2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <asm/processor.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <asm/uaccess.h>
31 #include <linux/reboot.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
38 #include "x86_emulate.h"
39 #include "segment_descriptor.h"
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
44 struct kvm_arch_ops *kvm_arch_ops;
45 struct kvm_stat kvm_stat;
46 EXPORT_SYMBOL_GPL(kvm_stat);
48 static struct kvm_stats_debugfs_item {
51 struct dentry *dentry;
52 } debugfs_entries[] = {
53 { "pf_fixed", &kvm_stat.pf_fixed },
54 { "pf_guest", &kvm_stat.pf_guest },
55 { "tlb_flush", &kvm_stat.tlb_flush },
56 { "invlpg", &kvm_stat.invlpg },
57 { "exits", &kvm_stat.exits },
58 { "io_exits", &kvm_stat.io_exits },
59 { "mmio_exits", &kvm_stat.mmio_exits },
60 { "signal_exits", &kvm_stat.signal_exits },
61 { "irq_window", &kvm_stat.irq_window_exits },
62 { "halt_exits", &kvm_stat.halt_exits },
63 { "request_irq", &kvm_stat.request_irq_exits },
64 { "irq_exits", &kvm_stat.irq_exits },
68 static struct dentry *debugfs_dir;
70 #define MAX_IO_MSRS 256
72 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
73 #define LMSW_GUEST_MASK 0x0eULL
74 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
75 #define CR8_RESEVED_BITS (~0x0fULL)
76 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
79 // LDT or TSS descriptor in the GDT. 16 bytes.
80 struct segment_descriptor_64 {
81 struct segment_descriptor s;
88 unsigned long segment_base(u16 selector)
90 struct descriptor_table gdt;
91 struct segment_descriptor *d;
92 unsigned long table_base;
93 typedef unsigned long ul;
99 asm ("sgdt %0" : "=m"(gdt));
100 table_base = gdt.base;
102 if (selector & 4) { /* from ldt */
105 asm ("sldt %0" : "=g"(ldt_selector));
106 table_base = segment_base(ldt_selector);
108 d = (struct segment_descriptor *)(table_base + (selector & ~7));
109 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
112 && (d->type == 2 || d->type == 9 || d->type == 11))
113 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
117 EXPORT_SYMBOL_GPL(segment_base);
119 static inline int valid_vcpu(int n)
121 return likely(n >= 0 && n < KVM_MAX_VCPUS);
124 int kvm_read_guest(struct kvm_vcpu *vcpu,
129 unsigned char *host_buf = dest;
130 unsigned long req_size = size;
138 paddr = gva_to_hpa(vcpu, addr);
140 if (is_error_hpa(paddr))
143 guest_buf = (hva_t)kmap_atomic(
144 pfn_to_page(paddr >> PAGE_SHIFT),
146 offset = addr & ~PAGE_MASK;
148 now = min(size, PAGE_SIZE - offset);
149 memcpy(host_buf, (void*)guest_buf, now);
153 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
155 return req_size - size;
157 EXPORT_SYMBOL_GPL(kvm_read_guest);
159 int kvm_write_guest(struct kvm_vcpu *vcpu,
164 unsigned char *host_buf = data;
165 unsigned long req_size = size;
173 paddr = gva_to_hpa(vcpu, addr);
175 if (is_error_hpa(paddr))
178 guest_buf = (hva_t)kmap_atomic(
179 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
180 offset = addr & ~PAGE_MASK;
182 now = min(size, PAGE_SIZE - offset);
183 memcpy((void*)guest_buf, host_buf, now);
187 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
189 return req_size - size;
191 EXPORT_SYMBOL_GPL(kvm_write_guest);
193 static int vcpu_slot(struct kvm_vcpu *vcpu)
195 return vcpu - vcpu->kvm->vcpus;
199 * Switches to specified vcpu, until a matching vcpu_put()
201 static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
203 struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
205 mutex_lock(&vcpu->mutex);
206 if (unlikely(!vcpu->vmcs)) {
207 mutex_unlock(&vcpu->mutex);
210 return kvm_arch_ops->vcpu_load(vcpu);
213 static void vcpu_put(struct kvm_vcpu *vcpu)
215 kvm_arch_ops->vcpu_put(vcpu);
216 mutex_unlock(&vcpu->mutex);
219 static int kvm_dev_open(struct inode *inode, struct file *filp)
221 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
227 spin_lock_init(&kvm->lock);
228 INIT_LIST_HEAD(&kvm->active_mmu_pages);
229 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
230 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
232 mutex_init(&vcpu->mutex);
233 vcpu->mmu.root_hpa = INVALID_PAGE;
234 INIT_LIST_HEAD(&vcpu->free_pages);
236 filp->private_data = kvm;
241 * Free any memory in @free but not in @dont.
