4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
71 #include <asm/irq_regs.h>
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
78 unsigned long long __attribute__((weak)) sched_clock(void)
80 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
131 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
138 static inline int rt_policy(int policy)
140 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
145 static inline int task_has_rt_policy(struct task_struct *p)
147 return rt_policy(p->policy);
151 * This is the priority-queue data structure of the RT scheduling class:
153 struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
158 #ifdef CONFIG_GROUP_SCHED
160 #include <linux/cgroup.h>
164 static LIST_HEAD(task_groups);
166 /* task group related information */
168 #ifdef CONFIG_CGROUP_SCHED
169 struct cgroup_subsys_state css;
172 #ifdef CONFIG_FAIR_GROUP_SCHED
173 /* schedulable entities of this group on each cpu */
174 struct sched_entity **se;
175 /* runqueue "owned" by this group on each cpu */
176 struct cfs_rq **cfs_rq;
179 * shares assigned to a task group governs how much of cpu bandwidth
180 * is allocated to the group. The more shares a group has, the more is
181 * the cpu bandwidth allocated to it.
183 * For ex, lets say that there are three task groups, A, B and C which
184 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
185 * cpu bandwidth allocated by the scheduler to task groups A, B and C
188 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
189 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
190 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
192 * The weight assigned to a task group's schedulable entities on every
193 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
194 * group's shares. For ex: lets say that task group A has been
195 * assigned shares of 1000 and there are two CPUs in a system. Then,
197 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
199 * Note: It's not necessary that each of a task's group schedulable
200 * entity have the same weight on all CPUs. If the group
201 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
202 * better distribution of weight could be:
204 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
205 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
207 * rebalance_shares() is responsible for distributing the shares of a
208 * task groups like this among the group's schedulable entities across
212 unsigned long shares;
215 #ifdef CONFIG_RT_GROUP_SCHED
216 struct sched_rt_entity **rt_se;
217 struct rt_rq **rt_rq;
223 struct list_head list;
226 #ifdef CONFIG_FAIR_GROUP_SCHED
227 /* Default task group's sched entity on each cpu */
228 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
229 /* Default task group's cfs_rq on each cpu */
230 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
232 static struct sched_entity *init_sched_entity_p[NR_CPUS];
233 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
236 #ifdef CONFIG_RT_GROUP_SCHED
237 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
238 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
240 static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
241 static struct rt_rq *init_rt_rq_p[NR_CPUS];
244 /* task_group_lock serializes add/remove of task groups and also changes to
245 * a task group's cpu shares.
247 static DEFINE_SPINLOCK(task_group_lock);
249 /* doms_cur_mutex serializes access to doms_cur[] array */
250 static DEFINE_MUTEX(doms_cur_mutex);
252 #ifdef CONFIG_FAIR_GROUP_SCHED
254 /* kernel thread that runs rebalance_shares() periodically */
255 static struct task_struct *lb_monitor_task;
256 static int load_balance_monitor(void *unused);
259 static void set_se_shares(struct sched_entity *se, unsigned long shares);
261 #ifdef CONFIG_USER_SCHED
262 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
264 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
267 #define MIN_GROUP_SHARES 2
269 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
272 /* Default task group.
273 * Every task in system belong to this group at bootup.
275 struct task_group init_task_group = {
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 .se = init_sched_entity_p,
278 .cfs_rq = init_cfs_rq_p,
281 #ifdef CONFIG_RT_GROUP_SCHED
282 .rt_se = init_sched_rt_entity_p,
283 .rt_rq = init_rt_rq_p,
287 /* return group to which a task belongs */
288 static inline struct task_group *task_group(struct task_struct *p)
290 struct task_group *tg;
292 #ifdef CONFIG_USER_SCHED
294 #elif defined(CONFIG_CGROUP_SCHED)
295 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
296 struct task_group, css);
298 tg = &init_task_group;
303 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
304 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
306 #ifdef CONFIG_FAIR_GROUP_SCHED
307 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
308 p->se.parent = task_group(p)->se[cpu];
311 #ifdef CONFIG_RT_GROUP_SCHED
312 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
313 p->rt.parent = task_group(p)->rt_se[cpu];
317 static inline void lock_doms_cur(void)
319 mutex_lock(&doms_cur_mutex);
322 static inline void unlock_doms_cur(void)
324 mutex_unlock(&doms_cur_mutex);
329 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
330 static inline void lock_doms_cur(void) { }
331 static inline void unlock_doms_cur(void) { }
333 #endif /* CONFIG_GROUP_SCHED */
335 /* CFS-related fields in a runqueue */
337 struct load_weight load;
338 unsigned long nr_running;
343 struct rb_root tasks_timeline;
344 struct rb_node *rb_leftmost;
345 struct rb_node *rb_load_balance_curr;
346 /* 'curr' points to currently running entity on this cfs_rq.
347 * It is set to NULL otherwise (i.e when none are currently running).
349 struct sched_entity *curr;
351 unsigned long nr_spread_over;
353 #ifdef CONFIG_FAIR_GROUP_SCHED
354 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
357 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
358 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
359 * (like users, containers etc.)
361 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
362 * list is used during load balance.
364 struct list_head leaf_cfs_rq_list;
365 struct task_group *tg; /* group that "owns" this runqueue */
369 /* Real-Time classes' related field in a runqueue: */
371 struct rt_prio_array active;
372 unsigned long rt_nr_running;
373 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
374 int highest_prio; /* highest queued rt task prio */
377 unsigned long rt_nr_migratory;
383 #ifdef CONFIG_RT_GROUP_SCHED
384 unsigned long rt_nr_boosted;
387 struct list_head leaf_rt_rq_list;
388 struct task_group *tg;
389 struct sched_rt_entity *rt_se;
396 * We add the notion of a root-domain which will be used to define per-domain
397 * variables. Each exclusive cpuset essentially defines an island domain by
398 * fully partitioning the member cpus from any other cpuset. Whenever a new
399 * exclusive cpuset is created, we also create and attach a new root-domain
409 * The "RT overload" flag: it gets set if a CPU has more than
410 * one runnable RT task.
417 * By default the system creates a single root-domain with all cpus as
418 * members (mimicking the global state we have today).
420 static struct root_domain def_root_domain;
425 * This is the main, per-CPU runqueue data structure.
427 * Locking rule: those places that want to lock multiple runqueues
428 * (such as the load balancing or the thread migration code), lock
429 * acquire operations must be ordered by ascending &runqueue.
436 * nr_running and cpu_load should be in the same cacheline because
437 * remote CPUs use both these fields when doing load calculation.
439 unsigned long nr_running;
440 #define CPU_LOAD_IDX_MAX 5
441 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
442 unsigned char idle_at_tick;
444 unsigned char in_nohz_recently;
446 /* capture load from *all* tasks on this cpu: */
447 struct load_weight load;
448 unsigned long nr_load_updates;
453 u64 rt_period_expire;
456 #ifdef CONFIG_FAIR_GROUP_SCHED
457 /* list of leaf cfs_rq on this cpu: */
458 struct list_head leaf_cfs_rq_list;
460 #ifdef CONFIG_RT_GROUP_SCHED
461 struct list_head leaf_rt_rq_list;
465 * This is part of a global counter where only the total sum
466 * over all CPUs matters. A task can increase this counter on
467 * one CPU and if it got migrated afterwards it may decrease
468 * it on another CPU. Always updated under the runqueue lock:
470 unsigned long nr_uninterruptible;
472 struct task_struct *curr, *idle;
473 unsigned long next_balance;
474 struct mm_struct *prev_mm;
476 u64 clock, prev_clock_raw;
479 unsigned int clock_warps, clock_overflows, clock_underflows;
481 unsigned int clock_deep_idle_events;
487 struct root_domain *rd;
488 struct sched_domain *sd;
490 /* For active balancing */
493 /* cpu of this runqueue: */
496 struct task_struct *migration_thread;
497 struct list_head migration_queue;
500 #ifdef CONFIG_SCHED_HRTICK
501 unsigned long hrtick_flags;
502 ktime_t hrtick_expire;
503 struct hrtimer hrtick_timer;
506 #ifdef CONFIG_SCHEDSTATS
508 struct sched_info rq_sched_info;
510 /* sys_sched_yield() stats */
511 unsigned int yld_exp_empty;
512 unsigned int yld_act_empty;
513 unsigned int yld_both_empty;
514 unsigned int yld_count;
516 /* schedule() stats */
517 unsigned int sched_switch;
518 unsigned int sched_count;
519 unsigned int sched_goidle;
521 /* try_to_wake_up() stats */
522 unsigned int ttwu_count;
523 unsigned int ttwu_local;
526 unsigned int bkl_count;
528 struct lock_class_key rq_lock_key;
531 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
533 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
535 rq->curr->sched_class->check_preempt_curr(rq, p);
538 static inline int cpu_of(struct rq *rq)
548 * Update the per-runqueue clock, as finegrained as the platform can give
549 * us, but without assuming monotonicity, etc.:
551 static void __update_rq_clock(struct rq *rq)
553 u64 prev_raw = rq->prev_clock_raw;
554 u64 now = sched_clock();
555 s64 delta = now - prev_raw;
556 u64 clock = rq->clock;
558 #ifdef CONFIG_SCHED_DEBUG
559 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
562 * Protect against sched_clock() occasionally going backwards:
564 if (unlikely(delta < 0)) {
569 * Catch too large forward jumps too:
571 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
572 if (clock < rq->tick_timestamp + TICK_NSEC)
573 clock = rq->tick_timestamp + TICK_NSEC;
576 rq->clock_overflows++;
578 if (unlikely(delta > rq->clock_max_delta))
579 rq->clock_max_delta = delta;
584 rq->prev_clock_raw = now;
588 static void update_rq_clock(struct rq *rq)
590 if (likely(smp_processor_id() == cpu_of(rq)))
591 __update_rq_clock(rq);
595 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
596 * See detach_destroy_domains: synchronize_sched for details.
598 * The domain tree of any CPU may only be accessed from within
599 * preempt-disabled sections.
601 #define for_each_domain(cpu, __sd) \
602 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
604 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
605 #define this_rq() (&__get_cpu_var(runqueues))
606 #define task_rq(p) cpu_rq(task_cpu(p))
607 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
609 unsigned long rt_needs_cpu(int cpu)
611 struct rq *rq = cpu_rq(cpu);
614 if (!rq->rt_throttled)
617 if (rq->clock > rq->rt_period_expire)
620 delta = rq->rt_period_expire - rq->clock;
621 do_div(delta, NSEC_PER_SEC / HZ);
623 return (unsigned long)delta;
627 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
629 #ifdef CONFIG_SCHED_DEBUG
630 # define const_debug __read_mostly
632 # define const_debug static const
636 * Debugging: various feature bits
639 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
640 SCHED_FEAT_WAKEUP_PREEMPT = 2,
641 SCHED_FEAT_START_DEBIT = 4,
642 SCHED_FEAT_TREE_AVG = 8,
643 SCHED_FEAT_APPROX_AVG = 16,
644 SCHED_FEAT_HRTICK = 32,
645 SCHED_FEAT_DOUBLE_TICK = 64,
648 const_debug unsigned int sysctl_sched_features =
649 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
650 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
651 SCHED_FEAT_START_DEBIT * 1 |
652 SCHED_FEAT_TREE_AVG * 0 |
653 SCHED_FEAT_APPROX_AVG * 0 |
654 SCHED_FEAT_HRTICK * 1 |
655 SCHED_FEAT_DOUBLE_TICK * 0;
657 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
660 * Number of tasks to iterate in a single balance run.
661 * Limited because this is done with IRQs disabled.
663 const_debug unsigned int sysctl_sched_nr_migrate = 32;
666 * period over which we measure -rt task cpu usage in us.
669 unsigned int sysctl_sched_rt_period = 1000000;
672 * part of the period that we allow rt tasks to run in us.
675 int sysctl_sched_rt_runtime = 950000;
678 * single value that denotes runtime == period, ie unlimited time.
680 #define RUNTIME_INF ((u64)~0ULL)
683 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
684 * clock constructed from sched_clock():
686 unsigned long long cpu_clock(int cpu)
688 unsigned long long now;
692 local_irq_save(flags);
695 * Only call sched_clock() if the scheduler has already been
696 * initialized (some code might call cpu_clock() very early):
701 local_irq_restore(flags);
705 EXPORT_SYMBOL_GPL(cpu_clock);
707 #ifndef prepare_arch_switch
708 # define prepare_arch_switch(next) do { } while (0)
710 #ifndef finish_arch_switch
711 # define finish_arch_switch(prev) do { } while (0)
714 static inline int task_current(struct rq *rq, struct task_struct *p)
716 return rq->curr == p;
719 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
720 static inline int task_running(struct rq *rq, struct task_struct *p)
722 return task_current(rq, p);
725 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
729 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
731 #ifdef CONFIG_DEBUG_SPINLOCK
732 /* this is a valid case when another task releases the spinlock */
733 rq->lock.owner = current;
736 * If we are tracking spinlock dependencies then we have to
737 * fix up the runqueue lock - which gets 'carried over' from
740 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
742 spin_unlock_irq(&rq->lock);
745 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
746 static inline int task_running(struct rq *rq, struct task_struct *p)
751 return task_current(rq, p);
755 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
759 * We can optimise this out completely for !SMP, because the
760 * SMP rebalancing from interrupt is the only thing that cares
765 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
766 spin_unlock_irq(&rq->lock);
768 spin_unlock(&rq->lock);
772 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
776 * After ->oncpu is cleared, the task can be moved to a different CPU.
777 * We must ensure this doesn't happen until the switch is completely
783 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
787 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
790 * __task_rq_lock - lock the runqueue a given task resides on.
791 * Must be called interrupts disabled.
793 static inline struct rq *__task_rq_lock(struct task_struct *p)
797 struct rq *rq = task_rq(p);
798 spin_lock(&rq->lock);
799 if (likely(rq == task_rq(p)))
801 spin_unlock(&rq->lock);
806 * task_rq_lock - lock the runqueue a given task resides on and disable
807 * interrupts. Note the ordering: we can safely lookup the task_rq without
808 * explicitly disabling preemption.
810 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
816 local_irq_save(*flags);
818 spin_lock(&rq->lock);
819 if (likely(rq == task_rq(p)))
821 spin_unlock_irqrestore(&rq->lock, *flags);
825 static void __task_rq_unlock(struct rq *rq)
828 spin_unlock(&rq->lock);
831 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
834 spin_unlock_irqrestore(&rq->lock, *flags);
838 * this_rq_lock - lock this runqueue and disable interrupts.
840 static struct rq *this_rq_lock(void)
847 spin_lock(&rq->lock);
853 * We are going deep-idle (irqs are disabled):
855 void sched_clock_idle_sleep_event(void)
857 struct rq *rq = cpu_rq(smp_processor_id());
859 spin_lock(&rq->lock);
860 __update_rq_clock(rq);
861 spin_unlock(&rq->lock);
862 rq->clock_deep_idle_events++;
864 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
867 * We just idled delta nanoseconds (called with irqs disabled):
869 void sched_clock_idle_wakeup_event(u64 delta_ns)
871 struct rq *rq = cpu_rq(smp_processor_id());
872 u64 now = sched_clock();
874 rq->idle_clock += delta_ns;
876 * Override the previous timestamp and ignore all
877 * sched_clock() deltas that occured while we idled,
878 * and use the PM-provided delta_ns to advance the
881 spin_lock(&rq->lock);
882 rq->prev_clock_raw = now;
883 rq->clock += delta_ns;
884 spin_unlock(&rq->lock);
885 touch_softlockup_watchdog();
887 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
889 static void __resched_task(struct task_struct *p, int tif_bit);
891 static inline void resched_task(struct task_struct *p)
893 __resched_task(p, TIF_NEED_RESCHED);
896 #ifdef CONFIG_SCHED_HRTICK
898 * Use HR-timers to deliver accurate preemption points.
900 * Its all a bit involved since we cannot program an hrt while holding the
901 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
904 * When we get rescheduled we reprogram the hrtick_timer outside of the
907 static inline void resched_hrt(struct task_struct *p)
909 __resched_task(p, TIF_HRTICK_RESCHED);
912 static inline void resched_rq(struct rq *rq)
916 spin_lock_irqsave(&rq->lock, flags);
917 resched_task(rq->curr);
918 spin_unlock_irqrestore(&rq->lock, flags);
922 HRTICK_SET, /* re-programm hrtick_timer */
923 HRTICK_RESET, /* not a new slice */
928 * - enabled by features
929 * - hrtimer is actually high res
931 static inline int hrtick_enabled(struct rq *rq)
933 if (!sched_feat(HRTICK))
935 return hrtimer_is_hres_active(&rq->hrtick_timer);
939 * Called to set the hrtick timer state.
941 * called with rq->lock held and irqs disabled
943 static void hrtick_start(struct rq *rq, u64 delay, int reset)
945 assert_spin_locked(&rq->lock);
948 * preempt at: now + delay
951 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
953 * indicate we need to program the timer
955 __set_bit(HRTICK_SET, &rq->hrtick_flags);
957 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
960 * New slices are called from the schedule path and don't need a
964 resched_hrt(rq->curr);
967 static void hrtick_clear(struct rq *rq)
969 if (hrtimer_active(&rq->hrtick_timer))
970 hrtimer_cancel(&rq->hrtick_timer);
974 * Update the timer from the possible pending state.
976 static void hrtick_set(struct rq *rq)
982 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
984 spin_lock_irqsave(&rq->lock, flags);
985 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
986 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
987 time = rq->hrtick_expire;
988 clear_thread_flag(TIF_HRTICK_RESCHED);
989 spin_unlock_irqrestore(&rq->lock, flags);
992 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
993 if (reset && !hrtimer_active(&rq->hrtick_timer))
1000 * High-resolution timer tick.
1001 * Runs from hardirq context with interrupts disabled.
1003 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1005 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1007 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1009 spin_lock(&rq->lock);
1010 __update_rq_clock(rq);
1011 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1012 spin_unlock(&rq->lock);
1014 return HRTIMER_NORESTART;
1017 static inline void init_rq_hrtick(struct rq *rq)
1019 rq->hrtick_flags = 0;
1020 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1021 rq->hrtick_timer.function = hrtick;
1022 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1025 void hrtick_resched(void)
1028 unsigned long flags;
1030 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1033 local_irq_save(flags);
1034 rq = cpu_rq(smp_processor_id());
1036 local_irq_restore(flags);
1039 static inline void hrtick_clear(struct rq *rq)
1043 static inline void hrtick_set(struct rq *rq)
1047 static inline void init_rq_hrtick(struct rq *rq)
1051 void hrtick_resched(void)
1057 * resched_task - mark a task 'to be rescheduled now'.
1059 * On UP this means the setting of the need_resched flag, on SMP it
1060 * might also involve a cross-CPU call to trigger the scheduler on
1065 #ifndef tsk_is_polling
1066 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1069 static void __resched_task(struct task_struct *p, int tif_bit)
1073 assert_spin_locked(&task_rq(p)->lock);
1075 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1078 set_tsk_thread_flag(p, tif_bit);
1081 if (cpu == smp_processor_id())
1084 /* NEED_RESCHED must be visible before we test polling */
1086 if (!tsk_is_polling(p))
1087 smp_send_reschedule(cpu);
1090 static void resched_cpu(int cpu)
1092 struct rq *rq = cpu_rq(cpu);
1093 unsigned long flags;
1095 if (!spin_trylock_irqsave(&rq->lock, flags))
1097 resched_task(cpu_curr(cpu));
1098 spin_unlock_irqrestore(&rq->lock, flags);
1101 static void __resched_task(struct task_struct *p, int tif_bit)
1103 assert_spin_locked(&task_rq(p)->lock);
1104 set_tsk_thread_flag(p, tif_bit);
1108 #if BITS_PER_LONG == 32
1109 # define WMULT_CONST (~0UL)
1111 # define WMULT_CONST (1UL << 32)
1114 #define WMULT_SHIFT 32
1117 * Shift right and round:
1119 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1121 static unsigned long
1122 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1123 struct load_weight *lw)
1127 if (unlikely(!lw->inv_weight))
1128 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
1130 tmp = (u64)delta_exec * weight;
1132 * Check whether we'd overflow the 64-bit multiplication:
1134 if (unlikely(tmp > WMULT_CONST))
1135 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1138 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1140 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1143 static inline unsigned long
1144 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1146 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1149 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1154 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1160 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1161 * of tasks with abnormal "nice" values across CPUs the contribution that
1162 * each task makes to its run queue's load is weighted according to its
1163 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1164 * scaled version of the new time slice allocation that they receive on time
1168 #define WEIGHT_IDLEPRIO 2
1169 #define WMULT_IDLEPRIO (1 << 31)
1172 * Nice levels are multiplicative, with a gentle 10% change for every
1173 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1174 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1175 * that remained on nice 0.
1177 * The "10% effect" is relative and cumulative: from _any_ nice level,
1178 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1179 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1180 * If a task goes up by ~10% and another task goes down by ~10% then
1181 * the relative distance between them is ~25%.)
