1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k3-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
38 /* e1000_pci_tbl - PCI Device ID Table
40 * Last entry must be all 0s
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
45 static struct pci_device_id e1000_pci_tbl[] = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
131 static int e1000_set_mac(struct net_device *netdev, void *p);
132 static irqreturn_t e1000_intr(int irq, void *data);
133 static irqreturn_t e1000_intr_msi(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135 struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138 struct e1000_rx_ring *rx_ring,
139 int *work_done, int work_to_do);
140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
141 struct e1000_rx_ring *rx_ring,
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
146 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
147 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
148 static void e1000_tx_timeout(struct net_device *dev);
149 static void e1000_reset_task(struct work_struct *work);
150 static void e1000_smartspeed(struct e1000_adapter *adapter);
151 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
152 struct sk_buff *skb);
154 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
155 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
156 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
157 static void e1000_restore_vlan(struct e1000_adapter *adapter);
159 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
161 static int e1000_resume(struct pci_dev *pdev);
163 static void e1000_shutdown(struct pci_dev *pdev);
165 #ifdef CONFIG_NET_POLL_CONTROLLER
166 /* for netdump / net console */
167 static void e1000_netpoll (struct net_device *netdev);
170 #define COPYBREAK_DEFAULT 256
171 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
172 module_param(copybreak, uint, 0644);
173 MODULE_PARM_DESC(copybreak,
174 "Maximum size of packet that is copied to a new buffer on receive");
176 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
177 pci_channel_state_t state);
178 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
179 static void e1000_io_resume(struct pci_dev *pdev);
181 static struct pci_error_handlers e1000_err_handler = {
182 .error_detected = e1000_io_error_detected,
183 .slot_reset = e1000_io_slot_reset,
184 .resume = e1000_io_resume,
187 static struct pci_driver e1000_driver = {
188 .name = e1000_driver_name,
189 .id_table = e1000_pci_tbl,
190 .probe = e1000_probe,
191 .remove = __devexit_p(e1000_remove),
193 /* Power Managment Hooks */
194 .suspend = e1000_suspend,
195 .resume = e1000_resume,
197 .shutdown = e1000_shutdown,
198 .err_handler = &e1000_err_handler
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION);
206 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
207 module_param(debug, int, 0);
208 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
211 * e1000_init_module - Driver Registration Routine
213 * e1000_init_module is the first routine called when the driver is
214 * loaded. All it does is register with the PCI subsystem.
217 static int __init e1000_init_module(void)
220 printk(KERN_INFO "%s - version %s\n",
221 e1000_driver_string, e1000_driver_version);
223 printk(KERN_INFO "%s\n", e1000_copyright);
225 ret = pci_register_driver(&e1000_driver);
226 if (copybreak != COPYBREAK_DEFAULT) {
228 printk(KERN_INFO "e1000: copybreak disabled\n");
230 printk(KERN_INFO "e1000: copybreak enabled for "
231 "packets <= %u bytes\n", copybreak);
236 module_init(e1000_init_module);
239 * e1000_exit_module - Driver Exit Cleanup Routine
241 * e1000_exit_module is called just before the driver is removed
245 static void __exit e1000_exit_module(void)
247 pci_unregister_driver(&e1000_driver);
250 module_exit(e1000_exit_module);
252 static int e1000_request_irq(struct e1000_adapter *adapter)
254 struct e1000_hw *hw = &adapter->hw;
255 struct net_device *netdev = adapter->netdev;
256 irq_handler_t handler = e1000_intr;
257 int irq_flags = IRQF_SHARED;
260 if (hw->mac_type >= e1000_82571) {
261 adapter->have_msi = !pci_enable_msi(adapter->pdev);
262 if (adapter->have_msi) {
263 handler = e1000_intr_msi;
268 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
271 if (adapter->have_msi)
272 pci_disable_msi(adapter->pdev);
274 "Unable to allocate interrupt Error: %d\n", err);
280 static void e1000_free_irq(struct e1000_adapter *adapter)
282 struct net_device *netdev = adapter->netdev;
284 free_irq(adapter->pdev->irq, netdev);
286 if (adapter->have_msi)
287 pci_disable_msi(adapter->pdev);
291 * e1000_irq_disable - Mask off interrupt generation on the NIC
292 * @adapter: board private structure
295 static void e1000_irq_disable(struct e1000_adapter *adapter)
297 struct e1000_hw *hw = &adapter->hw;
301 synchronize_irq(adapter->pdev->irq);
305 * e1000_irq_enable - Enable default interrupt generation settings
306 * @adapter: board private structure
309 static void e1000_irq_enable(struct e1000_adapter *adapter)
311 struct e1000_hw *hw = &adapter->hw;
313 ew32(IMS, IMS_ENABLE_MASK);
317 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
319 struct e1000_hw *hw = &adapter->hw;
320 struct net_device *netdev = adapter->netdev;
321 u16 vid = hw->mng_cookie.vlan_id;
322 u16 old_vid = adapter->mng_vlan_id;
323 if (adapter->vlgrp) {
324 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
325 if (hw->mng_cookie.status &
326 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
327 e1000_vlan_rx_add_vid(netdev, vid);
328 adapter->mng_vlan_id = vid;
330 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
332 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
334 !vlan_group_get_device(adapter->vlgrp, old_vid))
335 e1000_vlan_rx_kill_vid(netdev, old_vid);
337 adapter->mng_vlan_id = vid;
342 * e1000_release_hw_control - release control of the h/w to f/w
343 * @adapter: address of board private structure
345 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346 * For ASF and Pass Through versions of f/w this means that the
347 * driver is no longer loaded. For AMT version (only with 82573) i
348 * of the f/w this means that the network i/f is closed.
352 static void e1000_release_hw_control(struct e1000_adapter *adapter)
356 struct e1000_hw *hw = &adapter->hw;
358 /* Let firmware taken over control of h/w */
359 switch (hw->mac_type) {
362 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
366 case e1000_80003es2lan:
368 ctrl_ext = er32(CTRL_EXT);
369 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
377 * e1000_get_hw_control - get control of the h/w from f/w
378 * @adapter: address of board private structure
380 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381 * For ASF and Pass Through versions of f/w this means that
382 * the driver is loaded. For AMT version (only with 82573)
383 * of the f/w this means that the network i/f is open.
387 static void e1000_get_hw_control(struct e1000_adapter *adapter)
391 struct e1000_hw *hw = &adapter->hw;
393 /* Let firmware know the driver has taken over */
394 switch (hw->mac_type) {
397 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
401 case e1000_80003es2lan:
403 ctrl_ext = er32(CTRL_EXT);
404 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
411 static void e1000_init_manageability(struct e1000_adapter *adapter)
413 struct e1000_hw *hw = &adapter->hw;
415 if (adapter->en_mng_pt) {
416 u32 manc = er32(MANC);
418 /* disable hardware interception of ARP */
419 manc &= ~(E1000_MANC_ARP_EN);
421 /* enable receiving management packets to the host */
422 /* this will probably generate destination unreachable messages
423 * from the host OS, but the packets will be handled on SMBUS */
424 if (hw->has_manc2h) {
425 u32 manc2h = er32(MANC2H);
427 manc |= E1000_MANC_EN_MNG2HOST;
428 #define E1000_MNG2HOST_PORT_623 (1 << 5)
429 #define E1000_MNG2HOST_PORT_664 (1 << 6)
430 manc2h |= E1000_MNG2HOST_PORT_623;
431 manc2h |= E1000_MNG2HOST_PORT_664;
432 ew32(MANC2H, manc2h);
439 static void e1000_release_manageability(struct e1000_adapter *adapter)
441 struct e1000_hw *hw = &adapter->hw;
443 if (adapter->en_mng_pt) {
444 u32 manc = er32(MANC);
446 /* re-enable hardware interception of ARP */
447 manc |= E1000_MANC_ARP_EN;
450 manc &= ~E1000_MANC_EN_MNG2HOST;
452 /* don't explicitly have to mess with MANC2H since
453 * MANC has an enable disable that gates MANC2H */
460 * e1000_configure - configure the hardware for RX and TX
461 * @adapter = private board structure
463 static void e1000_configure(struct e1000_adapter *adapter)
465 struct net_device *netdev = adapter->netdev;
468 e1000_set_rx_mode(netdev);
470 e1000_restore_vlan(adapter);
471 e1000_init_manageability(adapter);
473 e1000_configure_tx(adapter);
474 e1000_setup_rctl(adapter);
475 e1000_configure_rx(adapter);
476 /* call E1000_DESC_UNUSED which always leaves
477 * at least 1 descriptor unused to make sure
478 * next_to_use != next_to_clean */
479 for (i = 0; i < adapter->num_rx_queues; i++) {
480 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
481 adapter->alloc_rx_buf(adapter, ring,
482 E1000_DESC_UNUSED(ring));
485 adapter->tx_queue_len = netdev->tx_queue_len;
488 int e1000_up(struct e1000_adapter *adapter)
490 struct e1000_hw *hw = &adapter->hw;
492 /* hardware has been reset, we need to reload some things */
493 e1000_configure(adapter);
495 clear_bit(__E1000_DOWN, &adapter->flags);
497 napi_enable(&adapter->napi);
499 e1000_irq_enable(adapter);
501 /* fire a link change interrupt to start the watchdog */
502 ew32(ICS, E1000_ICS_LSC);
507 * e1000_power_up_phy - restore link in case the phy was powered down
508 * @adapter: address of board private structure
510 * The phy may be powered down to save power and turn off link when the
511 * driver is unloaded and wake on lan is not enabled (among others)
512 * *** this routine MUST be followed by a call to e1000_reset ***
516 void e1000_power_up_phy(struct e1000_adapter *adapter)
518 struct e1000_hw *hw = &adapter->hw;
521 /* Just clear the power down bit to wake the phy back up */
522 if (hw->media_type == e1000_media_type_copper) {
523 /* according to the manual, the phy will retain its
524 * settings across a power-down/up cycle */
525 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
526 mii_reg &= ~MII_CR_POWER_DOWN;
527 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
531 static void e1000_power_down_phy(struct e1000_adapter *adapter)
533 struct e1000_hw *hw = &adapter->hw;
535 /* Power down the PHY so no link is implied when interface is down *
536 * The PHY cannot be powered down if any of the following is true *
539 * (c) SoL/IDER session is active */
540 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
541 hw->media_type == e1000_media_type_copper) {
544 switch (hw->mac_type) {
547 case e1000_82545_rev_3:
549 case e1000_82546_rev_3:
551 case e1000_82541_rev_2:
553 case e1000_82547_rev_2:
554 if (er32(MANC) & E1000_MANC_SMBUS_EN)
560 case e1000_80003es2lan:
562 if (e1000_check_mng_mode(hw) ||
563 e1000_check_phy_reset_block(hw))
569 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
570 mii_reg |= MII_CR_POWER_DOWN;
571 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
578 void e1000_down(struct e1000_adapter *adapter)
580 struct net_device *netdev = adapter->netdev;
582 /* signal that we're down so the interrupt handler does not
583 * reschedule our watchdog timer */
584 set_bit(__E1000_DOWN, &adapter->flags);
586 napi_disable(&adapter->napi);
588 e1000_irq_disable(adapter);
590 del_timer_sync(&adapter->tx_fifo_stall_timer);
591 del_timer_sync(&adapter->watchdog_timer);
592 del_timer_sync(&adapter->phy_info_timer);
594 netdev->tx_queue_len = adapter->tx_queue_len;
595 adapter->link_speed = 0;
596 adapter->link_duplex = 0;
597 netif_carrier_off(netdev);
598 netif_stop_queue(netdev);
600 e1000_reset(adapter);
601 e1000_clean_all_tx_rings(adapter);
602 e1000_clean_all_rx_rings(adapter);
605 void e1000_reinit_locked(struct e1000_adapter *adapter)
607 WARN_ON(in_interrupt());
608 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
612 clear_bit(__E1000_RESETTING, &adapter->flags);
615 void e1000_reset(struct e1000_adapter *adapter)
617 struct e1000_hw *hw = &adapter->hw;
618 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
619 u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
620 bool legacy_pba_adjust = false;
622 /* Repartition Pba for greater than 9k mtu
623 * To take effect CTRL.RST is required.
