2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/stddef.h>
19 #include <linux/errno.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/vmalloc.h>
24 #include <linux/bio.h>
25 #include <linux/sysctl.h>
26 #include <linux/proc_fs.h>
27 #include <linux/workqueue.h>
28 #include <linux/percpu.h>
29 #include <linux/blkdev.h>
30 #include <linux/hash.h>
31 #include <linux/kthread.h>
32 #include "xfs_linux.h"
34 STATIC kmem_zone_t *xfs_buf_zone;
35 STATIC kmem_shaker_t xfs_buf_shake;
36 STATIC int xfsbufd(void *);
37 STATIC int xfsbufd_wakeup(int, gfp_t);
38 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
40 STATIC struct workqueue_struct *xfslogd_workqueue;
41 struct workqueue_struct *xfsdatad_workqueue;
51 ktrace_enter(xfs_buf_trace_buf,
53 (void *)(unsigned long)bp->b_flags,
54 (void *)(unsigned long)bp->b_hold.counter,
55 (void *)(unsigned long)bp->b_sema.count.counter,
58 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
59 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
60 (void *)(unsigned long)bp->b_buffer_length,
61 NULL, NULL, NULL, NULL, NULL);
63 ktrace_t *xfs_buf_trace_buf;
64 #define XFS_BUF_TRACE_SIZE 4096
65 #define XB_TRACE(bp, id, data) \
66 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
68 #define XB_TRACE(bp, id, data) do { } while (0)
71 #ifdef XFS_BUF_LOCK_TRACKING
72 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
73 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
74 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
76 # define XB_SET_OWNER(bp) do { } while (0)
77 # define XB_CLEAR_OWNER(bp) do { } while (0)
78 # define XB_GET_OWNER(bp) do { } while (0)
81 #define xb_to_gfp(flags) \
82 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
83 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
85 #define xb_to_km(flags) \
86 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
88 #define xfs_buf_allocate(flags) \
89 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
90 #define xfs_buf_deallocate(bp) \
91 kmem_zone_free(xfs_buf_zone, (bp));
94 * Page Region interfaces.
96 * For pages in filesystems where the blocksize is smaller than the
97 * pagesize, we use the page->private field (long) to hold a bitmap
98 * of uptodate regions within the page.
100 * Each such region is "bytes per page / bits per long" bytes long.
102 * NBPPR == number-of-bytes-per-page-region
103 * BTOPR == bytes-to-page-region (rounded up)
104 * BTOPRT == bytes-to-page-region-truncated (rounded down)
106 #if (BITS_PER_LONG == 32)
107 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
108 #elif (BITS_PER_LONG == 64)
109 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
111 #error BITS_PER_LONG must be 32 or 64
113 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
114 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
115 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
125 first = BTOPR(offset);
126 final = BTOPRT(offset + length - 1);
127 first = min(first, final);
130 mask <<= BITS_PER_LONG - (final - first);
131 mask >>= BITS_PER_LONG - (final);
133 ASSERT(offset + length <= PAGE_CACHE_SIZE);
134 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
145 set_page_private(page,
146 page_private(page) | page_region_mask(offset, length));
147 if (page_private(page) == ~0UL)
148 SetPageUptodate(page);
157 unsigned long mask = page_region_mask(offset, length);
159 return (mask && (page_private(page) & mask) == mask);
163 * Mapping of multi-page buffers into contiguous virtual space
166 typedef struct a_list {
171 STATIC a_list_t *as_free_head;
172 STATIC int as_list_len;
173 STATIC DEFINE_SPINLOCK(as_lock);
176 * Try to batch vunmaps because they are costly.
184 aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH);
185 if (likely(aentry)) {
187 aentry->next = as_free_head;
188 aentry->vm_addr = addr;
189 as_free_head = aentry;
191 spin_unlock(&as_lock);
198 purge_addresses(void)
200 a_list_t *aentry, *old;
202 if (as_free_head == NULL)
206 aentry = as_free_head;
209 spin_unlock(&as_lock);
211 while ((old = aentry) != NULL) {
212 vunmap(aentry->vm_addr);
213 aentry = aentry->next;
219 * Internal xfs_buf_t object manipulation
225 xfs_buftarg_t *target,
226 xfs_off_t range_base,
228 xfs_buf_flags_t flags)
231 * We don't want certain flags to appear in b_flags.
233 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
235 memset(bp, 0, sizeof(xfs_buf_t));
236 atomic_set(&bp->b_hold, 1);
237 init_MUTEX_LOCKED(&bp->b_iodonesema);
238 INIT_LIST_HEAD(&bp->b_list);
239 INIT_LIST_HEAD(&bp->b_hash_list);
240 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
242 bp->b_target = target;
243 bp->b_file_offset = range_base;
245 * Set buffer_length and count_desired to the same value initially.
246 * I/O routines should use count_desired, which will be the same in
247 * most cases but may be reset (e.g. XFS recovery).