1183 static const int prio_to_weight[40] = {
1184 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1185 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1186 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1187 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1188 /* 0 */ 1024, 820, 655, 526, 423,
1189 /* 5 */ 335, 272, 215, 172, 137,
1190 /* 10 */ 110, 87, 70, 56, 45,
1191 /* 15 */ 36, 29, 23, 18, 15,
1195 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1197 * In cases where the weight does not change often, we can use the
1198 * precalculated inverse to speed up arithmetics by turning divisions
1199 * into multiplications:
1201 static const u32 prio_to_wmult[40] = {
1202 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1203 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1204 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1205 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1206 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1207 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1208 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1209 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1212 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1215 * runqueue iterator, to support SMP load-balancing between different
1216 * scheduling classes, without having to expose their internal data
1217 * structures to the load-balancing proper:
1219 struct rq_iterator {
1221 struct task_struct *(*start)(void *);
1222 struct task_struct *(*next)(void *);
1226 static unsigned long
1227 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1228 unsigned long max_load_move, struct sched_domain *sd,
1229 enum cpu_idle_type idle, int *all_pinned,
1230 int *this_best_prio, struct rq_iterator *iterator);
1233 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1234 struct sched_domain *sd, enum cpu_idle_type idle,
1235 struct rq_iterator *iterator);
1238 #ifdef CONFIG_CGROUP_CPUACCT
1239 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1241 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1244 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1246 update_load_add(&rq->load, load);
1249 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1251 update_load_sub(&rq->load, load);
1255 static unsigned long source_load(int cpu, int type);
1256 static unsigned long target_load(int cpu, int type);
1257 static unsigned long cpu_avg_load_per_task(int cpu);
1258 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1259 #endif /* CONFIG_SMP */
1261 #include "sched_stats.h"
1262 #include "sched_idletask.c"
1263 #include "sched_fair.c"
1264 #include "sched_rt.c"
1265 #ifdef CONFIG_SCHED_DEBUG
1266 # include "sched_debug.c"
1269 #define sched_class_highest (&rt_sched_class)
1271 static void inc_nr_running(struct rq *rq)
1276 static void dec_nr_running(struct rq *rq)
1281 static void set_load_weight(struct task_struct *p)
1283 if (task_has_rt_policy(p)) {
1284 p->se.load.weight = prio_to_weight[0] * 2;
1285 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1290 * SCHED_IDLE tasks get minimal weight:
1292 if (p->policy == SCHED_IDLE) {
1293 p->se.load.weight = WEIGHT_IDLEPRIO;
1294 p->se.load.inv_weight = WMULT_IDLEPRIO;
1298 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1299 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1302 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1304 sched_info_queued(p);
1305 p->sched_class->enqueue_task(rq, p, wakeup);
1309 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1311 p->sched_class->dequeue_task(rq, p, sleep);
1316 * __normal_prio - return the priority that is based on the static prio
1318 static inline int __normal_prio(struct task_struct *p)
1320 return p->static_prio;
1324 * Calculate the expected normal priority: i.e. priority
1325 * without taking RT-inheritance into account. Might be
1326 * boosted by interactivity modifiers. Changes upon fork,
1327 * setprio syscalls, and whenever the interactivity
1328 * estimator recalculates.
1330 static inline int normal_prio(struct task_struct *p)
1334 if (task_has_rt_policy(p))
1335 prio = MAX_RT_PRIO-1 - p->rt_priority;
1337 prio = __normal_prio(p);
1342 * Calculate the current priority, i.e. the priority
1343 * taken into account by the scheduler. This value might
1344 * be boosted by RT tasks, or might be boosted by
1345 * interactivity modifiers. Will be RT if the task got
1346 * RT-boosted. If not then it returns p->normal_prio.
1348 static int effective_prio(struct task_struct *p)
1350 p->normal_prio = normal_prio(p);
1352 * If we are RT tasks or we were boosted to RT priority,
1353 * keep the priority unchanged. Otherwise, update priority
1354 * to the normal priority:
1356 if (!rt_prio(p->prio))
1357 return p->normal_prio;
1362 * activate_task - move a task to the runqueue.
1364 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1366 if (task_contributes_to_load(p))
1367 rq->nr_uninterruptible--;
1369 enqueue_task(rq, p, wakeup);
1374 * deactivate_task - remove a task from the runqueue.
1376 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1378 if (task_contributes_to_load(p))
1379 rq->nr_uninterruptible++;
1381 dequeue_task(rq, p, sleep);
1386 * task_curr - is this task currently executing on a CPU?
1387 * @p: the task in question.
1389 inline int task_curr(const struct task_struct *p)
1391 return cpu_curr(task_cpu(p)) == p;
1394 /* Used instead of source_load when we know the type == 0 */
1395 unsigned long weighted_cpuload(const int cpu)
1397 return cpu_rq(cpu)->load.weight;
1400 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1402 set_task_rq(p, cpu);
1405 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1406 * successfuly executed on another CPU. We must ensure that updates of
1407 * per-task data have been completed by this moment.
1410 task_thread_info(p)->cpu = cpu;
1414 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1415 const struct sched_class *prev_class,
1416 int oldprio, int running)
1418 if (prev_class != p->sched_class) {
1419 if (prev_class->switched_from)
1420 prev_class->switched_from(rq, p, running);
1421 p->sched_class->switched_to(rq, p, running);
1423 p->sched_class->prio_changed(rq, p, oldprio, running);
1429 * Is this task likely cache-hot:
1432 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1436 if (p->sched_class != &fair_sched_class)
1439 if (sysctl_sched_migration_cost == -1)
1441 if (sysctl_sched_migration_cost == 0)
1444 delta = now - p->se.exec_start;
1446 return delta < (s64)sysctl_sched_migration_cost;
1450 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1452 int old_cpu = task_cpu(p);
1453 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1454 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1455 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1458 clock_offset = old_rq->clock - new_rq->clock;
1460 #ifdef CONFIG_SCHEDSTATS
1461 if (p->se.wait_start)
1462 p->se.wait_start -= clock_offset;
1463 if (p->se.sleep_start)
1464 p->se.sleep_start -= clock_offset;
1465 if (p->se.block_start)
1466 p->se.block_start -= clock_offset;
1467 if (old_cpu != new_cpu) {
1468 schedstat_inc(p, se.nr_migrations);
1469 if (task_hot(p, old_rq->clock, NULL))
1470 schedstat_inc(p, se.nr_forced2_migrations);
1473 p->se.vruntime -= old_cfsrq->min_vruntime -
1474 new_cfsrq->min_vruntime;
1476 __set_task_cpu(p, new_cpu);
1479 struct migration_req {
1480 struct list_head list;
1482 struct task_struct *task;
1485 struct completion done;
1489 * The task's runqueue lock must be held.
1490 * Returns true if you have to wait for migration thread.
1493 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1495 struct rq *rq = task_rq(p);
1498 * If the task is not on a runqueue (and not running), then
1499 * it is sufficient to simply update the task's cpu field.
1501 if (!p->se.on_rq && !task_running(rq, p)) {
1502 set_task_cpu(p, dest_cpu);
1506 init_completion(&req->done);
1508 req->dest_cpu = dest_cpu;
1509 list_add(&req->list, &rq->migration_queue);
1515 * wait_task_inactive - wait for a thread to unschedule.
1517 * The caller must ensure that the task *will* unschedule sometime soon,
1518 * else this function might spin for a *long* time. This function can't
1519 * be called with interrupts off, or it may introduce deadlock with
1520 * smp_call_function() if an IPI is sent by the same process we are
1521 * waiting to become inactive.
1523 void wait_task_inactive(struct task_struct *p)
1525 unsigned long flags;
1531 * We do the initial early heuristics without holding
1532 * any task-queue locks at all. We'll only try to get
1533 * the runqueue lock when things look like they will
1539 * If the task is actively running on another CPU
1540 * still, just relax and busy-wait without holding
1543 * NOTE! Since we don't hold any locks, it's not
1544 * even sure that "rq" stays as the right runqueue!
1545 * But we don't care, since "task_running()" will
1546 * return false if the runqueue has changed and p
1547 * is actually now running somewhere else!
1549 while (task_running(rq, p))
1553 * Ok, time to look more closely! We need the rq
1554 * lock now, to be *sure*. If we're wrong, we'll
1555 * just go back and repeat.
1557 rq = task_rq_lock(p, &flags);
1558 running = task_running(rq, p);
1559 on_rq = p->se.on_rq;
1560 task_rq_unlock(rq, &flags);
1563 * Was it really running after all now that we
1564 * checked with the proper locks actually held?
1566 * Oops. Go back and try again..
1568 if (unlikely(running)) {
1574 * It's not enough that it's not actively running,
1575 * it must be off the runqueue _entirely_, and not
1578 * So if it wa still runnable (but just not actively
1579 * running right now), it's preempted, and we should
1580 * yield - it could be a while.
1582 if (unlikely(on_rq)) {
1583 schedule_timeout_uninterruptible(1);
1588 * Ahh, all good. It wasn't running, and it wasn't
1589 * runnable, which means that it will never become
1590 * running in the future either. We're all done!
1597 * kick_process - kick a running thread to enter/exit the kernel
1598 * @p: the to-be-kicked thread
1600 * Cause a process which is running on another CPU to enter
1601 * kernel-mode, without any delay. (to get signals handled.)
1603 * NOTE: this function doesnt have to take the runqueue lock,
1604 * because all it wants to ensure is that the remote task enters
1605 * the kernel. If the IPI races and the task has been migrated
1606 * to another CPU then no harm is done and the purpose has been
1609 void kick_process(struct task_struct *p)
1615 if ((cpu != smp_processor_id()) && task_curr(p))
1616 smp_send_reschedule(cpu);
1621 * Return a low guess at the load of a migration-source cpu weighted
1622 * according to the scheduling class and "nice" value.
1624 * We want to under-estimate the load of migration sources, to
1625 * balance conservatively.
1627 static unsigned long source_load(int cpu, int type)
1629 struct rq *rq = cpu_rq(cpu);
1630 unsigned long total = weighted_cpuload(cpu);
1635 return min(rq->cpu_load[type-1], total);
1639 * Return a high guess at the load of a migration-target cpu weighted
1640 * according to the scheduling class and "nice" value.
1642 static unsigned long target_load(int cpu, int type)
1644 struct rq *rq = cpu_rq(cpu);
1645 unsigned long total = weighted_cpuload(cpu);
1650 return max(rq->cpu_load[type-1], total);
1654 * Return the average load per task on the cpu's run queue
1656 static unsigned long cpu_avg_load_per_task(int cpu)
1658 struct rq *rq = cpu_rq(cpu);
1659 unsigned long total = weighted_cpuload(cpu);
1660 unsigned long n = rq->nr_running;
1662 return n ? total / n : SCHED_LOAD_SCALE;
1666 * find_idlest_group finds and returns the least busy CPU group within the
1669 static struct sched_group *
1670 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1672 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1673 unsigned long min_load = ULONG_MAX, this_load = 0;
1674 int load_idx = sd->forkexec_idx;
1675 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1678 unsigned long load, avg_load;
1682 /* Skip over this group if it has no CPUs allowed */
1683 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1686 local_group = cpu_isset(this_cpu, group->cpumask);
1688 /* Tally up the load of all CPUs in the group */
1691 for_each_cpu_mask(i, group->cpumask) {
1692 /* Bias balancing toward cpus of our domain */
1694 load = source_load(i, load_idx);
1696 load = target_load(i, load_idx);
1701 /* Adjust by relative CPU power of the group */
1702 avg_load = sg_div_cpu_power(group,
1703 avg_load * SCHED_LOAD_SCALE);
1706 this_load = avg_load;
1708 } else if (avg_load < min_load) {
1709 min_load = avg_load;
1712 } while (group = group->next, group != sd->groups);
1714 if (!idlest || 100*this_load < imbalance*min_load)
1720 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1723 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1726 unsigned long load, min_load = ULONG_MAX;
1730 /* Traverse only the allowed CPUs */
1731 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1733 for_each_cpu_mask(i, tmp) {
1734 load = weighted_cpuload(i);
1736 if (load < min_load || (load == min_load && i == this_cpu)) {
1746 * sched_balance_self: balance the current task (running on cpu) in domains
1747 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1750 * Balance, ie. select the least loaded group.
1752 * Returns the target CPU number, or the same CPU if no balancing is needed.
1754 * preempt must be disabled.
1756 static int sched_balance_self(int cpu, int flag)
1758 struct task_struct *t = current;
1759 struct sched_domain *tmp, *sd = NULL;
1761 for_each_domain(cpu, tmp) {
1763 * If power savings logic is enabled for a domain, stop there.
1765 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1767 if (tmp->flags & flag)
1773 struct sched_group *group;
1774 int new_cpu, weight;
1776 if (!(sd->flags & flag)) {
1782 group = find_idlest_group(sd, t, cpu);
1788 new_cpu = find_idlest_cpu(group, t, cpu);
1789 if (new_cpu == -1 || new_cpu == cpu) {
1790 /* Now try balancing at a lower domain level of cpu */
1795 /* Now try balancing at a lower domain level of new_cpu */
1798 weight = cpus_weight(span);
1799 for_each_domain(cpu, tmp) {
1800 if (weight <= cpus_weight(tmp->span))
1802 if (tmp->flags & flag)
1805 /* while loop will break here if sd == NULL */
1811 #endif /* CONFIG_SMP */
1814 * try_to_wake_up - wake up a thread
1815 * @p: the to-be-woken-up thread
1816 * @state: the mask of task states that can be woken
1817 * @sync: do a synchronous wakeup?
1819 * Put it on the run-queue if it's not already there. The "current"
1820 * thread is always on the run-queue (except when the actual
1821 * re-schedule is in progress), and as such you're allowed to do
1822 * the simpler "current->state = TASK_RUNNING" to mark yourself
1823 * runnable without the overhead of this.
1825 * returns failure only if the task is already active.
1827 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1829 int cpu, orig_cpu, this_cpu, success = 0;
1830 unsigned long flags;
1834 rq = task_rq_lock(p, &flags);
1835 old_state = p->state;
1836 if (!(old_state & state))
1844 this_cpu = smp_processor_id();
1847 if (unlikely(task_running(rq, p)))
1850 cpu = p->sched_class->select_task_rq(p, sync);
1851 if (cpu != orig_cpu) {
1852 set_task_cpu(p, cpu);
1853 task_rq_unlock(rq, &flags);
1854 /* might preempt at this point */
1855 rq = task_rq_lock(p, &flags);
1856 old_state = p->state;
1857 if (!(old_state & state))
1862 this_cpu = smp_processor_id();
1866 #ifdef CONFIG_SCHEDSTATS
1867 schedstat_inc(rq, ttwu_count);
1868 if (cpu == this_cpu)
1869 schedstat_inc(rq, ttwu_local);
1871 struct sched_domain *sd;
1872 for_each_domain(this_cpu, sd) {
1873 if (cpu_isset(cpu, sd->span)) {
1874 schedstat_inc(sd, ttwu_wake_remote);
1882 #endif /* CONFIG_SMP */
1883 schedstat_inc(p, se.nr_wakeups);
1885 schedstat_inc(p, se.nr_wakeups_sync);
1886 if (orig_cpu != cpu)
1887 schedstat_inc(p, se.nr_wakeups_migrate);
1888 if (cpu == this_cpu)
1889 schedstat_inc(p, se.nr_wakeups_local);
1891 schedstat_inc(p, se.nr_wakeups_remote);
1892 update_rq_clock(rq);
1893 activate_task(rq, p, 1);
1894 check_preempt_curr(rq, p);
1898 p->state = TASK_RUNNING;
1900 if (p->sched_class->task_wake_up)
1901 p->sched_class->task_wake_up(rq, p);
1904 task_rq_unlock(rq, &flags);
1909 int wake_up_process(struct task_struct *p)
1911 return try_to_wake_up(p, TASK_ALL, 0);
1913 EXPORT_SYMBOL(wake_up_process);
1915 int wake_up_state(struct task_struct *p, unsigned int state)
1917 return try_to_wake_up(p, state, 0);
1921 * Perform scheduler related setup for a newly forked process p.
1922 * p is forked by current.
1924 * __sched_fork() is basic setup used by init_idle() too:
1926 static void __sched_fork(struct task_struct *p)
1928 p->se.exec_start = 0;
1929 p->se.sum_exec_runtime = 0;
1930 p->se.prev_sum_exec_runtime = 0;
1932 #ifdef CONFIG_SCHEDSTATS
1933 p->se.wait_start = 0;
1934 p->se.sum_sleep_runtime = 0;
1935 p->se.sleep_start = 0;
1936 p->se.block_start = 0;
1937 p->se.sleep_max = 0;
1938 p->se.block_max = 0;
1940 p->se.slice_max = 0;
1944 INIT_LIST_HEAD(&p->rt.run_list);
1947 #ifdef CONFIG_PREEMPT_NOTIFIERS
1948 INIT_HLIST_HEAD(&p->preempt_notifiers);
1952 * We mark the process as running here, but have not actually
1953 * inserted it onto the runqueue yet. This guarantees that
1954 * nobody will actually run it, and a signal or other external
1955 * event cannot wake it up and insert it on the runqueue either.
1957 p->state = TASK_RUNNING;
1961 * fork()/clone()-time setup:
1963 void sched_fork(struct task_struct *p, int clone_flags)
1965 int cpu = get_cpu();
1970 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1972 set_task_cpu(p, cpu);
1975 * Make sure we do not leak PI boosting priority to the child:
1977 p->prio = current->normal_prio;
1978 if (!rt_prio(p->prio))
1979 p->sched_class = &fair_sched_class;
1981 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1982 if (likely(sched_info_on()))
1983 memset(&p->sched_info, 0, sizeof(p->sched_info));
1985 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1988 #ifdef CONFIG_PREEMPT
1989 /* Want to start with kernel preemption disabled. */
1990 task_thread_info(p)->preempt_count = 1;
1996 * wake_up_new_task - wake up a newly created task for the first time.
1998 * This function will do some initial scheduler statistics housekeeping
1999 * that must be done for every newly created context, then puts the task
2000 * on the runqueue and wakes it.
2002 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2004 unsigned long flags;
2007 rq = task_rq_lock(p, &flags);
2008 BUG_ON(p->state != TASK_RUNNING);
2009 update_rq_clock(rq);
2011 p->prio = effective_prio(p);
2013 if (!p->sched_class->task_new || !current->se.on_rq) {
2014 activate_task(rq, p, 0);
2017 * Let the scheduling class do new task startup
2018 * management (if any):
2020 p->sched_class->task_new(rq, p);
2023 check_preempt_curr(rq, p);
2025 if (p->sched_class->task_wake_up)
2026 p->sched_class->task_wake_up(rq, p);
2028 task_rq_unlock(rq, &flags);
2031 #ifdef CONFIG_PREEMPT_NOTIFIERS
2034 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2035 * @notifier: notifier struct to register
2037 void preempt_notifier_register(struct preempt_notifier *notifier)
2039 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2041 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2044 * preempt_notifier_unregister - no longer interested in preemption notifications
2045 * @notifier: notifier struct to unregister
2047 * This is safe to call from within a preemption notifier.
2049 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2051 hlist_del(¬ifier->link);
2053 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2055 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2057 struct preempt_notifier *notifier;
2058 struct hlist_node *node;
2060 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2061 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2065 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2066 struct task_struct *next)
2068 struct preempt_notifier *notifier;
2069 struct hlist_node *node;
2071 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2072 notifier->ops->sched_out(notifier, next);
2077 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2082 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2083 struct task_struct *next)
2090 * prepare_task_switch - prepare to switch tasks
2091 * @rq: the runqueue preparing to switch
2092 * @prev: the current task that is being switched out
2093 * @next: the task we are going to switch to.
2095 * This is called with the rq lock held and interrupts off. It must
2096 * be paired with a subsequent finish_task_switch after the context
2099 * prepare_task_switch sets up locking and calls architecture specific
2103 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2104 struct task_struct *next)
2106 fire_sched_out_preempt_notifiers(prev, next);
2107 prepare_lock_switch(rq, next);
2108 prepare_arch_switch(next);
2112 * finish_task_switch - clean up after a task-switch
2113 * @rq: runqueue associated with task-switch
2114 * @prev: the thread we just switched away from.
2116 * finish_task_switch must be called after the context switch, paired
2117 * with a prepare_task_switch call before the context switch.
2118 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2119 * and do any other architecture-specific cleanup actions.
2121 * Note that we may have delayed dropping an mm in context_switch(). If
2122 * so, we finish that here outside of the runqueue lock. (Doing it
2123 * with the lock held can cause deadlocks; see schedule() for
2126 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2127 __releases(rq->lock)
2129 struct mm_struct *mm = rq->prev_mm;
2135 * A task struct has one reference for the use as "current".
2136 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2137 * schedule one last time. The schedule call will never return, and
2138 * the scheduled task must drop that reference.
2139 * The test for TASK_DEAD must occur while the runqueue locks are
2140 * still held, otherwise prev could be scheduled on another cpu, die
2141 * there before we look at prev->state, and then the reference would
2143 * Manfred Spraul <manfred@colorfullife.com>
2145 prev_state = prev->state;
2146 finish_arch_switch(prev);
2147 finish_lock_switch(rq, prev);
2149 if (current->sched_class->post_schedule)
2150 current->sched_class->post_schedule(rq);
2153 fire_sched_in_preempt_notifiers(current);
2156 if (unlikely(prev_state == TASK_DEAD)) {
2158 * Remove function-return probe instances associated with this
2159 * task and put them back on the free list.
2161 kprobe_flush_task(prev);
2162 put_task_struct(prev);
2167 * schedule_tail - first thing a freshly forked thread must call.
2168 * @prev: the thread we just switched away from.
2170 asmlinkage void schedule_tail(struct task_struct *prev)
2171 __releases(rq->lock)
2173 struct rq *rq = this_rq();
2175 finish_task_switch(rq, prev);
2176 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2177 /* In this case, finish_task_switch does not reenable preemption */
2180 if (current->set_child_tid)
2181 put_user(task_pid_vnr(current), current->set_child_tid);
2185 * context_switch - switch to the new MM and the new
2186 * thread's register state.
2189 context_switch(struct rq *rq, struct task_struct *prev,
2190 struct task_struct *next)
2192 struct mm_struct *mm, *oldmm;
2194 prepare_task_switch(rq, prev, next);
2196 oldmm = prev->active_mm;
2198 * For paravirt, this is coupled with an exit in switch_to to
2199 * combine the page table reload and the switch backend into
2202 arch_enter_lazy_cpu_mode();
2204 if (unlikely(!mm)) {
2205 next->active_mm = oldmm;
2206 atomic_inc(&oldmm->mm_count);
2207 enter_lazy_tlb(oldmm, next);
2209 switch_mm(oldmm, mm, next);
2211 if (unlikely(!prev->mm)) {
2212 prev->active_mm = NULL;
2213 rq->prev_mm = oldmm;
2216 * Since the runqueue lock will be released by the next
2217 * task (which is an invalid locking op but in the case
2218 * of the scheduler it's an obvious special-case), so we
2219 * do an early lockdep release here:
2221 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2222 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2225 /* Here we just switch the register state and the stack. */
2226 switch_to(prev, next, prev);
2230 * this_rq must be evaluated again because prev may have moved
2231 * CPUs since it called schedule(), thus the 'rq' on its stack
2232 * frame will be invalid.
2234 finish_task_switch(this_rq(), prev);
2238 * nr_running, nr_uninterruptible and nr_context_switches:
2240 * externally visible scheduler statistics: current number of runnable
2241 * threads, current number of uninterruptible-sleeping threads, total
2242 * number of context switches performed since bootup.