626 switch (hw->mac_type) {
627 case e1000_82542_rev2_0:
628 case e1000_82542_rev2_1:
633 case e1000_82541_rev_2:
634 legacy_pba_adjust = true;
638 case e1000_82545_rev_3:
640 case e1000_82546_rev_3:
644 case e1000_82547_rev_2:
645 legacy_pba_adjust = true;
650 case e1000_80003es2lan:
658 case e1000_undefined:
663 if (legacy_pba_adjust) {
664 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
665 pba -= 8; /* allocate more FIFO for Tx */
667 if (hw->mac_type == e1000_82547) {
668 adapter->tx_fifo_head = 0;
669 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
670 adapter->tx_fifo_size =
671 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
672 atomic_set(&adapter->tx_fifo_stall, 0);
674 } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
675 /* adjust PBA for jumbo frames */
678 /* To maintain wire speed transmits, the Tx FIFO should be
679 * large enough to accomodate two full transmit packets,
680 * rounded up to the next 1KB and expressed in KB. Likewise,
681 * the Rx FIFO should be large enough to accomodate at least
682 * one full receive packet and is similarly rounded up and
683 * expressed in KB. */
685 /* upper 16 bits has Tx packet buffer allocation size in KB */
686 tx_space = pba >> 16;
687 /* lower 16 bits has Rx packet buffer allocation size in KB */
689 /* don't include ethernet FCS because hardware appends/strips */
690 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
692 min_tx_space = min_rx_space;
694 min_tx_space = ALIGN(min_tx_space, 1024);
696 min_rx_space = ALIGN(min_rx_space, 1024);
699 /* If current Tx allocation is less than the min Tx FIFO size,
700 * and the min Tx FIFO size is less than the current Rx FIFO
701 * allocation, take space away from current Rx allocation */
702 if (tx_space < min_tx_space &&
703 ((min_tx_space - tx_space) < pba)) {
704 pba = pba - (min_tx_space - tx_space);
706 /* PCI/PCIx hardware has PBA alignment constraints */
707 switch (hw->mac_type) {
708 case e1000_82545 ... e1000_82546_rev_3:
709 pba &= ~(E1000_PBA_8K - 1);
715 /* if short on rx space, rx wins and must trump tx
716 * adjustment or use Early Receive if available */
717 if (pba < min_rx_space) {
718 switch (hw->mac_type) {
720 /* ERT enabled in e1000_configure_rx */
732 /* flow control settings */
733 /* Set the FC high water mark to 90% of the FIFO size.
734 * Required to clear last 3 LSB */
735 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
736 /* We can't use 90% on small FIFOs because the remainder
737 * would be less than 1 full frame. In this case, we size
738 * it to allow at least a full frame above the high water
740 if (pba < E1000_PBA_16K)
741 fc_high_water_mark = (pba * 1024) - 1600;
743 hw->fc_high_water = fc_high_water_mark;
744 hw->fc_low_water = fc_high_water_mark - 8;
745 if (hw->mac_type == e1000_80003es2lan)
746 hw->fc_pause_time = 0xFFFF;
748 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
750 hw->fc = hw->original_fc;
752 /* Allow time for pending master requests to run */
754 if (hw->mac_type >= e1000_82544)
757 if (e1000_init_hw(hw))
758 DPRINTK(PROBE, ERR, "Hardware Error\n");
759 e1000_update_mng_vlan(adapter);
761 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
762 if (hw->mac_type >= e1000_82544 &&
763 hw->mac_type <= e1000_82547_rev_2 &&
765 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
766 u32 ctrl = er32(CTRL);
767 /* clear phy power management bit if we are in gig only mode,
768 * which if enabled will attempt negotiation to 100Mb, which
769 * can cause a loss of link at power off or driver unload */
770 ctrl &= ~E1000_CTRL_SWDPIN3;
774 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
775 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
777 e1000_reset_adaptive(hw);
778 e1000_phy_get_info(hw, &adapter->phy_info);
780 if (!adapter->smart_power_down &&
781 (hw->mac_type == e1000_82571 ||
782 hw->mac_type == e1000_82572)) {
784 /* speed up time to link by disabling smart power down, ignore
785 * the return value of this function because there is nothing
786 * different we would do if it failed */
787 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
789 phy_data &= ~IGP02E1000_PM_SPD;
790 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
794 e1000_release_manageability(adapter);
798 * Dump the eeprom for users having checksum issues
800 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
802 struct net_device *netdev = adapter->netdev;
803 struct ethtool_eeprom eeprom;
804 const struct ethtool_ops *ops = netdev->ethtool_ops;
807 u16 csum_old, csum_new = 0;
809 eeprom.len = ops->get_eeprom_len(netdev);
812 data = kmalloc(eeprom.len, GFP_KERNEL);
814 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
819 ops->get_eeprom(netdev, &eeprom, data);
821 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
822 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
823 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
824 csum_new += data[i] + (data[i + 1] << 8);
825 csum_new = EEPROM_SUM - csum_new;
827 printk(KERN_ERR "/*********************/\n");
828 printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
829 printk(KERN_ERR "Calculated : 0x%04x\n", csum_new);
831 printk(KERN_ERR "Offset Values\n");
832 printk(KERN_ERR "======== ======\n");
833 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
835 printk(KERN_ERR "Include this output when contacting your support "
837 printk(KERN_ERR "This is not a software error! Something bad "
838 "happened to your hardware or\n");
839 printk(KERN_ERR "EEPROM image. Ignoring this "
840 "problem could result in further problems,\n");
841 printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
842 printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
843 "which is invalid\n");
844 printk(KERN_ERR "and requires you to set the proper MAC "
845 "address manually before continuing\n");
846 printk(KERN_ERR "to enable this network device.\n");
847 printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
848 "to your hardware vendor\n");
849 printk(KERN_ERR "or Intel Customer Support.\n");
850 printk(KERN_ERR "/*********************/\n");
856 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
857 * @pdev: PCI device information struct
859 * Return true if an adapter needs ioport resources
861 static int e1000_is_need_ioport(struct pci_dev *pdev)
863 switch (pdev->device) {
864 case E1000_DEV_ID_82540EM:
865 case E1000_DEV_ID_82540EM_LOM:
866 case E1000_DEV_ID_82540EP:
867 case E1000_DEV_ID_82540EP_LOM:
868 case E1000_DEV_ID_82540EP_LP:
869 case E1000_DEV_ID_82541EI:
870 case E1000_DEV_ID_82541EI_MOBILE:
871 case E1000_DEV_ID_82541ER:
872 case E1000_DEV_ID_82541ER_LOM:
873 case E1000_DEV_ID_82541GI:
874 case E1000_DEV_ID_82541GI_LF:
875 case E1000_DEV_ID_82541GI_MOBILE:
876 case E1000_DEV_ID_82544EI_COPPER:
877 case E1000_DEV_ID_82544EI_FIBER:
878 case E1000_DEV_ID_82544GC_COPPER:
879 case E1000_DEV_ID_82544GC_LOM:
880 case E1000_DEV_ID_82545EM_COPPER:
881 case E1000_DEV_ID_82545EM_FIBER:
882 case E1000_DEV_ID_82546EB_COPPER:
883 case E1000_DEV_ID_82546EB_FIBER:
884 case E1000_DEV_ID_82546EB_QUAD_COPPER:
891 static const struct net_device_ops e1000_netdev_ops = {
892 .ndo_open = e1000_open,
893 .ndo_stop = e1000_close,
894 .ndo_start_xmit = e1000_xmit_frame,
895 .ndo_get_stats = e1000_get_stats,
896 .ndo_set_rx_mode = e1000_set_rx_mode,
897 .ndo_set_mac_address = e1000_set_mac,
898 .ndo_tx_timeout = e1000_tx_timeout,
899 .ndo_change_mtu = e1000_change_mtu,
900 .ndo_do_ioctl = e1000_ioctl,
901 .ndo_validate_addr = eth_validate_addr,
903 .ndo_vlan_rx_register = e1000_vlan_rx_register,
904 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
905 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
906 #ifdef CONFIG_NET_POLL_CONTROLLER
907 .ndo_poll_controller = e1000_netpoll,
912 * e1000_probe - Device Initialization Routine
913 * @pdev: PCI device information struct
914 * @ent: entry in e1000_pci_tbl
916 * Returns 0 on success, negative on failure
918 * e1000_probe initializes an adapter identified by a pci_dev structure.
919 * The OS initialization, configuring of the adapter private structure,
920 * and a hardware reset occur.
922 static int __devinit e1000_probe(struct pci_dev *pdev,
923 const struct pci_device_id *ent)
925 struct net_device *netdev;
926 struct e1000_adapter *adapter;
929 static int cards_found = 0;
930 static int global_quad_port_a = 0; /* global ksp3 port a indication */
931 int i, err, pci_using_dac;
933 u16 eeprom_apme_mask = E1000_EEPROM_APME;
934 int bars, need_ioport;
936 /* do not allocate ioport bars when not needed */
937 need_ioport = e1000_is_need_ioport(pdev);
939 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
940 err = pci_enable_device(pdev);
942 bars = pci_select_bars(pdev, IORESOURCE_MEM);
943 err = pci_enable_device_mem(pdev);
948 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
949 !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
952 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
954 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
956 E1000_ERR("No usable DMA configuration, "
964 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
968 pci_set_master(pdev);
971 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
973 goto err_alloc_etherdev;
975 SET_NETDEV_DEV(netdev, &pdev->dev);
977 pci_set_drvdata(pdev, netdev);
978 adapter = netdev_priv(netdev);
979 adapter->netdev = netdev;
980 adapter->pdev = pdev;
981 adapter->msg_enable = (1 << debug) - 1;
982 adapter->bars = bars;
983 adapter->need_ioport = need_ioport;
989 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
993 if (adapter->need_ioport) {
994 for (i = BAR_1; i <= BAR_5; i++) {
995 if (pci_resource_len(pdev, i) == 0)
997 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
998 hw->io_base = pci_resource_start(pdev, i);
1004 netdev->netdev_ops = &e1000_netdev_ops;
1005 e1000_set_ethtool_ops(netdev);
1006 netdev->watchdog_timeo = 5 * HZ;
1007 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1009 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1011 adapter->bd_number = cards_found;
1013 /* setup the private structure */
1015 err = e1000_sw_init(adapter);
1020 /* Flash BAR mapping must happen after e1000_sw_init
1021 * because it depends on mac_type */
1022 if ((hw->mac_type == e1000_ich8lan) &&
1023 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1024 hw->flash_address = pci_ioremap_bar(pdev, 1);
1025 if (!hw->flash_address)
1029 if (e1000_check_phy_reset_block(hw))
1030 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1032 if (hw->mac_type >= e1000_82543) {
1033 netdev->features = NETIF_F_SG |
1035 NETIF_F_HW_VLAN_TX |
1036 NETIF_F_HW_VLAN_RX |
1037 NETIF_F_HW_VLAN_FILTER;
1038 if (hw->mac_type == e1000_ich8lan)
1039 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1042 if ((hw->mac_type >= e1000_82544) &&
1043 (hw->mac_type != e1000_82547))
1044 netdev->features |= NETIF_F_TSO;
1046 if (hw->mac_type > e1000_82547_rev_2)
1047 netdev->features |= NETIF_F_TSO6;
1049 netdev->features |= NETIF_F_HIGHDMA;
1051 netdev->vlan_features |= NETIF_F_TSO;
1052 netdev->vlan_features |= NETIF_F_TSO6;
1053 netdev->vlan_features |= NETIF_F_HW_CSUM;
1054 netdev->vlan_features |= NETIF_F_SG;
1056 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1058 /* initialize eeprom parameters */
1059 if (e1000_init_eeprom_params(hw)) {
1060 E1000_ERR("EEPROM initialization failed\n");
1064 /* before reading the EEPROM, reset the controller to
1065 * put the device in a known good starting state */
1069 /* make sure the EEPROM is good */
1070 if (e1000_validate_eeprom_checksum(hw) < 0) {
1071 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1072 e1000_dump_eeprom(adapter);
1074 * set MAC address to all zeroes to invalidate and temporary
1075 * disable this device for the user. This blocks regular
1076 * traffic while still permitting ethtool ioctls from reaching
1077 * the hardware as well as allowing the user to run the
1078 * interface after manually setting a hw addr using
1081 memset(hw->mac_addr, 0, netdev->addr_len);
1083 /* copy the MAC address out of the EEPROM */
1084 if (e1000_read_mac_addr(hw))
1085 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1087 /* don't block initalization here due to bad MAC address */
1088 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1089 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1091 if (!is_valid_ether_addr(netdev->perm_addr))
1092 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1094 e1000_get_bus_info(hw);
1096 init_timer(&adapter->tx_fifo_stall_timer);
1097 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1098 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1100 init_timer(&adapter->watchdog_timer);
1101 adapter->watchdog_timer.function = &e1000_watchdog;
1102 adapter->watchdog_timer.data = (unsigned long) adapter;
1104 init_timer(&adapter->phy_info_timer);
1105 adapter->phy_info_timer.function = &e1000_update_phy_info;
1106 adapter->phy_info_timer.data = (unsigned long)adapter;
1108 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1110 e1000_check_options(adapter);
1112 /* Initial Wake on LAN setting
1113 * If APM wake is enabled in the EEPROM,
1114 * enable the ACPI Magic Packet filter
1117 switch (hw->mac_type) {
1118 case e1000_82542_rev2_0:
1119 case e1000_82542_rev2_1:
1123 e1000_read_eeprom(hw,
1124 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1125 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1128 e1000_read_eeprom(hw,
1129 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1130 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1133 case e1000_82546_rev_3:
1135 case e1000_80003es2lan:
1136 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1137 e1000_read_eeprom(hw,
1138 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1143 e1000_read_eeprom(hw,
1144 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1147 if (eeprom_data & eeprom_apme_mask)
1148 adapter->eeprom_wol |= E1000_WUFC_MAG;
1150 /* now that we have the eeprom settings, apply the special cases
1151 * where the eeprom may be wrong or the board simply won't support
1152 * wake on lan on a particular port */
1153 switch (pdev->device) {
1154 case E1000_DEV_ID_82546GB_PCIE:
1155 adapter->eeprom_wol = 0;
1157 case E1000_DEV_ID_82546EB_FIBER:
1158 case E1000_DEV_ID_82546GB_FIBER:
1159 case E1000_DEV_ID_82571EB_FIBER:
1160 /* Wake events only supported on port A for dual fiber
1161 * regardless of eeprom setting */
1162 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1163 adapter->eeprom_wol = 0;
1165 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1166 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1167 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1168 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1169 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1170 /* if quad port adapter, disable WoL on all but port A */
1171 if (global_quad_port_a != 0)
1172 adapter->eeprom_wol = 0;
1174 adapter->quad_port_a = 1;
1175 /* Reset for multiple quad port adapters */
1176 if (++global_quad_port_a == 4)
1177 global_quad_port_a = 0;
1181 /* initialize the wol settings based on the eeprom settings */
1182 adapter->wol = adapter->eeprom_wol;
1183 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1185 /* print bus type/speed/width info */
1186 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1187 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1188 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1189 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1190 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1191 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1192 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1193 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1194 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1195 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1196 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1199 printk("%pM\n", netdev->dev_addr);
1201 if (hw->bus_type == e1000_bus_type_pci_express) {
1202 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1203 "longer be supported by this driver in the future.\n",
1204 pdev->vendor, pdev->device);
1205 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1206 "driver instead.\n");
1209 /* reset the hardware with the new settings */
1210 e1000_reset(adapter);
1212 /* If the controller is 82573 and f/w is AMT, do not set
1213 * DRV_LOAD until the interface is up. For all other cases,
1214 * let the f/w know that the h/w is now under the control
1216 if (hw->mac_type != e1000_82573 ||
1217 !e1000_check_mng_mode(hw))
1218 e1000_get_hw_control(adapter);
1220 /* tell the stack to leave us alone until e1000_open() is called */
1221 netif_carrier_off(netdev);
1222 netif_stop_queue(netdev);
1224 strcpy(netdev->name, "eth%d");
1225 err = register_netdev(netdev);
1229 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1235 e1000_release_hw_control(adapter);
1237 if (!e1000_check_phy_reset_block(hw))
1238 e1000_phy_hw_reset(hw);
1240 if (hw->flash_address)
1241 iounmap(hw->flash_address);
1243 kfree(adapter->tx_ring);
1244 kfree(adapter->rx_ring);
1246 iounmap(hw->hw_addr);
1248 free_netdev(netdev);
1250 pci_release_selected_regions(pdev, bars);
1253 pci_disable_device(pdev);
1258 * e1000_remove - Device Removal Routine
1259 * @pdev: PCI device information struct
1261 * e1000_remove is called by the PCI subsystem to alert the driver
1262 * that it should release a PCI device. The could be caused by a
1263 * Hot-Plug event, or because the driver is going to be removed from
1267 static void __devexit e1000_remove(struct pci_dev *pdev)
1269 struct net_device *netdev = pci_get_drvdata(pdev);
1270 struct e1000_adapter *adapter = netdev_priv(netdev);
1271 struct e1000_hw *hw = &adapter->hw;
1273 cancel_work_sync(&adapter->reset_task);
1275 e1000_release_manageability(adapter);
1277 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1278 * would have already happened in close and is redundant. */
1279 e1000_release_hw_control(adapter);
1281 unregister_netdev(netdev);
1283 if (!e1000_check_phy_reset_block(hw))
1284 e1000_phy_hw_reset(hw);
1286 kfree(adapter->tx_ring);
1287 kfree(adapter->rx_ring);
1289 iounmap(hw->hw_addr);
1290 if (hw->flash_address)
1291 iounmap(hw->flash_address);
1292 pci_release_selected_regions(pdev, adapter->bars);
1294 free_netdev(netdev);
1296 pci_disable_device(pdev);
1300 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1301 * @adapter: board private structure to initialize
1303 * e1000_sw_init initializes the Adapter private data structure.