249 bp->b_buffer_length = bp->b_count_desired = range_length;
251 bp->b_bn = XFS_BUF_DADDR_NULL;
252 atomic_set(&bp->b_pin_count, 0);
253 init_waitqueue_head(&bp->b_waiters);
255 XFS_STATS_INC(xb_create);
256 XB_TRACE(bp, "initialize", target);
260 * Allocate a page array capable of holding a specified number
261 * of pages, and point the page buf at it.
267 xfs_buf_flags_t flags)
269 /* Make sure that we have a page list */
270 if (bp->b_pages == NULL) {
271 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
272 bp->b_page_count = page_count;
273 if (page_count <= XB_PAGES) {
274 bp->b_pages = bp->b_page_array;
276 bp->b_pages = kmem_alloc(sizeof(struct page *) *
277 page_count, xb_to_km(flags));
278 if (bp->b_pages == NULL)
281 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
287 * Frees b_pages if it was allocated.
293 if (bp->b_pages != bp->b_page_array) {
294 kmem_free(bp->b_pages,
295 bp->b_page_count * sizeof(struct page *));
300 * Releases the specified buffer.
302 * The modification state of any associated pages is left unchanged.
303 * The buffer most not be on any hash - use xfs_buf_rele instead for
304 * hashed and refcounted buffers
310 XB_TRACE(bp, "free", 0);
312 ASSERT(list_empty(&bp->b_hash_list));
314 if (bp->b_flags & _XBF_PAGE_CACHE) {
317 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
318 free_address(bp->b_addr - bp->b_offset);
320 for (i = 0; i < bp->b_page_count; i++)
321 page_cache_release(bp->b_pages[i]);
322 _xfs_buf_free_pages(bp);
323 } else if (bp->b_flags & _XBF_KMEM_ALLOC) {
325 * XXX(hch): bp->b_count_desired might be incorrect (see
326 * xfs_buf_associate_memory for details), but fortunately
327 * the Linux version of kmem_free ignores the len argument..
329 kmem_free(bp->b_addr, bp->b_count_desired);
330 _xfs_buf_free_pages(bp);
333 xfs_buf_deallocate(bp);
337 * Finds all pages for buffer in question and builds it's page list.
340 _xfs_buf_lookup_pages(
344 struct address_space *mapping = bp->b_target->bt_mapping;
345 size_t blocksize = bp->b_target->bt_bsize;
346 size_t size = bp->b_count_desired;
347 size_t nbytes, offset;
348 gfp_t gfp_mask = xb_to_gfp(flags);
349 unsigned short page_count, i;
354 end = bp->b_file_offset + bp->b_buffer_length;
355 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
357 error = _xfs_buf_get_pages(bp, page_count, flags);
360 bp->b_flags |= _XBF_PAGE_CACHE;
362 offset = bp->b_offset;
363 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
365 for (i = 0; i < bp->b_page_count; i++) {
370 page = find_or_create_page(mapping, first + i, gfp_mask);
371 if (unlikely(page == NULL)) {
372 if (flags & XBF_READ_AHEAD) {
373 bp->b_page_count = i;
374 for (i = 0; i < bp->b_page_count; i++)
375 unlock_page(bp->b_pages[i]);
380 * This could deadlock.
382 * But until all the XFS lowlevel code is revamped to
383 * handle buffer allocation failures we can't do much.
385 if (!(++retries % 100))
387 "XFS: possible memory allocation "
388 "deadlock in %s (mode:0x%x)\n",
389 __FUNCTION__, gfp_mask);
391 XFS_STATS_INC(xb_page_retries);
392 xfsbufd_wakeup(0, gfp_mask);
393 blk_congestion_wait(WRITE, HZ/50);
397 XFS_STATS_INC(xb_page_found);
399 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
402 if (!PageUptodate(page)) {
404 if (blocksize >= PAGE_CACHE_SIZE) {
405 if (flags & XBF_READ)
407 } else if (!PagePrivate(page)) {
408 if (test_page_region(page, offset, nbytes))
413 bp->b_pages[i] = page;
418 for (i = 0; i < bp->b_page_count; i++)
419 unlock_page(bp->b_pages[i]);
422 if (page_count == bp->b_page_count)
423 bp->b_flags |= XBF_DONE;
425 XB_TRACE(bp, "lookup_pages", (long)page_count);
430 * Map buffer into kernel address-space if nessecary.
437 /* A single page buffer is always mappable */
438 if (bp->b_page_count == 1) {
439 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
440 bp->b_flags |= XBF_MAPPED;
441 } else if (flags & XBF_MAPPED) {
442 if (as_list_len > 64)
444 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
445 VM_MAP, PAGE_KERNEL);
446 if (unlikely(bp->b_addr == NULL))
448 bp->b_addr += bp->b_offset;
449 bp->b_flags |= XBF_MAPPED;
456 * Finding and Reading Buffers
460 * Look up, and creates if absent, a lockable buffer for
461 * a given range of an inode. The buffer is returned
462 * locked. If other overlapping buffers exist, they are
463 * released before the new buffer is created and locked,
464 * which may imply that this call will block until those buffers
465 * are unlocked. No I/O is implied by this call.
