2 * Copyright (C) 2008 Red Hat. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
21 #include "free-space-cache.h"
22 #include "transaction.h"
24 struct btrfs_free_space {
25 struct rb_node bytes_index;
26 struct rb_node offset_index;
31 static int tree_insert_offset(struct rb_root *root, u64 offset,
34 struct rb_node **p = &root->rb_node;
35 struct rb_node *parent = NULL;
36 struct btrfs_free_space *info;
40 info = rb_entry(parent, struct btrfs_free_space, offset_index);
42 if (offset < info->offset)
44 else if (offset > info->offset)
50 rb_link_node(node, parent, p);
51 rb_insert_color(node, root);
56 static int tree_insert_bytes(struct rb_root *root, u64 bytes,
59 struct rb_node **p = &root->rb_node;
60 struct rb_node *parent = NULL;
61 struct btrfs_free_space *info;
65 info = rb_entry(parent, struct btrfs_free_space, bytes_index);
67 if (bytes < info->bytes)
73 rb_link_node(node, parent, p);
74 rb_insert_color(node, root);
80 * searches the tree for the given offset.
82 * fuzzy == 1: this is used for allocations where we are given a hint of where
83 * to look for free space. Because the hint may not be completely on an offset
84 * mark, or the hint may no longer point to free space we need to fudge our
85 * results a bit. So we look for free space starting at or after offset with at
86 * least bytes size. We prefer to find as close to the given offset as we can.
87 * Also if the offset is within a free space range, then we will return the free
88 * space that contains the given offset, which means we can return a free space
89 * chunk with an offset before the provided offset.
91 * fuzzy == 0: this is just a normal tree search. Give us the free space that
92 * starts at the given offset which is at least bytes size, and if its not there
95 static struct btrfs_free_space *tree_search_offset(struct rb_root *root,
96 u64 offset, u64 bytes,
99 struct rb_node *n = root->rb_node;
100 struct btrfs_free_space *entry, *ret = NULL;
103 entry = rb_entry(n, struct btrfs_free_space, offset_index);
105 if (offset < entry->offset) {
107 (!ret || entry->offset < ret->offset) &&
108 (bytes <= entry->bytes))
111 } else if (offset > entry->offset) {
113 (entry->offset + entry->bytes - 1) >= offset &&
114 bytes <= entry->bytes) {
120 if (bytes > entry->bytes) {
133 * return a chunk at least bytes size, as close to offset that we can get.
135 static struct btrfs_free_space *tree_search_bytes(struct rb_root *root,
136 u64 offset, u64 bytes)
138 struct rb_node *n = root->rb_node;
139 struct btrfs_free_space *entry, *ret = NULL;
142 entry = rb_entry(n, struct btrfs_free_space, bytes_index);
144 if (bytes < entry->bytes) {
146 * We prefer to get a hole size as close to the size we
147 * are asking for so we don't take small slivers out of
148 * huge holes, but we also want to get as close to the
149 * offset as possible so we don't have a whole lot of
152 if (offset <= entry->offset) {
155 else if (entry->bytes < ret->bytes)
157 else if (entry->offset < ret->offset)
161 } else if (bytes > entry->bytes) {
165 * Ok we may have multiple chunks of the wanted size,
166 * so we don't want to take the first one we find, we
167 * want to take the one closest to our given offset, so
168 * keep searching just in case theres a better match.