1304 * Fields are initialized based on PCI device information and
1305 * OS network device settings (MTU size).
1308 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1310 struct e1000_hw *hw = &adapter->hw;
1311 struct net_device *netdev = adapter->netdev;
1312 struct pci_dev *pdev = adapter->pdev;
1314 /* PCI config space info */
1316 hw->vendor_id = pdev->vendor;
1317 hw->device_id = pdev->device;
1318 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1319 hw->subsystem_id = pdev->subsystem_device;
1320 hw->revision_id = pdev->revision;
1322 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1324 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1325 hw->max_frame_size = netdev->mtu +
1326 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1327 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1329 /* identify the MAC */
1331 if (e1000_set_mac_type(hw)) {
1332 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1336 switch (hw->mac_type) {
1341 case e1000_82541_rev_2:
1342 case e1000_82547_rev_2:
1343 hw->phy_init_script = 1;
1347 e1000_set_media_type(hw);
1349 hw->wait_autoneg_complete = false;
1350 hw->tbi_compatibility_en = true;
1351 hw->adaptive_ifs = true;
1353 /* Copper options */
1355 if (hw->media_type == e1000_media_type_copper) {
1356 hw->mdix = AUTO_ALL_MODES;
1357 hw->disable_polarity_correction = false;
1358 hw->master_slave = E1000_MASTER_SLAVE;
1361 adapter->num_tx_queues = 1;
1362 adapter->num_rx_queues = 1;
1364 if (e1000_alloc_queues(adapter)) {
1365 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1369 /* Explicitly disable IRQ since the NIC can be in any state. */
1370 e1000_irq_disable(adapter);
1372 spin_lock_init(&adapter->stats_lock);
1374 set_bit(__E1000_DOWN, &adapter->flags);
1380 * e1000_alloc_queues - Allocate memory for all rings
1381 * @adapter: board private structure to initialize
1383 * We allocate one ring per queue at run-time since we don't know the
1384 * number of queues at compile-time.
1387 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1389 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1390 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1391 if (!adapter->tx_ring)
1394 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1395 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1396 if (!adapter->rx_ring) {
1397 kfree(adapter->tx_ring);
1401 return E1000_SUCCESS;
1405 * e1000_open - Called when a network interface is made active
1406 * @netdev: network interface device structure
1408 * Returns 0 on success, negative value on failure
1410 * The open entry point is called when a network interface is made
1411 * active by the system (IFF_UP). At this point all resources needed
1412 * for transmit and receive operations are allocated, the interrupt
1413 * handler is registered with the OS, the watchdog timer is started,
1414 * and the stack is notified that the interface is ready.
1417 static int e1000_open(struct net_device *netdev)
1419 struct e1000_adapter *adapter = netdev_priv(netdev);
1420 struct e1000_hw *hw = &adapter->hw;
1423 /* disallow open during test */
1424 if (test_bit(__E1000_TESTING, &adapter->flags))
1427 /* allocate transmit descriptors */
1428 err = e1000_setup_all_tx_resources(adapter);
1432 /* allocate receive descriptors */
1433 err = e1000_setup_all_rx_resources(adapter);
1437 e1000_power_up_phy(adapter);
1439 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1440 if ((hw->mng_cookie.status &
1441 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1442 e1000_update_mng_vlan(adapter);
1445 /* If AMT is enabled, let the firmware know that the network
1446 * interface is now open */
1447 if (hw->mac_type == e1000_82573 &&
1448 e1000_check_mng_mode(hw))
1449 e1000_get_hw_control(adapter);
1451 /* before we allocate an interrupt, we must be ready to handle it.
1452 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1453 * as soon as we call pci_request_irq, so we have to setup our
1454 * clean_rx handler before we do so. */
1455 e1000_configure(adapter);
1457 err = e1000_request_irq(adapter);
1461 /* From here on the code is the same as e1000_up() */
1462 clear_bit(__E1000_DOWN, &adapter->flags);
1464 napi_enable(&adapter->napi);
1466 e1000_irq_enable(adapter);
1468 netif_start_queue(netdev);
1470 /* fire a link status change interrupt to start the watchdog */
1471 ew32(ICS, E1000_ICS_LSC);
1473 return E1000_SUCCESS;
1476 e1000_release_hw_control(adapter);
1477 e1000_power_down_phy(adapter);
1478 e1000_free_all_rx_resources(adapter);
1480 e1000_free_all_tx_resources(adapter);
1482 e1000_reset(adapter);
1488 * e1000_close - Disables a network interface
1489 * @netdev: network interface device structure
1491 * Returns 0, this is not allowed to fail
1493 * The close entry point is called when an interface is de-activated
1494 * by the OS. The hardware is still under the drivers control, but
1495 * needs to be disabled. A global MAC reset is issued to stop the
1496 * hardware, and all transmit and receive resources are freed.
1499 static int e1000_close(struct net_device *netdev)
1501 struct e1000_adapter *adapter = netdev_priv(netdev);
1502 struct e1000_hw *hw = &adapter->hw;
1504 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1505 e1000_down(adapter);
1506 e1000_power_down_phy(adapter);
1507 e1000_free_irq(adapter);
1509 e1000_free_all_tx_resources(adapter);
1510 e1000_free_all_rx_resources(adapter);
1512 /* kill manageability vlan ID if supported, but not if a vlan with
1513 * the same ID is registered on the host OS (let 8021q kill it) */
1514 if ((hw->mng_cookie.status &
1515 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1517 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1518 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1521 /* If AMT is enabled, let the firmware know that the network
1522 * interface is now closed */
1523 if (hw->mac_type == e1000_82573 &&
1524 e1000_check_mng_mode(hw))
1525 e1000_release_hw_control(adapter);
1531 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1532 * @adapter: address of board private structure
1533 * @start: address of beginning of memory
1534 * @len: length of memory
1536 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1539 struct e1000_hw *hw = &adapter->hw;
1540 unsigned long begin = (unsigned long)start;
1541 unsigned long end = begin + len;
1543 /* First rev 82545 and 82546 need to not allow any memory
1544 * write location to cross 64k boundary due to errata 23 */
1545 if (hw->mac_type == e1000_82545 ||
1546 hw->mac_type == e1000_82546) {
1547 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1554 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1555 * @adapter: board private structure
1556 * @txdr: tx descriptor ring (for a specific queue) to setup
1558 * Return 0 on success, negative on failure
1561 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1562 struct e1000_tx_ring *txdr)
1564 struct pci_dev *pdev = adapter->pdev;
1567 size = sizeof(struct e1000_buffer) * txdr->count;
1568 txdr->buffer_info = vmalloc(size);
1569 if (!txdr->buffer_info) {
1571 "Unable to allocate memory for the transmit descriptor ring\n");
1574 memset(txdr->buffer_info, 0, size);
1576 /* round up to nearest 4K */
1578 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1579 txdr->size = ALIGN(txdr->size, 4096);
1581 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1584 vfree(txdr->buffer_info);
1586 "Unable to allocate memory for the transmit descriptor ring\n");
1590 /* Fix for errata 23, can't cross 64kB boundary */
1591 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1592 void *olddesc = txdr->desc;
1593 dma_addr_t olddma = txdr->dma;
1594 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1595 "at %p\n", txdr->size, txdr->desc);
1596 /* Try again, without freeing the previous */
1597 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1598 /* Failed allocation, critical failure */
1600 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1601 goto setup_tx_desc_die;
1604 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1606 pci_free_consistent(pdev, txdr->size, txdr->desc,
1608 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1610 "Unable to allocate aligned memory "
1611 "for the transmit descriptor ring\n");
1612 vfree(txdr->buffer_info);
1615 /* Free old allocation, new allocation was successful */
1616 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1619 memset(txdr->desc, 0, txdr->size);
1621 txdr->next_to_use = 0;
1622 txdr->next_to_clean = 0;
1628 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1629 * (Descriptors) for all queues
1630 * @adapter: board private structure
1632 * Return 0 on success, negative on failure
1635 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1639 for (i = 0; i < adapter->num_tx_queues; i++) {
1640 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1643 "Allocation for Tx Queue %u failed\n", i);
1644 for (i-- ; i >= 0; i--)
1645 e1000_free_tx_resources(adapter,
1646 &adapter->tx_ring[i]);
1655 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1656 * @adapter: board private structure
1658 * Configure the Tx unit of the MAC after a reset.