243 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
244 struct kvm_memory_slot *dont)
248 if (!dont || free->phys_mem != dont->phys_mem)
249 if (free->phys_mem) {
250 for (i = 0; i < free->npages; ++i)
251 if (free->phys_mem[i])
252 __free_page(free->phys_mem[i]);
253 vfree(free->phys_mem);
256 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
257 vfree(free->dirty_bitmap);
261 free->dirty_bitmap = 0;
264 static void kvm_free_physmem(struct kvm *kvm)
268 for (i = 0; i < kvm->nmemslots; ++i)
269 kvm_free_physmem_slot(&kvm->memslots[i], 0);
272 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
274 kvm_mmu_destroy(vcpu);
275 kvm_arch_ops->vcpu_free(vcpu);
278 static void kvm_free_vcpus(struct kvm *kvm)
282 for (i = 0; i < KVM_MAX_VCPUS; ++i)
283 kvm_free_vcpu(&kvm->vcpus[i]);
286 static int kvm_dev_release(struct inode *inode, struct file *filp)
288 struct kvm *kvm = filp->private_data;
291 kvm_free_physmem(kvm);
296 static void inject_gp(struct kvm_vcpu *vcpu)
298 kvm_arch_ops->inject_gp(vcpu, 0);
302 * Load the pae pdptrs. Return true is they are all valid.
304 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
306 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
307 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
312 struct kvm_memory_slot *memslot;
314 spin_lock(&vcpu->kvm->lock);
315 memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
316 /* FIXME: !memslot - emulate? 0xff? */
317 pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
320 for (i = 0; i < 4; ++i) {
321 pdpte = pdpt[offset + i];
322 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
328 for (i = 0; i < 4; ++i)
329 vcpu->pdptrs[i] = pdpt[offset + i];
332 kunmap_atomic(pdpt, KM_USER0);
333 spin_unlock(&vcpu->kvm->lock);
338 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
340 if (cr0 & CR0_RESEVED_BITS) {
341 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
347 if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
348 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
353 if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
354 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
355 "and a clear PE flag\n");
360 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
362 if ((vcpu->shadow_efer & EFER_LME)) {
366 printk(KERN_DEBUG "set_cr0: #GP, start paging "
367 "in long mode while PAE is disabled\n");
371 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
373 printk(KERN_DEBUG "set_cr0: #GP, start paging "
374 "in long mode while CS.L == 1\n");
381 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
382 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
390 kvm_arch_ops->set_cr0(vcpu, cr0);
393 spin_lock(&vcpu->kvm->lock);
394 kvm_mmu_reset_context(vcpu);
395 spin_unlock(&vcpu->kvm->lock);
398 EXPORT_SYMBOL_GPL(set_cr0);
400 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
402 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
403 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
405 EXPORT_SYMBOL_GPL(lmsw);
407 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
409 if (cr4 & CR4_RESEVED_BITS) {
410 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
415 if (is_long_mode(vcpu)) {
416 if (!(cr4 & CR4_PAE_MASK)) {
417 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
422 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
423 && !load_pdptrs(vcpu, vcpu->cr3)) {
424 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
428 if (cr4 & CR4_VMXE_MASK) {
429 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
433 kvm_arch_ops->set_cr4(vcpu, cr4);
434 spin_lock(&vcpu->kvm->lock);
435 kvm_mmu_reset_context(vcpu);
436 spin_unlock(&vcpu->kvm->lock);
438 EXPORT_SYMBOL_GPL(set_cr4);
440 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
442 if (is_long_mode(vcpu)) {
443 if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
444 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
449 if (cr3 & CR3_RESEVED_BITS) {
450 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
454 if (is_paging(vcpu) && is_pae(vcpu) &&
455 !load_pdptrs(vcpu, cr3)) {
456 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
464 spin_lock(&vcpu->kvm->lock);
465 vcpu->mmu.new_cr3(vcpu);
466 spin_unlock(&vcpu->kvm->lock);
468 EXPORT_SYMBOL_GPL(set_cr3);
470 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
472 if ( cr8 & CR8_RESEVED_BITS) {
473 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
479 EXPORT_SYMBOL_GPL(set_cr8);
481 void fx_init(struct kvm_vcpu *vcpu)
483 struct __attribute__ ((__packed__)) fx_image_s {
489 u64 operand;// fpu dp
495 fx_save(vcpu->host_fx_image);
497 fx_save(vcpu->guest_fx_image);
498 fx_restore(vcpu->host_fx_image);
500 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
501 fx_image->mxcsr = 0x1f80;
502 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
503 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
505 EXPORT_SYMBOL_GPL(fx_init);
508 * Creates some virtual cpus. Good luck creating more than one.
510 static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
513 struct kvm_vcpu *vcpu;
519 vcpu = &kvm->vcpus[n];
521 mutex_lock(&vcpu->mutex);
524 mutex_unlock(&vcpu->mutex);
528 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
530 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
532 vcpu->cpu = -1; /* First load will set up TR */
534 r = kvm_arch_ops->vcpu_create(vcpu);
538 r = kvm_mmu_create(vcpu);
542 kvm_arch_ops->vcpu_load(vcpu);
543 r = kvm_mmu_setup(vcpu);
545 r = kvm_arch_ops->vcpu_setup(vcpu);
555 mutex_unlock(&vcpu->mutex);
561 * Allocate some memory and give it an address in the guest physical address
564 * Discontiguous memory is allowed, mostly for framebuffers.
