_personality(&raid5_personality);
2239 unregister_md_personality(&raid4_personality);
2242 module_init(raid5_init);
2243 module_exit(raid5_exit);
2244 MODULE_LICENSE("GPL");
2245 MODULE_ALIAS("md-personality-4"); /* RAID5 */
2246 MODULE_ALIAS("md-raid5");
2247 MODULE_ALIAS("md-raid4");
2248 MODULE_ALIAS("md-level-5");
2249 MODULE_ALIAS("md-level-4");