1661 static void e1000_configure_tx(struct e1000_adapter *adapter)
1664 struct e1000_hw *hw = &adapter->hw;
1665 u32 tdlen, tctl, tipg, tarc;
1668 /* Setup the HW Tx Head and Tail descriptor pointers */
1670 switch (adapter->num_tx_queues) {
1673 tdba = adapter->tx_ring[0].dma;
1674 tdlen = adapter->tx_ring[0].count *
1675 sizeof(struct e1000_tx_desc);
1677 ew32(TDBAH, (tdba >> 32));
1678 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1681 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1682 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1686 /* Set the default values for the Tx Inter Packet Gap timer */
1687 if (hw->mac_type <= e1000_82547_rev_2 &&
1688 (hw->media_type == e1000_media_type_fiber ||
1689 hw->media_type == e1000_media_type_internal_serdes))
1690 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1692 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1694 switch (hw->mac_type) {
1695 case e1000_82542_rev2_0:
1696 case e1000_82542_rev2_1:
1697 tipg = DEFAULT_82542_TIPG_IPGT;
1698 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1699 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1701 case e1000_80003es2lan:
1702 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1703 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1706 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1707 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1710 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1711 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1714 /* Set the Tx Interrupt Delay register */
1716 ew32(TIDV, adapter->tx_int_delay);
1717 if (hw->mac_type >= e1000_82540)
1718 ew32(TADV, adapter->tx_abs_int_delay);
1720 /* Program the Transmit Control Register */
1723 tctl &= ~E1000_TCTL_CT;
1724 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1725 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1727 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1729 /* set the speed mode bit, we'll clear it if we're not at
1730 * gigabit link later */
1733 } else if (hw->mac_type == e1000_80003es2lan) {
1742 e1000_config_collision_dist(hw);
1744 /* Setup Transmit Descriptor Settings for eop descriptor */
1745 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1747 /* only set IDE if we are delaying interrupts using the timers */
1748 if (adapter->tx_int_delay)
1749 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1751 if (hw->mac_type < e1000_82543)
1752 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1754 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1756 /* Cache if we're 82544 running in PCI-X because we'll
1757 * need this to apply a workaround later in the send path. */
1758 if (hw->mac_type == e1000_82544 &&
1759 hw->bus_type == e1000_bus_type_pcix)
1760 adapter->pcix_82544 = 1;
1767 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1768 * @adapter: board private structure
1769 * @rxdr: rx descriptor ring (for a specific queue) to setup
1771 * Returns 0 on success, negative on failure
1774 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1775 struct e1000_rx_ring *rxdr)
1777 struct e1000_hw *hw = &adapter->hw;
1778 struct pci_dev *pdev = adapter->pdev;
1781 size = sizeof(struct e1000_buffer) * rxdr->count;
1782 rxdr->buffer_info = vmalloc(size);
1783 if (!rxdr->buffer_info) {
1785 "Unable to allocate memory for the receive descriptor ring\n");
1788 memset(rxdr->buffer_info, 0, size);
1790 if (hw->mac_type <= e1000_82547_rev_2)
1791 desc_len = sizeof(struct e1000_rx_desc);
1793 desc_len = sizeof(union e1000_rx_desc_packet_split);
1795 /* Round up to nearest 4K */
1797 rxdr->size = rxdr->count * desc_len;
1798 rxdr->size = ALIGN(rxdr->size, 4096);
1800 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1804 "Unable to allocate memory for the receive descriptor ring\n");
1806 vfree(rxdr->buffer_info);
1810 /* Fix for errata 23, can't cross 64kB boundary */
1811 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1812 void *olddesc = rxdr->desc;
1813 dma_addr_t olddma = rxdr->dma;
1814 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1815 "at %p\n", rxdr->size, rxdr->desc);
1816 /* Try again, without freeing the previous */
1817 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1818 /* Failed allocation, critical failure */
1820 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1822 "Unable to allocate memory "
1823 "for the receive descriptor ring\n");
1824 goto setup_rx_desc_die;
1827 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1829 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1831 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1833 "Unable to allocate aligned memory "
1834 "for the receive descriptor ring\n");
1835 goto setup_rx_desc_die;
1837 /* Free old allocation, new allocation was successful */
1838 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1841 memset(rxdr->desc, 0, rxdr->size);
1843 rxdr->next_to_clean = 0;
1844 rxdr->next_to_use = 0;
1850 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1851 * (Descriptors) for all queues
1852 * @adapter: board private structure
1854 * Return 0 on success, negative on failure
1857 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1861 for (i = 0; i < adapter->num_rx_queues; i++) {
1862 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1865 "Allocation for Rx Queue %u failed\n", i);
1866 for (i-- ; i >= 0; i--)
1867 e1000_free_rx_resources(adapter,
1868 &adapter->rx_ring[i]);
1877 * e1000_setup_rctl - configure the receive control registers
1878 * @adapter: Board private structure
1880 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1882 struct e1000_hw *hw = &adapter->hw;
1887 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1889 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1890 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1891 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1893 if (hw->tbi_compatibility_on == 1)
1894 rctl |= E1000_RCTL_SBP;
1896 rctl &= ~E1000_RCTL_SBP;
1898 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1899 rctl &= ~E1000_RCTL_LPE;
1901 rctl |= E1000_RCTL_LPE;
1903 /* Setup buffer sizes */
1904 rctl &= ~E1000_RCTL_SZ_4096;
1905 rctl |= E1000_RCTL_BSEX;
1906 switch (adapter->rx_buffer_len) {
1907 case E1000_RXBUFFER_256:
1908 rctl |= E1000_RCTL_SZ_256;
1909 rctl &= ~E1000_RCTL_BSEX;
1911 case E1000_RXBUFFER_512:
1912 rctl |= E1000_RCTL_SZ_512;
1913 rctl &= ~E1000_RCTL_BSEX;
1915 case E1000_RXBUFFER_1024:
1916 rctl |= E1000_RCTL_SZ_1024;
1917 rctl &= ~E1000_RCTL_BSEX;
1919 case E1000_RXBUFFER_2048:
1921 rctl |= E1000_RCTL_SZ_2048;
1922 rctl &= ~E1000_RCTL_BSEX;
1924 case E1000_RXBUFFER_4096:
1925 rctl |= E1000_RCTL_SZ_4096;
1927 case E1000_RXBUFFER_8192:
1928 rctl |= E1000_RCTL_SZ_8192;
1930 case E1000_RXBUFFER_16384:
1931 rctl |= E1000_RCTL_SZ_16384;
1939 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1940 * @adapter: board private structure
1942 * Configure the Rx unit of the MAC after a reset.
1945 static void e1000_configure_rx(struct e1000_adapter *adapter)
1948 struct e1000_hw *hw = &adapter->hw;
1949 u32 rdlen, rctl, rxcsum, ctrl_ext;
1951 rdlen = adapter->rx_ring[0].count *
1952 sizeof(struct e1000_rx_desc);
1953 adapter->clean_rx = e1000_clean_rx_irq;
1954 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1956 /* disable receives while setting up the descriptors */
1958 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1960 /* set the Receive Delay Timer Register */
1961 ew32(RDTR, adapter->rx_int_delay);
1963 if (hw->mac_type >= e1000_82540) {
1964 ew32(RADV, adapter->rx_abs_int_delay);
1965 if (adapter->itr_setting != 0)
1966 ew32(ITR, 1000000000 / (adapter->itr * 256));
1969 if (hw->mac_type >= e1000_82571) {
1970 ctrl_ext = er32(CTRL_EXT);
1971 /* Reset delay timers after every interrupt */
1972 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1973 /* Auto-Mask interrupts upon ICR access */
1974 ctrl_ext |= E1000_CTRL_EXT_IAME;
1975 ew32(IAM, 0xffffffff);
1976 ew32(CTRL_EXT, ctrl_ext);
1977 E1000_WRITE_FLUSH();
1980 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1981 * the Base and Length of the Rx Descriptor Ring */
1982 switch (adapter->num_rx_queues) {
1985 rdba = adapter->rx_ring[0].dma;
1987 ew32(RDBAH, (rdba >> 32));
1988 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1991 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1992 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1996 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1997 if (hw->mac_type >= e1000_82543) {
1998 rxcsum = er32(RXCSUM);
1999 if (adapter->rx_csum)
2000 rxcsum |= E1000_RXCSUM_TUOFL;
2002 /* don't need to clear IPPCSE as it defaults to 0 */
2003 rxcsum &= ~E1000_RXCSUM_TUOFL;
2004 ew32(RXCSUM, rxcsum);
2007 /* Enable Receives */
2012 * e1000_free_tx_resources - Free Tx Resources per Queue
2013 * @adapter: board private structure
2014 * @tx_ring: Tx descriptor ring for a specific queue
2016 * Free all transmit software resources
2019 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2020 struct e1000_tx_ring *tx_ring)
2022 struct pci_dev *pdev = adapter->pdev;
2024 e1000_clean_tx_ring(adapter, tx_ring);
2026 vfree(tx_ring->buffer_info);
2027 tx_ring->buffer_info = NULL;
2029 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2031 tx_ring->desc = NULL;
2035 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2036 * @adapter: board private structure
2038 * Free all transmit software resources
2041 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2045 for (i = 0; i < adapter->num_tx_queues; i++)
2046 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2049 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2050 struct e1000_buffer *buffer_info)
2052 buffer_info->dma = 0;
2053 if (buffer_info->skb) {
2054 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2056 dev_kfree_skb_any(buffer_info->skb);
2057 buffer_info->skb = NULL;
2059 /* buffer_info must be completely set up in the transmit path */
2063 * e1000_clean_tx_ring - Free Tx Buffers
2064 * @adapter: board private structure
2065 * @tx_ring: ring to be cleaned
2068 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2069 struct e1000_tx_ring *tx_ring)
2071 struct e1000_hw *hw = &adapter->hw;
2072 struct e1000_buffer *buffer_info;
2076 /* Free all the Tx ring sk_buffs */
2078 for (i = 0; i < tx_ring->count; i++) {
2079 buffer_info = &tx_ring->buffer_info[i];
2080 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2083 size = sizeof(struct e1000_buffer) * tx_ring->count;
2084 memset(tx_ring->buffer_info, 0, size);
2086 /* Zero out the descriptor ring */
2088 memset(tx_ring->desc, 0, tx_ring->size);
2090 tx_ring->next_to_use = 0;
2091 tx_ring->next_to_clean = 0;
2092 tx_ring->last_tx_tso = 0;
2094 writel(0, hw->hw_addr + tx_ring->tdh);
2095 writel(0, hw->hw_addr + tx_ring->tdt);
2099 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2100 * @adapter: board private structure
2103 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2107 for (i = 0; i < adapter->num_tx_queues; i++)
2108 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2112 * e1000_free_rx_resources - Free Rx Resources
2113 * @adapter: board private structure
2114 * @rx_ring: ring to clean the resources from
2116 * Free all receive software resources
2119 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2120 struct e1000_rx_ring *rx_ring)
2122 struct pci_dev *pdev = adapter->pdev;
2124 e1000_clean_rx_ring(adapter, rx_ring);
2126 vfree(rx_ring->buffer_info);
2127 rx_ring->buffer_info = NULL;
2129 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2131 rx_ring->desc = NULL;
2135 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2136 * @adapter: board private structure
2138 * Free all receive software resources
2141 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2145 for (i = 0; i < adapter->num_rx_queues; i++)
2146 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2150 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2151 * @adapter: board private structure
2152 * @rx_ring: ring to free buffers from
2155 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2156 struct e1000_rx_ring *rx_ring)
2158 struct e1000_hw *hw = &adapter->hw;
2159 struct e1000_buffer *buffer_info;
2160 struct pci_dev *pdev = adapter->pdev;
2164 /* Free all the Rx ring sk_buffs */
2165 for (i = 0; i < rx_ring->count; i++) {
2166 buffer_info = &rx_ring->buffer_info[i];
2167 if (buffer_info->skb) {
2168 pci_unmap_single(pdev,
2170 buffer_info->length,
2171 PCI_DMA_FROMDEVICE);
2173 dev_kfree_skb(buffer_info->skb);
2174 buffer_info->skb = NULL;
2178 size = sizeof(struct e1000_buffer) * rx_ring->count;
2179 memset(rx_ring->buffer_info, 0, size);
2181 /* Zero out the descriptor ring */
2183 memset(rx_ring->desc, 0, rx_ring->size);
2185 rx_ring->next_to_clean = 0;
2186 rx_ring->next_to_use = 0;
2188 writel(0, hw->hw_addr + rx_ring->rdh);
2189 writel(0, hw->hw_addr + rx_ring->rdt);
2193 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2194 * @adapter: board private structure
2197 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2201 for (i = 0; i < adapter->num_rx_queues; i++)
2202 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2205 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2206 * and memory write and invalidate disabled for certain operations
2208 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2210 struct e1000_hw *hw = &adapter->hw;
2211 struct net_device *netdev = adapter->netdev;
2214 e1000_pci_clear_mwi(hw);
2217 rctl |= E1000_RCTL_RST;
2219 E1000_WRITE_FLUSH();
2222 if (netif_running(netdev))
2223 e1000_clean_all_rx_rings(adapter);
2226 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2228 struct e1000_hw *hw = &adapter->hw;
2229 struct net_device *netdev = adapter->netdev;
2233 rctl &= ~E1000_RCTL_RST;
2235 E1000_WRITE_FLUSH();
2238 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2239 e1000_pci_set_mwi(hw);
2241 if (netif_running(netdev)) {
2242 /* No need to loop, because 82542 supports only 1 queue */
2243 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2244 e1000_configure_rx(adapter);
2245 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2250 * e1000_set_mac - Change the Ethernet Address of the NIC
2251 * @netdev: network interface device structure
2252 * @p: pointer to an address structure
2254 * Returns 0 on success, negative on failure
2257 static int e1000_set_mac(struct net_device *netdev, void *p)
2259 struct e1000_adapter *adapter = netdev_priv(netdev);
2260 struct e1000_hw *hw = &adapter->hw;
2261 struct sockaddr *addr = p;
2263 if (!is_valid_ether_addr(addr->sa_data))
2264 return -EADDRNOTAVAIL;
2266 /* 82542 2.0 needs to be in reset to write receive address registers */
2268 if (hw->mac_type == e1000_82542_rev2_0)
2269 e1000_enter_82542_rst(adapter);
2271 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2272 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2274 e1000_rar_set(hw, hw->mac_addr, 0);
2276 /* With 82571 controllers, LAA may be overwritten (with the default)
2277 * due to controller reset from the other port. */
2278 if (hw->mac_type == e1000_82571) {
2279 /* activate the work around */
2280 hw->laa_is_present = 1;
2282 /* Hold a copy of the LAA in RAR[14] This is done so that
2283 * between the time RAR[0] gets clobbered and the time it
2284 * gets fixed (in e1000_watchdog), the actual LAA is in one
2285 * of the RARs and no incoming packets directed to this port
2286 * are dropped. Eventaully the LAA will be in RAR[0] and
2288 e1000_rar_set(hw, hw->mac_addr,
2289 E1000_RAR_ENTRIES - 1);
2292 if (hw->mac_type == e1000_82542_rev2_0)
2293 e1000_leave_82542_rst(adapter);
2299 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2300 * @netdev: network interface device structure
2302 * The set_rx_mode entry point is called whenever the unicast or multicast
2303 * address lists or the network interface flags are updated. This routine is
2304 * responsible for configuring the hardware for proper unicast, multicast,
2305 * promiscuous mode, and all-multi behavior.