2244 unsigned long nr_running(void)
2246 unsigned long i, sum = 0;
2248 for_each_online_cpu(i)
2249 sum += cpu_rq(i)->nr_running;
2254 unsigned long nr_uninterruptible(void)
2256 unsigned long i, sum = 0;
2258 for_each_possible_cpu(i)
2259 sum += cpu_rq(i)->nr_uninterruptible;
2262 * Since we read the counters lockless, it might be slightly
2263 * inaccurate. Do not allow it to go below zero though:
2265 if (unlikely((long)sum < 0))
2271 unsigned long long nr_context_switches(void)
2274 unsigned long long sum = 0;
2276 for_each_possible_cpu(i)
2277 sum += cpu_rq(i)->nr_switches;
2282 unsigned long nr_iowait(void)
2284 unsigned long i, sum = 0;
2286 for_each_possible_cpu(i)
2287 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2292 unsigned long nr_active(void)
2294 unsigned long i, running = 0, uninterruptible = 0;
2296 for_each_online_cpu(i) {
2297 running += cpu_rq(i)->nr_running;
2298 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2301 if (unlikely((long)uninterruptible < 0))
2302 uninterruptible = 0;
2304 return running + uninterruptible;
2308 * Update rq->cpu_load[] statistics. This function is usually called every
2309 * scheduler tick (TICK_NSEC).
2311 static void update_cpu_load(struct rq *this_rq)
2313 unsigned long this_load = this_rq->load.weight;
2316 this_rq->nr_load_updates++;
2318 /* Update our load: */
2319 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2320 unsigned long old_load, new_load;
2322 /* scale is effectively 1 << i now, and >> i divides by scale */
2324 old_load = this_rq->cpu_load[i];
2325 new_load = this_load;
2327 * Round up the averaging division if load is increasing. This
2328 * prevents us from getting stuck on 9 if the load is 10, for
2331 if (new_load > old_load)
2332 new_load += scale-1;
2333 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2340 * double_rq_lock - safely lock two runqueues
2342 * Note this does not disable interrupts like task_rq_lock,
2343 * you need to do so manually before calling.
2345 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2346 __acquires(rq1->lock)
2347 __acquires(rq2->lock)
2349 BUG_ON(!irqs_disabled());
2351 spin_lock(&rq1->lock);
2352 __acquire(rq2->lock); /* Fake it out ;) */
2355 spin_lock(&rq1->lock);
2356 spin_lock(&rq2->lock);
2358 spin_lock(&rq2->lock);
2359 spin_lock(&rq1->lock);
2362 update_rq_clock(rq1);
2363 update_rq_clock(rq2);
2367 * double_rq_unlock - safely unlock two runqueues
2369 * Note this does not restore interrupts like task_rq_unlock,
2370 * you need to do so manually after calling.
2372 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2373 __releases(rq1->lock)
2374 __releases(rq2->lock)
2376 spin_unlock(&rq1->lock);
2378 spin_unlock(&rq2->lock);
2380 __release(rq2->lock);
2384 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2386 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2387 __releases(this_rq->lock)
2388 __acquires(busiest->lock)
2389 __acquires(this_rq->lock)
2393 if (unlikely(!irqs_disabled())) {
2394 /* printk() doesn't work good under rq->lock */
2395 spin_unlock(&this_rq->lock);
2398 if (unlikely(!spin_trylock(&busiest->lock))) {
2399 if (busiest < this_rq) {
2400 spin_unlock(&this_rq->lock);
2401 spin_lock(&busiest->lock);
2402 spin_lock(&this_rq->lock);
2405 spin_lock(&busiest->lock);
2411 * If dest_cpu is allowed for this process, migrate the task to it.
2412 * This is accomplished by forcing the cpu_allowed mask to only
2413 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2414 * the cpu_allowed mask is restored.
2416 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2418 struct migration_req req;
2419 unsigned long flags;
2422 rq = task_rq_lock(p, &flags);
2423 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2424 || unlikely(cpu_is_offline(dest_cpu)))
2427 /* force the process onto the specified CPU */
2428 if (migrate_task(p, dest_cpu, &req)) {
2429 /* Need to wait for migration thread (might exit: take ref). */
2430 struct task_struct *mt = rq->migration_thread;
2432 get_task_struct(mt);
2433 task_rq_unlock(rq, &flags);
2434 wake_up_process(mt);
2435 put_task_struct(mt);
2436 wait_for_completion(&req.done);
2441 task_rq_unlock(rq, &flags);
2445 * sched_exec - execve() is a valuable balancing opportunity, because at
2446 * this point the task has the smallest effective memory and cache footprint.
2448 void sched_exec(void)
2450 int new_cpu, this_cpu = get_cpu();
2451 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2453 if (new_cpu != this_cpu)
2454 sched_migrate_task(current, new_cpu);
2458 * pull_task - move a task from a remote runqueue to the local runqueue.
2459 * Both runqueues must be locked.
2461 static void pull_task(struct rq *src_rq, struct task_struct *p,
2462 struct rq *this_rq, int this_cpu)
2464 deactivate_task(src_rq, p, 0);
2465 set_task_cpu(p, this_cpu);
2466 activate_task(this_rq, p, 0);
2468 * Note that idle threads have a prio of MAX_PRIO, for this test
2469 * to be always true for them.
2471 check_preempt_curr(this_rq, p);
2475 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2478 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2479 struct sched_domain *sd, enum cpu_idle_type idle,
2483 * We do not migrate tasks that are:
2484 * 1) running (obviously), or
2485 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2486 * 3) are cache-hot on their current CPU.
2488 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2489 schedstat_inc(p, se.nr_failed_migrations_affine);
2494 if (task_running(rq, p)) {
2495 schedstat_inc(p, se.nr_failed_migrations_running);
2500 * Aggressive migration if:
2501 * 1) task is cache cold, or
2502 * 2) too many balance attempts have failed.
2505 if (!task_hot(p, rq->clock, sd) ||
2506 sd->nr_balance_failed > sd->cache_nice_tries) {
2507 #ifdef CONFIG_SCHEDSTATS
2508 if (task_hot(p, rq->clock, sd)) {
2509 schedstat_inc(sd, lb_hot_gained[idle]);
2510 schedstat_inc(p, se.nr_forced_migrations);
2516 if (task_hot(p, rq->clock, sd)) {
2517 schedstat_inc(p, se.nr_failed_migrations_hot);
2523 static unsigned long
2524 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2525 unsigned long max_load_move, struct sched_domain *sd,
2526 enum cpu_idle_type idle, int *all_pinned,
2527 int *this_best_prio, struct rq_iterator *iterator)
2529 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2530 struct task_struct *p;
2531 long rem_load_move = max_load_move;
2533 if (max_load_move == 0)
2539 * Start the load-balancing iterator:
2541 p = iterator->start(iterator->arg);
2543 if (!p || loops++ > sysctl_sched_nr_migrate)
2546 * To help distribute high priority tasks across CPUs we don't
2547 * skip a task if it will be the highest priority task (i.e. smallest
2548 * prio value) on its new queue regardless of its load weight
2550 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2551 SCHED_LOAD_SCALE_FUZZ;
2552 if ((skip_for_load && p->prio >= *this_best_prio) ||
2553 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2554 p = iterator->next(iterator->arg);
2558 pull_task(busiest, p, this_rq, this_cpu);
2560 rem_load_move -= p->se.load.weight;
2563 * We only want to steal up to the prescribed amount of weighted load.
2565 if (rem_load_move > 0) {
2566 if (p->prio < *this_best_prio)
2567 *this_best_prio = p->prio;
2568 p = iterator->next(iterator->arg);
2573 * Right now, this is one of only two places pull_task() is called,
2574 * so we can safely collect pull_task() stats here rather than
2575 * inside pull_task().
2577 schedstat_add(sd, lb_gained[idle], pulled);
2580 *all_pinned = pinned;
2582 return max_load_move - rem_load_move;
2586 * move_tasks tries to move up to max_load_move weighted load from busiest to
2587 * this_rq, as part of a balancing operation within domain "sd".
2588 * Returns 1 if successful and 0 otherwise.
2590 * Called with both runqueues locked.
2592 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2593 unsigned long max_load_move,
2594 struct sched_domain *sd, enum cpu_idle_type idle,
2597 const struct sched_class *class = sched_class_highest;
2598 unsigned long total_load_moved = 0;
2599 int this_best_prio = this_rq->curr->prio;
2603 class->load_balance(this_rq, this_cpu, busiest,
2604 max_load_move - total_load_moved,
2605 sd, idle, all_pinned, &this_best_prio);
2606 class = class->next;
2607 } while (class && max_load_move > total_load_moved);
2609 return total_load_moved > 0;
2613 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2614 struct sched_domain *sd, enum cpu_idle_type idle,
2615 struct rq_iterator *iterator)
2617 struct task_struct *p = iterator->start(iterator->arg);
2621 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2622 pull_task(busiest, p, this_rq, this_cpu);
2624 * Right now, this is only the second place pull_task()
2625 * is called, so we can safely collect pull_task()
2626 * stats here rather than inside pull_task().
2628 schedstat_inc(sd, lb_gained[idle]);
2632 p = iterator->next(iterator->arg);
2639 * move_one_task tries to move exactly one task from busiest to this_rq, as
2640 * part of active balancing operations within "domain".
2641 * Returns 1 if successful and 0 otherwise.
2643 * Called with both runqueues locked.
2645 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2646 struct sched_domain *sd, enum cpu_idle_type idle)
2648 const struct sched_class *class;
2650 for (class = sched_class_highest; class; class = class->next)
2651 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2658 * find_busiest_group finds and returns the busiest CPU group within the
2659 * domain. It calculates and returns the amount of weighted load which
2660 * should be moved to restore balance via the imbalance parameter.
2662 static struct sched_group *
2663 find_busiest_group(struct sched_domain *sd, int this_cpu,
2664 unsigned long *imbalance, enum cpu_idle_type idle,
2665 int *sd_idle, cpumask_t *cpus, int *balance)
2667 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2668 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2669 unsigned long max_pull;
2670 unsigned long busiest_load_per_task, busiest_nr_running;
2671 unsigned long this_load_per_task, this_nr_running;
2672 int load_idx, group_imb = 0;
2673 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2674 int power_savings_balance = 1;
2675 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2676 unsigned long min_nr_running = ULONG_MAX;
2677 struct sched_group *group_min = NULL, *group_leader = NULL;
2680 max_load = this_load = total_load = total_pwr = 0;
2681 busiest_load_per_task = busiest_nr_running = 0;
2682 this_load_per_task = this_nr_running = 0;
2683 if (idle == CPU_NOT_IDLE)
2684 load_idx = sd->busy_idx;
2685 else if (idle == CPU_NEWLY_IDLE)
2686 load_idx = sd->newidle_idx;
2688 load_idx = sd->idle_idx;
2691 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2694 int __group_imb = 0;
2695 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2696 unsigned long sum_nr_running, sum_weighted_load;
2698 local_group = cpu_isset(this_cpu, group->cpumask);
2701 balance_cpu = first_cpu(group->cpumask);
2703 /* Tally up the load of all CPUs in the group */
2704 sum_weighted_load = sum_nr_running = avg_load = 0;
2706 min_cpu_load = ~0UL;
2708 for_each_cpu_mask(i, group->cpumask) {
2711 if (!cpu_isset(i, *cpus))
2716 if (*sd_idle && rq->nr_running)
2719 /* Bias balancing toward cpus of our domain */
2721 if (idle_cpu(i) && !first_idle_cpu) {
2726 load = target_load(i, load_idx);
2728 load = source_load(i, load_idx);
2729 if (load > max_cpu_load)
2730 max_cpu_load = load;
2731 if (min_cpu_load > load)
2732 min_cpu_load = load;
2736 sum_nr_running += rq->nr_running;
2737 sum_weighted_load += weighted_cpuload(i);
2741 * First idle cpu or the first cpu(busiest) in this sched group
2742 * is eligible for doing load balancing at this and above
2743 * domains. In the newly idle case, we will allow all the cpu's
2744 * to do the newly idle load balance.
2746 if (idle != CPU_NEWLY_IDLE && local_group &&
2747 balance_cpu != this_cpu && balance) {
2752 total_load += avg_load;
2753 total_pwr += group->__cpu_power;
2755 /* Adjust by relative CPU power of the group */
2756 avg_load = sg_div_cpu_power(group,
2757 avg_load * SCHED_LOAD_SCALE);
2759 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2762 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2765 this_load = avg_load;
2767 this_nr_running = sum_nr_running;
2768 this_load_per_task = sum_weighted_load;
2769 } else if (avg_load > max_load &&
2770 (sum_nr_running > group_capacity || __group_imb)) {
2771 max_load = avg_load;
2773 busiest_nr_running = sum_nr_running;
2774 busiest_load_per_task = sum_weighted_load;
2775 group_imb = __group_imb;
2778 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2780 * Busy processors will not participate in power savings
2783 if (idle == CPU_NOT_IDLE ||
2784 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2788 * If the local group is idle or completely loaded
2789 * no need to do power savings balance at this domain
2791 if (local_group && (this_nr_running >= group_capacity ||
2793 power_savings_balance = 0;
2796 * If a group is already running at full capacity or idle,
2797 * don't include that group in power savings calculations
2799 if (!power_savings_balance || sum_nr_running >= group_capacity
2804 * Calculate the group which has the least non-idle load.
2805 * This is the group from where we need to pick up the load
2808 if ((sum_nr_running < min_nr_running) ||
2809 (sum_nr_running == min_nr_running &&
2810 first_cpu(group->cpumask) <
2811 first_cpu(group_min->cpumask))) {
2813 min_nr_running = sum_nr_running;
2814 min_load_per_task = sum_weighted_load /
2819 * Calculate the group which is almost near its
2820 * capacity but still has some space to pick up some load
2821 * from other group and save more power
2823 if (sum_nr_running <= group_capacity - 1) {
2824 if (sum_nr_running > leader_nr_running ||
2825 (sum_nr_running == leader_nr_running &&
2826 first_cpu(group->cpumask) >
2827 first_cpu(group_leader->cpumask))) {
2828 group_leader = group;
2829 leader_nr_running = sum_nr_running;
2834 group = group->next;
2835 } while (group != sd->groups);
2837 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2840 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2842 if (this_load >= avg_load ||
2843 100*max_load <= sd->imbalance_pct*this_load)
2846 busiest_load_per_task /= busiest_nr_running;
2848 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2851 * We're trying to get all the cpus to the average_load, so we don't
2852 * want to push ourselves above the average load, nor do we wish to
2853 * reduce the max loaded cpu below the average load, as either of these
2854 * actions would just result in more rebalancing later, and ping-pong
2855 * tasks around. Thus we look for the minimum possible imbalance.
2856 * Negative imbalances (*we* are more loaded than anyone else) will
2857 * be counted as no imbalance for these purposes -- we can't fix that
2858 * by pulling tasks to us. Be careful of negative numbers as they'll
2859 * appear as very large values with unsigned longs.
2861 if (max_load <= busiest_load_per_task)
2865 * In the presence of smp nice balancing, certain scenarios can have
2866 * max load less than avg load(as we skip the groups at or below
2867 * its cpu_power, while calculating max_load..)
2869 if (max_load < avg_load) {
2871 goto small_imbalance;
2874 /* Don't want to pull so many tasks that a group would go idle */
2875 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2877 /* How much load to actually move to equalise the imbalance */
2878 *imbalance = min(max_pull * busiest->__cpu_power,
2879 (avg_load - this_load) * this->__cpu_power)
2883 * if *imbalance is less than the average load per runnable task
2884 * there is no gaurantee that any tasks will be moved so we'll have
2885 * a think about bumping its value to force at least one task to be
2888 if (*imbalance < busiest_load_per_task) {
2889 unsigned long tmp, pwr_now, pwr_move;
2893 pwr_move = pwr_now = 0;
2895 if (this_nr_running) {
2896 this_load_per_task /= this_nr_running;
2897 if (busiest_load_per_task > this_load_per_task)
2900 this_load_per_task = SCHED_LOAD_SCALE;
2902 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2903 busiest_load_per_task * imbn) {
2904 *imbalance = busiest_load_per_task;
2909 * OK, we don't have enough imbalance to justify moving tasks,
2910 * however we may be able to increase total CPU power used by
2914 pwr_now += busiest->__cpu_power *
2915 min(busiest_load_per_task, max_load);
2916 pwr_now += this->__cpu_power *
2917 min(this_load_per_task, this_load);
2918 pwr_now /= SCHED_LOAD_SCALE;
2920 /* Amount of load we'd subtract */
2921 tmp = sg_div_cpu_power(busiest,
2922 busiest_load_per_task * SCHED_LOAD_SCALE);
2924 pwr_move += busiest->__cpu_power *
2925 min(busiest_load_per_task, max_load - tmp);
2927 /* Amount of load we'd add */
2928 if (max_load * busiest->__cpu_power <
2929 busiest_load_per_task * SCHED_LOAD_SCALE)
2930 tmp = sg_div_cpu_power(this,
2931 max_load * busiest->__cpu_power);
2933 tmp = sg_div_cpu_power(this,
2934 busiest_load_per_task * SCHED_LOAD_SCALE);
2935 pwr_move += this->__cpu_power *
2936 min(this_load_per_task, this_load + tmp);
2937 pwr_move /= SCHED_LOAD_SCALE;
2939 /* Move if we gain throughput */
2940 if (pwr_move > pwr_now)
2941 *imbalance = busiest_load_per_task;
2947 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2948 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2951 if (this == group_leader && group_leader != group_min) {
2952 *imbalance = min_load_per_task;
2962 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2965 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2966 unsigned long imbalance, cpumask_t *cpus)
2968 struct rq *busiest = NULL, *rq;
2969 unsigned long max_load = 0;
2972 for_each_cpu_mask(i, group->cpumask) {
2975 if (!cpu_isset(i, *cpus))
2979 wl = weighted_cpuload(i);
2981 if (rq->nr_running == 1 && wl > imbalance)
2984 if (wl > max_load) {
2994 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2995 * so long as it is large enough.
2997 #define MAX_PINNED_INTERVAL 512
3000 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3001 * tasks if there is an imbalance.
3003 static int load_balance(int this_cpu, struct rq *this_rq,
3004 struct sched_domain *sd, enum cpu_idle_type idle,
3007 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3008 struct sched_group *group;
3009 unsigned long imbalance;
3011 cpumask_t cpus = CPU_MASK_ALL;
3012 unsigned long flags;
3015 * When power savings policy is enabled for the parent domain, idle
3016 * sibling can pick up load irrespective of busy siblings. In this case,
3017 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3018 * portraying it as CPU_NOT_IDLE.
3020 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3021 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3024 schedstat_inc(sd, lb_count[idle]);
3027 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3034 schedstat_inc(sd, lb_nobusyg[idle]);
3038 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
3040 schedstat_inc(sd, lb_nobusyq[idle]);
3044 BUG_ON(busiest == this_rq);
3046 schedstat_add(sd, lb_imbalance[idle], imbalance);
3049 if (busiest->nr_running > 1) {
3051 * Attempt to move tasks. If find_busiest_group has found
3052 * an imbalance but busiest->nr_running <= 1, the group is
3053 * still unbalanced. ld_moved simply stays zero, so it is
3054 * correctly treated as an imbalance.
3056 local_irq_save(flags);
3057 double_rq_lock(this_rq, busiest);
3058 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3059 imbalance, sd, idle, &all_pinned);
3060 double_rq_unlock(this_rq, busiest);
3061 local_irq_restore(flags);
3064 * some other cpu did the load balance for us.
3066 if (ld_moved && this_cpu != smp_processor_id())
3067 resched_cpu(this_cpu);
3069 /* All tasks on this runqueue were pinned by CPU affinity */
3070 if (unlikely(all_pinned)) {
3071 cpu_clear(cpu_of(busiest), cpus);
3072 if (!cpus_empty(cpus))
3079 schedstat_inc(sd, lb_failed[idle]);
3080 sd->nr_balance_failed++;
3082 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3084 spin_lock_irqsave(&busiest->lock, flags);
3086 /* don't kick the migration_thread, if the curr
3087 * task on busiest cpu can't be moved to this_cpu
3089 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3090 spin_unlock_irqrestore(&busiest->lock, flags);
3092 goto out_one_pinned;
3095 if (!busiest->active_balance) {
3096 busiest->active_balance = 1;
3097 busiest->push_cpu = this_cpu;
3100 spin_unlock_irqrestore(&busiest->lock, flags);
3102 wake_up_process(busiest->migration_thread);
3105 * We've kicked active balancing, reset the failure
3108 sd->nr_balance_failed = sd->cache_nice_tries+1;
3111 sd->nr_balance_failed = 0;
3113 if (likely(!active_balance)) {
3114 /* We were unbalanced, so reset the balancing interval */
3115 sd->balance_interval = sd->min_interval;
3118 * If we've begun active balancing, start to back off. This
3119 * case may not be covered by the all_pinned logic if there
3120 * is only 1 task on the busy runqueue (because we don't call
3123 if (sd->balance_interval < sd->max_interval)
3124 sd->balance_interval *= 2;
3127 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3128 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3133 schedstat_inc(sd, lb_balanced[idle]);
3135 sd->nr_balance_failed = 0;
3138 /* tune up the balancing interval */
3139 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3140 (sd->balance_interval < sd->max_interval))
3141 sd->balance_interval *= 2;
3143 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3144 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3150 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3151 * tasks if there is an imbalance.
3153 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3154 * this_rq is locked.
3157 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3159 struct sched_group *group;
3160 struct rq *busiest = NULL;
3161 unsigned long imbalance;
3165 cpumask_t cpus = CPU_MASK_ALL;
3168 * When power savings policy is enabled for the parent domain, idle
3169 * sibling can pick up load irrespective of busy siblings. In this case,
3170 * let the state of idle sibling percolate up as IDLE, instead of
3171 * portraying it as CPU_NOT_IDLE.
3173 if (sd->flags & SD_SHARE_CPUPOWER &&
3174 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3177 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3179 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3180 &sd_idle, &cpus, NULL);
3182 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3186 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3189 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3193 BUG_ON(busiest == this_rq);
3195 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3198 if (busiest->nr_running > 1) {
3199 /* Attempt to move tasks */
3200 double_lock_balance(this_rq, busiest);
3201 /* this_rq->clock is already updated */
3202 update_rq_clock(busiest);
3203 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3204 imbalance, sd, CPU_NEWLY_IDLE,
3206 spin_unlock(&busiest->lock);
3208 if (unlikely(all_pinned)) {
3209 cpu_clear(cpu_of(busiest), cpus);
3210 if (!cpus_empty(cpus))
3216 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3217 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3218 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3221 sd->nr_balance_failed = 0;
3226 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3227 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3228 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3230 sd->nr_balance_failed = 0;
3236 * idle_balance is called by schedule() if this_cpu is about to become
3237 * idle. Attempts to pull tasks from other CPUs.