566 static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
567 struct kvm_memory_region *mem)
571 unsigned long npages;
573 struct kvm_memory_slot *memslot;
574 struct kvm_memory_slot old, new;
575 int memory_config_version;
578 /* General sanity checks */
579 if (mem->memory_size & (PAGE_SIZE - 1))
581 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
583 if (mem->slot >= KVM_MEMORY_SLOTS)
585 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
588 memslot = &kvm->memslots[mem->slot];
589 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
590 npages = mem->memory_size >> PAGE_SHIFT;
593 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
596 spin_lock(&kvm->lock);
598 memory_config_version = kvm->memory_config_version;
599 new = old = *memslot;
601 new.base_gfn = base_gfn;
603 new.flags = mem->flags;
605 /* Disallow changing a memory slot's size. */
607 if (npages && old.npages && npages != old.npages)
610 /* Check for overlaps */
612 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
613 struct kvm_memory_slot *s = &kvm->memslots[i];
617 if (!((base_gfn + npages <= s->base_gfn) ||
618 (base_gfn >= s->base_gfn + s->npages)))
622 * Do memory allocations outside lock. memory_config_version will
625 spin_unlock(&kvm->lock);
627 /* Deallocate if slot is being removed */
631 /* Free page dirty bitmap if unneeded */
632 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
633 new.dirty_bitmap = 0;
637 /* Allocate if a slot is being created */
638 if (npages && !new.phys_mem) {
639 new.phys_mem = vmalloc(npages * sizeof(struct page *));
644 memset(new.phys_mem, 0, npages * sizeof(struct page *));
645 for (i = 0; i < npages; ++i) {
646 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
648 if (!new.phys_mem[i])
650 new.phys_mem[i]->private = 0;
654 /* Allocate page dirty bitmap if needed */
655 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
656 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
658 new.dirty_bitmap = vmalloc(dirty_bytes);
659 if (!new.dirty_bitmap)
661 memset(new.dirty_bitmap, 0, dirty_bytes);
664 spin_lock(&kvm->lock);
666 if (memory_config_version != kvm->memory_config_version) {
667 spin_unlock(&kvm->lock);
668 kvm_free_physmem_slot(&new, &old);
676 if (mem->slot >= kvm->nmemslots)
677 kvm->nmemslots = mem->slot + 1;
680 ++kvm->memory_config_version;
682 spin_unlock(&kvm->lock);
684 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
685 struct kvm_vcpu *vcpu;
687 vcpu = vcpu_load(kvm, i);
690 kvm_mmu_reset_context(vcpu);
694 kvm_free_physmem_slot(&old, &new);
698 spin_unlock(&kvm->lock);
700 kvm_free_physmem_slot(&new, &old);
705 static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
707 spin_lock(&vcpu->kvm->lock);
708 kvm_mmu_slot_remove_write_access(vcpu, slot);
709 spin_unlock(&vcpu->kvm->lock);
713 * Get (and clear) the dirty memory log for a memory slot.
715 static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
716 struct kvm_dirty_log *log)
718 struct kvm_memory_slot *memslot;
722 unsigned long any = 0;
724 spin_lock(&kvm->lock);
727 * Prevent changes to guest memory configuration even while the lock
731 spin_unlock(&kvm->lock);
733 if (log->slot >= KVM_MEMORY_SLOTS)
736 memslot = &kvm->memslots[log->slot];
738 if (!memslot->dirty_bitmap)
741 n = ALIGN(memslot->npages, 8) / 8;
743 for (i = 0; !any && i < n; ++i)
744 any = memslot->dirty_bitmap[i];
747 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
753 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
754 struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
759 do_remove_write_access(vcpu, log->slot);
760 memset(memslot->dirty_bitmap, 0, n);
763 kvm_arch_ops->tlb_flush(vcpu);
771 spin_lock(&kvm->lock);
773 spin_unlock(&kvm->lock);
777 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
781 for (i = 0; i < kvm->nmemslots; ++i) {
782 struct kvm_memory_slot *memslot = &kvm->memslots[i];
784 if (gfn >= memslot->base_gfn
785 && gfn < memslot->base_gfn + memslot->npages)
790 EXPORT_SYMBOL_GPL(gfn_to_memslot);
792 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
795 struct kvm_memory_slot *memslot = 0;
796 unsigned long rel_gfn;
798 for (i = 0; i < kvm->nmemslots; ++i) {
799 memslot = &kvm->memslots[i];
801 if (gfn >= memslot->base_gfn
802 && gfn < memslot->base_gfn + memslot->npages) {
804 if (!memslot || !memslot->dirty_bitmap)
807 rel_gfn = gfn - memslot->base_gfn;
810 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
811 set_bit(rel_gfn, memslot->dirty_bitmap);