2308 static void e1000_set_rx_mode(struct net_device *netdev)
2310 struct e1000_adapter *adapter = netdev_priv(netdev);
2311 struct e1000_hw *hw = &adapter->hw;
2312 struct dev_addr_list *uc_ptr;
2313 struct dev_addr_list *mc_ptr;
2316 int i, rar_entries = E1000_RAR_ENTRIES;
2317 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2318 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2319 E1000_NUM_MTA_REGISTERS;
2321 if (hw->mac_type == e1000_ich8lan)
2322 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2324 /* reserve RAR[14] for LAA over-write work-around */
2325 if (hw->mac_type == e1000_82571)
2328 /* Check for Promiscuous and All Multicast modes */
2332 if (netdev->flags & IFF_PROMISC) {
2333 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2334 rctl &= ~E1000_RCTL_VFE;
2336 if (netdev->flags & IFF_ALLMULTI) {
2337 rctl |= E1000_RCTL_MPE;
2339 rctl &= ~E1000_RCTL_MPE;
2341 if (adapter->hw.mac_type != e1000_ich8lan)
2342 rctl |= E1000_RCTL_VFE;
2346 if (netdev->uc_count > rar_entries - 1) {
2347 rctl |= E1000_RCTL_UPE;
2348 } else if (!(netdev->flags & IFF_PROMISC)) {
2349 rctl &= ~E1000_RCTL_UPE;
2350 uc_ptr = netdev->uc_list;
2355 /* 82542 2.0 needs to be in reset to write receive address registers */
2357 if (hw->mac_type == e1000_82542_rev2_0)
2358 e1000_enter_82542_rst(adapter);
2360 /* load the first 14 addresses into the exact filters 1-14. Unicast
2361 * addresses take precedence to avoid disabling unicast filtering
2364 * RAR 0 is used for the station MAC adddress
2365 * if there are not 14 addresses, go ahead and clear the filters
2366 * -- with 82571 controllers only 0-13 entries are filled here
2368 mc_ptr = netdev->mc_list;
2370 for (i = 1; i < rar_entries; i++) {
2372 e1000_rar_set(hw, uc_ptr->da_addr, i);
2373 uc_ptr = uc_ptr->next;
2374 } else if (mc_ptr) {
2375 e1000_rar_set(hw, mc_ptr->da_addr, i);
2376 mc_ptr = mc_ptr->next;
2378 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2379 E1000_WRITE_FLUSH();
2380 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2381 E1000_WRITE_FLUSH();
2384 WARN_ON(uc_ptr != NULL);
2386 /* clear the old settings from the multicast hash table */
2388 for (i = 0; i < mta_reg_count; i++) {
2389 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2390 E1000_WRITE_FLUSH();
2393 /* load any remaining addresses into the hash table */
2395 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2396 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2397 e1000_mta_set(hw, hash_value);
2400 if (hw->mac_type == e1000_82542_rev2_0)
2401 e1000_leave_82542_rst(adapter);
2404 /* Need to wait a few seconds after link up to get diagnostic information from
2407 static void e1000_update_phy_info(unsigned long data)
2409 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2410 struct e1000_hw *hw = &adapter->hw;
2411 e1000_phy_get_info(hw, &adapter->phy_info);
2415 * e1000_82547_tx_fifo_stall - Timer Call-back
2416 * @data: pointer to adapter cast into an unsigned long
2419 static void e1000_82547_tx_fifo_stall(unsigned long data)
2421 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2422 struct e1000_hw *hw = &adapter->hw;
2423 struct net_device *netdev = adapter->netdev;
2426 if (atomic_read(&adapter->tx_fifo_stall)) {
2427 if ((er32(TDT) == er32(TDH)) &&
2428 (er32(TDFT) == er32(TDFH)) &&
2429 (er32(TDFTS) == er32(TDFHS))) {
2431 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2432 ew32(TDFT, adapter->tx_head_addr);
2433 ew32(TDFH, adapter->tx_head_addr);
2434 ew32(TDFTS, adapter->tx_head_addr);
2435 ew32(TDFHS, adapter->tx_head_addr);
2437 E1000_WRITE_FLUSH();
2439 adapter->tx_fifo_head = 0;
2440 atomic_set(&adapter->tx_fifo_stall, 0);
2441 netif_wake_queue(netdev);
2443 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2449 * e1000_watchdog - Timer Call-back
2450 * @data: pointer to adapter cast into an unsigned long
2452 static void e1000_watchdog(unsigned long data)
2454 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2455 struct e1000_hw *hw = &adapter->hw;
2456 struct net_device *netdev = adapter->netdev;
2457 struct e1000_tx_ring *txdr = adapter->tx_ring;
2461 ret_val = e1000_check_for_link(hw);
2462 if ((ret_val == E1000_ERR_PHY) &&
2463 (hw->phy_type == e1000_phy_igp_3) &&
2464 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2465 /* See e1000_kumeran_lock_loss_workaround() */
2467 "Gigabit has been disabled, downgrading speed\n");
2470 if (hw->mac_type == e1000_82573) {
2471 e1000_enable_tx_pkt_filtering(hw);
2472 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2473 e1000_update_mng_vlan(adapter);
2476 if ((hw->media_type == e1000_media_type_internal_serdes) &&
2477 !(er32(TXCW) & E1000_TXCW_ANE))
2478 link = !hw->serdes_link_down;
2480 link = er32(STATUS) & E1000_STATUS_LU;
2483 if (!netif_carrier_ok(netdev)) {
2486 e1000_get_speed_and_duplex(hw,
2487 &adapter->link_speed,
2488 &adapter->link_duplex);
2491 printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2492 "Flow Control: %s\n",
2494 adapter->link_speed,
2495 adapter->link_duplex == FULL_DUPLEX ?
2496 "Full Duplex" : "Half Duplex",
2497 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2498 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2499 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2500 E1000_CTRL_TFCE) ? "TX" : "None" )));
2502 /* tweak tx_queue_len according to speed/duplex
2503 * and adjust the timeout factor */
2504 netdev->tx_queue_len = adapter->tx_queue_len;
2505 adapter->tx_timeout_factor = 1;
2506 switch (adapter->link_speed) {
2509 netdev->tx_queue_len = 10;
2510 adapter->tx_timeout_factor = 8;
2514 netdev->tx_queue_len = 100;
2515 /* maybe add some timeout factor ? */
2519 if ((hw->mac_type == e1000_82571 ||
2520 hw->mac_type == e1000_82572) &&
2523 tarc0 = er32(TARC0);
2524 tarc0 &= ~(1 << 21);
2528 /* disable TSO for pcie and 10/100 speeds, to avoid
2529 * some hardware issues */
2530 if (!adapter->tso_force &&
2531 hw->bus_type == e1000_bus_type_pci_express){
2532 switch (adapter->link_speed) {
2536 "10/100 speed: disabling TSO\n");
2537 netdev->features &= ~NETIF_F_TSO;
2538 netdev->features &= ~NETIF_F_TSO6;
2541 netdev->features |= NETIF_F_TSO;
2542 netdev->features |= NETIF_F_TSO6;
2550 /* enable transmits in the hardware, need to do this
2551 * after setting TARC0 */
2553 tctl |= E1000_TCTL_EN;
2556 netif_carrier_on(netdev);
2557 netif_wake_queue(netdev);
2558 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2559 adapter->smartspeed = 0;
2561 /* make sure the receive unit is started */
2562 if (hw->rx_needs_kicking) {
2563 u32 rctl = er32(RCTL);
2564 ew32(RCTL, rctl | E1000_RCTL_EN);
2568 if (netif_carrier_ok(netdev)) {
2569 adapter->link_speed = 0;
2570 adapter->link_duplex = 0;
2571 printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2573 netif_carrier_off(netdev);
2574 netif_stop_queue(netdev);
2575 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2577 /* 80003ES2LAN workaround--
2578 * For packet buffer work-around on link down event;
2579 * disable receives in the ISR and
2580 * reset device here in the watchdog
2582 if (hw->mac_type == e1000_80003es2lan)
2584 schedule_work(&adapter->reset_task);
2587 e1000_smartspeed(adapter);
2590 e1000_update_stats(adapter);
2592 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2593 adapter->tpt_old = adapter->stats.tpt;
2594 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2595 adapter->colc_old = adapter->stats.colc;
2597 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2598 adapter->gorcl_old = adapter->stats.gorcl;
2599 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2600 adapter->gotcl_old = adapter->stats.gotcl;
2602 e1000_update_adaptive(hw);
2604 if (!netif_carrier_ok(netdev)) {
2605 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2606 /* We've lost link, so the controller stops DMA,
2607 * but we've got queued Tx work that's never going
2608 * to get done, so reset controller to flush Tx.
2609 * (Do the reset outside of interrupt context). */
2610 adapter->tx_timeout_count++;
2611 schedule_work(&adapter->reset_task);
2615 /* Cause software interrupt to ensure rx ring is cleaned */
2616 ew32(ICS, E1000_ICS_RXDMT0);
2618 /* Force detection of hung controller every watchdog period */
2619 adapter->detect_tx_hung = true;
2621 /* With 82571 controllers, LAA may be overwritten due to controller
2622 * reset from the other port. Set the appropriate LAA in RAR[0] */
2623 if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2624 e1000_rar_set(hw, hw->mac_addr, 0);
2626 /* Reset the timer */
2627 mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2630 enum latency_range {
2634 latency_invalid = 255
2638 * e1000_update_itr - update the dynamic ITR value based on statistics
2639 * Stores a new ITR value based on packets and byte
2640 * counts during the last interrupt. The advantage of per interrupt
2641 * computation is faster updates and more accurate ITR for the current
2642 * traffic pattern. Constants in this function were computed
2643 * based on theoretical maximum wire speed and thresholds were set based
2644 * on testing data as well as attempting to minimize response time
2645 * while increasing bulk throughput.
2646 * this functionality is controlled by the InterruptThrottleRate module
2647 * parameter (see e1000_param.c)
2648 * @adapter: pointer to adapter
2649 * @itr_setting: current adapter->itr
2650 * @packets: the number of packets during this measurement interval
2651 * @bytes: the number of bytes during this measurement interval
2653 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2654 u16 itr_setting, int packets, int bytes)
2656 unsigned int retval = itr_setting;
2657 struct e1000_hw *hw = &adapter->hw;
2659 if (unlikely(hw->mac_type < e1000_82540))
2660 goto update_itr_done;
2663 goto update_itr_done;
2665 switch (itr_setting) {
2666 case lowest_latency:
2667 /* jumbo frames get bulk treatment*/
2668 if (bytes/packets > 8000)
2669 retval = bulk_latency;
2670 else if ((packets < 5) && (bytes > 512))
2671 retval = low_latency;
2673 case low_latency: /* 50 usec aka 20000 ints/s */
2674 if (bytes > 10000) {
2675 /* jumbo frames need bulk latency setting */
2676 if (bytes/packets > 8000)
2677 retval = bulk_latency;
2678 else if ((packets < 10) || ((bytes/packets) > 1200))
2679 retval = bulk_latency;
2680 else if ((packets > 35))
2681 retval = lowest_latency;
2682 } else if (bytes/packets > 2000)
2683 retval = bulk_latency;
2684 else if (packets <= 2 && bytes < 512)
2685 retval = lowest_latency;
2687 case bulk_latency: /* 250 usec aka 4000 ints/s */
2688 if (bytes > 25000) {
2690 retval = low_latency;
2691 } else if (bytes < 6000) {
2692 retval = low_latency;
2701 static void e1000_set_itr(struct e1000_adapter *adapter)
2703 struct e1000_hw *hw = &adapter->hw;
2705 u32 new_itr = adapter->itr;
2707 if (unlikely(hw->mac_type < e1000_82540))
2710 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2711 if (unlikely(adapter->link_speed != SPEED_1000)) {
2717 adapter->tx_itr = e1000_update_itr(adapter,
2719 adapter->total_tx_packets,
2720 adapter->total_tx_bytes);
2721 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2722 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2723 adapter->tx_itr = low_latency;
2725 adapter->rx_itr = e1000_update_itr(adapter,
2727 adapter->total_rx_packets,
2728 adapter->total_rx_bytes);
2729 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2730 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2731 adapter->rx_itr = low_latency;
2733 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2735 switch (current_itr) {
2736 /* counts and packets in update_itr are dependent on these numbers */
2737 case lowest_latency:
2741 new_itr = 20000; /* aka hwitr = ~200 */
2751 if (new_itr != adapter->itr) {
2752 /* this attempts to bias the interrupt rate towards Bulk
2753 * by adding intermediate steps when interrupt rate is
2755 new_itr = new_itr > adapter->itr ?