3239 static void idle_balance(int this_cpu, struct rq *this_rq)
3241 struct sched_domain *sd;
3242 int pulled_task = -1;
3243 unsigned long next_balance = jiffies + HZ;
3245 for_each_domain(this_cpu, sd) {
3246 unsigned long interval;
3248 if (!(sd->flags & SD_LOAD_BALANCE))
3251 if (sd->flags & SD_BALANCE_NEWIDLE)
3252 /* If we've pulled tasks over stop searching: */
3253 pulled_task = load_balance_newidle(this_cpu,
3256 interval = msecs_to_jiffies(sd->balance_interval);
3257 if (time_after(next_balance, sd->last_balance + interval))
3258 next_balance = sd->last_balance + interval;
3262 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3264 * We are going idle. next_balance may be set based on
3265 * a busy processor. So reset next_balance.
3267 this_rq->next_balance = next_balance;
3272 * active_load_balance is run by migration threads. It pushes running tasks
3273 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3274 * running on each physical CPU where possible, and avoids physical /
3275 * logical imbalances.
3277 * Called with busiest_rq locked.
3279 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3281 int target_cpu = busiest_rq->push_cpu;
3282 struct sched_domain *sd;
3283 struct rq *target_rq;
3285 /* Is there any task to move? */
3286 if (busiest_rq->nr_running <= 1)
3289 target_rq = cpu_rq(target_cpu);
3292 * This condition is "impossible", if it occurs
3293 * we need to fix it. Originally reported by
3294 * Bjorn Helgaas on a 128-cpu setup.
3296 BUG_ON(busiest_rq == target_rq);
3298 /* move a task from busiest_rq to target_rq */
3299 double_lock_balance(busiest_rq, target_rq);
3300 update_rq_clock(busiest_rq);
3301 update_rq_clock(target_rq);
3303 /* Search for an sd spanning us and the target CPU. */
3304 for_each_domain(target_cpu, sd) {
3305 if ((sd->flags & SD_LOAD_BALANCE) &&
3306 cpu_isset(busiest_cpu, sd->span))
3311 schedstat_inc(sd, alb_count);
3313 if (move_one_task(target_rq, target_cpu, busiest_rq,
3315 schedstat_inc(sd, alb_pushed);
3317 schedstat_inc(sd, alb_failed);
3319 spin_unlock(&target_rq->lock);
3324 atomic_t load_balancer;
3326 } nohz ____cacheline_aligned = {
3327 .load_balancer = ATOMIC_INIT(-1),
3328 .cpu_mask = CPU_MASK_NONE,
3332 * This routine will try to nominate the ilb (idle load balancing)
3333 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3334 * load balancing on behalf of all those cpus. If all the cpus in the system
3335 * go into this tickless mode, then there will be no ilb owner (as there is
3336 * no need for one) and all the cpus will sleep till the next wakeup event
3339 * For the ilb owner, tick is not stopped. And this tick will be used
3340 * for idle load balancing. ilb owner will still be part of
3343 * While stopping the tick, this cpu will become the ilb owner if there
3344 * is no other owner. And will be the owner till that cpu becomes busy
3345 * or if all cpus in the system stop their ticks at which point
3346 * there is no need for ilb owner.
3348 * When the ilb owner becomes busy, it nominates another owner, during the
3349 * next busy scheduler_tick()
3351 int select_nohz_load_balancer(int stop_tick)
3353 int cpu = smp_processor_id();
3356 cpu_set(cpu, nohz.cpu_mask);
3357 cpu_rq(cpu)->in_nohz_recently = 1;
3360 * If we are going offline and still the leader, give up!
3362 if (cpu_is_offline(cpu) &&
3363 atomic_read(&nohz.load_balancer) == cpu) {
3364 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3369 /* time for ilb owner also to sleep */
3370 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3371 if (atomic_read(&nohz.load_balancer) == cpu)
3372 atomic_set(&nohz.load_balancer, -1);
3376 if (atomic_read(&nohz.load_balancer) == -1) {
3377 /* make me the ilb owner */
3378 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3380 } else if (atomic_read(&nohz.load_balancer) == cpu)
3383 if (!cpu_isset(cpu, nohz.cpu_mask))
3386 cpu_clear(cpu, nohz.cpu_mask);
3388 if (atomic_read(&nohz.load_balancer) == cpu)
3389 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3396 static DEFINE_SPINLOCK(balancing);
3399 * It checks each scheduling domain to see if it is due to be balanced,
3400 * and initiates a balancing operation if so.
3402 * Balancing parameters are set up in arch_init_sched_domains.
3404 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3407 struct rq *rq = cpu_rq(cpu);
3408 unsigned long interval;
3409 struct sched_domain *sd;
3410 /* Earliest time when we have to do rebalance again */
3411 unsigned long next_balance = jiffies + 60*HZ;
3412 int update_next_balance = 0;
3414 for_each_domain(cpu, sd) {
3415 if (!(sd->flags & SD_LOAD_BALANCE))
3418 interval = sd->balance_interval;
3419 if (idle != CPU_IDLE)
3420 interval *= sd->busy_factor;
3422 /* scale ms to jiffies */
3423 interval = msecs_to_jiffies(interval);
3424 if (unlikely(!interval))
3426 if (interval > HZ*NR_CPUS/10)
3427 interval = HZ*NR_CPUS/10;
3430 if (sd->flags & SD_SERIALIZE) {
3431 if (!spin_trylock(&balancing))
3435 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3436 if (load_balance(cpu, rq, sd, idle, &balance)) {
3438 * We've pulled tasks over so either we're no
3439 * longer idle, or one of our SMT siblings is
3442 idle = CPU_NOT_IDLE;
3444 sd->last_balance = jiffies;
3446 if (sd->flags & SD_SERIALIZE)
3447 spin_unlock(&balancing);
3449 if (time_after(next_balance, sd->last_balance + interval)) {
3450 next_balance = sd->last_balance + interval;
3451 update_next_balance = 1;
3455 * Stop the load balance at this level. There is another
3456 * CPU in our sched group which is doing load balancing more
3464 * next_balance will be updated only when there is a need.
3465 * When the cpu is attached to null domain for ex, it will not be
3468 if (likely(update_next_balance))
3469 rq->next_balance = next_balance;
3473 * run_rebalance_domains is triggered when needed from the scheduler tick.
3474 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3475 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3477 static void run_rebalance_domains(struct softirq_action *h)
3479 int this_cpu = smp_processor_id();
3480 struct rq *this_rq = cpu_rq(this_cpu);
3481 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3482 CPU_IDLE : CPU_NOT_IDLE;
3484 rebalance_domains(this_cpu, idle);
3488 * If this cpu is the owner for idle load balancing, then do the
3489 * balancing on behalf of the other idle cpus whose ticks are
3492 if (this_rq->idle_at_tick &&
3493 atomic_read(&nohz.load_balancer) == this_cpu) {
3494 cpumask_t cpus = nohz.cpu_mask;
3498 cpu_clear(this_cpu, cpus);
3499 for_each_cpu_mask(balance_cpu, cpus) {
3501 * If this cpu gets work to do, stop the load balancing
3502 * work being done for other cpus. Next load
3503 * balancing owner will pick it up.
3508 rebalance_domains(balance_cpu, CPU_IDLE);
3510 rq = cpu_rq(balance_cpu);
3511 if (time_after(this_rq->next_balance, rq->next_balance))
3512 this_rq->next_balance = rq->next_balance;
3519 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3521 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3522 * idle load balancing owner or decide to stop the periodic load balancing,
3523 * if the whole system is idle.
3525 static inline void trigger_load_balance(struct rq *rq, int cpu)
3529 * If we were in the nohz mode recently and busy at the current
3530 * scheduler tick, then check if we need to nominate new idle
3533 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3534 rq->in_nohz_recently = 0;
3536 if (atomic_read(&nohz.load_balancer) == cpu) {
3537 cpu_clear(cpu, nohz.cpu_mask);
3538 atomic_set(&nohz.load_balancer, -1);
3541 if (atomic_read(&nohz.load_balancer) == -1) {
3543 * simple selection for now: Nominate the
3544 * first cpu in the nohz list to be the next
3547 * TBD: Traverse the sched domains and nominate
3548 * the nearest cpu in the nohz.cpu_mask.
3550 int ilb = first_cpu(nohz.cpu_mask);
3558 * If this cpu is idle and doing idle load balancing for all the
3559 * cpus with ticks stopped, is it time for that to stop?
3561 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3562 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3568 * If this cpu is idle and the idle load balancing is done by
3569 * someone else, then no need raise the SCHED_SOFTIRQ
3571 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3572 cpu_isset(cpu, nohz.cpu_mask))
3575 if (time_after_eq(jiffies, rq->next_balance))
3576 raise_softirq(SCHED_SOFTIRQ);
3579 #else /* CONFIG_SMP */
3582 * on UP we do not need to balance between CPUs:
3584 static inline void idle_balance(int cpu, struct rq *rq)
3590 DEFINE_PER_CPU(struct kernel_stat, kstat);
3592 EXPORT_PER_CPU_SYMBOL(kstat);
3595 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3596 * that have not yet been banked in case the task is currently running.
3598 unsigned long long task_sched_runtime(struct task_struct *p)
3600 unsigned long flags;
3604 rq = task_rq_lock(p, &flags);
3605 ns = p->se.sum_exec_runtime;
3606 if (task_current(rq, p)) {
3607 update_rq_clock(rq);
3608 delta_exec = rq->clock - p->se.exec_start;
3609 if ((s64)delta_exec > 0)
3612 task_rq_unlock(rq, &flags);
3618 * Account user cpu time to a process.
3619 * @p: the process that the cpu time gets accounted to
3620 * @cputime: the cpu time spent in user space since the last update
3622 void account_user_time(struct task_struct *p, cputime_t cputime)
3624 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3627 p->utime = cputime_add(p->utime, cputime);
3629 /* Add user time to cpustat. */
3630 tmp = cputime_to_cputime64(cputime);
3631 if (TASK_NICE(p) > 0)
3632 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3634 cpustat->user = cputime64_add(cpustat->user, tmp);
3638 * Account guest cpu time to a process.
3639 * @p: the process that the cpu time gets accounted to
3640 * @cputime: the cpu time spent in virtual machine since the last update
3642 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3645 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3647 tmp = cputime_to_cputime64(cputime);
3649 p->utime = cputime_add(p->utime, cputime);
3650 p->gtime = cputime_add(p->gtime, cputime);
3652 cpustat->user = cputime64_add(cpustat->user, tmp);
3653 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3657 * Account scaled user cpu time to a process.
3658 * @p: the process that the cpu time gets accounted to
3659 * @cputime: the cpu time spent in user space since the last update
3661 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3663 p->utimescaled = cputime_add(p->utimescaled, cputime);
3667 * Account system cpu time to a process.
3668 * @p: the process that the cpu time gets accounted to
3669 * @hardirq_offset: the offset to subtract from hardirq_count()
3670 * @cputime: the cpu time spent in kernel space since the last update
3672 void account_system_time(struct task_struct *p, int hardirq_offset,
3675 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3676 struct rq *rq = this_rq();
3679 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3680 return account_guest_time(p, cputime);
3682 p->stime = cputime_add(p->stime, cputime);
3684 /* Add system time to cpustat. */
3685 tmp = cputime_to_cputime64(cputime);
3686 if (hardirq_count() - hardirq_offset)
3687 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3688 else if (softirq_count())
3689 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3690 else if (p != rq->idle)
3691 cpustat->system = cputime64_add(cpustat->system, tmp);
3692 else if (atomic_read(&rq->nr_iowait) > 0)
3693 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3695 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3696 /* Account for system time used */
3697 acct_update_integrals(p);
3701 * Account scaled system cpu time to a process.
3702 * @p: the process that the cpu time gets accounted to
3703 * @hardirq_offset: the offset to subtract from hardirq_count()
3704 * @cputime: the cpu time spent in kernel space since the last update
3706 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3708 p->stimescaled = cputime_add(p->stimescaled, cputime);
3712 * Account for involuntary wait time.
3713 * @p: the process from which the cpu time has been stolen
3714 * @steal: the cpu time spent in involuntary wait
3716 void account_steal_time(struct task_struct *p, cputime_t steal)
3718 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3719 cputime64_t tmp = cputime_to_cputime64(steal);
3720 struct rq *rq = this_rq();
3722 if (p == rq->idle) {
3723 p->stime = cputime_add(p->stime, steal);
3724 if (atomic_read(&rq->nr_iowait) > 0)
3725 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3727 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3729 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3733 * This function gets called by the timer code, with HZ frequency.
3734 * We call it with interrupts disabled.
3736 * It also gets called by the fork code, when changing the parent's
3739 void scheduler_tick(void)
3741 int cpu = smp_processor_id();
3742 struct rq *rq = cpu_rq(cpu);
3743 struct task_struct *curr = rq->curr;
3744 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3746 spin_lock(&rq->lock);
3747 __update_rq_clock(rq);
3749 * Let rq->clock advance by at least TICK_NSEC:
3751 if (unlikely(rq->clock < next_tick)) {
3752 rq->clock = next_tick;
3753 rq->clock_underflows++;
3755 rq->tick_timestamp = rq->clock;
3756 update_cpu_load(rq);
3757 curr->sched_class->task_tick(rq, curr, 0);
3758 update_sched_rt_period(rq);
3759 spin_unlock(&rq->lock);
3762 rq->idle_at_tick = idle_cpu(cpu);
3763 trigger_load_balance(rq, cpu);
3767 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3769 void add_preempt_count(int val)
3774 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3776 preempt_count() += val;
3778 * Spinlock count overflowing soon?
3780 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3783 EXPORT_SYMBOL(add_preempt_count);
3785 void sub_preempt_count(int val)
3790 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3793 * Is the spinlock portion underflowing?
3795 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3796 !(preempt_count() & PREEMPT_MASK)))
3799 preempt_count() -= val;
3801 EXPORT_SYMBOL(sub_preempt_count);
3806 * Print scheduling while atomic bug:
3808 static noinline void __schedule_bug(struct task_struct *prev)
3810 struct pt_regs *regs = get_irq_regs();
3812 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3813 prev->comm, prev->pid, preempt_count());
3815 debug_show_held_locks(prev);
3816 if (irqs_disabled())
3817 print_irqtrace_events(prev);
3826 * Various schedule()-time debugging checks and statistics:
3828 static inline void schedule_debug(struct task_struct *prev)
3831 * Test if we are atomic. Since do_exit() needs to call into
3832 * schedule() atomically, we ignore that path for now.
3833 * Otherwise, whine if we are scheduling when we should not be.
3835 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3836 __schedule_bug(prev);
3838 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3840 schedstat_inc(this_rq(), sched_count);
3841 #ifdef CONFIG_SCHEDSTATS
3842 if (unlikely(prev->lock_depth >= 0)) {
3843 schedstat_inc(this_rq(), bkl_count);
3844 schedstat_inc(prev, sched_info.bkl_count);
3850 * Pick up the highest-prio task:
3852 static inline struct task_struct *
3853 pick_next_task(struct rq *rq, struct task_struct *prev)
3855 const struct sched_class *class;
3856 struct task_struct *p;
3859 * Optimization: we know that if all tasks are in
3860 * the fair class we can call that function directly:
3862 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3863 p = fair_sched_class.pick_next_task(rq);
3868 class = sched_class_highest;
3870 p = class->pick_next_task(rq);
3874 * Will never be NULL as the idle class always
3875 * returns a non-NULL p:
3877 class = class->next;
3882 * schedule() is the main scheduler function.
3884 asmlinkage void __sched schedule(void)
3886 struct task_struct *prev, *next;
3893 cpu = smp_processor_id();
3897 switch_count = &prev->nivcsw;
3899 release_kernel_lock(prev);
3900 need_resched_nonpreemptible:
3902 schedule_debug(prev);
3907 * Do the rq-clock update outside the rq lock:
3909 local_irq_disable();
3910 __update_rq_clock(rq);
3911 spin_lock(&rq->lock);
3912 clear_tsk_need_resched(prev);
3914 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3915 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3916 unlikely(signal_pending(prev)))) {
3917 prev->state = TASK_RUNNING;
3919 deactivate_task(rq, prev, 1);
3921 switch_count = &prev->nvcsw;
3925 if (prev->sched_class->pre_schedule)
3926 prev->sched_class->pre_schedule(rq, prev);
3929 if (unlikely(!rq->nr_running))
3930 idle_balance(cpu, rq);
3932 prev->sched_class->put_prev_task(rq, prev);
3933 next = pick_next_task(rq, prev);
3935 sched_info_switch(prev, next);
3937 if (likely(prev != next)) {
3942 context_switch(rq, prev, next); /* unlocks the rq */
3944 * the context switch might have flipped the stack from under
3945 * us, hence refresh the local variables.
3947 cpu = smp_processor_id();
3950 spin_unlock_irq(&rq->lock);
3954 if (unlikely(reacquire_kernel_lock(current) < 0))
3955 goto need_resched_nonpreemptible;
3957 preempt_enable_no_resched();
3958 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3961 EXPORT_SYMBOL(schedule);
3963 #ifdef CONFIG_PREEMPT
3965 * this is the entry point to schedule() from in-kernel preemption
3966 * off of preempt_enable. Kernel preemptions off return from interrupt
3967 * occur there and call schedule directly.
3969 asmlinkage void __sched preempt_schedule(void)
3971 struct thread_info *ti = current_thread_info();
3972 struct task_struct *task = current;
3973 int saved_lock_depth;
3976 * If there is a non-zero preempt_count or interrupts are disabled,
3977 * we do not want to preempt the current task. Just return..
3979 if (likely(ti->preempt_count || irqs_disabled()))
3983 add_preempt_count(PREEMPT_ACTIVE);
3986 * We keep the big kernel semaphore locked, but we
3987 * clear ->lock_depth so that schedule() doesnt
3988 * auto-release the semaphore:
3990 saved_lock_depth = task->lock_depth;
3991 task->lock_depth = -1;
3993 task->lock_depth = saved_lock_depth;
3994 sub_preempt_count(PREEMPT_ACTIVE);
3997 * Check again in case we missed a preemption opportunity
3998 * between schedule and now.
4001 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4003 EXPORT_SYMBOL(preempt_schedule);
4006 * this is the entry point to schedule() from kernel preemption
4007 * off of irq context.
4008 * Note, that this is called and return with irqs disabled. This will
4009 * protect us against recursive calling from irq.
4011 asmlinkage void __sched preempt_schedule_irq(void)
4013 struct thread_info *ti = current_thread_info();
4014 struct task_struct *task = current;
4015 int saved_lock_depth;
4017 /* Catch callers which need to be fixed */
4018 BUG_ON(ti->preempt_count || !irqs_disabled());
4021 add_preempt_count(PREEMPT_ACTIVE);
4024 * We keep the big kernel semaphore locked, but we
4025 * clear ->lock_depth so that schedule() doesnt
4026 * auto-release the semaphore:
4028 saved_lock_depth = task->lock_depth;
4029 task->lock_depth = -1;
4032 local_irq_disable();
4033 task->lock_depth = saved_lock_depth;
4034 sub_preempt_count(PREEMPT_ACTIVE);
4037 * Check again in case we missed a preemption opportunity
4038 * between schedule and now.
4041 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4044 #endif /* CONFIG_PREEMPT */
4046 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4049 return try_to_wake_up(curr->private, mode, sync);
4051 EXPORT_SYMBOL(default_wake_function);
4054 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4055 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4056 * number) then we wake all the non-exclusive tasks and one exclusive task.
4058 * There are circumstances in which we can try to wake a task which has already
4059 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4060 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4062 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4063 int nr_exclusive, int sync, void *key)
4065 wait_queue_t *curr, *next;
4067 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4068 unsigned flags = curr->flags;
4070 if (curr->func(curr, mode, sync, key) &&
4071 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4077 * __wake_up - wake up threads blocked on a waitqueue.
4079 * @mode: which threads
4080 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4081 * @key: is directly passed to the wakeup function
4083 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4084 int nr_exclusive, void *key)
4086 unsigned long flags;
4088 spin_lock_irqsave(&q->lock, flags);
4089 __wake_up_common(q, mode, nr_exclusive, 0, key);
4090 spin_unlock_irqrestore(&q->lock, flags);
4092 EXPORT_SYMBOL(__wake_up);
4095 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4097 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4099 __wake_up_common(q, mode, 1, 0, NULL);
4103 * __wake_up_sync - wake up threads blocked on a waitqueue.
4105 * @mode: which threads
4106 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4108 * The sync wakeup differs that the waker knows that it will schedule
4109 * away soon, so while the target thread will be woken up, it will not
4110 * be migrated to another CPU - ie. the two threads are 'synchronized'
4111 * with each other. This can prevent needless bouncing between CPUs.
4113 * On UP it can prevent extra preemption.