817 static int emulator_read_std(unsigned long addr,
820 struct x86_emulate_ctxt *ctxt)
822 struct kvm_vcpu *vcpu = ctxt->vcpu;
826 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
827 unsigned offset = addr & (PAGE_SIZE-1);
828 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
830 struct kvm_memory_slot *memslot;
833 if (gpa == UNMAPPED_GVA)
834 return X86EMUL_PROPAGATE_FAULT;
835 pfn = gpa >> PAGE_SHIFT;
836 memslot = gfn_to_memslot(vcpu->kvm, pfn);
838 return X86EMUL_UNHANDLEABLE;
839 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
841 memcpy(data, page + offset, tocopy);
843 kunmap_atomic(page, KM_USER0);
850 return X86EMUL_CONTINUE;
853 static int emulator_write_std(unsigned long addr,
856 struct x86_emulate_ctxt *ctxt)
858 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
860 return X86EMUL_UNHANDLEABLE;
863 static int emulator_read_emulated(unsigned long addr,
866 struct x86_emulate_ctxt *ctxt)
868 struct kvm_vcpu *vcpu = ctxt->vcpu;
870 if (vcpu->mmio_read_completed) {
871 memcpy(val, vcpu->mmio_data, bytes);
872 vcpu->mmio_read_completed = 0;
873 return X86EMUL_CONTINUE;
874 } else if (emulator_read_std(addr, val, bytes, ctxt)
876 return X86EMUL_CONTINUE;
878 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
879 if (gpa == UNMAPPED_GVA)
880 return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
881 vcpu->mmio_needed = 1;
882 vcpu->mmio_phys_addr = gpa;
883 vcpu->mmio_size = bytes;
884 vcpu->mmio_is_write = 0;
886 return X86EMUL_UNHANDLEABLE;
890 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
891 unsigned long val, int bytes)
893 struct kvm_memory_slot *m;
897 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
899 m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
902 page = gfn_to_page(m, gpa >> PAGE_SHIFT);
903 kvm_mmu_pre_write(vcpu, gpa, bytes);
904 virt = kmap_atomic(page, KM_USER0);
905 memcpy(virt + offset_in_page(gpa), &val, bytes);
906 kunmap_atomic(virt, KM_USER0);
907 kvm_mmu_post_write(vcpu, gpa, bytes);
911 static int emulator_write_emulated(unsigned long addr,
914 struct x86_emulate_ctxt *ctxt)
916 struct kvm_vcpu *vcpu = ctxt->vcpu;
917 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
919 if (gpa == UNMAPPED_GVA)
920 return X86EMUL_PROPAGATE_FAULT;
922 if (emulator_write_phys(vcpu, gpa, val, bytes))
923 return X86EMUL_CONTINUE;
925 vcpu->mmio_needed = 1;
926 vcpu->mmio_phys_addr = gpa;
927 vcpu->mmio_size = bytes;
928 vcpu->mmio_is_write = 1;
929 memcpy(vcpu->mmio_data, &val, bytes);
931 return X86EMUL_CONTINUE;
934 static int emulator_cmpxchg_emulated(unsigned long addr,
938 struct x86_emulate_ctxt *ctxt)
944 printk(KERN_WARNING "kvm: emulating exchange as write\n");
946 return emulator_write_emulated(addr, new, bytes, ctxt);
951 static int emulator_cmpxchg8b_emulated(unsigned long addr,
952 unsigned long old_lo,
953 unsigned long old_hi,
954 unsigned long new_lo,
955 unsigned long new_hi,
956 struct x86_emulate_ctxt *ctxt)
963 printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
965 r = emulator_write_emulated(addr, new_lo, 4, ctxt);
966 if (r != X86EMUL_CONTINUE)
968 return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
973 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
975 return kvm_arch_ops->get_segment_base(vcpu, seg);
978 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
980 return X86EMUL_CONTINUE;
983 int emulate_clts(struct kvm_vcpu *vcpu)
987 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
988 cr0 = vcpu->cr0 & ~CR0_TS_MASK;
989 kvm_arch_ops->set_cr0(vcpu, cr0);
990 return X86EMUL_CONTINUE;
993 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
995 struct kvm_vcpu *vcpu = ctxt->vcpu;
999 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1000 return X86EMUL_CONTINUE;
1002 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1004 return X86EMUL_UNHANDLEABLE;
1008 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1010 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1013 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1015 /* FIXME: better handling */
1016 return X86EMUL_UNHANDLEABLE;
1018 return X86EMUL_CONTINUE;
1021 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1023 static int reported;
1025 unsigned long rip = ctxt->vcpu->rip;
1026 unsigned long rip_linear;
1028 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1033 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1035 printk(KERN_ERR "emulation failed but !mmio_needed?"