2756 min(adapter->itr + (new_itr >> 2), new_itr) :
2758 adapter->itr = new_itr;
2759 ew32(ITR, 1000000000 / (new_itr * 256));
2765 #define E1000_TX_FLAGS_CSUM 0x00000001
2766 #define E1000_TX_FLAGS_VLAN 0x00000002
2767 #define E1000_TX_FLAGS_TSO 0x00000004
2768 #define E1000_TX_FLAGS_IPV4 0x00000008
2769 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2770 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2772 static int e1000_tso(struct e1000_adapter *adapter,
2773 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2775 struct e1000_context_desc *context_desc;
2776 struct e1000_buffer *buffer_info;
2779 u16 ipcse = 0, tucse, mss;
2780 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2783 if (skb_is_gso(skb)) {
2784 if (skb_header_cloned(skb)) {
2785 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2790 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2791 mss = skb_shinfo(skb)->gso_size;
2792 if (skb->protocol == htons(ETH_P_IP)) {
2793 struct iphdr *iph = ip_hdr(skb);
2796 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2800 cmd_length = E1000_TXD_CMD_IP;
2801 ipcse = skb_transport_offset(skb) - 1;
2802 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2803 ipv6_hdr(skb)->payload_len = 0;
2804 tcp_hdr(skb)->check =
2805 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2806 &ipv6_hdr(skb)->daddr,
2810 ipcss = skb_network_offset(skb);
2811 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2812 tucss = skb_transport_offset(skb);
2813 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2816 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2817 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2819 i = tx_ring->next_to_use;
2820 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2821 buffer_info = &tx_ring->buffer_info[i];
2823 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2824 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2825 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2826 context_desc->upper_setup.tcp_fields.tucss = tucss;
2827 context_desc->upper_setup.tcp_fields.tucso = tucso;
2828 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2829 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2830 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2831 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2833 buffer_info->time_stamp = jiffies;
2834 buffer_info->next_to_watch = i;
2836 if (++i == tx_ring->count) i = 0;
2837 tx_ring->next_to_use = i;
2844 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2845 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2847 struct e1000_context_desc *context_desc;
2848 struct e1000_buffer *buffer_info;
2851 u32 cmd_len = E1000_TXD_CMD_DEXT;
2853 if (skb->ip_summed != CHECKSUM_PARTIAL)
2856 switch (skb->protocol) {
2857 case cpu_to_be16(ETH_P_IP):
2858 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2859 cmd_len |= E1000_TXD_CMD_TCP;
2861 case cpu_to_be16(ETH_P_IPV6):
2862 /* XXX not handling all IPV6 headers */
2863 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2864 cmd_len |= E1000_TXD_CMD_TCP;
2867 if (unlikely(net_ratelimit()))
2868 DPRINTK(DRV, WARNING,
2869 "checksum_partial proto=%x!\n", skb->protocol);
2873 css = skb_transport_offset(skb);
2875 i = tx_ring->next_to_use;
2876 buffer_info = &tx_ring->buffer_info[i];
2877 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2879 context_desc->lower_setup.ip_config = 0;
2880 context_desc->upper_setup.tcp_fields.tucss = css;
2881 context_desc->upper_setup.tcp_fields.tucso =
2882 css + skb->csum_offset;
2883 context_desc->upper_setup.tcp_fields.tucse = 0;
2884 context_desc->tcp_seg_setup.data = 0;
2885 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2887 buffer_info->time_stamp = jiffies;
2888 buffer_info->next_to_watch = i;
2890 if (unlikely(++i == tx_ring->count)) i = 0;
2891 tx_ring->next_to_use = i;
2896 #define E1000_MAX_TXD_PWR 12
2897 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2899 static int e1000_tx_map(struct e1000_adapter *adapter,
2900 struct e1000_tx_ring *tx_ring,
2901 struct sk_buff *skb, unsigned int first,
2902 unsigned int max_per_txd, unsigned int nr_frags,
2905 struct e1000_hw *hw = &adapter->hw;
2906 unsigned int len = skb_headlen(skb);
2907 unsigned int offset, size, count = 0, i;
2911 i = tx_ring->next_to_use;
2913 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
2914 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2919 map = skb_shinfo(skb)->dma_maps[0];
2923 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
2924 size = min(len, max_per_txd);
2925 /* Workaround for Controller erratum --
2926 * descriptor for non-tso packet in a linear SKB that follows a
2927 * tso gets written back prematurely before the data is fully
2928 * DMA'd to the controller */
2929 if (!skb->data_len && tx_ring->last_tx_tso &&
2931 tx_ring->last_tx_tso = 0;
2935 /* Workaround for premature desc write-backs
2936 * in TSO mode. Append 4-byte sentinel desc */
2937 if (unlikely(mss && !nr_frags && size == len && size > 8))
2939 /* work-around for errata 10 and it applies
2940 * to all controllers in PCI-X mode
2941 * The fix is to make sure that the first descriptor of a
2942 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2944 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2945 (size > 2015) && count == 0))
2948 /* Workaround for potential 82544 hang in PCI-X. Avoid
2949 * terminating buffers within evenly-aligned dwords. */
2950 if (unlikely(adapter->pcix_82544 &&
2951 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2955 buffer_info->length = size;
2956 buffer_info->dma = map + offset;
2957 buffer_info->time_stamp = jiffies;
2958 buffer_info->next_to_watch = i;
2963 if (unlikely(++i == tx_ring->count)) i = 0;
2966 for (f = 0; f < nr_frags; f++) {
2967 struct skb_frag_struct *frag;
2969 frag = &skb_shinfo(skb)->frags[f];
2971 map = skb_shinfo(skb)->dma_maps[f + 1];
2975 struct e1000_buffer *buffer_info;
2976 buffer_info = &tx_ring->buffer_info[i];
2977 size = min(len, max_per_txd);
2978 /* Workaround for premature desc write-backs
2979 * in TSO mode. Append 4-byte sentinel desc */
2980 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2982 /* Workaround for potential 82544 hang in PCI-X.
2983 * Avoid terminating buffers within evenly-aligned
2985 if (unlikely(adapter->pcix_82544 &&
2986 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2990 buffer_info->length = size;
2991 buffer_info->dma = map + offset;
2992 buffer_info->time_stamp = jiffies;
2993 buffer_info->next_to_watch = i;
2998 if (unlikely(++i == tx_ring->count)) i = 0;
3002 i = (i == 0) ? tx_ring->count - 1 : i - 1;
3003 tx_ring->buffer_info[i].skb = skb;
3004 tx_ring->buffer_info[first].next_to_watch = i;
3010 static void e1000_tx_queue(struct e1000_adapter *adapter,
3011 struct e1000_tx_ring *tx_ring, int tx_flags,
3014 struct e1000_hw *hw = &adapter->hw;
3015 struct e1000_tx_desc *tx_desc = NULL;
3016 struct e1000_buffer *buffer_info;
3017 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3020 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3021 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3023 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3025 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3026 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3029 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3030 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3031 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3034 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3035 txd_lower |= E1000_TXD_CMD_VLE;
3036 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3039 i = tx_ring->next_to_use;
3042 buffer_info = &tx_ring->buffer_info[i];
3043 tx_desc = E1000_TX_DESC(*tx_ring, i);
3044 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3045 tx_desc->lower.data =
3046 cpu_to_le32(txd_lower | buffer_info->length);
3047 tx_desc->upper.data = cpu_to_le32(txd_upper);
3048 if (unlikely(++i == tx_ring->count)) i = 0;
3051 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3053 /* Force memory writes to complete before letting h/w
3054 * know there are new descriptors to fetch. (Only
3055 * applicable for weak-ordered memory model archs,
3056 * such as IA-64). */
3059 tx_ring->next_to_use = i;
3060 writel(i, hw->hw_addr + tx_ring->tdt);
3061 /* we need this if more than one processor can write to our tail
3062 * at a time, it syncronizes IO on IA64/Altix systems */
3067 * 82547 workaround to avoid controller hang in half-duplex environment.
3068 * The workaround is to avoid queuing a large packet that would span
3069 * the internal Tx FIFO ring boundary by notifying the stack to resend
3070 * the packet at a later time. This gives the Tx FIFO an opportunity to
3071 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3072 * to the beginning of the Tx FIFO.
3075 #define E1000_FIFO_HDR 0x10
3076 #define E1000_82547_PAD_LEN 0x3E0
3078 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3079 struct sk_buff *skb)
3081 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3082 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3084 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3086 if (adapter->link_duplex != HALF_DUPLEX)
3087 goto no_fifo_stall_required;
3089 if (atomic_read(&adapter->tx_fifo_stall))
3092 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3093 atomic_set(&adapter->tx_fifo_stall, 1);
3097 no_fifo_stall_required:
3098 adapter->tx_fifo_head += skb_fifo_len;
3099 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3100 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3104 #define MINIMUM_DHCP_PACKET_SIZE 282
3105 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3106 struct sk_buff *skb)
3108 struct e1000_hw *hw = &adapter->hw;
3110 if (vlan_tx_tag_present(skb)) {
3111 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3112 ( hw->mng_cookie.status &
3113 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3116 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3117 struct ethhdr *eth = (struct ethhdr *)skb->data;
3118 if ((htons(ETH_P_IP) == eth->h_proto)) {
3119 const struct iphdr *ip =
3120 (struct iphdr *)((u8 *)skb->data+14);
3121 if (IPPROTO_UDP == ip->protocol) {
3122 struct udphdr *udp =
3123 (struct udphdr *)((u8 *)ip +
3125 if (ntohs(udp->dest) == 67) {
3126 offset = (u8 *)udp + 8 - skb->data;
3127 length = skb->len - offset;
3129 return e1000_mng_write_dhcp_info(hw,
3139 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3141 struct e1000_adapter *adapter = netdev_priv(netdev);
3142 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3144 netif_stop_queue(netdev);
3145 /* Herbert's original patch had:
3146 * smp_mb__after_netif_stop_queue();
3147 * but since that doesn't exist yet, just open code it. */
3150 /* We need to check again in a case another CPU has just
3151 * made room available. */
3152 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3156 netif_start_queue(netdev);
3157 ++adapter->restart_queue;
3161 static int e1000_maybe_stop_tx(struct net_device *netdev,
3162 struct e1000_tx_ring *tx_ring, int size)
3164 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3166 return __e1000_maybe_stop_tx(netdev, size);
3169 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3170 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3172 struct e1000_adapter *adapter = netdev_priv(netdev);
3173 struct e1000_hw *hw = &adapter->hw;
3174 struct e1000_tx_ring *tx_ring;
3175 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3176 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3177 unsigned int tx_flags = 0;
3178 unsigned int len = skb->len - skb->data_len;
3179 unsigned int nr_frags;
3185 /* This goes back to the question of how to logically map a tx queue
3186 * to a flow. Right now, performance is impacted slightly negatively
3187 * if using multiple tx queues. If the stack breaks away from a
3188 * single qdisc implementation, we can look at this again. */
3189 tx_ring = adapter->tx_ring;
3191 if (unlikely(skb->len <= 0)) {
3192 dev_kfree_skb_any(skb);
3193 return NETDEV_TX_OK;
3196 /* 82571 and newer doesn't need the workaround that limited descriptor
3198 if (hw->mac_type >= e1000_82571)
3201 mss = skb_shinfo(skb)->gso_size;
3202 /* The controller does a simple calculation to
3203 * make sure there is enough room in the FIFO before
3204 * initiating the DMA for each buffer. The calc is:
3205 * 4 = ceil(buffer len/mss). To make sure we don't
3206 * overrun the FIFO, adjust the max buffer len if mss
3210 max_per_txd = min(mss << 2, max_per_txd);
3211 max_txd_pwr = fls(max_per_txd) - 1;
3213 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3214 * points to just header, pull a few bytes of payload from
3215 * frags into skb->data */
3216 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3217 if (skb->data_len && hdr_len == len) {
3218 switch (hw->mac_type) {
3219 unsigned int pull_size;
3221 /* Make sure we have room to chop off 4 bytes,
3222 * and that the end alignment will work out to
3223 * this hardware's requirements
3224 * NOTE: this is a TSO only workaround
3225 * if end byte alignment not correct move us
3226 * into the next dword */
3227 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3234 pull_size = min((unsigned int)4, skb->data_len);
3235 if (!__pskb_pull_tail(skb, pull_size)) {
3237 "__pskb_pull_tail failed.\n");
3238 dev_kfree_skb_any(skb);
3239 return NETDEV_TX_OK;
3241 len = skb->len - skb->data_len;
3250 /* reserve a descriptor for the offload context */
3251 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3255 /* Controller Erratum workaround */
3256 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3259 count += TXD_USE_COUNT(len, max_txd_pwr);
3261 if (adapter->pcix_82544)
3264 /* work-around for errata 10 and it applies to all controllers
3265 * in PCI-X mode, so add one more descriptor to the count
3267 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3271 nr_frags = skb_shinfo(skb)->nr_frags;
3272 for (f = 0; f < nr_frags; f++)
3273 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3275 if (adapter->pcix_82544)
3279 if (hw->tx_pkt_filtering &&
3280 (hw->mac_type == e1000_82573))
3281 e1000_transfer_dhcp_info(adapter, skb);
3283 /* need: count + 2 desc gap to keep tail from touching
3284 * head, otherwise try next time */
3285 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3286 return NETDEV_TX_BUSY;
3288 if (unlikely(hw->mac_type == e1000_82547)) {
3289 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3290 netif_stop_queue(netdev);
3291 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3292 return NETDEV_TX_BUSY;
3296 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3297 tx_flags |= E1000_TX_FLAGS_VLAN;
3298 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3301 first = tx_ring->next_to_use;
3303 tso = e1000_tso(adapter, tx_ring, skb);
3305 dev_kfree_skb_any(skb);
3306 return NETDEV_TX_OK;
3310 tx_ring->last_tx_tso = 1;
3311 tx_flags |= E1000_TX_FLAGS_TSO;
3312 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3313 tx_flags |= E1000_TX_FLAGS_CSUM;
3315 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3316 * 82571 hardware supports TSO capabilities for IPv6 as well...