469 xfs_buftarg_t *btp, /* block device target */
470 xfs_off_t ioff, /* starting offset of range */
471 size_t isize, /* length of range */
472 xfs_buf_flags_t flags,
475 xfs_off_t range_base;
480 range_base = (ioff << BBSHIFT);
481 range_length = (isize << BBSHIFT);
483 /* Check for IOs smaller than the sector size / not sector aligned */
484 ASSERT(!(range_length < (1 << btp->bt_sshift)));
485 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
487 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
489 spin_lock(&hash->bh_lock);
491 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
492 ASSERT(btp == bp->b_target);
493 if (bp->b_file_offset == range_base &&
494 bp->b_buffer_length == range_length) {
496 * If we look at something, bring it to the
497 * front of the list for next time.
499 atomic_inc(&bp->b_hold);
500 list_move(&bp->b_hash_list, &hash->bh_list);
507 _xfs_buf_initialize(new_bp, btp, range_base,
508 range_length, flags);
509 new_bp->b_hash = hash;
510 list_add(&new_bp->b_hash_list, &hash->bh_list);
512 XFS_STATS_INC(xb_miss_locked);
515 spin_unlock(&hash->bh_lock);
519 spin_unlock(&hash->bh_lock);
521 /* Attempt to get the semaphore without sleeping,
522 * if this does not work then we need to drop the
523 * spinlock and do a hard attempt on the semaphore.
525 if (down_trylock(&bp->b_sema)) {
526 if (!(flags & XBF_TRYLOCK)) {
527 /* wait for buffer ownership */
528 XB_TRACE(bp, "get_lock", 0);
530 XFS_STATS_INC(xb_get_locked_waited);
532 /* We asked for a trylock and failed, no need
533 * to look at file offset and length here, we
534 * know that this buffer at least overlaps our
535 * buffer and is locked, therefore our buffer
536 * either does not exist, or is this buffer.
539 XFS_STATS_INC(xb_busy_locked);
547 if (bp->b_flags & XBF_STALE) {
548 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
549 bp->b_flags &= XBF_MAPPED;
551 XB_TRACE(bp, "got_lock", 0);
552 XFS_STATS_INC(xb_get_locked);
557 * Assembles a buffer covering the specified range.
558 * Storage in memory for all portions of the buffer will be allocated,
559 * although backing storage may not be.
563 xfs_buftarg_t *target,/* target for buffer */
564 xfs_off_t ioff, /* starting offset of range */
565 size_t isize, /* length of range */
566 xfs_buf_flags_t flags)
568 xfs_buf_t *bp, *new_bp;
571 new_bp = xfs_buf_allocate(flags);
572 if (unlikely(!new_bp))
575 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
577 error = _xfs_buf_lookup_pages(bp, flags);
581 xfs_buf_deallocate(new_bp);
582 if (unlikely(bp == NULL))
586 for (i = 0; i < bp->b_page_count; i++)
587 mark_page_accessed(bp->b_pages[i]);
589 if (!(bp->b_flags & XBF_MAPPED)) {
590 error = _xfs_buf_map_pages(bp, flags);
591 if (unlikely(error)) {
592 printk(KERN_WARNING "%s: failed to map pages\n",
598 XFS_STATS_INC(xb_get);
601 * Always fill in the block number now, the mapped cases can do
602 * their own overlay of this later.