171 if (offset > entry->offset)
173 else if (!ret || entry->offset < ret->offset)
181 static void unlink_free_space(struct btrfs_block_group_cache *block_group,
182 struct btrfs_free_space *info)
184 rb_erase(&info->offset_index, &block_group->free_space_offset);
185 rb_erase(&info->bytes_index, &block_group->free_space_bytes);
188 static int link_free_space(struct btrfs_block_group_cache *block_group,
189 struct btrfs_free_space *info)
194 BUG_ON(!info->bytes);
195 ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
196 &info->offset_index);
200 ret = tree_insert_bytes(&block_group->free_space_bytes, info->bytes,
208 int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
209 u64 offset, u64 bytes)
211 struct btrfs_free_space *right_info;
212 struct btrfs_free_space *left_info;
213 struct btrfs_free_space *info = NULL;
216 info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS);
220 info->offset = offset;
223 spin_lock(&block_group->tree_lock);
226 * first we want to see if there is free space adjacent to the range we
227 * are adding, if there is remove that struct and add a new one to
228 * cover the entire range
230 right_info = tree_search_offset(&block_group->free_space_offset,
232 left_info = tree_search_offset(&block_group->free_space_offset,
236 unlink_free_space(block_group, right_info);
237 info->bytes += right_info->bytes;
241 if (left_info && left_info->offset + left_info->bytes == offset) {
242 unlink_free_space(block_group, left_info);
243 info->offset = left_info->offset;
244 info->bytes += left_info->bytes;
248 ret = link_free_space(block_group, info);
252 spin_unlock(&block_group->tree_lock);
255 printk(KERN_ERR "btrfs: unable to add free space :%d\n", ret);
256 BUG_ON(ret == -EEXIST);
262 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
263 u64 offset, u64 bytes)
265 struct btrfs_free_space *info;
268 spin_lock(&block_group->tree_lock);
270 info = tree_search_offset(&block_group->free_space_offset, offset, 0,
272 if (info && info->offset == offset) {
273 if (info->bytes < bytes) {
274 printk(KERN_ERR "Found free space at %llu, size %llu,"
275 "trying to use %llu\n",
276 (unsigned long long)info->offset,
277 (unsigned long long)info->bytes,
278 (unsigned long long)bytes);
281 spin_unlock(&block_group->tree_lock);
284 unlink_free_space(block_group, info);
286 if (info->bytes == bytes) {
288 spin_unlock(&block_group->tree_lock);
292 info->offset += bytes;
293 info->bytes -= bytes;
295 ret = link_free_space(block_group, info);
296 spin_unlock(&block_group->tree_lock);
298 } else if (info && info->offset < offset &&
299 info->offset + info->bytes >= offset + bytes) {
300 u64 old_start = info->offset;
302 * we're freeing space in the middle of the info,
303 * this can happen during tree log replay
305 * first unlink the old info and then
306 * insert it again after the hole we're creating
308 unlink_free_space(block_group, info);
309 if (offset + bytes < info->offset + info->bytes) {
310 u64 old_end = info->offset + info->bytes;
312 info->offset = offset + bytes;
313 info->bytes = old_end - info->offset;
314 ret = link_free_space(block_group, info);
317 /* the hole we're creating ends at the end
318 * of the info struct, just free the info
322 spin_unlock(&block_group->tree_lock);
323 /* step two, insert a new info struct to cover anything
326 ret = btrfs_add_free_space(block_group, old_start,
330 spin_unlock(&block_group->tree_lock);
332 printk(KERN_ERR "couldn't find space %llu to free\n",
333 (unsigned long long)offset);
334 printk(KERN_ERR "cached is %d, offset %llu bytes %llu\n",
335 block_group->cached, block_group->key.objectid,
336 block_group->key.offset);
337 btrfs_dump_free_space(block_group, bytes);
339 printk(KERN_ERR "hmm, found offset=%llu bytes=%llu, "
340 "but wanted offset=%llu bytes=%llu\n",
341 info->offset, info->bytes, offset, bytes);
349 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
352 struct btrfs_free_space *info;
356 for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
357 info = rb_entry(n, struct btrfs_free_space, offset_index);
358 if (info->bytes >= bytes)
360 printk(KERN_ERR "entry offset %llu, bytes %llu\n", info->offset,
363 printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
367 u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
369 struct btrfs_free_space *info;
373 for (n = rb_first(&block_group->free_space_offset); n;
375 info = rb_entry(n, struct btrfs_free_space, offset_index);