3317 * no longer assume, we must. */
3318 if (likely(skb->protocol == htons(ETH_P_IP)))
3319 tx_flags |= E1000_TX_FLAGS_IPV4;
3321 e1000_tx_queue(adapter, tx_ring, tx_flags,
3322 e1000_tx_map(adapter, tx_ring, skb, first,
3323 max_per_txd, nr_frags, mss));
3325 netdev->trans_start = jiffies;
3327 /* Make sure there is space in the ring for the next send. */
3328 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3330 return NETDEV_TX_OK;
3334 * e1000_tx_timeout - Respond to a Tx Hang
3335 * @netdev: network interface device structure
3338 static void e1000_tx_timeout(struct net_device *netdev)
3340 struct e1000_adapter *adapter = netdev_priv(netdev);
3342 /* Do the reset outside of interrupt context */
3343 adapter->tx_timeout_count++;
3344 schedule_work(&adapter->reset_task);
3347 static void e1000_reset_task(struct work_struct *work)
3349 struct e1000_adapter *adapter =
3350 container_of(work, struct e1000_adapter, reset_task);
3352 e1000_reinit_locked(adapter);
3356 * e1000_get_stats - Get System Network Statistics
3357 * @netdev: network interface device structure
3359 * Returns the address of the device statistics structure.
3360 * The statistics are actually updated from the timer callback.
3363 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3365 struct e1000_adapter *adapter = netdev_priv(netdev);
3367 /* only return the current stats */
3368 return &adapter->net_stats;
3372 * e1000_change_mtu - Change the Maximum Transfer Unit
3373 * @netdev: network interface device structure
3374 * @new_mtu: new value for maximum frame size
3376 * Returns 0 on success, negative on failure
3379 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3381 struct e1000_adapter *adapter = netdev_priv(netdev);
3382 struct e1000_hw *hw = &adapter->hw;
3383 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3384 u16 eeprom_data = 0;
3386 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3387 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3388 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3392 /* Adapter-specific max frame size limits. */
3393 switch (hw->mac_type) {
3394 case e1000_undefined ... e1000_82542_rev2_1:
3396 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3397 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3402 /* Jumbo Frames not supported if:
3403 * - this is not an 82573L device
3404 * - ASPM is enabled in any way (0x1A bits 3:2) */
3405 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3407 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3408 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3409 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3411 "Jumbo Frames not supported.\n");
3416 /* ERT will be enabled later to enable wire speed receives */
3418 /* fall through to get support */
3421 case e1000_80003es2lan:
3422 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3423 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3424 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3429 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3433 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3434 * means we reserve 2 more, this pushes us to allocate from the next
3436 * i.e. RXBUFFER_2048 --> size-4096 slab */
3438 if (max_frame <= E1000_RXBUFFER_256)
3439 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3440 else if (max_frame <= E1000_RXBUFFER_512)
3441 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3442 else if (max_frame <= E1000_RXBUFFER_1024)
3443 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3444 else if (max_frame <= E1000_RXBUFFER_2048)
3445 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3446 else if (max_frame <= E1000_RXBUFFER_4096)
3447 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3448 else if (max_frame <= E1000_RXBUFFER_8192)
3449 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3450 else if (max_frame <= E1000_RXBUFFER_16384)
3451 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3453 /* adjust allocation if LPE protects us, and we aren't using SBP */
3454 if (!hw->tbi_compatibility_on &&
3455 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3456 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3457 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3459 netdev->mtu = new_mtu;
3460 hw->max_frame_size = max_frame;
3462 if (netif_running(netdev))
3463 e1000_reinit_locked(adapter);
3469 * e1000_update_stats - Update the board statistics counters
3470 * @adapter: board private structure
3473 void e1000_update_stats(struct e1000_adapter *adapter)
3475 struct e1000_hw *hw = &adapter->hw;
3476 struct pci_dev *pdev = adapter->pdev;
3477 unsigned long flags;
3480 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3483 * Prevent stats update while adapter is being reset, or if the pci
3484 * connection is down.
3486 if (adapter->link_speed == 0)
3488 if (pci_channel_offline(pdev))
3491 spin_lock_irqsave(&adapter->stats_lock, flags);
3493 /* these counters are modified from e1000_tbi_adjust_stats,
3494 * called from the interrupt context, so they must only
3495 * be written while holding adapter->stats_lock
3498 adapter->stats.crcerrs += er32(CRCERRS);
3499 adapter->stats.gprc += er32(GPRC);
3500 adapter->stats.gorcl += er32(GORCL);
3501 adapter->stats.gorch += er32(GORCH);
3502 adapter->stats.bprc += er32(BPRC);
3503 adapter->stats.mprc += er32(MPRC);
3504 adapter->stats.roc += er32(ROC);
3506 if (hw->mac_type != e1000_ich8lan) {
3507 adapter->stats.prc64 += er32(PRC64);
3508 adapter->stats.prc127 += er32(PRC127);
3509 adapter->stats.prc255 += er32(PRC255);
3510 adapter->stats.prc511 += er32(PRC511);
3511 adapter->stats.prc1023 += er32(PRC1023);
3512 adapter->stats.prc1522 += er32(PRC1522);
3515 adapter->stats.symerrs += er32(SYMERRS);
3516 adapter->stats.mpc += er32(MPC);
3517 adapter->stats.scc += er32(SCC);
3518 adapter->stats.ecol += er32(ECOL);
3519 adapter->stats.mcc += er32(MCC);
3520 adapter->stats.latecol += er32(LATECOL);
3521 adapter->stats.dc += er32(DC);
3522 adapter->stats.sec += er32(SEC);
3523 adapter->stats.rlec += er32(RLEC);
3524 adapter->stats.xonrxc += er32(XONRXC);
3525 adapter->stats.xontxc += er32(XONTXC);
3526 adapter->stats.xoffrxc += er32(XOFFRXC);
3527 adapter->stats.xofftxc += er32(XOFFTXC);
3528 adapter->stats.fcruc += er32(FCRUC);
3529 adapter->stats.gptc += er32(GPTC);
3530 adapter->stats.gotcl += er32(GOTCL);
3531 adapter->stats.gotch += er32(GOTCH);
3532 adapter->stats.rnbc += er32(RNBC);
3533 adapter->stats.ruc += er32(RUC);
3534 adapter->stats.rfc += er32(RFC);
3535 adapter->stats.rjc += er32(RJC);
3536 adapter->stats.torl += er32(TORL);
3537 adapter->stats.torh += er32(TORH);
3538 adapter->stats.totl += er32(TOTL);
3539 adapter->stats.toth += er32(TOTH);
3540 adapter->stats.tpr += er32(TPR);
3542 if (hw->mac_type != e1000_ich8lan) {
3543 adapter->stats.ptc64 += er32(PTC64);
3544 adapter->stats.ptc127 += er32(PTC127);
3545 adapter->stats.ptc255 += er32(PTC255);
3546 adapter->stats.ptc511 += er32(PTC511);
3547 adapter->stats.ptc1023 += er32(PTC1023);
3548 adapter->stats.ptc1522 += er32(PTC1522);
3551 adapter->stats.mptc += er32(MPTC);
3552 adapter->stats.bptc += er32(BPTC);
3554 /* used for adaptive IFS */
3556 hw->tx_packet_delta = er32(TPT);
3557 adapter->stats.tpt += hw->tx_packet_delta;
3558 hw->collision_delta = er32(COLC);
3559 adapter->stats.colc += hw->collision_delta;
3561 if (hw->mac_type >= e1000_82543) {
3562 adapter->stats.algnerrc += er32(ALGNERRC);
3563 adapter->stats.rxerrc += er32(RXERRC);
3564 adapter->stats.tncrs += er32(TNCRS);
3565 adapter->stats.cexterr += er32(CEXTERR);
3566 adapter->stats.tsctc += er32(TSCTC);
3567 adapter->stats.tsctfc += er32(TSCTFC);
3569 if (hw->mac_type > e1000_82547_rev_2) {
3570 adapter->stats.iac += er32(IAC);
3571 adapter->stats.icrxoc += er32(ICRXOC);
3573 if (hw->mac_type != e1000_ich8lan) {
3574 adapter->stats.icrxptc += er32(ICRXPTC);
3575 adapter->stats.icrxatc += er32(ICRXATC);
3576 adapter->stats.ictxptc += er32(ICTXPTC);
3577 adapter->stats.ictxatc += er32(ICTXATC);
3578 adapter->stats.ictxqec += er32(ICTXQEC);
3579 adapter->stats.ictxqmtc += er32(ICTXQMTC);
3580 adapter->stats.icrxdmtc += er32(ICRXDMTC);
3584 /* Fill out the OS statistics structure */
3585 adapter->net_stats.multicast = adapter->stats.mprc;
3586 adapter->net_stats.collisions = adapter->stats.colc;
3590 /* RLEC on some newer hardware can be incorrect so build
3591 * our own version based on RUC and ROC */
3592 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3593 adapter->stats.crcerrs + adapter->stats.algnerrc +
3594 adapter->stats.ruc + adapter->stats.roc +
3595 adapter->stats.cexterr;
3596 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3597 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3598 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3599 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3600 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3603 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3604 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3605 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3606 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3607 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3608 if (hw->bad_tx_carr_stats_fd &&
3609 adapter->link_duplex == FULL_DUPLEX) {
3610 adapter->net_stats.tx_carrier_errors = 0;
3611 adapter->stats.tncrs = 0;
3614 /* Tx Dropped needs to be maintained elsewhere */
3617 if (hw->media_type == e1000_media_type_copper) {
3618 if ((adapter->link_speed == SPEED_1000) &&
3619 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3620 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3621 adapter->phy_stats.idle_errors += phy_tmp;
3624 if ((hw->mac_type <= e1000_82546) &&
3625 (hw->phy_type == e1000_phy_m88) &&
3626 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3627 adapter->phy_stats.receive_errors += phy_tmp;
3630 /* Management Stats */
3631 if (hw->has_smbus) {
3632 adapter->stats.mgptc += er32(MGTPTC);
3633 adapter->stats.mgprc += er32(MGTPRC);
3634 adapter->stats.mgpdc += er32(MGTPDC);
3637 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3641 * e1000_intr_msi - Interrupt Handler
3642 * @irq: interrupt number
3643 * @data: pointer to a network interface device structure
3646 static irqreturn_t e1000_intr_msi(int irq, void *data)
3648 struct net_device *netdev = data;
3649 struct e1000_adapter *adapter = netdev_priv(netdev);
3650 struct e1000_hw *hw = &adapter->hw;
3651 u32 icr = er32(ICR);
3653 /* in NAPI mode read ICR disables interrupts using IAM */
3655 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3656 hw->get_link_status = 1;
3657 /* 80003ES2LAN workaround-- For packet buffer work-around on
3658 * link down event; disable receives here in the ISR and reset
3659 * adapter in watchdog */
3660 if (netif_carrier_ok(netdev) &&
3661 (hw->mac_type == e1000_80003es2lan)) {
3662 /* disable receives */
3663 u32 rctl = er32(RCTL);
3664 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3666 /* guard against interrupt when we're going down */
3667 if (!test_bit(__E1000_DOWN, &adapter->flags))
3668 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3671 if (likely(napi_schedule_prep(&adapter->napi))) {
3672 adapter->total_tx_bytes = 0;
3673 adapter->total_tx_packets = 0;
3674 adapter->total_rx_bytes = 0;
3675 adapter->total_rx_packets = 0;
3676 __napi_schedule(&adapter->napi);
3678 e1000_irq_enable(adapter);
3684 * e1000_intr - Interrupt Handler
3685 * @irq: interrupt number
3686 * @data: pointer to a network interface device structure
3689 static irqreturn_t e1000_intr(int irq, void *data)
3691 struct net_device *netdev = data;
3692 struct e1000_adapter *adapter = netdev_priv(netdev);
3693 struct e1000_hw *hw = &adapter->hw;
3694 u32 rctl, icr = er32(ICR);
3696 if (unlikely((!icr) || test_bit(__E1000_RESETTING, &adapter->flags)))
3697 return IRQ_NONE; /* Not our interrupt */
3699 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3700 * not set, then the adapter didn't send an interrupt */
3701 if (unlikely(hw->mac_type >= e1000_82571 &&
3702 !(icr & E1000_ICR_INT_ASSERTED)))
3705 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3706 * need for the IMC write */
3708 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3709 hw->get_link_status = 1;
3710 /* 80003ES2LAN workaround--
3711 * For packet buffer work-around on link down event;
3712 * disable receives here in the ISR and
3713 * reset adapter in watchdog
3715 if (netif_carrier_ok(netdev) &&
3716 (hw->mac_type == e1000_80003es2lan)) {
3717 /* disable receives */
3719 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3721 /* guard against interrupt when we're going down */
3722 if (!test_bit(__E1000_DOWN, &adapter->flags))
3723 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3726 if (unlikely(hw->mac_type < e1000_82571)) {
3727 /* disable interrupts, without the synchronize_irq bit */
3729 E1000_WRITE_FLUSH();
3731 if (likely(napi_schedule_prep(&adapter->napi))) {
3732 adapter->total_tx_bytes = 0;
3733 adapter->total_tx_packets = 0;
3734 adapter->total_rx_bytes = 0;
3735 adapter->total_rx_packets = 0;
3736 __napi_schedule(&adapter->napi);
3738 /* this really should not happen! if it does it is basically a
3739 * bug, but not a hard error, so enable ints and continue */
3740 e1000_irq_enable(adapter);
3746 * e1000_clean - NAPI Rx polling callback
3747 * @adapter: board private structure
3749 static int e1000_clean(struct napi_struct *napi, int budget)
3751 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3752 struct net_device *poll_dev = adapter->netdev;
3753 int tx_cleaned = 0, work_done = 0;
3755 adapter = netdev_priv(poll_dev);
3757 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3759 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3760 &work_done, budget);
3765 /* If budget not fully consumed, exit the polling mode */
3766 if (work_done < budget) {
3767 if (likely(adapter->itr_setting & 3))
3768 e1000_set_itr(adapter);
3769 napi_complete(napi);
3770 e1000_irq_enable(adapter);
3777 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3778 * @adapter: board private structure
3780 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3781 struct e1000_tx_ring *tx_ring)
3783 struct e1000_hw *hw = &adapter->hw;
3784 struct net_device *netdev = adapter->netdev;
3785 struct e1000_tx_desc *tx_desc, *eop_desc;
3786 struct e1000_buffer *buffer_info;
3787 unsigned int i, eop;
3788 unsigned int count = 0;
3789 bool cleaned = false;
3790 unsigned int total_tx_bytes=0, total_tx_packets=0;
3792 i = tx_ring->next_to_clean;
3793 eop = tx_ring->buffer_info[i].next_to_watch;
3794 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3796 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3797 for (cleaned = false; !cleaned; ) {
3798 tx_desc = E1000_TX_DESC(*tx_ring, i);
3799 buffer_info = &tx_ring->buffer_info[i];
3800 cleaned = (i == eop);
3803 struct sk_buff *skb = buffer_info->skb;
3804 unsigned int segs, bytecount;
3805 segs = skb_shinfo(skb)->gso_segs ?: 1;
3806 /* multiply data chunks by size of headers */
3807 bytecount = ((segs - 1) * skb_headlen(skb)) +
3809 total_tx_packets += segs;
3810 total_tx_bytes += bytecount;
3812 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3813 tx_desc->upper.data = 0;
3815 if (unlikely(++i == tx_ring->count)) i = 0;
3818 eop = tx_ring->buffer_info[i].next_to_watch;
3819 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3820 #define E1000_TX_WEIGHT 64
3821 /* weight of a sort for tx, to avoid endless transmit cleanup */
3822 if (count++ == E1000_TX_WEIGHT)
3826 tx_ring->next_to_clean = i;
3828 #define TX_WAKE_THRESHOLD 32
3829 if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3830 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3831 /* Make sure that anybody stopping the queue after this
3832 * sees the new next_to_clean.