1036 " rip %lx %02x %02x %02x %02x\n",
1037 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1041 struct x86_emulate_ops emulate_ops = {
1042 .read_std = emulator_read_std,
1043 .write_std = emulator_write_std,
1044 .read_emulated = emulator_read_emulated,
1045 .write_emulated = emulator_write_emulated,
1046 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1047 #ifdef CONFIG_X86_32
1048 .cmpxchg8b_emulated = emulator_cmpxchg8b_emulated,
1052 int emulate_instruction(struct kvm_vcpu *vcpu,
1053 struct kvm_run *run,
1057 struct x86_emulate_ctxt emulate_ctxt;
1061 kvm_arch_ops->cache_regs(vcpu);
1063 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1065 emulate_ctxt.vcpu = vcpu;
1066 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1067 emulate_ctxt.cr2 = cr2;
1068 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1069 ? X86EMUL_MODE_REAL : cs_l
1070 ? X86EMUL_MODE_PROT64 : cs_db
1071 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1073 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1074 emulate_ctxt.cs_base = 0;
1075 emulate_ctxt.ds_base = 0;
1076 emulate_ctxt.es_base = 0;
1077 emulate_ctxt.ss_base = 0;
1079 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1080 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1081 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1082 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1085 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1086 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1088 vcpu->mmio_is_write = 0;
1089 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1091 if ((r || vcpu->mmio_is_write) && run) {
1092 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1093 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1094 run->mmio.len = vcpu->mmio_size;
1095 run->mmio.is_write = vcpu->mmio_is_write;
1099 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1100 return EMULATE_DONE;
1101 if (!vcpu->mmio_needed) {
1102 report_emulation_failure(&emulate_ctxt);
1103 return EMULATE_FAIL;
1105 return EMULATE_DO_MMIO;
1108 kvm_arch_ops->decache_regs(vcpu);
1109 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1111 if (vcpu->mmio_is_write)
1112 return EMULATE_DO_MMIO;
1114 return EMULATE_DONE;
1116 EXPORT_SYMBOL_GPL(emulate_instruction);
1118 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1120 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1123 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1125 struct descriptor_table dt = { limit, base };
1127 kvm_arch_ops->set_gdt(vcpu, &dt);
1130 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1132 struct descriptor_table dt = { limit, base };
1134 kvm_arch_ops->set_idt(vcpu, &dt);
1137 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1138 unsigned long *rflags)
1141 *rflags = kvm_arch_ops->get_rflags(vcpu);
1144 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1146 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1157 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1162 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1163 unsigned long *rflags)
1167 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1168 *rflags = kvm_arch_ops->get_rflags(vcpu);
1177 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1180 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1184 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1189 case 0xc0010010: /* SYSCFG */
1190 case 0xc0010015: /* HWCR */
1191 case MSR_IA32_PLATFORM_ID:
1192 case MSR_IA32_P5_MC_ADDR:
1193 case MSR_IA32_P5_MC_TYPE:
1194 case MSR_IA32_MC0_CTL:
1195 case MSR_IA32_MCG_STATUS:
1196 case MSR_IA32_MCG_CAP:
1197 case MSR_IA32_MC0_MISC:
1198 case MSR_IA32_MC0_MISC+4:
1199 case MSR_IA32_MC0_MISC+8:
1200 case MSR_IA32_MC0_MISC+12:
1201 case MSR_IA32_MC0_MISC+16:
1202 case MSR_IA32_UCODE_REV:
1203 case MSR_IA32_PERF_STATUS:
1204 /* MTRR registers */
1206 case 0x200 ... 0x2ff:
1209 case 0xcd: /* fsb frequency */
1212 case MSR_IA32_APICBASE:
1213 data = vcpu->apic_base;
1215 #ifdef CONFIG_X86_64
1217 data = vcpu->shadow_efer;
1221 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1227 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1230 * Reads an msr value (of 'msr_index') into 'pdata'.
1231 * Returns 0 on success, non-0 otherwise.
1232 * Assumes vcpu_load() was already called.
1234 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1236 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1239 #ifdef CONFIG_X86_64
1241 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1243 if (efer & EFER_RESERVED_BITS) {
1244 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1251 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1252 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1257 kvm_arch_ops->set_efer(vcpu, efer);
1260 efer |= vcpu->shadow_efer & EFER_LMA;
1262 vcpu->shadow_efer = efer;
1267 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1270 #ifdef CONFIG_X86_64
1272 set_efer(vcpu, data);
1275 case MSR_IA32_MC0_STATUS:
1276 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1277 __FUNCTION__, data);
1279 case MSR_IA32_UCODE_REV:
1280 case MSR_IA32_UCODE_WRITE:
1281 case 0x200 ... 0x2ff: /* MTRRs */
1283 case MSR_IA32_APICBASE:
1284 vcpu->apic_base = data;
1287 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1292 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1295 * Writes msr value into into the appropriate "register".
1296 * Returns 0 on success, non-0 otherwise.
1297 * Assumes vcpu_load() was already called.
