2 * arch/arm/kernel/kprobes.c
6 * Abhishek Sagar <sagar.abhishek@gmail.com>
7 * Copyright (C) 2006, 2007 Motorola Inc.
9 * Nicolas Pitre <nico@marvell.com>
10 * Copyright (C) 2007 Marvell Ltd.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/stringify.h>
26 #include <asm/traps.h>
27 #include <asm/cacheflush.h>
29 #define MIN_STACK_SIZE(addr) \
30 min((unsigned long)MAX_STACK_SIZE, \
31 (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
33 #define flush_insns(addr, cnt) \
34 flush_icache_range((unsigned long)(addr), \
35 (unsigned long)(addr) + \
36 sizeof(kprobe_opcode_t) * (cnt))
38 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
39 #define JPROBE_MAGIC_ADDR 0xffffffff
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
45 int __kprobes arch_prepare_kprobe(struct kprobe *p)
48 kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
49 unsigned long addr = (unsigned long)p->addr;
52 if (addr & 0x3 || in_exception_text(addr))
57 p->ainsn.insn = tmp_insn;
59 switch (arm_kprobe_decode_insn(insn, &p->ainsn)) {
60 case INSN_REJECTED: /* not supported */
63 case INSN_GOOD: /* instruction uses slot */
64 p->ainsn.insn = get_insn_slot();
67 for (is = 0; is < MAX_INSN_SIZE; ++is)
68 p->ainsn.insn[is] = tmp_insn[is];
69 flush_insns(p->ainsn.insn, MAX_INSN_SIZE);
72 case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
80 void __kprobes arch_arm_kprobe(struct kprobe *p)
82 *p->addr = KPROBE_BREAKPOINT_INSTRUCTION;
83 flush_insns(p->addr, 1);
86 void __kprobes arch_disarm_kprobe(struct kprobe *p)
89 flush_insns(p->addr, 1);
92 void __kprobes arch_remove_kprobe(struct kprobe *p)
95 mutex_lock(&kprobe_mutex);
96 free_insn_slot(p->ainsn.insn, 0);
97 mutex_unlock(&kprobe_mutex);
102 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
104 kcb->prev_kprobe.kp = kprobe_running();
105 kcb->prev_kprobe.status = kcb->kprobe_status;
108 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
110 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
111 kcb->kprobe_status = kcb->prev_kprobe.status;
114 static void __kprobes set_current_kprobe(struct kprobe *p)
116 __get_cpu_var(current_kprobe) = p;
119 static void __kprobes singlestep(struct kprobe *p, struct pt_regs *regs,
120 struct kprobe_ctlblk *kcb)
123 p->ainsn.insn_handler(p, regs);
127 * Called with IRQs disabled. IRQs must remain disabled from that point
128 * all the way until processing this kprobe is complete. The current
129 * kprobes implementation cannot process more than one nested level of
130 * kprobe, and that level is reserved for user kprobe handlers, so we can't
131 * risk encountering a new kprobe in an interrupt handler.
133 void __kprobes kprobe_handler(struct pt_regs *regs)
135 struct kprobe *p, *cur;
136 struct kprobe_ctlblk *kcb;
137 kprobe_opcode_t *addr = (kprobe_opcode_t *)regs->ARM_pc;
139 kcb = get_kprobe_ctlblk();
140 cur = kprobe_running();
141 p = get_kprobe(addr);
145 /* Kprobe is pending, so we're recursing. */
146 switch (kcb->kprobe_status) {
147 case KPROBE_HIT_ACTIVE:
148 case KPROBE_HIT_SSDONE:
149 /* A pre- or post-handler probe got us here. */
150 kprobes_inc_nmissed_count(p);
151 save_previous_kprobe(kcb);
152 set_current_kprobe(p);
153 kcb->kprobe_status = KPROBE_REENTER;
154 singlestep(p, regs, kcb);
155 restore_previous_kprobe(kcb);
158 /* impossible cases */
162 set_current_kprobe(p);
163 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
166 * If we have no pre-handler or it returned 0, we
167 * continue with normal processing. If we have a
168 * pre-handler and it returned non-zero, it prepped
169 * for calling the break_handler below on re-entry,
170 * so get out doing nothing more here.
172 if (!p->pre_handler || !p->pre_handler(p, regs)) {
173 kcb->kprobe_status = KPROBE_HIT_SS;
174 singlestep(p, regs, kcb);
175 if (p->post_handler) {
176 kcb->kprobe_status = KPROBE_HIT_SSDONE;
177 p->post_handler(p, regs, 0);
179 reset_current_kprobe();
183 /* We probably hit a jprobe. Call its break handler. */
184 if (cur->break_handler && cur->break_handler(cur, regs)) {
185 kcb->kprobe_status = KPROBE_HIT_SS;
186 singlestep(cur, regs, kcb);
187 if (cur->post_handler) {
188 kcb->kprobe_status = KPROBE_HIT_SSDONE;
189 cur->post_handler(cur, regs, 0);
192 reset_current_kprobe();
195 * The probe was removed and a race is in progress.
196 * There is nothing we can do about it. Let's restart
197 * the instruction. By the time we can restart, the
198 * real instruction will be there.
203 int kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
205 kprobe_handler(regs);
209 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
211 struct kprobe *cur = kprobe_running();
212 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
214 switch (kcb->kprobe_status) {
218 * We are here because the instruction being single
219 * stepped caused a page fault. We reset the current
220 * kprobe and the PC to point back to the probe address
221 * and allow the page fault handler to continue as a
224 regs->ARM_pc = (long)cur->addr;
225 if (kcb->kprobe_status == KPROBE_REENTER) {
226 restore_previous_kprobe(kcb);
228 reset_current_kprobe();
232 case KPROBE_HIT_ACTIVE:
233 case KPROBE_HIT_SSDONE:
235 * We increment the nmissed count for accounting,
236 * we can also use npre/npostfault count for accounting
237 * these specific fault cases.