383 * for a given cluster, put all of its extents back into the free
384 * space cache. If the block group passed doesn't match the block group
385 * pointed to by the cluster, someone else raced in and freed the
386 * cluster already. In that case, we just return without changing anything
389 __btrfs_return_cluster_to_free_space(
390 struct btrfs_block_group_cache *block_group,
391 struct btrfs_free_cluster *cluster)
393 struct btrfs_free_space *entry;
394 struct rb_node *node;
396 spin_lock(&cluster->lock);
397 if (cluster->block_group != block_group)
400 cluster->window_start = 0;
401 node = rb_first(&cluster->root);
403 entry = rb_entry(node, struct btrfs_free_space, offset_index);
404 node = rb_next(&entry->offset_index);
405 rb_erase(&entry->offset_index, &cluster->root);
406 link_free_space(block_group, entry);
408 list_del_init(&cluster->block_group_list);
410 btrfs_put_block_group(cluster->block_group);
411 cluster->block_group = NULL;
412 cluster->root.rb_node = NULL;
414 spin_unlock(&cluster->lock);
418 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
420 struct btrfs_free_space *info;
421 struct rb_node *node;
422 struct btrfs_free_cluster *cluster;
423 struct btrfs_free_cluster *safe;
425 spin_lock(&block_group->tree_lock);
427 list_for_each_entry_safe(cluster, safe, &block_group->cluster_list,
430 WARN_ON(cluster->block_group != block_group);
431 __btrfs_return_cluster_to_free_space(block_group, cluster);
434 while ((node = rb_last(&block_group->free_space_bytes)) != NULL) {
435 info = rb_entry(node, struct btrfs_free_space, bytes_index);
436 unlink_free_space(block_group, info);
438 if (need_resched()) {
439 spin_unlock(&block_group->tree_lock);
441 spin_lock(&block_group->tree_lock);
444 spin_unlock(&block_group->tree_lock);
447 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
448 u64 offset, u64 bytes, u64 empty_size)
450 struct btrfs_free_space *entry = NULL;
453 spin_lock(&block_group->tree_lock);
454 entry = tree_search_offset(&block_group->free_space_offset, offset,
455 bytes + empty_size, 1);
457 entry = tree_search_bytes(&block_group->free_space_bytes,
458 offset, bytes + empty_size);
460 unlink_free_space(block_group, entry);
462 entry->offset += bytes;
463 entry->bytes -= bytes;
468 link_free_space(block_group, entry);
470 spin_unlock(&block_group->tree_lock);
476 * given a cluster, put all of its extents back into the free space
477 * cache. If a block group is passed, this function will only free
478 * a cluster that belongs to the passed block group.
480 * Otherwise, it'll get a reference on the block group pointed to by the
481 * cluster and remove the cluster from it.
483 int btrfs_return_cluster_to_free_space(
484 struct btrfs_block_group_cache *block_group,
485 struct btrfs_free_cluster *cluster)
489 /* first, get a safe pointer to the block group */
490 spin_lock(&cluster->lock);
492 block_group = cluster->block_group;
494 spin_unlock(&cluster->lock);
497 } else if (cluster->block_group != block_group) {
498 /* someone else has already freed it don't redo their work */
499 spin_unlock(&cluster->lock);
502 atomic_inc(&block_group->count);
503 spin_unlock(&cluster->lock);
505 /* now return any extents the cluster had on it */
506 spin_lock(&block_group->tree_lock);
507 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
508 spin_unlock(&block_group->tree_lock);
510 /* finally drop our ref */
511 btrfs_put_block_group(block_group);
516 * given a cluster, try to allocate 'bytes' from it, returns 0
517 * if it couldn't find anything suitably large, or a logical disk offset
518 * if things worked out
520 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
521 struct btrfs_free_cluster *cluster, u64 bytes,
524 struct btrfs_free_space *entry = NULL;
525 struct rb_node *node;
528 spin_lock(&cluster->lock);
529 if (bytes > cluster->max_size)
532 if (cluster->block_group != block_group)
535 node = rb_first(&cluster->root);
539 entry = rb_entry(node, struct btrfs_free_space, offset_index);
542 if (entry->bytes < bytes || entry->offset < min_start) {
543 struct rb_node *node;
545 node = rb_next(&entry->offset_index);
548 entry = rb_entry(node, struct btrfs_free_space,
554 entry->offset += bytes;
555 entry->bytes -= bytes;
557 if (entry->bytes == 0) {
558 rb_erase(&entry->offset_index, &cluster->root);
564 spin_unlock(&cluster->lock);
569 * here we try to find a cluster of blocks in a block group. The goal
570 * is to find at least bytes free and up to empty_size + bytes free.