1299 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1301 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1304 void kvm_resched(struct kvm_vcpu *vcpu)
1308 /* Cannot fail - no vcpu unplug yet. */
1309 vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
1311 EXPORT_SYMBOL_GPL(kvm_resched);
1313 void load_msrs(struct vmx_msr_entry *e, int n)
1317 for (i = 0; i < n; ++i)
1318 wrmsrl(e[i].index, e[i].data);
1320 EXPORT_SYMBOL_GPL(load_msrs);
1322 void save_msrs(struct vmx_msr_entry *e, int n)
1326 for (i = 0; i < n; ++i)
1327 rdmsrl(e[i].index, e[i].data);
1329 EXPORT_SYMBOL_GPL(save_msrs);
1331 static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
1333 struct kvm_vcpu *vcpu;
1336 if (!valid_vcpu(kvm_run->vcpu))
1339 vcpu = vcpu_load(kvm, kvm_run->vcpu);
1343 if (kvm_run->emulated) {
1344 kvm_arch_ops->skip_emulated_instruction(vcpu);
1345 kvm_run->emulated = 0;
1348 if (kvm_run->mmio_completed) {
1349 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1350 vcpu->mmio_read_completed = 1;
1353 vcpu->mmio_needed = 0;
1355 r = kvm_arch_ops->run(vcpu, kvm_run);
1361 static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
1363 struct kvm_vcpu *vcpu;
1365 if (!valid_vcpu(regs->vcpu))
1368 vcpu = vcpu_load(kvm, regs->vcpu);
1372 kvm_arch_ops->cache_regs(vcpu);
1374 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1375 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1376 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1377 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1378 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1379 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1380 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1381 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1382 #ifdef CONFIG_X86_64
1383 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1384 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1385 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1386 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1387 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1388 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1389 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1390 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1393 regs->rip = vcpu->rip;
1394 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1397 * Don't leak debug flags in case they were set for guest debugging
1399 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1400 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1407 static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
1409 struct kvm_vcpu *vcpu;
1411 if (!valid_vcpu(regs->vcpu))
1414 vcpu = vcpu_load(kvm, regs->vcpu);
1418 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1419 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1420 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1421 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1422 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1423 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1424 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1425 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1426 #ifdef CONFIG_X86_64
1427 vcpu->regs[VCPU_REGS_R8] = regs->r8;
1428 vcpu->regs[VCPU_REGS_R9] = regs->r9;
1429 vcpu->regs[VCPU_REGS_R10] = regs->r10;
1430 vcpu->regs[VCPU_REGS_R11] = regs->r11;
1431 vcpu->regs[VCPU_REGS_R12] = regs->r12;
1432 vcpu->regs[VCPU_REGS_R13] = regs->r13;
1433 vcpu->regs[VCPU_REGS_R14] = regs->r14;
1434 vcpu->regs[VCPU_REGS_R15] = regs->r15;
1437 vcpu->rip = regs->rip;
1438 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1440 kvm_arch_ops->decache_regs(vcpu);
1447 static void get_segment(struct kvm_vcpu *vcpu,
1448 struct kvm_segment *var, int seg)
1450 return kvm_arch_ops->get_segment(vcpu, var, seg);
1453 static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1455 struct kvm_vcpu *vcpu;
1456 struct descriptor_table dt;
1458 if (!valid_vcpu(sregs->vcpu))
1460 vcpu = vcpu_load(kvm, sregs->vcpu);
1464 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1465 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1466 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1467 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1468 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1469 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1471 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1472 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1474 kvm_arch_ops->get_idt(vcpu, &dt);
1475 sregs->idt.limit = dt.limit;
1476 sregs->idt.base = dt.base;
1477 kvm_arch_ops->get_gdt(vcpu, &dt);
1478 sregs->gdt.limit = dt.limit;
1479 sregs->gdt.base = dt.base;
1481 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1482 sregs->cr0 = vcpu->cr0;
1483 sregs->cr2 = vcpu->cr2;
1484 sregs->cr3 = vcpu->cr3;
1485 sregs->cr4 = vcpu->cr4;
1486 sregs->cr8 = vcpu->cr8;
1487 sregs->efer = vcpu->shadow_efer;
1488 sregs->apic_base = vcpu->apic_base;
1490 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1491 sizeof sregs->interrupt_bitmap);
1498 static void set_segment(struct kvm_vcpu *vcpu,
1499 struct kvm_segment *var, int seg)
1501 return kvm_arch_ops->set_segment(vcpu, var, seg);
1504 static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1506 struct kvm_vcpu *vcpu;
1507 int mmu_reset_needed = 0;
1509 struct descriptor_table dt;
1511 if (!valid_vcpu(sregs->vcpu))
1513 vcpu = vcpu_load(kvm, sregs->vcpu);
1517 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1518 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1519 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1520 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1521 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1522 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1524 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1525 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1527 dt.limit = sregs->idt.limit;
1528 dt.base = sregs->idt.base;
1529 kvm_arch_ops->set_idt(vcpu, &dt);
1530 dt.limit = sregs->gdt.limit;
1531 dt.base = sregs->gdt.base;
1532 kvm_arch_ops->set_gdt(vcpu, &dt);
1534 vcpu->cr2 = sregs->cr2;
1535 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1536 vcpu->cr3 = sregs->cr3;
1538 vcpu->cr8 = sregs->cr8;
1540 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1541 #ifdef CONFIG_X86_64
1542 kvm_arch_ops->set_efer(vcpu, sregs->efer);
1544 vcpu->apic_base = sregs->apic_base;
1546 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1548 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1549 kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1551 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1552 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1553 if (!is_long_mode(vcpu) && is_pae(vcpu))
1554 load_pdptrs(vcpu, vcpu->cr3);
1556 if (mmu_reset_needed)
1557 kvm_mmu_reset_context(vcpu);
1559 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1560 sizeof vcpu->irq_pending);
1561 vcpu->irq_summary = 0;
1562 for (i = 0; i < NR_IRQ_WORDS; ++i)
1563 if (vcpu->irq_pending[i])
1564 __set_bit(i, &vcpu->irq_summary);
1572 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1573 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1575 * This list is modified at module load time to reflect the
1576 * capabilities of the host cpu.