605 bp->b_count_desired = bp->b_buffer_length;
607 XB_TRACE(bp, "get", (unsigned long)flags);
611 if (flags & (XBF_LOCK | XBF_TRYLOCK))
619 xfs_buftarg_t *target,
622 xfs_buf_flags_t flags)
628 bp = xfs_buf_get_flags(target, ioff, isize, flags);
630 if (!XFS_BUF_ISDONE(bp)) {
631 XB_TRACE(bp, "read", (unsigned long)flags);
632 XFS_STATS_INC(xb_get_read);
633 xfs_buf_iostart(bp, flags);
634 } else if (flags & XBF_ASYNC) {
635 XB_TRACE(bp, "read_async", (unsigned long)flags);
637 * Read ahead call which is already satisfied,
642 XB_TRACE(bp, "read_done", (unsigned long)flags);
643 /* We do not want read in the flags */
644 bp->b_flags &= ~XBF_READ;
651 if (flags & (XBF_LOCK | XBF_TRYLOCK))
658 * If we are not low on memory then do the readahead in a deadlock
663 xfs_buftarg_t *target,
666 xfs_buf_flags_t flags)
668 struct backing_dev_info *bdi;
670 bdi = target->bt_mapping->backing_dev_info;
671 if (bdi_read_congested(bdi))
674 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
675 xfs_buf_read_flags(target, ioff, isize, flags);
681 xfs_buftarg_t *target)
685 bp = xfs_buf_allocate(0);
687 _xfs_buf_initialize(bp, target, 0, len, 0);
691 static inline struct page *
695 if (((unsigned long)addr < VMALLOC_START) ||
696 ((unsigned long)addr >= VMALLOC_END)) {
697 return virt_to_page(addr);
699 return vmalloc_to_page(addr);
704 xfs_buf_associate_memory(
716 page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
717 offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
718 if (offset && (len > PAGE_CACHE_SIZE))
721 /* Free any previous set of page pointers */
723 _xfs_buf_free_pages(bp);
728 rval = _xfs_buf_get_pages(bp, page_count, 0);
732 bp->b_offset = offset;
733 ptr = (size_t) mem & PAGE_CACHE_MASK;
734 end = PAGE_CACHE_ALIGN((size_t) mem + len);
736 /* set up first page */
737 bp->b_pages[0] = mem_to_page(mem);
739 ptr += PAGE_CACHE_SIZE;
740 bp->b_page_count = ++i;
742 bp->b_pages[i] = mem_to_page((void *)ptr);
743 bp->b_page_count = ++i;
744 ptr += PAGE_CACHE_SIZE;
748 bp->b_count_desired = bp->b_buffer_length = len;
749 bp->b_flags |= XBF_MAPPED;
757 xfs_buftarg_t *target)
759 size_t malloc_len = len;
764 bp = xfs_buf_allocate(0);
765 if (unlikely(bp == NULL))
767 _xfs_buf_initialize(bp, target, 0, len, 0);
770 data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL);
771 if (unlikely(data == NULL))
774 /* check whether alignment matches.. */
775 if ((__psunsigned_t)data !=
776 ((__psunsigned_t)data & ~target->bt_smask)) {
777 /* .. else double the size and try again */
778 kmem_free(data, malloc_len);
783 error = xfs_buf_associate_memory(bp, data, len);
786 bp->b_flags |= _XBF_KMEM_ALLOC;
790 XB_TRACE(bp, "no_daddr", data);
793 kmem_free(data, malloc_len);
801 * Increment reference count on buffer, to hold the buffer concurrently
802 * with another thread which may release (free) the buffer asynchronously.
803 * Must hold the buffer already to call this function.
809 atomic_inc(&bp->b_hold);
810 XB_TRACE(bp, "hold", 0);
814 * Releases a hold on the specified buffer. If the
815 * the hold count is 1, calls xfs_buf_free.
821 xfs_bufhash_t *hash = bp->b_hash;
823 XB_TRACE(bp, "rele", bp->b_relse);
825 if (unlikely(!hash)) {
826 ASSERT(!bp->b_relse);
827 if (atomic_dec_and_test(&bp->b_hold))
832 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
834 atomic_inc(&bp->b_hold);
835 spin_unlock(&hash->bh_lock);
836 (*(bp->b_relse)) (bp);
837 } else if (bp->b_flags & XBF_FS_MANAGED) {
838 spin_unlock(&hash->bh_lock);
840 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
841 list_del_init(&bp->b_hash_list);
842 spin_unlock(&hash->bh_lock);
847 * Catch reference count leaks
849 ASSERT(atomic_read(&bp->b_hold) >= 0);
855 * Mutual exclusion on buffers. Locking model:
857 * Buffers associated with inodes for which buffer locking
858 * is not enabled are not protected by semaphores, and are
859 * assumed to be exclusively owned by the caller. There is a
860 * spinlock in the buffer, used by the caller when concurrent
861 * access is possible.
865 * Locks a buffer object, if it is not already locked.
866 * Note that this in no way locks the underlying pages, so it is only
867 * useful for synchronizing concurrent use of buffer objects, not for
868 * synchronizing independent access to the underlying pages.
876 locked = down_trylock(&bp->b_sema) == 0;
880 XB_TRACE(bp, "cond_lock", (long)locked);
881 return locked ? 0 : -EBUSY;
884 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
889 return atomic_read(&bp->b_sema.count);
894 * Locks a buffer object.
895 * Note that this in no way locks the underlying pages, so it is only
896 * useful for synchronizing concurrent use of buffer objects, not for
897 * synchronizing independent access to the underlying pages.
903 XB_TRACE(bp, "lock", 0);
904 if (atomic_read(&bp->b_io_remaining))
905 blk_run_address_space(bp->b_target->bt_mapping);
908 XB_TRACE(bp, "locked", 0);
912 * Releases the lock on the buffer object.
913 * If the buffer is marked delwri but is not queued, do so before we
914 * unlock the buffer as we need to set flags correctly. We also need to
915 * take a reference for the delwri queue because the unlocker is going to
916 * drop their's and they don't know we just queued it.