4116 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4118 unsigned long flags;
4124 if (unlikely(!nr_exclusive))
4127 spin_lock_irqsave(&q->lock, flags);
4128 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4129 spin_unlock_irqrestore(&q->lock, flags);
4131 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4133 void complete(struct completion *x)
4135 unsigned long flags;
4137 spin_lock_irqsave(&x->wait.lock, flags);
4139 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4140 spin_unlock_irqrestore(&x->wait.lock, flags);
4142 EXPORT_SYMBOL(complete);
4144 void complete_all(struct completion *x)
4146 unsigned long flags;
4148 spin_lock_irqsave(&x->wait.lock, flags);
4149 x->done += UINT_MAX/2;
4150 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4151 spin_unlock_irqrestore(&x->wait.lock, flags);
4153 EXPORT_SYMBOL(complete_all);
4155 static inline long __sched
4156 do_wait_for_common(struct completion *x, long timeout, int state)
4159 DECLARE_WAITQUEUE(wait, current);
4161 wait.flags |= WQ_FLAG_EXCLUSIVE;
4162 __add_wait_queue_tail(&x->wait, &wait);
4164 if ((state == TASK_INTERRUPTIBLE &&
4165 signal_pending(current)) ||
4166 (state == TASK_KILLABLE &&
4167 fatal_signal_pending(current))) {
4168 __remove_wait_queue(&x->wait, &wait);
4169 return -ERESTARTSYS;
4171 __set_current_state(state);
4172 spin_unlock_irq(&x->wait.lock);
4173 timeout = schedule_timeout(timeout);
4174 spin_lock_irq(&x->wait.lock);
4176 __remove_wait_queue(&x->wait, &wait);
4180 __remove_wait_queue(&x->wait, &wait);
4187 wait_for_common(struct completion *x, long timeout, int state)
4191 spin_lock_irq(&x->wait.lock);
4192 timeout = do_wait_for_common(x, timeout, state);
4193 spin_unlock_irq(&x->wait.lock);
4197 void __sched wait_for_completion(struct completion *x)
4199 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4201 EXPORT_SYMBOL(wait_for_completion);
4203 unsigned long __sched
4204 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4206 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4208 EXPORT_SYMBOL(wait_for_completion_timeout);
4210 int __sched wait_for_completion_interruptible(struct completion *x)
4212 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4213 if (t == -ERESTARTSYS)
4217 EXPORT_SYMBOL(wait_for_completion_interruptible);
4219 unsigned long __sched
4220 wait_for_completion_interruptible_timeout(struct completion *x,
4221 unsigned long timeout)
4223 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4225 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4227 int __sched wait_for_completion_killable(struct completion *x)
4229 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4230 if (t == -ERESTARTSYS)
4234 EXPORT_SYMBOL(wait_for_completion_killable);
4237 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4239 unsigned long flags;
4242 init_waitqueue_entry(&wait, current);
4244 __set_current_state(state);
4246 spin_lock_irqsave(&q->lock, flags);
4247 __add_wait_queue(q, &wait);
4248 spin_unlock(&q->lock);
4249 timeout = schedule_timeout(timeout);
4250 spin_lock_irq(&q->lock);
4251 __remove_wait_queue(q, &wait);
4252 spin_unlock_irqrestore(&q->lock, flags);
4257 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4259 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4261 EXPORT_SYMBOL(interruptible_sleep_on);
4264 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4266 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4268 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4270 void __sched sleep_on(wait_queue_head_t *q)
4272 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4274 EXPORT_SYMBOL(sleep_on);
4276 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4278 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4280 EXPORT_SYMBOL(sleep_on_timeout);
4282 #ifdef CONFIG_RT_MUTEXES
4285 * rt_mutex_setprio - set the current priority of a task
4287 * @prio: prio value (kernel-internal form)
4289 * This function changes the 'effective' priority of a task. It does
4290 * not touch ->normal_prio like __setscheduler().
4292 * Used by the rt_mutex code to implement priority inheritance logic.
4294 void rt_mutex_setprio(struct task_struct *p, int prio)
4296 unsigned long flags;
4297 int oldprio, on_rq, running;
4299 const struct sched_class *prev_class = p->sched_class;
4301 BUG_ON(prio < 0 || prio > MAX_PRIO);
4303 rq = task_rq_lock(p, &flags);
4304 update_rq_clock(rq);
4307 on_rq = p->se.on_rq;
4308 running = task_current(rq, p);
4310 dequeue_task(rq, p, 0);
4312 p->sched_class->put_prev_task(rq, p);
4316 p->sched_class = &rt_sched_class;
4318 p->sched_class = &fair_sched_class;
4324 p->sched_class->set_curr_task(rq);
4326 enqueue_task(rq, p, 0);
4328 check_class_changed(rq, p, prev_class, oldprio, running);
4330 task_rq_unlock(rq, &flags);
4335 void set_user_nice(struct task_struct *p, long nice)
4337 int old_prio, delta, on_rq;
4338 unsigned long flags;
4341 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4344 * We have to be careful, if called from sys_setpriority(),
4345 * the task might be in the middle of scheduling on another CPU.
4347 rq = task_rq_lock(p, &flags);
4348 update_rq_clock(rq);
4350 * The RT priorities are set via sched_setscheduler(), but we still
4351 * allow the 'normal' nice value to be set - but as expected
4352 * it wont have any effect on scheduling until the task is
4353 * SCHED_FIFO/SCHED_RR:
4355 if (task_has_rt_policy(p)) {
4356 p->static_prio = NICE_TO_PRIO(nice);
4359 on_rq = p->se.on_rq;
4361 dequeue_task(rq, p, 0);
4363 p->static_prio = NICE_TO_PRIO(nice);
4366 p->prio = effective_prio(p);
4367 delta = p->prio - old_prio;
4370 enqueue_task(rq, p, 0);
4372 * If the task increased its priority or is running and
4373 * lowered its priority, then reschedule its CPU:
4375 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4376 resched_task(rq->curr);
4379 task_rq_unlock(rq, &flags);
4381 EXPORT_SYMBOL(set_user_nice);
4384 * can_nice - check if a task can reduce its nice value
4388 int can_nice(const struct task_struct *p, const int nice)
4390 /* convert nice value [19,-20] to rlimit style value [1,40] */
4391 int nice_rlim = 20 - nice;
4393 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4394 capable(CAP_SYS_NICE));
4397 #ifdef __ARCH_WANT_SYS_NICE
4400 * sys_nice - change the priority of the current process.
4401 * @increment: priority increment
4403 * sys_setpriority is a more generic, but much slower function that
4404 * does similar things.
4406 asmlinkage long sys_nice(int increment)
4411 * Setpriority might change our priority at the same moment.
4412 * We don't have to worry. Conceptually one call occurs first
4413 * and we have a single winner.
4415 if (increment < -40)
4420 nice = PRIO_TO_NICE(current->static_prio) + increment;
4426 if (increment < 0 && !can_nice(current, nice))
4429 retval = security_task_setnice(current, nice);
4433 set_user_nice(current, nice);
4440 * task_prio - return the priority value of a given task.
4441 * @p: the task in question.
4443 * This is the priority value as seen by users in /proc.
4444 * RT tasks are offset by -200. Normal tasks are centered
4445 * around 0, value goes from -16 to +15.
4447 int task_prio(const struct task_struct *p)
4449 return p->prio - MAX_RT_PRIO;
4453 * task_nice - return the nice value of a given task.
4454 * @p: the task in question.
4456 int task_nice(const struct task_struct *p)
4458 return TASK_NICE(p);
4460 EXPORT_SYMBOL_GPL(task_nice);
4463 * idle_cpu - is a given cpu idle currently?
4464 * @cpu: the processor in question.
4466 int idle_cpu(int cpu)
4468 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4472 * idle_task - return the idle task for a given cpu.
4473 * @cpu: the processor in question.
4475 struct task_struct *idle_task(int cpu)
4477 return cpu_rq(cpu)->idle;
4481 * find_process_by_pid - find a process with a matching PID value.
4482 * @pid: the pid in question.
4484 static struct task_struct *find_process_by_pid(pid_t pid)
4486 return pid ? find_task_by_vpid(pid) : current;
4489 /* Actually do priority change: must hold rq lock. */
4491 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4493 BUG_ON(p->se.on_rq);
4496 switch (p->policy) {
4500 p->sched_class = &fair_sched_class;
4504 p->sched_class = &rt_sched_class;
4508 p->rt_priority = prio;
4509 p->normal_prio = normal_prio(p);
4510 /* we are holding p->pi_lock already */
4511 p->prio = rt_mutex_getprio(p);
4516 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4517 * @p: the task in question.
4518 * @policy: new policy.
4519 * @param: structure containing the new RT priority.
4521 * NOTE that the task may be already dead.
4523 int sched_setscheduler(struct task_struct *p, int policy,
4524 struct sched_param *param)
4526 int retval, oldprio, oldpolicy = -1, on_rq, running;
4527 unsigned long flags;
4528 const struct sched_class *prev_class = p->sched_class;
4531 /* may grab non-irq protected spin_locks */
4532 BUG_ON(in_interrupt());
4534 /* double check policy once rq lock held */
4536 policy = oldpolicy = p->policy;
4537 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4538 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4539 policy != SCHED_IDLE)
4542 * Valid priorities for SCHED_FIFO and SCHED_RR are
4543 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4544 * SCHED_BATCH and SCHED_IDLE is 0.
4546 if (param->sched_priority < 0 ||
4547 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4548 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4550 if (rt_policy(policy) != (param->sched_priority != 0))
4554 * Allow unprivileged RT tasks to decrease priority:
4556 if (!capable(CAP_SYS_NICE)) {
4557 if (rt_policy(policy)) {
4558 unsigned long rlim_rtprio;
4560 if (!lock_task_sighand(p, &flags))
4562 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4563 unlock_task_sighand(p, &flags);
4565 /* can't set/change the rt policy */
4566 if (policy != p->policy && !rlim_rtprio)
4569 /* can't increase priority */
4570 if (param->sched_priority > p->rt_priority &&
4571 param->sched_priority > rlim_rtprio)
4575 * Like positive nice levels, dont allow tasks to
4576 * move out of SCHED_IDLE either:
4578 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4581 /* can't change other user's priorities */
4582 if ((current->euid != p->euid) &&
4583 (current->euid != p->uid))
4587 #ifdef CONFIG_RT_GROUP_SCHED
4589 * Do not allow realtime tasks into groups that have no runtime
4592 if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
4596 retval = security_task_setscheduler(p, policy, param);
4600 * make sure no PI-waiters arrive (or leave) while we are
4601 * changing the priority of the task:
4603 spin_lock_irqsave(&p->pi_lock, flags);
4605 * To be able to change p->policy safely, the apropriate
4606 * runqueue lock must be held.
4608 rq = __task_rq_lock(p);
4609 /* recheck policy now with rq lock held */
4610 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4611 policy = oldpolicy = -1;
4612 __task_rq_unlock(rq);
4613 spin_unlock_irqrestore(&p->pi_lock, flags);
4616 update_rq_clock(rq);
4617 on_rq = p->se.on_rq;
4618 running = task_current(rq, p);
4620 deactivate_task(rq, p, 0);
4622 p->sched_class->put_prev_task(rq, p);
4626 __setscheduler(rq, p, policy, param->sched_priority);
4630 p->sched_class->set_curr_task(rq);
4632 activate_task(rq, p, 0);
4634 check_class_changed(rq, p, prev_class, oldprio, running);
4636 __task_rq_unlock(rq);
4637 spin_unlock_irqrestore(&p->pi_lock, flags);
4639 rt_mutex_adjust_pi(p);
4643 EXPORT_SYMBOL_GPL(sched_setscheduler);
4646 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4648 struct sched_param lparam;
4649 struct task_struct *p;
4652 if (!param || pid < 0)
4654 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4659 p = find_process_by_pid(pid);
4661 retval = sched_setscheduler(p, policy, &lparam);
4668 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4669 * @pid: the pid in question.
4670 * @policy: new policy.
4671 * @param: structure containing the new RT priority.
4674 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4676 /* negative values for policy are not valid */
4680 return do_sched_setscheduler(pid, policy, param);
4684 * sys_sched_setparam - set/change the RT priority of a thread
4685 * @pid: the pid in question.
4686 * @param: structure containing the new RT priority.
4688 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4690 return do_sched_setscheduler(pid, -1, param);
4694 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4695 * @pid: the pid in question.
4697 asmlinkage long sys_sched_getscheduler(pid_t pid)
4699 struct task_struct *p;
4706 read_lock(&tasklist_lock);
4707 p = find_process_by_pid(pid);
4709 retval = security_task_getscheduler(p);
4713 read_unlock(&tasklist_lock);
4718 * sys_sched_getscheduler - get the RT priority of a thread
4719 * @pid: the pid in question.
4720 * @param: structure containing the RT priority.
4722 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4724 struct sched_param lp;
4725 struct task_struct *p;
4728 if (!param || pid < 0)
4731 read_lock(&tasklist_lock);
4732 p = find_process_by_pid(pid);
4737 retval = security_task_getscheduler(p);
4741 lp.sched_priority = p->rt_priority;
4742 read_unlock(&tasklist_lock);
4745 * This one might sleep, we cannot do it with a spinlock held ...
4747 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4752 read_unlock(&tasklist_lock);
4756 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4758 cpumask_t cpus_allowed;
4759 struct task_struct *p;
4763 read_lock(&tasklist_lock);
4765 p = find_process_by_pid(pid);
4767 read_unlock(&tasklist_lock);
4773 * It is not safe to call set_cpus_allowed with the
4774 * tasklist_lock held. We will bump the task_struct's
4775 * usage count and then drop tasklist_lock.
4778 read_unlock(&tasklist_lock);
4781 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4782 !capable(CAP_SYS_NICE))
4785 retval = security_task_setscheduler(p, 0, NULL);
4789 cpus_allowed = cpuset_cpus_allowed(p);
4790 cpus_and(new_mask, new_mask, cpus_allowed);
4792 retval = set_cpus_allowed(p, new_mask);
4795 cpus_allowed = cpuset_cpus_allowed(p);
4796 if (!cpus_subset(new_mask, cpus_allowed)) {
4798 * We must have raced with a concurrent cpuset
4799 * update. Just reset the cpus_allowed to the
4800 * cpuset's cpus_allowed
4802 new_mask = cpus_allowed;
4812 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4813 cpumask_t *new_mask)
4815 if (len < sizeof(cpumask_t)) {
4816 memset(new_mask, 0, sizeof(cpumask_t));
4817 } else if (len > sizeof(cpumask_t)) {
4818 len = sizeof(cpumask_t);
4820 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4824 * sys_sched_setaffinity - set the cpu affinity of a process
4825 * @pid: pid of the process
4826 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4827 * @user_mask_ptr: user-space pointer to the new cpu mask
4829 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4830 unsigned long __user *user_mask_ptr)
4835 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4839 return sched_setaffinity(pid, new_mask);
4843 * Represents all cpu's present in the system
4844 * In systems capable of hotplug, this map could dynamically grow
4845 * as new cpu's are detected in the system via any platform specific
4846 * method, such as ACPI for e.g.
4849 cpumask_t cpu_present_map __read_mostly;
4850 EXPORT_SYMBOL(cpu_present_map);
4853 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4854 EXPORT_SYMBOL(cpu_online_map);
4856 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4857 EXPORT_SYMBOL(cpu_possible_map);
4860 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4862 struct task_struct *p;
4866 read_lock(&tasklist_lock);
4869 p = find_process_by_pid(pid);
4873 retval = security_task_getscheduler(p);
4877 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4880 read_unlock(&tasklist_lock);
4887 * sys_sched_getaffinity - get the cpu affinity of a process
4888 * @pid: pid of the process
4889 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4890 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4892 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4893 unsigned long __user *user_mask_ptr)
4898 if (len < sizeof(cpumask_t))
4901 ret = sched_getaffinity(pid, &mask);
4905 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4908 return sizeof(cpumask_t);
4912 * sys_sched_yield - yield the current processor to other threads.
4914 * This function yields the current CPU to other tasks. If there are no
4915 * other threads running on this CPU then this function will return.
4917 asmlinkage long sys_sched_yield(void)
4919 struct rq *rq = this_rq_lock();
4921 schedstat_inc(rq, yld_count);
4922 current->sched_class->yield_task(rq);
4925 * Since we are going to call schedule() anyway, there's
4926 * no need to preempt or enable interrupts:
4928 __release(rq->lock);
4929 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4930 _raw_spin_unlock(&rq->lock);
4931 preempt_enable_no_resched();
4938 static void __cond_resched(void)
4940 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4941 __might_sleep(__FILE__, __LINE__);
4944 * The BKS might be reacquired before we have dropped
4945 * PREEMPT_ACTIVE, which could trigger a second
4946 * cond_resched() call.
4949 add_preempt_count(PREEMPT_ACTIVE);
4951 sub_preempt_count(PREEMPT_ACTIVE);
4952 } while (need_resched());
4955 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4956 int __sched _cond_resched(void)
4958 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4959 system_state == SYSTEM_RUNNING) {
4965 EXPORT_SYMBOL(_cond_resched);
4969 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4970 * call schedule, and on return reacquire the lock.
4972 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4973 * operations here to prevent schedule() from being called twice (once via
4974 * spin_unlock(), once by hand).
4976 int cond_resched_lock(spinlock_t *lock)
4978 int resched = need_resched() && system_state == SYSTEM_RUNNING;
4981 if (spin_needbreak(lock) || resched) {
4983 if (resched && need_resched())
4992 EXPORT_SYMBOL(cond_resched_lock);
4994 int __sched cond_resched_softirq(void)
4996 BUG_ON(!in_softirq());
4998 if (need_resched() && system_state == SYSTEM_RUNNING) {
5006 EXPORT_SYMBOL(cond_resched_softirq);
5009 * yield - yield the current processor to other threads.
5011 * This is a shortcut for kernel-space yielding - it marks the
5012 * thread runnable and calls sys_sched_yield().
5014 void __sched yield(void)
5016 set_current_state(TASK_RUNNING);
5019 EXPORT_SYMBOL(yield);
5022 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5023 * that process accounting knows that this is a task in IO wait state.
5025 * But don't do that if it is a deliberate, throttling IO wait (this task
5026 * has set its backing_dev_info: the queue against which it should throttle)
5028 void __sched io_schedule(void)
5030 struct rq *rq = &__raw_get_cpu_var(runqueues);
5032 delayacct_blkio_start();
5033 atomic_inc(&rq->nr_iowait);
5035 atomic_dec(&rq->nr_iowait);
5036 delayacct_blkio_end();
5038 EXPORT_SYMBOL(io_schedule);
5040 long __sched io_schedule_timeout(long timeout)
5042 struct rq *rq = &__raw_get_cpu_var(runqueues);
5045 delayacct_blkio_start();
5046 atomic_inc(&rq->nr_iowait);
5047 ret = schedule_timeout(timeout);
5048 atomic_dec(&rq->nr_iowait);
5049 delayacct_blkio_end();
5054 * sys_sched_get_priority_max - return maximum RT priority.
5055 * @policy: scheduling class.
5057 * this syscall returns the maximum rt_priority that can be used
5058 * by a given scheduling class.
5060 asmlinkage long sys_sched_get_priority_max(int policy)
5067 ret = MAX_USER_RT_PRIO-1;
5079 * sys_sched_get_priority_min - return minimum RT priority.
5080 * @policy: scheduling class.
5082 * this syscall returns the minimum rt_priority that can be used
5083 * by a given scheduling class.
5085 asmlinkage long sys_sched_get_priority_min(int policy)
5103 * sys_sched_rr_get_interval - return the default timeslice of a process.
5104 * @pid: pid of the process.
5105 * @interval: userspace pointer to the timeslice value.
5107 * this syscall writes the default timeslice value of a given process
5108 * into the user-space timespec buffer. A value of '0' means infinity.
5111 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5113 struct task_struct *p;
5114 unsigned int time_slice;
5122 read_lock(&tasklist_lock);
5123 p = find_process_by_pid(pid);
5127 retval = security_task_getscheduler(p);
5132 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5133 * tasks that are on an otherwise idle runqueue:
5136 if (p->policy == SCHED_RR) {
5137 time_slice = DEF_TIMESLICE;
5139 struct sched_entity *se = &p->se;
5140 unsigned long flags;
5143 rq = task_rq_lock(p, &flags);
5144 if (rq->cfs.load.weight)
5145 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5146 task_rq_unlock(rq, &flags);
5148 read_unlock(&tasklist_lock);
5149 jiffies_to_timespec(time_slice, &t);
5150 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5154 read_unlock(&tasklist_lock);
5158 static const char stat_nam[] = "RSDTtZX";
5160 void sched_show_task(struct task_struct *p)
5162 unsigned long free = 0;
5165 state = p->state ? __ffs(p->state) + 1 : 0;
5166 printk(KERN_INFO "%-13.13s %c", p->comm,
5167 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5168 #if BITS_PER_LONG == 32
5169 if (state == TASK_RUNNING)
5170 printk(KERN_CONT " running ");
5172 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5174 if (state == TASK_RUNNING)
5175 printk(KERN_CONT " running task ");
5177 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5179 #ifdef CONFIG_DEBUG_STACK_USAGE
5181 unsigned long *n = end_of_stack(p);
5184 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5187 printk(KERN_CONT "%5lu %5d %6d\n", free,
5188 task_pid_nr(p), task_pid_nr(p->real_parent));
5190 show_stack(p, NULL);
5193 void show_state_filter(unsigned long state_filter)
5195 struct task_struct *g, *p;
5197 #if BITS_PER_LONG == 32
5199 " task PC stack pid father\n");
5202 " task PC stack pid father\n");
5204 read_lock(&tasklist_lock);
5205 do_each_thread(g, p) {
5207 * reset the NMI-timeout, listing all files on a slow
5208 * console might take alot of time:
5210 touch_nmi_watchdog();
5211 if (!state_filter || (p->state & state_filter))
5213 } while_each_thread(g, p);
5215 touch_all_softlockup_watchdogs();
5217 #ifdef CONFIG_SCHED_DEBUG
5218 sysrq_sched_debug_show();
5220 read_unlock(&tasklist_lock);
5222 * Only show locks if all tasks are dumped:
5224 if (state_filter == -1)
5225 debug_show_all_locks();
5228 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5230 idle->sched_class = &idle_sched_class;
5234 * init_idle - set up an idle thread for a given CPU
5235 * @idle: task in question
5236 * @cpu: cpu the idle task belongs to
5238 * NOTE: this function does not set the idle thread's NEED_RESCHED
5239 * flag, to make booting more robust.
5241 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5243 struct rq *rq = cpu_rq(cpu);
5244 unsigned long flags;
5247 idle->se.exec_start = sched_clock();
5249 idle->prio = idle->normal_prio = MAX_PRIO;
5250 idle->cpus_allowed = cpumask_of_cpu(cpu);
5251 __set_task_cpu(idle, cpu);
5253 spin_lock_irqsave(&rq->lock, flags);
5254 rq->curr = rq->idle = idle;
5255 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5258 spin_unlock_irqrestore(&rq->lock, flags);
5260 /* Set the preempt count _outside_ the spinlocks! */
5261 task_thread_info(idle)->preempt_count = 0;
5264 * The idle tasks have their own, simple scheduling class:
5266 idle->sched_class = &idle_sched_class;
5270 * In a system that switches off the HZ timer nohz_cpu_mask
5271 * indicates which cpus entered this state. This is used
5272 * in the rcu update to wait only for active cpus. For system
5273 * which do not switch off the HZ timer nohz_cpu_mask should
5274 * always be CPU_MASK_NONE.