571 * We might not find them all in one contiguous area.
573 * returns zero and sets up cluster if things worked out, otherwise
576 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
577 struct btrfs_block_group_cache *block_group,
578 struct btrfs_free_cluster *cluster,
579 u64 offset, u64 bytes, u64 empty_size)
581 struct btrfs_free_space *entry = NULL;
582 struct rb_node *node;
583 struct btrfs_free_space *next;
584 struct btrfs_free_space *last;
589 int total_retries = 0;
592 /* for metadata, allow allocates with more holes */
593 if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
595 * we want to do larger allocations when we are
596 * flushing out the delayed refs, it helps prevent
597 * making more work as we go along.
599 if (trans->transaction->delayed_refs.flushing)
600 min_bytes = max(bytes, (bytes + empty_size) >> 1);
602 min_bytes = max(bytes, (bytes + empty_size) >> 4);
604 min_bytes = max(bytes, (bytes + empty_size) >> 2);
606 spin_lock(&block_group->tree_lock);
607 spin_lock(&cluster->lock);
609 /* someone already found a cluster, hooray */
610 if (cluster->block_group) {
615 min_bytes = min(min_bytes, bytes + empty_size);
616 entry = tree_search_bytes(&block_group->free_space_bytes,
622 window_start = entry->offset;
623 window_free = entry->bytes;
625 max_extent = entry->bytes;
628 /* out window is just right, lets fill it */
629 if (window_free >= bytes + empty_size)
632 node = rb_next(&last->offset_index);
637 next = rb_entry(node, struct btrfs_free_space, offset_index);
640 * we haven't filled the empty size and the window is
641 * very large. reset and try again
643 if (next->offset - window_start > (bytes + empty_size) * 2) {
645 window_start = entry->offset;
646 window_free = entry->bytes;
650 if (total_retries % 256 == 0) {
651 if (min_bytes >= (bytes + empty_size)) {
656 * grow our allocation a bit, we're not having
664 window_free += next->bytes;
665 if (entry->bytes > max_extent)
666 max_extent = entry->bytes;
670 cluster->window_start = entry->offset;
673 * now we've found our entries, pull them out of the free space
674 * cache and put them into the cluster rbtree
676 * The cluster includes an rbtree, but only uses the offset index
677 * of each free space cache entry.
680 node = rb_next(&entry->offset_index);
681 unlink_free_space(block_group, entry);
682 ret = tree_insert_offset(&cluster->root, entry->offset,
683 &entry->offset_index);
686 if (!node || entry == last)
689 entry = rb_entry(node, struct btrfs_free_space, offset_index);
692 cluster->max_size = max_extent;
693 atomic_inc(&block_group->count);
694 list_add_tail(&cluster->block_group_list, &block_group->cluster_list);
695 cluster->block_group = block_group;
697 spin_unlock(&cluster->lock);
698 spin_unlock(&block_group->tree_lock);
704 * simple code to zero out a cluster
706 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
708 spin_lock_init(&cluster->lock);
709 spin_lock_init(&cluster->refill_lock);
710 cluster->root.rb_node = NULL;
711 cluster->max_size = 0;
712 INIT_LIST_HEAD(&cluster->block_group_list);
713 cluster->block_group = NULL;