922 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
923 atomic_inc(&bp->b_hold);
924 bp->b_flags |= XBF_ASYNC;
925 xfs_buf_delwri_queue(bp, 0);
930 XB_TRACE(bp, "unlock", 0);
935 * Pinning Buffer Storage in Memory
936 * Ensure that no attempt to force a buffer to disk will succeed.
942 atomic_inc(&bp->b_pin_count);
943 XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
950 if (atomic_dec_and_test(&bp->b_pin_count))
951 wake_up_all(&bp->b_waiters);
952 XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
959 return atomic_read(&bp->b_pin_count);
966 DECLARE_WAITQUEUE (wait, current);
968 if (atomic_read(&bp->b_pin_count) == 0)
971 add_wait_queue(&bp->b_waiters, &wait);
973 set_current_state(TASK_UNINTERRUPTIBLE);
974 if (atomic_read(&bp->b_pin_count) == 0)
976 if (atomic_read(&bp->b_io_remaining))
977 blk_run_address_space(bp->b_target->bt_mapping);
980 remove_wait_queue(&bp->b_waiters, &wait);
981 set_current_state(TASK_RUNNING);
985 * Buffer Utility Routines
992 xfs_buf_t *bp = (xfs_buf_t *)v;
995 (*(bp->b_iodone))(bp);
996 else if (bp->b_flags & XBF_ASYNC)
1005 bp->b_flags &= ~(XBF_READ | XBF_WRITE);
1006 if (bp->b_error == 0)
1007 bp->b_flags |= XBF_DONE;
1009 XB_TRACE(bp, "iodone", bp->b_iodone);
1011 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1013 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work, bp);
1014 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1016 xfs_buf_iodone_work(bp);
1019 up(&bp->b_iodonesema);
1028 ASSERT(error >= 0 && error <= 0xffff);
1029 bp->b_error = (unsigned short)error;
1030 XB_TRACE(bp, "ioerror", (unsigned long)error);
1034 * Initiate I/O on a buffer, based on the flags supplied.
1035 * The b_iodone routine in the buffer supplied will only be called
1036 * when all of the subsidiary I/O requests, if any, have been completed.
1041 xfs_buf_flags_t flags)
1045 XB_TRACE(bp, "iostart", (unsigned long)flags);
1047 if (flags & XBF_DELWRI) {
1048 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1049 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1050 xfs_buf_delwri_queue(bp, 1);
1054 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1055 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1056 bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1057 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1059 BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1061 /* For writes allow an alternate strategy routine to precede
1062 * the actual I/O request (which may not be issued at all in
1063 * a shutdown situation, for example).
1065 status = (flags & XBF_WRITE) ?
1066 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1068 /* Wait for I/O if we are not an async request.
1069 * Note: async I/O request completion will release the buffer,
1070 * and that can already be done by this point. So using the
1071 * buffer pointer from here on, after async I/O, is invalid.
1073 if (!status && !(flags & XBF_ASYNC))
1074 status = xfs_buf_iowait(bp);
1079 STATIC __inline__ int
1083 ASSERT(bp->b_flags & (XBF_READ | XBF_WRITE));
1084 if (bp->b_flags & XBF_READ)
1085 return bp->b_locked;
1089 STATIC __inline__ void
1094 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1096 xfs_buf_ioend(bp, schedule);
1103 unsigned int bytes_done,
1106 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1107 unsigned int blocksize = bp->b_target->bt_bsize;
1108 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1113 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1117 struct page *page = bvec->bv_page;
1119 if (unlikely(bp->b_error)) {
1120 if (bp->b_flags & XBF_READ)
1121 ClearPageUptodate(page);
1123 } else if (blocksize >= PAGE_CACHE_SIZE) {
1124 SetPageUptodate(page);
1125 } else if (!PagePrivate(page) &&
1126 (bp->b_flags & _XBF_PAGE_CACHE)) {
1127 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1130 if (--bvec >= bio->bi_io_vec)
1131 prefetchw(&bvec->bv_page->flags);
1133 if (_xfs_buf_iolocked(bp)) {
1136 } while (bvec >= bio->bi_io_vec);
1138 _xfs_buf_ioend(bp, 1);
1147 int i, rw, map_i, total_nr_pages, nr_pages;
1149 int offset = bp->b_offset;
1150 int size = bp->b_count_desired;
1151 sector_t sector = bp->b_bn;
1152 unsigned int blocksize = bp->b_target->bt_bsize;
1153 int locking = _xfs_buf_iolocked(bp);
1155 total_nr_pages = bp->b_page_count;
1158 if (bp->b_flags & _XBF_RUN_QUEUES) {
1159 bp->b_flags &= ~_XBF_RUN_QUEUES;
1160 rw = (bp->b_flags & XBF_READ) ? READ_SYNC : WRITE_SYNC;
1162 rw = (bp->b_flags & XBF_READ) ? READ : WRITE;
1165 if (bp->b_flags & XBF_ORDERED) {
1166 ASSERT(!(bp->b_flags & XBF_READ));
1170 /* Special code path for reading a sub page size buffer in --
1171 * we populate up the whole page, and hence the other metadata
1172 * in the same page. This optimization is only valid when the
1173 * filesystem block size is not smaller than the page size.