5276 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5279 * Increase the granularity value when there are more CPUs,
5280 * because with more CPUs the 'effective latency' as visible
5281 * to users decreases. But the relationship is not linear,
5282 * so pick a second-best guess by going with the log2 of the
5285 * This idea comes from the SD scheduler of Con Kolivas:
5287 static inline void sched_init_granularity(void)
5289 unsigned int factor = 1 + ilog2(num_online_cpus());
5290 const unsigned long limit = 200000000;
5292 sysctl_sched_min_granularity *= factor;
5293 if (sysctl_sched_min_granularity > limit)
5294 sysctl_sched_min_granularity = limit;
5296 sysctl_sched_latency *= factor;
5297 if (sysctl_sched_latency > limit)
5298 sysctl_sched_latency = limit;
5300 sysctl_sched_wakeup_granularity *= factor;
5301 sysctl_sched_batch_wakeup_granularity *= factor;
5306 * This is how migration works:
5308 * 1) we queue a struct migration_req structure in the source CPU's
5309 * runqueue and wake up that CPU's migration thread.
5310 * 2) we down() the locked semaphore => thread blocks.
5311 * 3) migration thread wakes up (implicitly it forces the migrated
5312 * thread off the CPU)
5313 * 4) it gets the migration request and checks whether the migrated
5314 * task is still in the wrong runqueue.
5315 * 5) if it's in the wrong runqueue then the migration thread removes
5316 * it and puts it into the right queue.
5317 * 6) migration thread up()s the semaphore.
5318 * 7) we wake up and the migration is done.
5322 * Change a given task's CPU affinity. Migrate the thread to a
5323 * proper CPU and schedule it away if the CPU it's executing on
5324 * is removed from the allowed bitmask.
5326 * NOTE: the caller must have a valid reference to the task, the
5327 * task must not exit() & deallocate itself prematurely. The
5328 * call is not atomic; no spinlocks may be held.
5330 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5332 struct migration_req req;
5333 unsigned long flags;
5337 rq = task_rq_lock(p, &flags);
5338 if (!cpus_intersects(new_mask, cpu_online_map)) {
5343 if (p->sched_class->set_cpus_allowed)
5344 p->sched_class->set_cpus_allowed(p, &new_mask);
5346 p->cpus_allowed = new_mask;
5347 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5350 /* Can the task run on the task's current CPU? If so, we're done */
5351 if (cpu_isset(task_cpu(p), new_mask))
5354 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5355 /* Need help from migration thread: drop lock and wait. */
5356 task_rq_unlock(rq, &flags);
5357 wake_up_process(rq->migration_thread);
5358 wait_for_completion(&req.done);
5359 tlb_migrate_finish(p->mm);
5363 task_rq_unlock(rq, &flags);
5367 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5370 * Move (not current) task off this cpu, onto dest cpu. We're doing
5371 * this because either it can't run here any more (set_cpus_allowed()
5372 * away from this CPU, or CPU going down), or because we're
5373 * attempting to rebalance this task on exec (sched_exec).
5375 * So we race with normal scheduler movements, but that's OK, as long
5376 * as the task is no longer on this CPU.
5378 * Returns non-zero if task was successfully migrated.
5380 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5382 struct rq *rq_dest, *rq_src;
5385 if (unlikely(cpu_is_offline(dest_cpu)))
5388 rq_src = cpu_rq(src_cpu);
5389 rq_dest = cpu_rq(dest_cpu);
5391 double_rq_lock(rq_src, rq_dest);
5392 /* Already moved. */
5393 if (task_cpu(p) != src_cpu)
5395 /* Affinity changed (again). */
5396 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5399 on_rq = p->se.on_rq;
5401 deactivate_task(rq_src, p, 0);
5403 set_task_cpu(p, dest_cpu);
5405 activate_task(rq_dest, p, 0);
5406 check_preempt_curr(rq_dest, p);
5410 double_rq_unlock(rq_src, rq_dest);
5415 * migration_thread - this is a highprio system thread that performs
5416 * thread migration by bumping thread off CPU then 'pushing' onto
5419 static int migration_thread(void *data)
5421 int cpu = (long)data;
5425 BUG_ON(rq->migration_thread != current);
5427 set_current_state(TASK_INTERRUPTIBLE);
5428 while (!kthread_should_stop()) {
5429 struct migration_req *req;
5430 struct list_head *head;
5432 spin_lock_irq(&rq->lock);
5434 if (cpu_is_offline(cpu)) {
5435 spin_unlock_irq(&rq->lock);
5439 if (rq->active_balance) {
5440 active_load_balance(rq, cpu);
5441 rq->active_balance = 0;
5444 head = &rq->migration_queue;
5446 if (list_empty(head)) {
5447 spin_unlock_irq(&rq->lock);
5449 set_current_state(TASK_INTERRUPTIBLE);
5452 req = list_entry(head->next, struct migration_req, list);
5453 list_del_init(head->next);
5455 spin_unlock(&rq->lock);
5456 __migrate_task(req->task, cpu, req->dest_cpu);
5459 complete(&req->done);
5461 __set_current_state(TASK_RUNNING);
5465 /* Wait for kthread_stop */
5466 set_current_state(TASK_INTERRUPTIBLE);
5467 while (!kthread_should_stop()) {
5469 set_current_state(TASK_INTERRUPTIBLE);
5471 __set_current_state(TASK_RUNNING);
5475 #ifdef CONFIG_HOTPLUG_CPU
5477 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5481 local_irq_disable();
5482 ret = __migrate_task(p, src_cpu, dest_cpu);
5488 * Figure out where task on dead CPU should go, use force if necessary.
5489 * NOTE: interrupts should be disabled by the caller
5491 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5493 unsigned long flags;
5500 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5501 cpus_and(mask, mask, p->cpus_allowed);
5502 dest_cpu = any_online_cpu(mask);
5504 /* On any allowed CPU? */
5505 if (dest_cpu == NR_CPUS)
5506 dest_cpu = any_online_cpu(p->cpus_allowed);
5508 /* No more Mr. Nice Guy. */
5509 if (dest_cpu == NR_CPUS) {
5510 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5512 * Try to stay on the same cpuset, where the
5513 * current cpuset may be a subset of all cpus.
5514 * The cpuset_cpus_allowed_locked() variant of
5515 * cpuset_cpus_allowed() will not block. It must be
5516 * called within calls to cpuset_lock/cpuset_unlock.
5518 rq = task_rq_lock(p, &flags);
5519 p->cpus_allowed = cpus_allowed;
5520 dest_cpu = any_online_cpu(p->cpus_allowed);
5521 task_rq_unlock(rq, &flags);
5524 * Don't tell them about moving exiting tasks or
5525 * kernel threads (both mm NULL), since they never
5528 if (p->mm && printk_ratelimit()) {
5529 printk(KERN_INFO "process %d (%s) no "
5530 "longer affine to cpu%d\n",
5531 task_pid_nr(p), p->comm, dead_cpu);
5534 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5538 * While a dead CPU has no uninterruptible tasks queued at this point,
5539 * it might still have a nonzero ->nr_uninterruptible counter, because
5540 * for performance reasons the counter is not stricly tracking tasks to
5541 * their home CPUs. So we just add the counter to another CPU's counter,
5542 * to keep the global sum constant after CPU-down:
5544 static void migrate_nr_uninterruptible(struct rq *rq_src)
5546 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5547 unsigned long flags;
5549 local_irq_save(flags);
5550 double_rq_lock(rq_src, rq_dest);
5551 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5552 rq_src->nr_uninterruptible = 0;
5553 double_rq_unlock(rq_src, rq_dest);
5554 local_irq_restore(flags);
5557 /* Run through task list and migrate tasks from the dead cpu. */
5558 static void migrate_live_tasks(int src_cpu)
5560 struct task_struct *p, *t;
5562 read_lock(&tasklist_lock);
5564 do_each_thread(t, p) {
5568 if (task_cpu(p) == src_cpu)
5569 move_task_off_dead_cpu(src_cpu, p);
5570 } while_each_thread(t, p);
5572 read_unlock(&tasklist_lock);
5576 * Schedules idle task to be the next runnable task on current CPU.
5577 * It does so by boosting its priority to highest possible.
5578 * Used by CPU offline code.
5580 void sched_idle_next(void)
5582 int this_cpu = smp_processor_id();
5583 struct rq *rq = cpu_rq(this_cpu);
5584 struct task_struct *p = rq->idle;
5585 unsigned long flags;
5587 /* cpu has to be offline */
5588 BUG_ON(cpu_online(this_cpu));
5591 * Strictly not necessary since rest of the CPUs are stopped by now
5592 * and interrupts disabled on the current cpu.
5594 spin_lock_irqsave(&rq->lock, flags);
5596 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5598 update_rq_clock(rq);
5599 activate_task(rq, p, 0);
5601 spin_unlock_irqrestore(&rq->lock, flags);
5605 * Ensures that the idle task is using init_mm right before its cpu goes
5608 void idle_task_exit(void)
5610 struct mm_struct *mm = current->active_mm;
5612 BUG_ON(cpu_online(smp_processor_id()));
5615 switch_mm(mm, &init_mm, current);
5619 /* called under rq->lock with disabled interrupts */
5620 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5622 struct rq *rq = cpu_rq(dead_cpu);
5624 /* Must be exiting, otherwise would be on tasklist. */
5625 BUG_ON(!p->exit_state);
5627 /* Cannot have done final schedule yet: would have vanished. */
5628 BUG_ON(p->state == TASK_DEAD);
5633 * Drop lock around migration; if someone else moves it,
5634 * that's OK. No task can be added to this CPU, so iteration is
5637 spin_unlock_irq(&rq->lock);
5638 move_task_off_dead_cpu(dead_cpu, p);
5639 spin_lock_irq(&rq->lock);
5644 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5645 static void migrate_dead_tasks(unsigned int dead_cpu)
5647 struct rq *rq = cpu_rq(dead_cpu);
5648 struct task_struct *next;
5651 if (!rq->nr_running)
5653 update_rq_clock(rq);
5654 next = pick_next_task(rq, rq->curr);
5657 migrate_dead(dead_cpu, next);
5661 #endif /* CONFIG_HOTPLUG_CPU */
5663 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5665 static struct ctl_table sd_ctl_dir[] = {
5667 .procname = "sched_domain",
5673 static struct ctl_table sd_ctl_root[] = {
5675 .ctl_name = CTL_KERN,
5676 .procname = "kernel",
5678 .child = sd_ctl_dir,
5683 static struct ctl_table *sd_alloc_ctl_entry(int n)
5685 struct ctl_table *entry =
5686 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5691 static void sd_free_ctl_entry(struct ctl_table **tablep)
5693 struct ctl_table *entry;
5696 * In the intermediate directories, both the child directory and
5697 * procname are dynamically allocated and could fail but the mode
5698 * will always be set. In the lowest directory the names are
5699 * static strings and all have proc handlers.
5701 for (entry = *tablep; entry->mode; entry++) {
5703 sd_free_ctl_entry(&entry->child);
5704 if (entry->proc_handler == NULL)
5705 kfree(entry->procname);
5713 set_table_entry(struct ctl_table *entry,
5714 const char *procname, void *data, int maxlen,
5715 mode_t mode, proc_handler *proc_handler)
5717 entry->procname = procname;
5719 entry->maxlen = maxlen;
5721 entry->proc_handler = proc_handler;
5724 static struct ctl_table *
5725 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5727 struct ctl_table *table = sd_alloc_ctl_entry(12);
5732 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5733 sizeof(long), 0644, proc_doulongvec_minmax);
5734 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5735 sizeof(long), 0644, proc_doulongvec_minmax);
5736 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5737 sizeof(int), 0644, proc_dointvec_minmax);
5738 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5739 sizeof(int), 0644, proc_dointvec_minmax);
5740 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5741 sizeof(int), 0644, proc_dointvec_minmax);
5742 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5743 sizeof(int), 0644, proc_dointvec_minmax);
5744 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5745 sizeof(int), 0644, proc_dointvec_minmax);
5746 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5747 sizeof(int), 0644, proc_dointvec_minmax);
5748 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5749 sizeof(int), 0644, proc_dointvec_minmax);
5750 set_table_entry(&table[9], "cache_nice_tries",
5751 &sd->cache_nice_tries,
5752 sizeof(int), 0644, proc_dointvec_minmax);
5753 set_table_entry(&table[10], "flags", &sd->flags,
5754 sizeof(int), 0644, proc_dointvec_minmax);
5755 /* &table[11] is terminator */
5760 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5762 struct ctl_table *entry, *table;
5763 struct sched_domain *sd;
5764 int domain_num = 0, i;
5767 for_each_domain(cpu, sd)
5769 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5774 for_each_domain(cpu, sd) {
5775 snprintf(buf, 32, "domain%d", i);
5776 entry->procname = kstrdup(buf, GFP_KERNEL);
5778 entry->child = sd_alloc_ctl_domain_table(sd);
5785 static struct ctl_table_header *sd_sysctl_header;
5786 static void register_sched_domain_sysctl(void)
5788 int i, cpu_num = num_online_cpus();
5789 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5792 WARN_ON(sd_ctl_dir[0].child);
5793 sd_ctl_dir[0].child = entry;
5798 for_each_online_cpu(i) {
5799 snprintf(buf, 32, "cpu%d", i);
5800 entry->procname = kstrdup(buf, GFP_KERNEL);
5802 entry->child = sd_alloc_ctl_cpu_table(i);
5806 WARN_ON(sd_sysctl_header);
5807 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5810 /* may be called multiple times per register */
5811 static void unregister_sched_domain_sysctl(void)
5813 if (sd_sysctl_header)
5814 unregister_sysctl_table(sd_sysctl_header);
5815 sd_sysctl_header = NULL;
5816 if (sd_ctl_dir[0].child)
5817 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5820 static void register_sched_domain_sysctl(void)
5823 static void unregister_sched_domain_sysctl(void)
5829 * migration_call - callback that gets triggered when a CPU is added.
5830 * Here we can start up the necessary migration thread for the new CPU.
5832 static int __cpuinit
5833 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5835 struct task_struct *p;
5836 int cpu = (long)hcpu;
5837 unsigned long flags;
5842 case CPU_UP_PREPARE:
5843 case CPU_UP_PREPARE_FROZEN:
5844 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5847 kthread_bind(p, cpu);
5848 /* Must be high prio: stop_machine expects to yield to it. */
5849 rq = task_rq_lock(p, &flags);
5850 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5851 task_rq_unlock(rq, &flags);
5852 cpu_rq(cpu)->migration_thread = p;
5856 case CPU_ONLINE_FROZEN:
5857 /* Strictly unnecessary, as first user will wake it. */
5858 wake_up_process(cpu_rq(cpu)->migration_thread);
5860 /* Update our root-domain */
5862 spin_lock_irqsave(&rq->lock, flags);
5864 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5865 cpu_set(cpu, rq->rd->online);
5867 spin_unlock_irqrestore(&rq->lock, flags);
5870 #ifdef CONFIG_HOTPLUG_CPU
5871 case CPU_UP_CANCELED:
5872 case CPU_UP_CANCELED_FROZEN:
5873 if (!cpu_rq(cpu)->migration_thread)
5875 /* Unbind it from offline cpu so it can run. Fall thru. */
5876 kthread_bind(cpu_rq(cpu)->migration_thread,
5877 any_online_cpu(cpu_online_map));
5878 kthread_stop(cpu_rq(cpu)->migration_thread);
5879 cpu_rq(cpu)->migration_thread = NULL;
5883 case CPU_DEAD_FROZEN:
5884 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5885 migrate_live_tasks(cpu);
5887 kthread_stop(rq->migration_thread);
5888 rq->migration_thread = NULL;
5889 /* Idle task back to normal (off runqueue, low prio) */
5890 spin_lock_irq(&rq->lock);
5891 update_rq_clock(rq);
5892 deactivate_task(rq, rq->idle, 0);
5893 rq->idle->static_prio = MAX_PRIO;
5894 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5895 rq->idle->sched_class = &idle_sched_class;
5896 migrate_dead_tasks(cpu);
5897 spin_unlock_irq(&rq->lock);
5899 migrate_nr_uninterruptible(rq);
5900 BUG_ON(rq->nr_running != 0);
5903 * No need to migrate the tasks: it was best-effort if
5904 * they didn't take sched_hotcpu_mutex. Just wake up
5907 spin_lock_irq(&rq->lock);
5908 while (!list_empty(&rq->migration_queue)) {
5909 struct migration_req *req;
5911 req = list_entry(rq->migration_queue.next,
5912 struct migration_req, list);
5913 list_del_init(&req->list);
5914 complete(&req->done);
5916 spin_unlock_irq(&rq->lock);
5919 case CPU_DOWN_PREPARE:
5920 /* Update our root-domain */
5922 spin_lock_irqsave(&rq->lock, flags);
5924 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5925 cpu_clear(cpu, rq->rd->online);
5927 spin_unlock_irqrestore(&rq->lock, flags);
5934 /* Register at highest priority so that task migration (migrate_all_tasks)
5935 * happens before everything else.
5937 static struct notifier_block __cpuinitdata migration_notifier = {
5938 .notifier_call = migration_call,
5942 void __init migration_init(void)
5944 void *cpu = (void *)(long)smp_processor_id();
5947 /* Start one for the boot CPU: */
5948 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5949 BUG_ON(err == NOTIFY_BAD);
5950 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5951 register_cpu_notifier(&migration_notifier);
5957 /* Number of possible processor ids */
5958 int nr_cpu_ids __read_mostly = NR_CPUS;
5959 EXPORT_SYMBOL(nr_cpu_ids);
5961 #ifdef CONFIG_SCHED_DEBUG
5963 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5965 struct sched_group *group = sd->groups;
5966 cpumask_t groupmask;
5969 cpumask_scnprintf(str, NR_CPUS, sd->span);
5970 cpus_clear(groupmask);
5972 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5974 if (!(sd->flags & SD_LOAD_BALANCE)) {
5975 printk("does not load-balance\n");
5977 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5982 printk(KERN_CONT "span %s\n", str);
5984 if (!cpu_isset(cpu, sd->span)) {
5985 printk(KERN_ERR "ERROR: domain->span does not contain "
5988 if (!cpu_isset(cpu, group->cpumask)) {
5989 printk(KERN_ERR "ERROR: domain->groups does not contain"
5993 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5997 printk(KERN_ERR "ERROR: group is NULL\n");
6001 if (!group->__cpu_power) {
6002 printk(KERN_CONT "\n");
6003 printk(KERN_ERR "ERROR: domain->cpu_power not "
6008 if (!cpus_weight(group->cpumask)) {
6009 printk(KERN_CONT "\n");
6010 printk(KERN_ERR "ERROR: empty group\n");
6014 if (cpus_intersects(groupmask, group->cpumask)) {
6015 printk(KERN_CONT "\n");
6016 printk(KERN_ERR "ERROR: repeated CPUs\n");
6020 cpus_or(groupmask, groupmask, group->cpumask);
6022 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
6023 printk(KERN_CONT " %s", str);
6025 group = group->next;
6026 } while (group != sd->groups);
6027 printk(KERN_CONT "\n");
6029 if (!cpus_equal(sd->span, groupmask))
6030 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6032 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
6033 printk(KERN_ERR "ERROR: parent span is not a superset "
6034 "of domain->span\n");
6038 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6043 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6047 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6050 if (sched_domain_debug_one(sd, cpu, level))
6059 # define sched_domain_debug(sd, cpu) do { } while (0)
6062 static int sd_degenerate(struct sched_domain *sd)
6064 if (cpus_weight(sd->span) == 1)
6067 /* Following flags need at least 2 groups */
6068 if (sd->flags & (SD_LOAD_BALANCE |
6069 SD_BALANCE_NEWIDLE |
6073 SD_SHARE_PKG_RESOURCES)) {
6074 if (sd->groups != sd->groups->next)
6078 /* Following flags don't use groups */
6079 if (sd->flags & (SD_WAKE_IDLE |
6088 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6090 unsigned long cflags = sd->flags, pflags = parent->flags;
6092 if (sd_degenerate(parent))
6095 if (!cpus_equal(sd->span, parent->span))
6098 /* Does parent contain flags not in child? */
6099 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6100 if (cflags & SD_WAKE_AFFINE)
6101 pflags &= ~SD_WAKE_BALANCE;
6102 /* Flags needing groups don't count if only 1 group in parent */
6103 if (parent->groups == parent->groups->next) {
6104 pflags &= ~(SD_LOAD_BALANCE |
6105 SD_BALANCE_NEWIDLE |
6109 SD_SHARE_PKG_RESOURCES);
6111 if (~cflags & pflags)
6117 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6119 unsigned long flags;
6120 const struct sched_class *class;
6122 spin_lock_irqsave(&rq->lock, flags);
6125 struct root_domain *old_rd = rq->rd;
6127 for (class = sched_class_highest; class; class = class->next) {
6128 if (class->leave_domain)
6129 class->leave_domain(rq);
6132 cpu_clear(rq->cpu, old_rd->span);
6133 cpu_clear(rq->cpu, old_rd->online);
6135 if (atomic_dec_and_test(&old_rd->refcount))
6139 atomic_inc(&rd->refcount);
6142 cpu_set(rq->cpu, rd->span);
6143 if (cpu_isset(rq->cpu, cpu_online_map))
6144 cpu_set(rq->cpu, rd->online);
6146 for (class = sched_class_highest; class; class = class->next) {
6147 if (class->join_domain)
6148 class->join_domain(rq);
6151 spin_unlock_irqrestore(&rq->lock, flags);
6154 static void init_rootdomain(struct root_domain *rd)
6156 memset(rd, 0, sizeof(*rd));
6158 cpus_clear(rd->span);
6159 cpus_clear(rd->online);
6162 static void init_defrootdomain(void)
6164 init_rootdomain(&def_root_domain);
6165 atomic_set(&def_root_domain.refcount, 1);
6168 static struct root_domain *alloc_rootdomain(void)
6170 struct root_domain *rd;
6172 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6176 init_rootdomain(rd);
6182 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6183 * hold the hotplug lock.