239 kprobes_inc_nmissed_count(cur);
242 * We come here because instructions in the pre/post
243 * handler caused the page_fault, this could happen
244 * if handler tries to access user space by
245 * copy_from_user(), get_user() etc. Let the
246 * user-specified handler try to fix it.
248 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
259 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
260 unsigned long val, void *data)
263 * notify_die() is currently never called on ARM,
264 * so this callback is currently empty.
270 * When a retprobed function returns, trampoline_handler() is called,
271 * calling the kretprobe's handler. We construct a struct pt_regs to
272 * give a view of registers r0-r11 to the user return-handler. This is
273 * not a complete pt_regs structure, but that should be plenty sufficient
274 * for kretprobe handlers which should normally be interested in r0 only
277 void __naked __kprobes kretprobe_trampoline(void)
279 __asm__ __volatile__ (
280 "stmdb sp!, {r0 - r11} \n\t"
282 "bl trampoline_handler \n\t"
284 "ldmia sp!, {r0 - r11} \n\t"
289 /* Called from kretprobe_trampoline */
290 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
292 struct kretprobe_instance *ri = NULL;
293 struct hlist_head *head, empty_rp;
294 struct hlist_node *node, *tmp;
295 unsigned long flags, orig_ret_address = 0;
296 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
298 INIT_HLIST_HEAD(&empty_rp);
299 kretprobe_hash_lock(current, &head, &flags);
302 * It is possible to have multiple instances associated with a given
303 * task either because multiple functions in the call path have
304 * a return probe installed on them, and/or more than one return
305 * probe was registered for a target function.
307 * We can handle this because:
308 * - instances are always inserted at the head of the list
309 * - when multiple return probes are registered for the same
310 * function, the first instance's ret_addr will point to the
311 * real return address, and all the rest will point to
312 * kretprobe_trampoline
314 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
315 if (ri->task != current)
316 /* another task is sharing our hash bucket */
319 if (ri->rp && ri->rp->handler) {
320 __get_cpu_var(current_kprobe) = &ri->rp->kp;
321 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
322 ri->rp->handler(ri, regs);
323 __get_cpu_var(current_kprobe) = NULL;
326 orig_ret_address = (unsigned long)ri->ret_addr;
327 recycle_rp_inst(ri, &empty_rp);
329 if (orig_ret_address != trampoline_address)
331 * This is the real return address. Any other
332 * instances associated with this task are for
333 * other calls deeper on the call stack
338 kretprobe_assert(ri, orig_ret_address, trampoline_address);
339 kretprobe_hash_unlock(current, &flags);
341 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
342 hlist_del(&ri->hlist);
346 return (void *)orig_ret_address;
349 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
350 struct pt_regs *regs)
352 ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
354 /* Replace the return addr with trampoline addr. */
355 regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
358 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
360 struct jprobe *jp = container_of(p, struct jprobe, kp);
361 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
362 long sp_addr = regs->ARM_sp;
364 kcb->jprobe_saved_regs = *regs;
365 memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
366 regs->ARM_pc = (long)jp->entry;
367 regs->ARM_cpsr |= PSR_I_BIT;
372 void __kprobes jprobe_return(void)
374 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
376 __asm__ __volatile__ (
378 * Setup an empty pt_regs. Fill SP and PC fields as
379 * they're needed by longjmp_break_handler.
381 "sub sp, %0, %1 \n\t"
382 "ldr r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
383 "str %0, [sp, %2] \n\t"
384 "str r0, [sp, %3] \n\t"
386 "bl kprobe_handler \n\t"
389 * Return to the context saved by setjmp_pre_handler
390 * and restored by longjmp_break_handler.
392 "ldr r0, [sp, %4] \n\t"
393 "msr cpsr_cxsf, r0 \n\t"
394 "ldmia sp, {r0 - pc} \n\t"
396 : "r" (kcb->jprobe_saved_regs.ARM_sp),
397 "I" (sizeof(struct pt_regs)),
398 "J" (offsetof(struct pt_regs, ARM_sp)),
399 "J" (offsetof(struct pt_regs, ARM_pc)),
400 "J" (offsetof(struct pt_regs, ARM_cpsr))
404 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
406 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
407 long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
408 long orig_sp = regs->ARM_sp;
409 struct jprobe *jp = container_of(p, struct jprobe, kp);
411 if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
412 if (orig_sp != stack_addr) {
413 struct pt_regs *saved_regs =
414 (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
415 printk("current sp %lx does not match saved sp %lx\n",
416 orig_sp, stack_addr);
417 printk("Saved registers for jprobe %p\n", jp);
418 show_regs(saved_regs);
419 printk("Current registers\n");
423 *regs = kcb->jprobe_saved_regs;
424 memcpy((void *)stack_addr, kcb->jprobes_stack,
425 MIN_STACK_SIZE(stack_addr));
426 preempt_enable_no_resched();
432 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
437 static struct undef_hook kprobes_break_hook = {
438 .instr_mask = 0xffffffff,
439 .instr_val = KPROBE_BREAKPOINT_INSTRUCTION,
440 .cpsr_mask = MODE_MASK,
441 .cpsr_val = SVC_MODE,
442 .fn = kprobe_trap_handler,
445 int __init arch_init_kprobes()
447 arm_kprobe_decode_init();
448 register_undef_hook(&kprobes_break_hook);