1175 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1176 (bp->b_flags & XBF_READ) && locking &&
1177 (blocksize >= PAGE_CACHE_SIZE)) {
1178 bio = bio_alloc(GFP_NOIO, 1);
1180 bio->bi_bdev = bp->b_target->bt_bdev;
1181 bio->bi_sector = sector - (offset >> BBSHIFT);
1182 bio->bi_end_io = xfs_buf_bio_end_io;
1183 bio->bi_private = bp;
1185 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1188 atomic_inc(&bp->b_io_remaining);
1193 /* Lock down the pages which we need to for the request */
1194 if (locking && (bp->b_flags & XBF_WRITE) && (bp->b_locked == 0)) {
1195 for (i = 0; size; i++) {
1196 int nbytes = PAGE_CACHE_SIZE - offset;
1197 struct page *page = bp->b_pages[i];
1207 offset = bp->b_offset;
1208 size = bp->b_count_desired;
1212 atomic_inc(&bp->b_io_remaining);
1213 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1214 if (nr_pages > total_nr_pages)
1215 nr_pages = total_nr_pages;
1217 bio = bio_alloc(GFP_NOIO, nr_pages);
1218 bio->bi_bdev = bp->b_target->bt_bdev;
1219 bio->bi_sector = sector;
1220 bio->bi_end_io = xfs_buf_bio_end_io;
1221 bio->bi_private = bp;
1223 for (; size && nr_pages; nr_pages--, map_i++) {
1224 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1229 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1230 if (rbytes < nbytes)
1234 sector += nbytes >> BBSHIFT;
1240 if (likely(bio->bi_size)) {
1241 submit_bio(rw, bio);
1246 xfs_buf_ioerror(bp, EIO);
1254 XB_TRACE(bp, "iorequest", 0);
1256 if (bp->b_flags & XBF_DELWRI) {
1257 xfs_buf_delwri_queue(bp, 1);
1261 if (bp->b_flags & XBF_WRITE) {
1262 xfs_buf_wait_unpin(bp);
1267 /* Set the count to 1 initially, this will stop an I/O
1268 * completion callout which happens before we have started
1269 * all the I/O from calling xfs_buf_ioend too early.
1271 atomic_set(&bp->b_io_remaining, 1);
1272 _xfs_buf_ioapply(bp);
1273 _xfs_buf_ioend(bp, 0);
1280 * Waits for I/O to complete on the buffer supplied.
1281 * It returns immediately if no I/O is pending.
1282 * It returns the I/O error code, if any, or 0 if there was no error.
1288 XB_TRACE(bp, "iowait", 0);
1289 if (atomic_read(&bp->b_io_remaining))
1290 blk_run_address_space(bp->b_target->bt_mapping);
1291 down(&bp->b_iodonesema);
1292 XB_TRACE(bp, "iowaited", (long)bp->b_error);
1303 if (bp->b_flags & XBF_MAPPED)
1304 return XFS_BUF_PTR(bp) + offset;
1306 offset += bp->b_offset;
1307 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1308 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1312 * Move data into or out of a buffer.
1316 xfs_buf_t *bp, /* buffer to process */
1317 size_t boff, /* starting buffer offset */
1318 size_t bsize, /* length to copy */
1319 caddr_t data, /* data address */
1320 xfs_buf_rw_t mode) /* read/write/zero flag */
1322 size_t bend, cpoff, csize;
1325 bend = boff + bsize;
1326 while (boff < bend) {
1327 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1328 cpoff = xfs_buf_poff(boff + bp->b_offset);
1329 csize = min_t(size_t,
1330 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1332 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1336 memset(page_address(page) + cpoff, 0, csize);
1339 memcpy(data, page_address(page) + cpoff, csize);
1342 memcpy(page_address(page) + cpoff, data, csize);
1351 * Handling of buffer targets (buftargs).
1355 * Wait for any bufs with callbacks that have been submitted but
1356 * have not yet returned... walk the hash list for the target.
1363 xfs_bufhash_t *hash;
1366 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1367 hash = &btp->bt_hash[i];
1369 spin_lock(&hash->bh_lock);
1370 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1371 ASSERT(btp == bp->b_target);
1372 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1373 spin_unlock(&hash->bh_lock);
1375 * Catch superblock reference count leaks
1378 BUG_ON(bp->b_bn == 0);
1383 spin_unlock(&hash->bh_lock);
1388 * Allocate buffer hash table for a given target.
1389 * For devices containing metadata (i.e. not the log/realtime devices)
1390 * we need to allocate a much larger hash table.