6186 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6188 struct rq *rq = cpu_rq(cpu);
6189 struct sched_domain *tmp;
6191 /* Remove the sched domains which do not contribute to scheduling. */
6192 for (tmp = sd; tmp; tmp = tmp->parent) {
6193 struct sched_domain *parent = tmp->parent;
6196 if (sd_parent_degenerate(tmp, parent)) {
6197 tmp->parent = parent->parent;
6199 parent->parent->child = tmp;
6203 if (sd && sd_degenerate(sd)) {
6209 sched_domain_debug(sd, cpu);
6211 rq_attach_root(rq, rd);
6212 rcu_assign_pointer(rq->sd, sd);
6215 /* cpus with isolated domains */
6216 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6218 /* Setup the mask of cpus configured for isolated domains */
6219 static int __init isolated_cpu_setup(char *str)
6221 int ints[NR_CPUS], i;
6223 str = get_options(str, ARRAY_SIZE(ints), ints);
6224 cpus_clear(cpu_isolated_map);
6225 for (i = 1; i <= ints[0]; i++)
6226 if (ints[i] < NR_CPUS)
6227 cpu_set(ints[i], cpu_isolated_map);
6231 __setup("isolcpus=", isolated_cpu_setup);
6234 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6235 * to a function which identifies what group(along with sched group) a CPU
6236 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6237 * (due to the fact that we keep track of groups covered with a cpumask_t).
6239 * init_sched_build_groups will build a circular linked list of the groups
6240 * covered by the given span, and will set each group's ->cpumask correctly,
6241 * and ->cpu_power to 0.
6244 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6245 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6246 struct sched_group **sg))
6248 struct sched_group *first = NULL, *last = NULL;
6249 cpumask_t covered = CPU_MASK_NONE;
6252 for_each_cpu_mask(i, span) {
6253 struct sched_group *sg;
6254 int group = group_fn(i, cpu_map, &sg);
6257 if (cpu_isset(i, covered))
6260 sg->cpumask = CPU_MASK_NONE;
6261 sg->__cpu_power = 0;
6263 for_each_cpu_mask(j, span) {
6264 if (group_fn(j, cpu_map, NULL) != group)
6267 cpu_set(j, covered);
6268 cpu_set(j, sg->cpumask);
6279 #define SD_NODES_PER_DOMAIN 16
6284 * find_next_best_node - find the next node to include in a sched_domain
6285 * @node: node whose sched_domain we're building
6286 * @used_nodes: nodes already in the sched_domain
6288 * Find the next node to include in a given scheduling domain. Simply
6289 * finds the closest node not already in the @used_nodes map.
6291 * Should use nodemask_t.
6293 static int find_next_best_node(int node, unsigned long *used_nodes)
6295 int i, n, val, min_val, best_node = 0;
6299 for (i = 0; i < MAX_NUMNODES; i++) {
6300 /* Start at @node */
6301 n = (node + i) % MAX_NUMNODES;
6303 if (!nr_cpus_node(n))
6306 /* Skip already used nodes */
6307 if (test_bit(n, used_nodes))
6310 /* Simple min distance search */
6311 val = node_distance(node, n);
6313 if (val < min_val) {
6319 set_bit(best_node, used_nodes);
6324 * sched_domain_node_span - get a cpumask for a node's sched_domain
6325 * @node: node whose cpumask we're constructing
6326 * @size: number of nodes to include in this span
6328 * Given a node, construct a good cpumask for its sched_domain to span. It
6329 * should be one that prevents unnecessary balancing, but also spreads tasks
6332 static cpumask_t sched_domain_node_span(int node)
6334 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6335 cpumask_t span, nodemask;
6339 bitmap_zero(used_nodes, MAX_NUMNODES);
6341 nodemask = node_to_cpumask(node);
6342 cpus_or(span, span, nodemask);
6343 set_bit(node, used_nodes);
6345 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6346 int next_node = find_next_best_node(node, used_nodes);
6348 nodemask = node_to_cpumask(next_node);
6349 cpus_or(span, span, nodemask);
6356 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6359 * SMT sched-domains:
6361 #ifdef CONFIG_SCHED_SMT
6362 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6363 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6366 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6369 *sg = &per_cpu(sched_group_cpus, cpu);
6375 * multi-core sched-domains:
6377 #ifdef CONFIG_SCHED_MC
6378 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6379 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6382 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6384 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6387 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6388 cpus_and(mask, mask, *cpu_map);
6389 group = first_cpu(mask);
6391 *sg = &per_cpu(sched_group_core, group);
6394 #elif defined(CONFIG_SCHED_MC)
6396 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6399 *sg = &per_cpu(sched_group_core, cpu);
6404 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6405 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6408 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6411 #ifdef CONFIG_SCHED_MC
6412 cpumask_t mask = cpu_coregroup_map(cpu);
6413 cpus_and(mask, mask, *cpu_map);
6414 group = first_cpu(mask);
6415 #elif defined(CONFIG_SCHED_SMT)
6416 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6417 cpus_and(mask, mask, *cpu_map);
6418 group = first_cpu(mask);
6423 *sg = &per_cpu(sched_group_phys, group);
6429 * The init_sched_build_groups can't handle what we want to do with node
6430 * groups, so roll our own. Now each node has its own list of groups which
6431 * gets dynamically allocated.
6433 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6434 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6436 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6437 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6439 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6440 struct sched_group **sg)
6442 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6445 cpus_and(nodemask, nodemask, *cpu_map);
6446 group = first_cpu(nodemask);
6449 *sg = &per_cpu(sched_group_allnodes, group);
6453 static void init_numa_sched_groups_power(struct sched_group *group_head)
6455 struct sched_group *sg = group_head;
6461 for_each_cpu_mask(j, sg->cpumask) {
6462 struct sched_domain *sd;
6464 sd = &per_cpu(phys_domains, j);
6465 if (j != first_cpu(sd->groups->cpumask)) {
6467 * Only add "power" once for each
6473 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6476 } while (sg != group_head);
6481 /* Free memory allocated for various sched_group structures */
6482 static void free_sched_groups(const cpumask_t *cpu_map)
6486 for_each_cpu_mask(cpu, *cpu_map) {
6487 struct sched_group **sched_group_nodes
6488 = sched_group_nodes_bycpu[cpu];
6490 if (!sched_group_nodes)
6493 for (i = 0; i < MAX_NUMNODES; i++) {
6494 cpumask_t nodemask = node_to_cpumask(i);
6495 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6497 cpus_and(nodemask, nodemask, *cpu_map);
6498 if (cpus_empty(nodemask))
6508 if (oldsg != sched_group_nodes[i])
6511 kfree(sched_group_nodes);
6512 sched_group_nodes_bycpu[cpu] = NULL;
6516 static void free_sched_groups(const cpumask_t *cpu_map)
6522 * Initialize sched groups cpu_power.
6524 * cpu_power indicates the capacity of sched group, which is used while
6525 * distributing the load between different sched groups in a sched domain.
6526 * Typically cpu_power for all the groups in a sched domain will be same unless
6527 * there are asymmetries in the topology. If there are asymmetries, group
6528 * having more cpu_power will pickup more load compared to the group having
6531 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6532 * the maximum number of tasks a group can handle in the presence of other idle
6533 * or lightly loaded groups in the same sched domain.
6535 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6537 struct sched_domain *child;
6538 struct sched_group *group;
6540 WARN_ON(!sd || !sd->groups);
6542 if (cpu != first_cpu(sd->groups->cpumask))
6547 sd->groups->__cpu_power = 0;
6550 * For perf policy, if the groups in child domain share resources
6551 * (for example cores sharing some portions of the cache hierarchy
6552 * or SMT), then set this domain groups cpu_power such that each group
6553 * can handle only one task, when there are other idle groups in the
6554 * same sched domain.
6556 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6558 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6559 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6564 * add cpu_power of each child group to this groups cpu_power
6566 group = child->groups;
6568 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6569 group = group->next;
6570 } while (group != child->groups);
6574 * Build sched domains for a given set of cpus and attach the sched domains
6575 * to the individual cpus
6577 static int build_sched_domains(const cpumask_t *cpu_map)
6580 struct root_domain *rd;
6582 struct sched_group **sched_group_nodes = NULL;
6583 int sd_allnodes = 0;
6586 * Allocate the per-node list of sched groups
6588 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6590 if (!sched_group_nodes) {
6591 printk(KERN_WARNING "Can not alloc sched group node list\n");
6594 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6597 rd = alloc_rootdomain();
6599 printk(KERN_WARNING "Cannot alloc root domain\n");
6604 * Set up domains for cpus specified by the cpu_map.
6606 for_each_cpu_mask(i, *cpu_map) {
6607 struct sched_domain *sd = NULL, *p;
6608 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6610 cpus_and(nodemask, nodemask, *cpu_map);
6613 if (cpus_weight(*cpu_map) >
6614 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6615 sd = &per_cpu(allnodes_domains, i);
6616 *sd = SD_ALLNODES_INIT;
6617 sd->span = *cpu_map;
6618 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6624 sd = &per_cpu(node_domains, i);
6626 sd->span = sched_domain_node_span(cpu_to_node(i));
6630 cpus_and(sd->span, sd->span, *cpu_map);
6634 sd = &per_cpu(phys_domains, i);
6636 sd->span = nodemask;
6640 cpu_to_phys_group(i, cpu_map, &sd->groups);
6642 #ifdef CONFIG_SCHED_MC
6644 sd = &per_cpu(core_domains, i);
6646 sd->span = cpu_coregroup_map(i);
6647 cpus_and(sd->span, sd->span, *cpu_map);
6650 cpu_to_core_group(i, cpu_map, &sd->groups);
6653 #ifdef CONFIG_SCHED_SMT
6655 sd = &per_cpu(cpu_domains, i);
6656 *sd = SD_SIBLING_INIT;
6657 sd->span = per_cpu(cpu_sibling_map, i);
6658 cpus_and(sd->span, sd->span, *cpu_map);
6661 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6665 #ifdef CONFIG_SCHED_SMT
6666 /* Set up CPU (sibling) groups */
6667 for_each_cpu_mask(i, *cpu_map) {
6668 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6669 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6670 if (i != first_cpu(this_sibling_map))
6673 init_sched_build_groups(this_sibling_map, cpu_map,
6678 #ifdef CONFIG_SCHED_MC
6679 /* Set up multi-core groups */
6680 for_each_cpu_mask(i, *cpu_map) {
6681 cpumask_t this_core_map = cpu_coregroup_map(i);
6682 cpus_and(this_core_map, this_core_map, *cpu_map);
6683 if (i != first_cpu(this_core_map))
6685 init_sched_build_groups(this_core_map, cpu_map,
6686 &cpu_to_core_group);
6690 /* Set up physical groups */
6691 for (i = 0; i < MAX_NUMNODES; i++) {
6692 cpumask_t nodemask = node_to_cpumask(i);
6694 cpus_and(nodemask, nodemask, *cpu_map);
6695 if (cpus_empty(nodemask))
6698 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6702 /* Set up node groups */
6704 init_sched_build_groups(*cpu_map, cpu_map,
6705 &cpu_to_allnodes_group);
6707 for (i = 0; i < MAX_NUMNODES; i++) {
6708 /* Set up node groups */
6709 struct sched_group *sg, *prev;
6710 cpumask_t nodemask = node_to_cpumask(i);
6711 cpumask_t domainspan;
6712 cpumask_t covered = CPU_MASK_NONE;
6715 cpus_and(nodemask, nodemask, *cpu_map);
6716 if (cpus_empty(nodemask)) {
6717 sched_group_nodes[i] = NULL;
6721 domainspan = sched_domain_node_span(i);
6722 cpus_and(domainspan, domainspan, *cpu_map);
6724 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6726 printk(KERN_WARNING "Can not alloc domain group for "
6730 sched_group_nodes[i] = sg;
6731 for_each_cpu_mask(j, nodemask) {
6732 struct sched_domain *sd;
6734 sd = &per_cpu(node_domains, j);
6737 sg->__cpu_power = 0;
6738 sg->cpumask = nodemask;
6740 cpus_or(covered, covered, nodemask);
6743 for (j = 0; j < MAX_NUMNODES; j++) {
6744 cpumask_t tmp, notcovered;
6745 int n = (i + j) % MAX_NUMNODES;
6747 cpus_complement(notcovered, covered);
6748 cpus_and(tmp, notcovered, *cpu_map);
6749 cpus_and(tmp, tmp, domainspan);
6750 if (cpus_empty(tmp))
6753 nodemask = node_to_cpumask(n);
6754 cpus_and(tmp, tmp, nodemask);
6755 if (cpus_empty(tmp))
6758 sg = kmalloc_node(sizeof(struct sched_group),
6762 "Can not alloc domain group for node %d\n", j);
6765 sg->__cpu_power = 0;
6767 sg->next = prev->next;
6768 cpus_or(covered, covered, tmp);
6775 /* Calculate CPU power for physical packages and nodes */
6776 #ifdef CONFIG_SCHED_SMT
6777 for_each_cpu_mask(i, *cpu_map) {
6778 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6780 init_sched_groups_power(i, sd);
6783 #ifdef CONFIG_SCHED_MC
6784 for_each_cpu_mask(i, *cpu_map) {
6785 struct sched_domain *sd = &per_cpu(core_domains, i);
6787 init_sched_groups_power(i, sd);
6791 for_each_cpu_mask(i, *cpu_map) {
6792 struct sched_domain *sd = &per_cpu(phys_domains, i);
6794 init_sched_groups_power(i, sd);
6798 for (i = 0; i < MAX_NUMNODES; i++)
6799 init_numa_sched_groups_power(sched_group_nodes[i]);
6802 struct sched_group *sg;
6804 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6805 init_numa_sched_groups_power(sg);
6809 /* Attach the domains */
6810 for_each_cpu_mask(i, *cpu_map) {
6811 struct sched_domain *sd;
6812 #ifdef CONFIG_SCHED_SMT
6813 sd = &per_cpu(cpu_domains, i);
6814 #elif defined(CONFIG_SCHED_MC)
6815 sd = &per_cpu(core_domains, i);
6817 sd = &per_cpu(phys_domains, i);
6819 cpu_attach_domain(sd, rd, i);
6826 free_sched_groups(cpu_map);
6831 static cpumask_t *doms_cur; /* current sched domains */
6832 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6835 * Special case: If a kmalloc of a doms_cur partition (array of
6836 * cpumask_t) fails, then fallback to a single sched domain,
6837 * as determined by the single cpumask_t fallback_doms.
6839 static cpumask_t fallback_doms;
6842 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6843 * For now this just excludes isolated cpus, but could be used to
6844 * exclude other special cases in the future.
6846 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6851 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6853 doms_cur = &fallback_doms;
6854 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6855 err = build_sched_domains(doms_cur);
6856 register_sched_domain_sysctl();
6861 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6863 free_sched_groups(cpu_map);
6867 * Detach sched domains from a group of cpus specified in cpu_map
6868 * These cpus will now be attached to the NULL domain
6870 static void detach_destroy_domains(const cpumask_t *cpu_map)
6874 unregister_sched_domain_sysctl();
6876 for_each_cpu_mask(i, *cpu_map)
6877 cpu_attach_domain(NULL, &def_root_domain, i);
6878 synchronize_sched();
6879 arch_destroy_sched_domains(cpu_map);
6883 * Partition sched domains as specified by the 'ndoms_new'
6884 * cpumasks in the array doms_new[] of cpumasks. This compares
6885 * doms_new[] to the current sched domain partitioning, doms_cur[].
6886 * It destroys each deleted domain and builds each new domain.
6888 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6889 * The masks don't intersect (don't overlap.) We should setup one
6890 * sched domain for each mask. CPUs not in any of the cpumasks will
6891 * not be load balanced. If the same cpumask appears both in the
6892 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6895 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6896 * ownership of it and will kfree it when done with it. If the caller
6897 * failed the kmalloc call, then it can pass in doms_new == NULL,
6898 * and partition_sched_domains() will fallback to the single partition
6901 * Call with hotplug lock held
6903 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6909 /* always unregister in case we don't destroy any domains */
6910 unregister_sched_domain_sysctl();
6912 if (doms_new == NULL) {
6914 doms_new = &fallback_doms;
6915 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6918 /* Destroy deleted domains */
6919 for (i = 0; i < ndoms_cur; i++) {
6920 for (j = 0; j < ndoms_new; j++) {
6921 if (cpus_equal(doms_cur[i], doms_new[j]))
6924 /* no match - a current sched domain not in new doms_new[] */
6925 detach_destroy_domains(doms_cur + i);
6930 /* Build new domains */
6931 for (i = 0; i < ndoms_new; i++) {
6932 for (j = 0; j < ndoms_cur; j++) {
6933 if (cpus_equal(doms_new[i], doms_cur[j]))
6936 /* no match - add a new doms_new */
6937 build_sched_domains(doms_new + i);
6942 /* Remember the new sched domains */
6943 if (doms_cur != &fallback_doms)
6945 doms_cur = doms_new;
6946 ndoms_cur = ndoms_new;
6948 register_sched_domain_sysctl();
6953 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6954 static int arch_reinit_sched_domains(void)
6959 detach_destroy_domains(&cpu_online_map);
6960 err = arch_init_sched_domains(&cpu_online_map);
6966 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6970 if (buf[0] != '0' && buf[0] != '1')
6974 sched_smt_power_savings = (buf[0] == '1');
6976 sched_mc_power_savings = (buf[0] == '1');
6978 ret = arch_reinit_sched_domains();
6980 return ret ? ret : count;
6983 #ifdef CONFIG_SCHED_MC
6984 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6986 return sprintf(page, "%u\n", sched_mc_power_savings);
6988 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6989 const char *buf, size_t count)
6991 return sched_power_savings_store(buf, count, 0);
6993 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6994 sched_mc_power_savings_store);
6997 #ifdef CONFIG_SCHED_SMT
6998 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7000 return sprintf(page, "%u\n", sched_smt_power_savings);
7002 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7003 const char *buf, size_t count)
7005 return sched_power_savings_store(buf, count, 1);
7007 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7008 sched_smt_power_savings_store);
7011 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7015 #ifdef CONFIG_SCHED_SMT
7017 err = sysfs_create_file(&cls->kset.kobj,
7018 &attr_sched_smt_power_savings.attr);
7020 #ifdef CONFIG_SCHED_MC
7021 if (!err && mc_capable())
7022 err = sysfs_create_file(&cls->kset.kobj,
7023 &attr_sched_mc_power_savings.attr);
7030 * Force a reinitialization of the sched domains hierarchy. The domains
7031 * and groups cannot be updated in place without racing with the balancing
7032 * code, so we temporarily attach all running cpus to the NULL domain
7033 * which will prevent rebalancing while the sched domains are recalculated.
7035 static int update_sched_domains(struct notifier_block *nfb,
7036 unsigned long action, void *hcpu)
7039 case CPU_UP_PREPARE:
7040 case CPU_UP_PREPARE_FROZEN:
7041 case CPU_DOWN_PREPARE:
7042 case CPU_DOWN_PREPARE_FROZEN:
7043 detach_destroy_domains(&cpu_online_map);
7046 case CPU_UP_CANCELED:
7047 case CPU_UP_CANCELED_FROZEN:
7048 case CPU_DOWN_FAILED:
7049 case CPU_DOWN_FAILED_FROZEN:
7051 case CPU_ONLINE_FROZEN:
7053 case CPU_DEAD_FROZEN:
7055 * Fall through and re-initialise the domains.
7062 /* The hotplug lock is already held by cpu_up/cpu_down */
7063 arch_init_sched_domains(&cpu_online_map);
7068 void __init sched_init_smp(void)
7070 cpumask_t non_isolated_cpus;
7073 arch_init_sched_domains(&cpu_online_map);
7074 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7075 if (cpus_empty(non_isolated_cpus))
7076 cpu_set(smp_processor_id(), non_isolated_cpus);
7078 /* XXX: Theoretical race here - CPU may be hotplugged now */
7079 hotcpu_notifier(update_sched_domains, 0);
7081 /* Move init over to a non-isolated CPU */
7082 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7084 sched_init_granularity();
7086 #ifdef CONFIG_FAIR_GROUP_SCHED
7087 if (nr_cpu_ids == 1)
7090 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
7092 if (!IS_ERR(lb_monitor_task)) {
7093 lb_monitor_task->flags |= PF_NOFREEZE;
7094 wake_up_process(lb_monitor_task);
7096 printk(KERN_ERR "Could not create load balance monitor thread"
7097 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
7102 void __init sched_init_smp(void)
7104 sched_init_granularity();
7106 #endif /* CONFIG_SMP */
7108 int in_sched_functions(unsigned long addr)
7110 return in_lock_functions(addr) ||
7111 (addr >= (unsigned long)__sched_text_start
7112 && addr < (unsigned long)__sched_text_end);
7115 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7117 cfs_rq->tasks_timeline = RB_ROOT;
7118 #ifdef CONFIG_FAIR_GROUP_SCHED
7121 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7124 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7126 struct rt_prio_array *array;
7129 array = &rt_rq->active;
7130 for (i = 0; i < MAX_RT_PRIO; i++) {
7131 INIT_LIST_HEAD(array->queue + i);
7132 __clear_bit(i, array->bitmap);
7134 /* delimiter for bitsearch: */
7135 __set_bit(MAX_RT_PRIO, array->bitmap);
7137 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7138 rt_rq->highest_prio = MAX_RT_PRIO;
7141 rt_rq->rt_nr_migratory = 0;
7142 rt_rq->overloaded = 0;
7146 rt_rq->rt_throttled = 0;
7148 #ifdef CONFIG_RT_GROUP_SCHED
7149 rt_rq->rt_nr_boosted = 0;
7154 #ifdef CONFIG_FAIR_GROUP_SCHED
7155 static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7156 struct cfs_rq *cfs_rq, struct sched_entity *se,
7159 tg->cfs_rq[cpu] = cfs_rq;
7160 init_cfs_rq(cfs_rq, rq);
7163 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7166 se->cfs_rq = &rq->cfs;
7168 se->load.weight = tg->shares;
7169 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7174 #ifdef CONFIG_RT_GROUP_SCHED
7175 static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7176 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7179 tg->rt_rq[cpu] = rt_rq;
7180 init_rt_rq(rt_rq, rq);
7182 rt_rq->rt_se = rt_se;
7184 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7186 tg->rt_se[cpu] = rt_se;
7187 rt_se->rt_rq = &rq->rt;
7188 rt_se->my_q = rt_rq;
7189 rt_se->parent = NULL;
7190 INIT_LIST_HEAD(&rt_se->run_list);
7194 void __init sched_init(void)
7196 int highest_cpu = 0;
7200 init_defrootdomain();
7203 #ifdef CONFIG_GROUP_SCHED
7204 list_add(&init_task_group.list, &task_groups);
7207 for_each_possible_cpu(i) {
7211 spin_lock_init(&rq->lock);
7212 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7215 init_cfs_rq(&rq->cfs, rq);
7216 init_rt_rq(&rq->rt, rq);
7217 #ifdef CONFIG_FAIR_GROUP_SCHED
7218 init_task_group.shares = init_task_group_load;
7219 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7220 init_tg_cfs_entry(rq, &init_task_group,
7221 &per_cpu(init_cfs_rq, i),
7222 &per_cpu(init_sched_entity, i), i, 1);
7225 #ifdef CONFIG_RT_GROUP_SCHED
7226 init_task_group.rt_runtime =
7227 sysctl_sched_rt_runtime * NSEC_PER_USEC;
7228 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7229 init_tg_rt_entry(rq, &init_task_group,
7230 &per_cpu(init_rt_rq, i),
7231 &per_cpu(init_sched_rt_entity, i), i, 1);
7233 rq->rt_period_expire = 0;
7234 rq->rt_throttled = 0;
7236 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7237 rq->cpu_load[j] = 0;
7241 rq->active_balance = 0;
7242 rq->next_balance = jiffies;
7245 rq->migration_thread = NULL;
7246 INIT_LIST_HEAD(&rq->migration_queue);
7247 rq_attach_root(rq, &def_root_domain);
7250 atomic_set(&rq->nr_iowait, 0);
7254 set_load_weight(&init_task);
7256 #ifdef CONFIG_PREEMPT_NOTIFIERS
7257 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7261 nr_cpu_ids = highest_cpu + 1;
7262 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7265 #ifdef CONFIG_RT_MUTEXES
7266 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7270 * The boot idle thread does lazy MMU switching as well:
7272 atomic_inc(&init_mm.mm_count);
7273 enter_lazy_tlb(&init_mm, current);
7276 * Make us the idle thread. Technically, schedule() should not be
7277 * called from this thread, however somewhere below it might be,
7278 * but because we are the idle thread, we just pick up running again
7279 * when this runqueue becomes "idle".