1578 static u32 msrs_to_save[] = {
1579 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1581 #ifdef CONFIG_X86_64
1582 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1584 MSR_IA32_TIME_STAMP_COUNTER,
1587 static unsigned num_msrs_to_save;
1589 static __init void kvm_init_msr_list(void)
1594 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1595 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1598 msrs_to_save[j] = msrs_to_save[i];
1601 num_msrs_to_save = j;
1605 * Adapt set_msr() to msr_io()'s calling convention
1607 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1609 return set_msr(vcpu, index, *data);
1613 * Read or write a bunch of msrs. All parameters are kernel addresses.
1615 * @return number of msrs set successfully.
1617 static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
1618 struct kvm_msr_entry *entries,
1619 int (*do_msr)(struct kvm_vcpu *vcpu,
1620 unsigned index, u64 *data))
1622 struct kvm_vcpu *vcpu;
1625 if (!valid_vcpu(msrs->vcpu))
1628 vcpu = vcpu_load(kvm, msrs->vcpu);
1632 for (i = 0; i < msrs->nmsrs; ++i)
1633 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1642 * Read or write a bunch of msrs. Parameters are user addresses.
1644 * @return number of msrs set successfully.
1646 static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
1647 int (*do_msr)(struct kvm_vcpu *vcpu,
1648 unsigned index, u64 *data),
1651 struct kvm_msrs msrs;
1652 struct kvm_msr_entry *entries;
1657 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1661 if (msrs.nmsrs >= MAX_IO_MSRS)
1665 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1666 entries = vmalloc(size);
1671 if (copy_from_user(entries, user_msrs->entries, size))
1674 r = n = __msr_io(kvm, &msrs, entries, do_msr);
1679 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1691 * Translate a guest virtual address to a guest physical address.
1693 static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
1695 unsigned long vaddr = tr->linear_address;
1696 struct kvm_vcpu *vcpu;
1699 vcpu = vcpu_load(kvm, tr->vcpu);
1702 spin_lock(&kvm->lock);
1703 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1704 tr->physical_address = gpa;
1705 tr->valid = gpa != UNMAPPED_GVA;
1708 spin_unlock(&kvm->lock);
1714 static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
1716 struct kvm_vcpu *vcpu;
1718 if (!valid_vcpu(irq->vcpu))
1720 if (irq->irq < 0 || irq->irq >= 256)
1722 vcpu = vcpu_load(kvm, irq->vcpu);
1726 set_bit(irq->irq, vcpu->irq_pending);
1727 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1734 static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
1735 struct kvm_debug_guest *dbg)
1737 struct kvm_vcpu *vcpu;
1740 if (!valid_vcpu(dbg->vcpu))
1742 vcpu = vcpu_load(kvm, dbg->vcpu);
1746 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1753 static long kvm_dev_ioctl(struct file *filp,
1754 unsigned int ioctl, unsigned long arg)
1756 struct kvm *kvm = filp->private_data;
1760 case KVM_GET_API_VERSION:
1761 r = KVM_API_VERSION;
1763 case KVM_CREATE_VCPU: {
1764 r = kvm_dev_ioctl_create_vcpu(kvm, arg);
1770 struct kvm_run kvm_run;
1773 if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
1775 r = kvm_dev_ioctl_run(kvm, &kvm_run);
1776 if (r < 0 && r != -EINTR)
1778 if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run)) {
1784 case KVM_GET_REGS: {
1785 struct kvm_regs kvm_regs;
1788 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1790 r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
1794 if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
1799 case KVM_SET_REGS: {
1800 struct kvm_regs kvm_regs;
1803 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1805 r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
1811 case KVM_GET_SREGS: {
1812 struct kvm_sregs kvm_sregs;
1815 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1817 r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
1821 if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
1826 case KVM_SET_SREGS: {
1827 struct kvm_sregs kvm_sregs;
1830 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1832 r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
1838 case KVM_TRANSLATE: {
1839 struct kvm_translation tr;
1842 if (copy_from_user(&tr, (void *)arg, sizeof tr))
1844 r = kvm_dev_ioctl_translate(kvm, &tr);
1848 if (copy_to_user((void *)arg, &tr, sizeof tr))
1853 case KVM_INTERRUPT: {