1399 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1400 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1401 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1402 sizeof(xfs_bufhash_t), KM_SLEEP);
1403 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1404 spin_lock_init(&btp->bt_hash[i].bh_lock);
1405 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1413 kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1414 btp->bt_hash = NULL;
1418 * buftarg list for delwrite queue processing
1420 STATIC LIST_HEAD(xfs_buftarg_list);
1421 STATIC DEFINE_SPINLOCK(xfs_buftarg_lock);
1424 xfs_register_buftarg(
1427 spin_lock(&xfs_buftarg_lock);
1428 list_add(&btp->bt_list, &xfs_buftarg_list);
1429 spin_unlock(&xfs_buftarg_lock);
1433 xfs_unregister_buftarg(
1436 spin_lock(&xfs_buftarg_lock);
1437 list_del(&btp->bt_list);
1438 spin_unlock(&xfs_buftarg_lock);
1446 xfs_flush_buftarg(btp, 1);
1448 xfs_blkdev_put(btp->bt_bdev);
1449 xfs_free_bufhash(btp);
1450 iput(btp->bt_mapping->host);
1452 /* Unregister the buftarg first so that we don't get a
1453 * wakeup finding a non-existent task
1455 xfs_unregister_buftarg(btp);
1456 kthread_stop(btp->bt_task);
1458 kmem_free(btp, sizeof(*btp));
1462 xfs_setsize_buftarg_flags(
1464 unsigned int blocksize,
1465 unsigned int sectorsize,
1468 btp->bt_bsize = blocksize;
1469 btp->bt_sshift = ffs(sectorsize) - 1;
1470 btp->bt_smask = sectorsize - 1;
1472 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1474 "XFS: Cannot set_blocksize to %u on device %s\n",
1475 sectorsize, XFS_BUFTARG_NAME(btp));
1480 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1482 "XFS: %u byte sectors in use on device %s. "
1483 "This is suboptimal; %u or greater is ideal.\n",
1484 sectorsize, XFS_BUFTARG_NAME(btp),
1485 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1492 * When allocating the initial buffer target we have not yet
1493 * read in the superblock, so don't know what sized sectors
1494 * are being used is at this early stage. Play safe.
1497 xfs_setsize_buftarg_early(
1499 struct block_device *bdev)
1501 return xfs_setsize_buftarg_flags(btp,
1502 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1506 xfs_setsize_buftarg(
1508 unsigned int blocksize,
1509 unsigned int sectorsize)
1511 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1515 xfs_mapping_buftarg(
1517 struct block_device *bdev)
1519 struct backing_dev_info *bdi;
1520 struct inode *inode;
1521 struct address_space *mapping;
1522 static struct address_space_operations mapping_aops = {
1523 .sync_page = block_sync_page,
1524 .migratepage = fail_migrate_page,
1527 inode = new_inode(bdev->bd_inode->i_sb);
1530 "XFS: Cannot allocate mapping inode for device %s\n",
1531 XFS_BUFTARG_NAME(btp));
1534 inode->i_mode = S_IFBLK;
1535 inode->i_bdev = bdev;
1536 inode->i_rdev = bdev->bd_dev;
1537 bdi = blk_get_backing_dev_info(bdev);
1539 bdi = &default_backing_dev_info;
1540 mapping = &inode->i_data;
1541 mapping->a_ops = &mapping_aops;
1542 mapping->backing_dev_info = bdi;
1543 mapping_set_gfp_mask(mapping, GFP_NOFS);
1544 btp->bt_mapping = mapping;
1549 xfs_alloc_delwrite_queue(
1554 INIT_LIST_HEAD(&btp->bt_list);
1555 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1556 spinlock_init(&btp->bt_delwrite_lock, "delwri_lock");
1558 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1559 if (IS_ERR(btp->bt_task)) {
1560 error = PTR_ERR(btp->bt_task);
1563 xfs_register_buftarg(btp);
1570 struct block_device *bdev,
1575 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1577 btp->bt_dev = bdev->bd_dev;
1578 btp->bt_bdev = bdev;
1579 if (xfs_setsize_buftarg_early(btp, bdev))
1581 if (xfs_mapping_buftarg(btp, bdev))
1583 if (xfs_alloc_delwrite_queue(btp))
1585 xfs_alloc_bufhash(btp, external);
1589 kmem_free(btp, sizeof(*btp));
1595 * Delayed write buffer handling
1598 xfs_buf_delwri_queue(
1602 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1603 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1605 XB_TRACE(bp, "delwri_q", (long)unlock);
1606 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1609 /* If already in the queue, dequeue and place at tail */
1610 if (!list_empty(&bp->b_list)) {
1611 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1613 atomic_dec(&bp->b_hold);
1614 list_del(&bp->b_list);
1617 bp->b_flags |= _XBF_DELWRI_Q;
1618 list_add_tail(&bp->b_list, dwq);
1619 bp->b_queuetime = jiffies;
1627 xfs_buf_delwri_dequeue(