7281 init_idle(current, smp_processor_id());
7283 * During early bootup we pretend to be a normal task:
7285 current->sched_class = &fair_sched_class;
7288 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7289 void __might_sleep(char *file, int line)
7292 static unsigned long prev_jiffy; /* ratelimiting */
7294 if ((in_atomic() || irqs_disabled()) &&
7295 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7296 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7298 prev_jiffy = jiffies;
7299 printk(KERN_ERR "BUG: sleeping function called from invalid"
7300 " context at %s:%d\n", file, line);
7301 printk("in_atomic():%d, irqs_disabled():%d\n",
7302 in_atomic(), irqs_disabled());
7303 debug_show_held_locks(current);
7304 if (irqs_disabled())
7305 print_irqtrace_events(current);
7310 EXPORT_SYMBOL(__might_sleep);
7313 #ifdef CONFIG_MAGIC_SYSRQ
7314 static void normalize_task(struct rq *rq, struct task_struct *p)
7317 update_rq_clock(rq);
7318 on_rq = p->se.on_rq;
7320 deactivate_task(rq, p, 0);
7321 __setscheduler(rq, p, SCHED_NORMAL, 0);
7323 activate_task(rq, p, 0);
7324 resched_task(rq->curr);
7328 void normalize_rt_tasks(void)
7330 struct task_struct *g, *p;
7331 unsigned long flags;
7334 read_lock_irqsave(&tasklist_lock, flags);
7335 do_each_thread(g, p) {
7337 * Only normalize user tasks:
7342 p->se.exec_start = 0;
7343 #ifdef CONFIG_SCHEDSTATS
7344 p->se.wait_start = 0;
7345 p->se.sleep_start = 0;
7346 p->se.block_start = 0;
7348 task_rq(p)->clock = 0;
7352 * Renice negative nice level userspace
7355 if (TASK_NICE(p) < 0 && p->mm)
7356 set_user_nice(p, 0);
7360 spin_lock(&p->pi_lock);
7361 rq = __task_rq_lock(p);
7363 normalize_task(rq, p);
7365 __task_rq_unlock(rq);
7366 spin_unlock(&p->pi_lock);
7367 } while_each_thread(g, p);
7369 read_unlock_irqrestore(&tasklist_lock, flags);
7372 #endif /* CONFIG_MAGIC_SYSRQ */
7376 * These functions are only useful for the IA64 MCA handling.
7378 * They can only be called when the whole system has been
7379 * stopped - every CPU needs to be quiescent, and no scheduling
7380 * activity can take place. Using them for anything else would
7381 * be a serious bug, and as a result, they aren't even visible
7382 * under any other configuration.
7386 * curr_task - return the current task for a given cpu.
7387 * @cpu: the processor in question.
7389 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7391 struct task_struct *curr_task(int cpu)
7393 return cpu_curr(cpu);
7397 * set_curr_task - set the current task for a given cpu.
7398 * @cpu: the processor in question.
7399 * @p: the task pointer to set.
7401 * Description: This function must only be used when non-maskable interrupts
7402 * are serviced on a separate stack. It allows the architecture to switch the
7403 * notion of the current task on a cpu in a non-blocking manner. This function
7404 * must be called with all CPU's synchronized, and interrupts disabled, the
7405 * and caller must save the original value of the current task (see
7406 * curr_task() above) and restore that value before reenabling interrupts and
7407 * re-starting the system.
7409 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7411 void set_curr_task(int cpu, struct task_struct *p)
7418 #ifdef CONFIG_GROUP_SCHED
7420 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7422 * distribute shares of all task groups among their schedulable entities,
7423 * to reflect load distribution across cpus.
7425 static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7427 struct cfs_rq *cfs_rq;
7428 struct rq *rq = cpu_rq(this_cpu);
7429 cpumask_t sdspan = sd->span;
7432 /* Walk thr' all the task groups that we have */
7433 for_each_leaf_cfs_rq(rq, cfs_rq) {
7435 unsigned long total_load = 0, total_shares;
7436 struct task_group *tg = cfs_rq->tg;
7438 /* Gather total task load of this group across cpus */
7439 for_each_cpu_mask(i, sdspan)
7440 total_load += tg->cfs_rq[i]->load.weight;
7442 /* Nothing to do if this group has no load */
7447 * tg->shares represents the number of cpu shares the task group
7448 * is eligible to hold on a single cpu. On N cpus, it is
7449 * eligible to hold (N * tg->shares) number of cpu shares.
7451 total_shares = tg->shares * cpus_weight(sdspan);
7454 * redistribute total_shares across cpus as per the task load
7457 for_each_cpu_mask(i, sdspan) {
7458 unsigned long local_load, local_shares;
7460 local_load = tg->cfs_rq[i]->load.weight;
7461 local_shares = (local_load * total_shares) / total_load;
7463 local_shares = MIN_GROUP_SHARES;
7464 if (local_shares == tg->se[i]->load.weight)
7467 spin_lock_irq(&cpu_rq(i)->lock);
7468 set_se_shares(tg->se[i], local_shares);
7469 spin_unlock_irq(&cpu_rq(i)->lock);
7478 * How frequently should we rebalance_shares() across cpus?
7480 * The more frequently we rebalance shares, the more accurate is the fairness
7481 * of cpu bandwidth distribution between task groups. However higher frequency
7482 * also implies increased scheduling overhead.
7484 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7485 * consecutive calls to rebalance_shares() in the same sched domain.
7487 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7488 * consecutive calls to rebalance_shares() in the same sched domain.
7490 * These settings allows for the appropriate trade-off between accuracy of
7491 * fairness and the associated overhead.
7495 /* default: 8ms, units: milliseconds */
7496 const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7498 /* default: 128ms, units: milliseconds */
7499 const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7501 /* kernel thread that runs rebalance_shares() periodically */
7502 static int load_balance_monitor(void *unused)
7504 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7505 struct sched_param schedparm;
7509 * We don't want this thread's execution to be limited by the shares
7510 * assigned to default group (init_task_group). Hence make it run
7511 * as a SCHED_RR RT task at the lowest priority.
7513 schedparm.sched_priority = 1;
7514 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7516 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7517 " monitor thread (error = %d) \n", ret);
7519 while (!kthread_should_stop()) {
7520 int i, cpu, balanced = 1;
7522 /* Prevent cpus going down or coming up */
7524 /* lockout changes to doms_cur[] array */
7527 * Enter a rcu read-side critical section to safely walk rq->sd
7528 * chain on various cpus and to walk task group list
7529 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7533 for (i = 0; i < ndoms_cur; i++) {
7534 cpumask_t cpumap = doms_cur[i];
7535 struct sched_domain *sd = NULL, *sd_prev = NULL;
7537 cpu = first_cpu(cpumap);
7539 /* Find the highest domain at which to balance shares */
7540 for_each_domain(cpu, sd) {
7541 if (!(sd->flags & SD_LOAD_BALANCE))
7547 /* sd == NULL? No load balance reqd in this domain */
7551 balanced &= rebalance_shares(sd, cpu);
7560 timeout = sysctl_sched_min_bal_int_shares;
7561 else if (timeout < sysctl_sched_max_bal_int_shares)
7564 msleep_interruptible(timeout);
7569 #endif /* CONFIG_SMP */
7571 #ifdef CONFIG_FAIR_GROUP_SCHED
7572 static void free_fair_sched_group(struct task_group *tg)
7576 for_each_possible_cpu(i) {
7578 kfree(tg->cfs_rq[i]);
7587 static int alloc_fair_sched_group(struct task_group *tg)
7589 struct cfs_rq *cfs_rq;
7590 struct sched_entity *se;
7594 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7597 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7601 tg->shares = NICE_0_LOAD;
7603 for_each_possible_cpu(i) {
7606 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7607 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7611 se = kmalloc_node(sizeof(struct sched_entity),
7612 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7616 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7625 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7627 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7628 &cpu_rq(cpu)->leaf_cfs_rq_list);
7631 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7633 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7636 static inline void free_fair_sched_group(struct task_group *tg)
7640 static inline int alloc_fair_sched_group(struct task_group *tg)
7645 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7649 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7654 #ifdef CONFIG_RT_GROUP_SCHED
7655 static void free_rt_sched_group(struct task_group *tg)
7659 for_each_possible_cpu(i) {
7661 kfree(tg->rt_rq[i]);
7663 kfree(tg->rt_se[i]);
7670 static int alloc_rt_sched_group(struct task_group *tg)
7672 struct rt_rq *rt_rq;
7673 struct sched_rt_entity *rt_se;
7677 tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
7680 tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
7686 for_each_possible_cpu(i) {
7689 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7690 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7694 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7695 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7699 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
7708 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7710 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7711 &cpu_rq(cpu)->leaf_rt_rq_list);
7714 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7716 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7719 static inline void free_rt_sched_group(struct task_group *tg)
7723 static inline int alloc_rt_sched_group(struct task_group *tg)
7728 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7732 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7737 static void free_sched_group(struct task_group *tg)
7739 free_fair_sched_group(tg);
7740 free_rt_sched_group(tg);
7744 /* allocate runqueue etc for a new task group */
7745 struct task_group *sched_create_group(void)
7747 struct task_group *tg;
7748 unsigned long flags;
7751 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7753 return ERR_PTR(-ENOMEM);
7755 if (!alloc_fair_sched_group(tg))
7758 if (!alloc_rt_sched_group(tg))
7761 spin_lock_irqsave(&task_group_lock, flags);
7762 for_each_possible_cpu(i) {
7763 register_fair_sched_group(tg, i);
7764 register_rt_sched_group(tg, i);
7766 list_add_rcu(&tg->list, &task_groups);
7767 spin_unlock_irqrestore(&task_group_lock, flags);
7772 free_sched_group(tg);
7773 return ERR_PTR(-ENOMEM);
7776 /* rcu callback to free various structures associated with a task group */
7777 static void free_sched_group_rcu(struct rcu_head *rhp)
7779 /* now it should be safe to free those cfs_rqs */
7780 free_sched_group(container_of(rhp, struct task_group, rcu));
7783 /* Destroy runqueue etc associated with a task group */
7784 void sched_destroy_group(struct task_group *tg)
7786 unsigned long flags;
7789 spin_lock_irqsave(&task_group_lock, flags);
7790 for_each_possible_cpu(i) {
7791 unregister_fair_sched_group(tg, i);
7792 unregister_rt_sched_group(tg, i);
7794 list_del_rcu(&tg->list);
7795 spin_unlock_irqrestore(&task_group_lock, flags);
7797 /* wait for possible concurrent references to cfs_rqs complete */
7798 call_rcu(&tg->rcu, free_sched_group_rcu);
7801 /* change task's runqueue when it moves between groups.
7802 * The caller of this function should have put the task in its new group
7803 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7804 * reflect its new group.
7806 void sched_move_task(struct task_struct *tsk)
7809 unsigned long flags;
7812 rq = task_rq_lock(tsk, &flags);
7814 update_rq_clock(rq);
7816 running = task_current(rq, tsk);
7817 on_rq = tsk->se.on_rq;
7820 dequeue_task(rq, tsk, 0);
7821 if (unlikely(running))
7822 tsk->sched_class->put_prev_task(rq, tsk);
7825 set_task_rq(tsk, task_cpu(tsk));
7828 if (unlikely(running))
7829 tsk->sched_class->set_curr_task(rq);
7830 enqueue_task(rq, tsk, 0);
7833 task_rq_unlock(rq, &flags);
7836 #ifdef CONFIG_FAIR_GROUP_SCHED
7837 /* rq->lock to be locked by caller */
7838 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7840 struct cfs_rq *cfs_rq = se->cfs_rq;
7841 struct rq *rq = cfs_rq->rq;
7845 shares = MIN_GROUP_SHARES;
7849 dequeue_entity(cfs_rq, se, 0);
7850 dec_cpu_load(rq, se->load.weight);
7853 se->load.weight = shares;
7854 se->load.inv_weight = div64_64((1ULL<<32), shares);
7857 enqueue_entity(cfs_rq, se, 0);
7858 inc_cpu_load(rq, se->load.weight);
7862 static DEFINE_MUTEX(shares_mutex);
7864 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7867 unsigned long flags;
7869 mutex_lock(&shares_mutex);
7870 if (tg->shares == shares)
7873 if (shares < MIN_GROUP_SHARES)
7874 shares = MIN_GROUP_SHARES;
7877 * Prevent any load balance activity (rebalance_shares,
7878 * load_balance_fair) from referring to this group first,
7879 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7881 spin_lock_irqsave(&task_group_lock, flags);
7882 for_each_possible_cpu(i)
7883 unregister_fair_sched_group(tg, i);
7884 spin_unlock_irqrestore(&task_group_lock, flags);
7886 /* wait for any ongoing reference to this group to finish */
7887 synchronize_sched();
7890 * Now we are free to modify the group's share on each cpu
7891 * w/o tripping rebalance_share or load_balance_fair.
7893 tg->shares = shares;
7894 for_each_possible_cpu(i) {
7895 spin_lock_irq(&cpu_rq(i)->lock);
7896 set_se_shares(tg->se[i], shares);
7897 spin_unlock_irq(&cpu_rq(i)->lock);
7901 * Enable load balance activity on this group, by inserting it back on
7902 * each cpu's rq->leaf_cfs_rq_list.
7904 spin_lock_irqsave(&task_group_lock, flags);
7905 for_each_possible_cpu(i)
7906 register_fair_sched_group(tg, i);
7907 spin_unlock_irqrestore(&task_group_lock, flags);
7909 mutex_unlock(&shares_mutex);
7913 unsigned long sched_group_shares(struct task_group *tg)
7919 #ifdef CONFIG_RT_GROUP_SCHED
7921 * Ensure that the real time constraints are schedulable.
7923 static DEFINE_MUTEX(rt_constraints_mutex);
7925 static unsigned long to_ratio(u64 period, u64 runtime)
7927 if (runtime == RUNTIME_INF)
7930 runtime *= (1ULL << 16);
7931 div64_64(runtime, period);
7935 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7937 struct task_group *tgi;
7938 unsigned long total = 0;
7939 unsigned long global_ratio =
7940 to_ratio(sysctl_sched_rt_period,
7941 sysctl_sched_rt_runtime < 0 ?
7942 RUNTIME_INF : sysctl_sched_rt_runtime);
7945 list_for_each_entry_rcu(tgi, &task_groups, list) {
7949 total += to_ratio(period, tgi->rt_runtime);
7953 return total + to_ratio(period, runtime) < global_ratio;
7956 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7958 u64 rt_runtime, rt_period;
7961 rt_period = sysctl_sched_rt_period * NSEC_PER_USEC;
7962 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7963 if (rt_runtime_us == -1)
7964 rt_runtime = rt_period;
7966 mutex_lock(&rt_constraints_mutex);
7967 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
7971 if (rt_runtime_us == -1)
7972 rt_runtime = RUNTIME_INF;
7973 tg->rt_runtime = rt_runtime;
7975 mutex_unlock(&rt_constraints_mutex);
7980 long sched_group_rt_runtime(struct task_group *tg)
7984 if (tg->rt_runtime == RUNTIME_INF)
7987 rt_runtime_us = tg->rt_runtime;
7988 do_div(rt_runtime_us, NSEC_PER_USEC);
7989 return rt_runtime_us;
7992 #endif /* CONFIG_GROUP_SCHED */
7994 #ifdef CONFIG_CGROUP_SCHED
7996 /* return corresponding task_group object of a cgroup */
7997 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7999 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8000 struct task_group, css);
8003 static struct cgroup_subsys_state *
8004 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8006 struct task_group *tg;
8008 if (!cgrp->parent) {
8009 /* This is early initialization for the top cgroup */
8010 init_task_group.css.cgroup = cgrp;
8011 return &init_task_group.css;
8014 /* we support only 1-level deep hierarchical scheduler atm */
8015 if (cgrp->parent->parent)
8016 return ERR_PTR(-EINVAL);
8018 tg = sched_create_group();
8020 return ERR_PTR(-ENOMEM);
8022 /* Bind the cgroup to task_group object we just created */
8023 tg->css.cgroup = cgrp;
8029 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8031 struct task_group *tg = cgroup_tg(cgrp);
8033 sched_destroy_group(tg);
8037 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8038 struct task_struct *tsk)
8040 #ifdef CONFIG_RT_GROUP_SCHED
8041 /* Don't accept realtime tasks when there is no way for them to run */
8042 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
8045 /* We don't support RT-tasks being in separate groups */
8046 if (tsk->sched_class != &fair_sched_class)
8054 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8055 struct cgroup *old_cont, struct task_struct *tsk)
8057 sched_move_task(tsk);
8060 #ifdef CONFIG_FAIR_GROUP_SCHED
8061 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8064 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8067 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
8069 struct task_group *tg = cgroup_tg(cgrp);
8071 return (u64) tg->shares;
8075 #ifdef CONFIG_RT_GROUP_SCHED
8076 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8078 const char __user *userbuf,
8079 size_t nbytes, loff_t *unused_ppos)
8088 if (nbytes >= sizeof(buffer))
8090 if (copy_from_user(buffer, userbuf, nbytes))
8093 buffer[nbytes] = 0; /* nul-terminate */
8095 /* strip newline if necessary */
8096 if (nbytes && (buffer[nbytes-1] == '\n'))
8097 buffer[nbytes-1] = 0;
8098 val = simple_strtoll(buffer, &end, 0);
8102 /* Pass to subsystem */
8103 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8109 static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
8111 char __user *buf, size_t nbytes,
8115 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
8116 int len = sprintf(tmp, "%ld\n", val);
8118 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
8122 static struct cftype cpu_files[] = {
8123 #ifdef CONFIG_FAIR_GROUP_SCHED
8126 .read_uint = cpu_shares_read_uint,
8127 .write_uint = cpu_shares_write_uint,
8130 #ifdef CONFIG_RT_GROUP_SCHED
8132 .name = "rt_runtime_us",
8133 .read = cpu_rt_runtime_read,
8134 .write = cpu_rt_runtime_write,
8139 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8141 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8144 struct cgroup_subsys cpu_cgroup_subsys = {
8146 .create = cpu_cgroup_create,
8147 .destroy = cpu_cgroup_destroy,
8148 .can_attach = cpu_cgroup_can_attach,
8149 .attach = cpu_cgroup_attach,
8150 .populate = cpu_cgroup_populate,
8151 .subsys_id = cpu_cgroup_subsys_id,
8155 #endif /* CONFIG_CGROUP_SCHED */
8157 #ifdef CONFIG_CGROUP_CPUACCT
8160 * CPU accounting code for task groups.
8162 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8163 * (balbir@in.ibm.com).
8166 /* track cpu usage of a group of tasks */
8168 struct cgroup_subsys_state css;
8169 /* cpuusage holds pointer to a u64-type object on every cpu */
8173 struct cgroup_subsys cpuacct_subsys;
8175 /* return cpu accounting group corresponding to this container */
8176 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
8178 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
8179 struct cpuacct, css);
8182 /* return cpu accounting group to which this task belongs */
8183 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8185 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8186 struct cpuacct, css);
8189 /* create a new cpu accounting group */
8190 static struct cgroup_subsys_state *cpuacct_create(
8191 struct cgroup_subsys *ss, struct cgroup *cont)
8193 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8196 return ERR_PTR(-ENOMEM);
8198 ca->cpuusage = alloc_percpu(u64);
8199 if (!ca->cpuusage) {
8201 return ERR_PTR(-ENOMEM);
8207 /* destroy an existing cpu accounting group */
8209 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
8211 struct cpuacct *ca = cgroup_ca(cont);
8213 free_percpu(ca->cpuusage);
8217 /* return total cpu usage (in nanoseconds) of a group */
8218 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
8220 struct cpuacct *ca = cgroup_ca(cont);
8221 u64 totalcpuusage = 0;
8224 for_each_possible_cpu(i) {
8225 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8228 * Take rq->lock to make 64-bit addition safe on 32-bit
8231 spin_lock_irq(&cpu_rq(i)->lock);
8232 totalcpuusage += *cpuusage;
8233 spin_unlock_irq(&cpu_rq(i)->lock);
8236 return totalcpuusage;
8239 static struct cftype files[] = {
8242 .read_uint = cpuusage_read,
8246 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8248 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
8252 * charge this task's execution time to its accounting group.
8254 * called with rq->lock held.
8256 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8260 if (!cpuacct_subsys.active)
8265 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8267 *cpuusage += cputime;
8271 struct cgroup_subsys cpuacct_subsys = {
8273 .create = cpuacct_create,
8274 .destroy = cpuacct_destroy,
8275 .populate = cpuacct_populate,
8276 .subsys_id = cpuacct_subsys_id,
8278 #endif /* CONFIG_CGROUP_CPUACCT */