1854 struct kvm_interrupt irq;
1857 if (copy_from_user(&irq, (void *)arg, sizeof irq))
1859 r = kvm_dev_ioctl_interrupt(kvm, &irq);
1865 case KVM_DEBUG_GUEST: {
1866 struct kvm_debug_guest dbg;
1869 if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
1871 r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
1877 case KVM_SET_MEMORY_REGION: {
1878 struct kvm_memory_region kvm_mem;
1881 if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
1883 r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
1888 case KVM_GET_DIRTY_LOG: {
1889 struct kvm_dirty_log log;
1892 if (copy_from_user(&log, (void *)arg, sizeof log))
1894 r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
1900 r = msr_io(kvm, (void __user *)arg, get_msr, 1);
1903 r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
1905 case KVM_GET_MSR_INDEX_LIST: {
1906 struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
1907 struct kvm_msr_list msr_list;
1911 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1914 msr_list.nmsrs = num_msrs_to_save;
1915 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1918 if (n < num_msrs_to_save)
1921 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1922 num_msrs_to_save * sizeof(u32)))
1933 static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
1934 unsigned long address,
1937 struct kvm *kvm = vma->vm_file->private_data;
1938 unsigned long pgoff;
1939 struct kvm_memory_slot *slot;
1942 *type = VM_FAULT_MINOR;
1943 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1944 slot = gfn_to_memslot(kvm, pgoff);
1946 return NOPAGE_SIGBUS;
1947 page = gfn_to_page(slot, pgoff);
1949 return NOPAGE_SIGBUS;
1954 static struct vm_operations_struct kvm_dev_vm_ops = {
1955 .nopage = kvm_dev_nopage,
1958 static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
1960 vma->vm_ops = &kvm_dev_vm_ops;
1964 static struct file_operations kvm_chardev_ops = {
1965 .open = kvm_dev_open,
1966 .release = kvm_dev_release,
1967 .unlocked_ioctl = kvm_dev_ioctl,
1968 .compat_ioctl = kvm_dev_ioctl,
1969 .mmap = kvm_dev_mmap,
1972 static struct miscdevice kvm_dev = {
1978 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1981 if (val == SYS_RESTART) {
1983 * Some (well, at least mine) BIOSes hang on reboot if
1986 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1987 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1992 static struct notifier_block kvm_reboot_notifier = {
1993 .notifier_call = kvm_reboot,
1997 static __init void kvm_init_debug(void)
1999 struct kvm_stats_debugfs_item *p;
2001 debugfs_dir = debugfs_create_dir("kvm", 0);
2002 for (p = debugfs_entries; p->name; ++p)
2003 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
2007 static void kvm_exit_debug(void)
2009 struct kvm_stats_debugfs_item *p;
2011 for (p = debugfs_entries; p->name; ++p)
2012 debugfs_remove(p->dentry);
2013 debugfs_remove(debugfs_dir);
2016 hpa_t bad_page_address;
2018 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
2023 printk(KERN_ERR "kvm: already loaded the other module\n");
2027 if (!ops->cpu_has_kvm_support()) {
2028 printk(KERN_ERR "kvm: no hardware support\n");
2031 if (ops->disabled_by_bios()) {
2032 printk(KERN_ERR "kvm: disabled by bios\n");
2038 r = kvm_arch_ops->hardware_setup();
2042 on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
2043 register_reboot_notifier(&kvm_reboot_notifier);
2045 kvm_chardev_ops.owner = module;
2047 r = misc_register(&kvm_dev);
2049 printk (KERN_ERR "kvm: misc device register failed\n");
2056 unregister_reboot_notifier(&kvm_reboot_notifier);
2057 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
2058 kvm_arch_ops->hardware_unsetup();
2062 void kvm_exit_arch(void)
2064 misc_deregister(&kvm_dev);
2066 unregister_reboot_notifier(&kvm_reboot_notifier);
2067 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
2068 kvm_arch_ops->hardware_unsetup();
2069 kvm_arch_ops = NULL;
2072 static __init int kvm_init(void)
2074 static struct page *bad_page;
2079 kvm_init_msr_list();
2081 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2086 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2087 memset(__va(bad_page_address), 0, PAGE_SIZE);
2096 static __exit void kvm_exit(void)
2099 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2102 module_init(kvm_init)
2103 module_exit(kvm_exit)
2105 EXPORT_SYMBOL_GPL(kvm_init_arch);
2106 EXPORT_SYMBOL_GPL(kvm_exit_arch);