1630 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1634 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1635 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1636 list_del_init(&bp->b_list);
1639 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1645 XB_TRACE(bp, "delwri_dq", (long)dequeued);
1649 xfs_buf_runall_queues(
1650 struct workqueue_struct *queue)
1652 flush_workqueue(queue);
1662 spin_lock(&xfs_buftarg_lock);
1663 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1664 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1666 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1667 wake_up_process(btp->bt_task);
1669 spin_unlock(&xfs_buftarg_lock);
1677 struct list_head tmp;
1679 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1681 struct list_head *dwq = &target->bt_delwrite_queue;
1682 spinlock_t *dwlk = &target->bt_delwrite_lock;
1684 current->flags |= PF_MEMALLOC;
1686 INIT_LIST_HEAD(&tmp);
1688 if (unlikely(freezing(current))) {
1689 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1692 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1695 schedule_timeout_interruptible(
1696 xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1698 age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1700 list_for_each_entry_safe(bp, n, dwq, b_list) {
1701 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1702 ASSERT(bp->b_flags & XBF_DELWRI);
1704 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1705 if (!test_bit(XBT_FORCE_FLUSH,
1706 &target->bt_flags) &&
1707 time_before(jiffies,
1708 bp->b_queuetime + age)) {
1713 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1714 bp->b_flags |= XBF_WRITE;
1715 list_move(&bp->b_list, &tmp);
1720 while (!list_empty(&tmp)) {
1721 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1722 ASSERT(target == bp->b_target);
1724 list_del_init(&bp->b_list);
1725 xfs_buf_iostrategy(bp);
1727 blk_run_address_space(target->bt_mapping);
1730 if (as_list_len > 0)
1733 clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1734 } while (!kthread_should_stop());
1740 * Go through all incore buffers, and release buffers if they belong to
1741 * the given device. This is used in filesystem error handling to
1742 * preserve the consistency of its metadata.
1746 xfs_buftarg_t *target,
1749 struct list_head tmp;
1752 struct list_head *dwq = &target->bt_delwrite_queue;
1753 spinlock_t *dwlk = &target->bt_delwrite_lock;
1755 xfs_buf_runall_queues(xfsdatad_workqueue);
1756 xfs_buf_runall_queues(xfslogd_workqueue);
1758 INIT_LIST_HEAD(&tmp);
1760 list_for_each_entry_safe(bp, n, dwq, b_list) {
1761 ASSERT(bp->b_target == target);
1762 ASSERT(bp->b_flags & (XBF_DELWRI | _XBF_DELWRI_Q));
1763 XB_TRACE(bp, "walkq2", (long)xfs_buf_ispin(bp));
1764 if (xfs_buf_ispin(bp)) {
1769 list_move(&bp->b_list, &tmp);
1774 * Dropped the delayed write list lock, now walk the temporary list
1776 list_for_each_entry_safe(bp, n, &tmp, b_list) {
1778 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1779 bp->b_flags |= XBF_WRITE;
1781 bp->b_flags &= ~XBF_ASYNC;
1783 list_del_init(&bp->b_list);
1785 xfs_buf_iostrategy(bp);
1789 * Remaining list items must be flushed before returning
1791 while (!list_empty(&tmp)) {
1792 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1794 list_del_init(&bp->b_list);
1800 blk_run_address_space(target->bt_mapping);
1808 int error = -ENOMEM;
1810 #ifdef XFS_BUF_TRACE
1811 xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
1814 xfs_buf_zone = kmem_zone_init(sizeof(xfs_buf_t), "xfs_buf");
1816 goto out_free_trace_buf;
1818 xfslogd_workqueue = create_workqueue("xfslogd");
1819 if (!xfslogd_workqueue)
1820 goto out_free_buf_zone;
1822 xfsdatad_workqueue = create_workqueue("xfsdatad");
1823 if (!xfsdatad_workqueue)
1824 goto out_destroy_xfslogd_workqueue;
1826 xfs_buf_shake = kmem_shake_register(xfsbufd_wakeup);
1828 goto out_destroy_xfsdatad_workqueue;
1832 out_destroy_xfsdatad_workqueue:
1833 destroy_workqueue(xfsdatad_workqueue);
1834 out_destroy_xfslogd_workqueue:
1835 destroy_workqueue(xfslogd_workqueue);
1837 kmem_zone_destroy(xfs_buf_zone);
1839 #ifdef XFS_BUF_TRACE
1840 ktrace_free(xfs_buf_trace_buf);
1846 xfs_buf_terminate(void)
1848 kmem_shake_deregister(xfs_buf_shake);
1849 destroy_workqueue(xfsdatad_workqueue);
1850 destroy_workqueue(xfslogd_workqueue);
1851 kmem_zone_destroy(xfs_buf_zone);
1852 #ifdef XFS_BUF_TRACE
1853 ktrace_free(xfs_buf_trace_buf);