3835 if (netif_queue_stopped(netdev)) {
3836 netif_wake_queue(netdev);
3837 ++adapter->restart_queue;
3841 if (adapter->detect_tx_hung) {
3842 /* Detect a transmit hang in hardware, this serializes the
3843 * check with the clearing of time_stamp and movement of i */
3844 adapter->detect_tx_hung = false;
3846 * read barrier to make sure that the ->dma member and time
3847 * stamp are updated fully
3850 if (tx_ring->buffer_info[eop].dma &&
3851 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3852 (adapter->tx_timeout_factor * HZ))
3853 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3855 /* detected Tx unit hang */
3856 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3860 " next_to_use <%x>\n"
3861 " next_to_clean <%x>\n"
3862 "buffer_info[next_to_clean]\n"
3863 " time_stamp <%lx>\n"
3864 " next_to_watch <%x>\n"
3866 " next_to_watch.status <%x>\n",
3867 (unsigned long)((tx_ring - adapter->tx_ring) /
3868 sizeof(struct e1000_tx_ring)),
3869 readl(hw->hw_addr + tx_ring->tdh),
3870 readl(hw->hw_addr + tx_ring->tdt),
3871 tx_ring->next_to_use,
3872 tx_ring->next_to_clean,
3873 tx_ring->buffer_info[eop].time_stamp,
3876 eop_desc->upper.fields.status);
3877 netif_stop_queue(netdev);
3880 adapter->total_tx_bytes += total_tx_bytes;
3881 adapter->total_tx_packets += total_tx_packets;
3882 adapter->net_stats.tx_bytes += total_tx_bytes;
3883 adapter->net_stats.tx_packets += total_tx_packets;
3888 * e1000_rx_checksum - Receive Checksum Offload for 82543
3889 * @adapter: board private structure
3890 * @status_err: receive descriptor status and error fields
3891 * @csum: receive descriptor csum field
3892 * @sk_buff: socket buffer with received data
3895 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3896 u32 csum, struct sk_buff *skb)
3898 struct e1000_hw *hw = &adapter->hw;
3899 u16 status = (u16)status_err;
3900 u8 errors = (u8)(status_err >> 24);
3901 skb->ip_summed = CHECKSUM_NONE;
3903 /* 82543 or newer only */
3904 if (unlikely(hw->mac_type < e1000_82543)) return;
3905 /* Ignore Checksum bit is set */
3906 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3907 /* TCP/UDP checksum error bit is set */
3908 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3909 /* let the stack verify checksum errors */
3910 adapter->hw_csum_err++;
3913 /* TCP/UDP Checksum has not been calculated */
3914 if (hw->mac_type <= e1000_82547_rev_2) {
3915 if (!(status & E1000_RXD_STAT_TCPCS))
3918 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3921 /* It must be a TCP or UDP packet with a valid checksum */
3922 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3923 /* TCP checksum is good */
3924 skb->ip_summed = CHECKSUM_UNNECESSARY;
3925 } else if (hw->mac_type > e1000_82547_rev_2) {
3926 /* IP fragment with UDP payload */
3927 /* Hardware complements the payload checksum, so we undo it
3928 * and then put the value in host order for further stack use.
3930 __sum16 sum = (__force __sum16)htons(csum);
3931 skb->csum = csum_unfold(~sum);
3932 skb->ip_summed = CHECKSUM_COMPLETE;
3934 adapter->hw_csum_good++;
3938 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3939 * @adapter: board private structure
3941 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3942 struct e1000_rx_ring *rx_ring,
3943 int *work_done, int work_to_do)
3945 struct e1000_hw *hw = &adapter->hw;
3946 struct net_device *netdev = adapter->netdev;
3947 struct pci_dev *pdev = adapter->pdev;
3948 struct e1000_rx_desc *rx_desc, *next_rxd;
3949 struct e1000_buffer *buffer_info, *next_buffer;
3950 unsigned long flags;
3954 int cleaned_count = 0;
3955 bool cleaned = false;
3956 unsigned int total_rx_bytes=0, total_rx_packets=0;
3958 i = rx_ring->next_to_clean;
3959 rx_desc = E1000_RX_DESC(*rx_ring, i);
3960 buffer_info = &rx_ring->buffer_info[i];
3962 while (rx_desc->status & E1000_RXD_STAT_DD) {
3963 struct sk_buff *skb;
3966 if (*work_done >= work_to_do)
3970 status = rx_desc->status;
3971 skb = buffer_info->skb;
3972 buffer_info->skb = NULL;
3974 prefetch(skb->data - NET_IP_ALIGN);
3976 if (++i == rx_ring->count) i = 0;
3977 next_rxd = E1000_RX_DESC(*rx_ring, i);
3980 next_buffer = &rx_ring->buffer_info[i];
3984 pci_unmap_single(pdev,
3986 buffer_info->length,
3987 PCI_DMA_FROMDEVICE);
3989 length = le16_to_cpu(rx_desc->length);
3991 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3992 /* All receives must fit into a single buffer */
3993 E1000_DBG("%s: Receive packet consumed multiple"
3994 " buffers\n", netdev->name);
3996 buffer_info->skb = skb;
4000 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4001 last_byte = *(skb->data + length - 1);
4002 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4004 spin_lock_irqsave(&adapter->stats_lock, flags);
4005 e1000_tbi_adjust_stats(hw, &adapter->stats,
4007 spin_unlock_irqrestore(&adapter->stats_lock,
4012 buffer_info->skb = skb;
4017 /* adjust length to remove Ethernet CRC, this must be
4018 * done after the TBI_ACCEPT workaround above */
4021 /* probably a little skewed due to removing CRC */
4022 total_rx_bytes += length;
4025 /* code added for copybreak, this should improve
4026 * performance for small packets with large amounts
4027 * of reassembly being done in the stack */
4028 if (length < copybreak) {
4029 struct sk_buff *new_skb =
4030 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4032 skb_reserve(new_skb, NET_IP_ALIGN);
4033 skb_copy_to_linear_data_offset(new_skb,
4039 /* save the skb in buffer_info as good */
4040 buffer_info->skb = skb;
4043 /* else just continue with the old one */
4045 /* end copybreak code */
4046 skb_put(skb, length);
4048 /* Receive Checksum Offload */
4049 e1000_rx_checksum(adapter,
4051 ((u32)(rx_desc->errors) << 24),
4052 le16_to_cpu(rx_desc->csum), skb);
4054 skb->protocol = eth_type_trans(skb, netdev);
4056 if (unlikely(adapter->vlgrp &&
4057 (status & E1000_RXD_STAT_VP))) {
4058 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4059 le16_to_cpu(rx_desc->special));
4061 netif_receive_skb(skb);
4065 rx_desc->status = 0;
4067 /* return some buffers to hardware, one at a time is too slow */
4068 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4069 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4073 /* use prefetched values */
4075 buffer_info = next_buffer;
4077 rx_ring->next_to_clean = i;
4079 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4081 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4083 adapter->total_rx_packets += total_rx_packets;
4084 adapter->total_rx_bytes += total_rx_bytes;
4085 adapter->net_stats.rx_bytes += total_rx_bytes;
4086 adapter->net_stats.rx_packets += total_rx_packets;
4091 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4092 * @adapter: address of board private structure
4095 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4096 struct e1000_rx_ring *rx_ring,
4099 struct e1000_hw *hw = &adapter->hw;
4100 struct net_device *netdev = adapter->netdev;
4101 struct pci_dev *pdev = adapter->pdev;
4102 struct e1000_rx_desc *rx_desc;
4103 struct e1000_buffer *buffer_info;
4104 struct sk_buff *skb;
4106 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4108 i = rx_ring->next_to_use;
4109 buffer_info = &rx_ring->buffer_info[i];
4111 while (cleaned_count--) {
4112 skb = buffer_info->skb;
4118 skb = netdev_alloc_skb(netdev, bufsz);
4119 if (unlikely(!skb)) {
4120 /* Better luck next round */
4121 adapter->alloc_rx_buff_failed++;
4125 /* Fix for errata 23, can't cross 64kB boundary */
4126 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4127 struct sk_buff *oldskb = skb;
4128 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4129 "at %p\n", bufsz, skb->data);
4130 /* Try again, without freeing the previous */
4131 skb = netdev_alloc_skb(netdev, bufsz);
4132 /* Failed allocation, critical failure */
4134 dev_kfree_skb(oldskb);
4138 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4141 dev_kfree_skb(oldskb);
4142 break; /* while !buffer_info->skb */
4145 /* Use new allocation */
4146 dev_kfree_skb(oldskb);
4148 /* Make buffer alignment 2 beyond a 16 byte boundary
4149 * this will result in a 16 byte aligned IP header after
4150 * the 14 byte MAC header is removed
4152 skb_reserve(skb, NET_IP_ALIGN);
4154 buffer_info->skb = skb;
4155 buffer_info->length = adapter->rx_buffer_len;
4157 buffer_info->dma = pci_map_single(pdev,
4159 adapter->rx_buffer_len,
4160 PCI_DMA_FROMDEVICE);
4162 /* Fix for errata 23, can't cross 64kB boundary */
4163 if (!e1000_check_64k_bound(adapter,
4164 (void *)(unsigned long)buffer_info->dma,
4165 adapter->rx_buffer_len)) {
4166 DPRINTK(RX_ERR, ERR,
4167 "dma align check failed: %u bytes at %p\n",
4168 adapter->rx_buffer_len,
4169 (void *)(unsigned long)buffer_info->dma);
4171 buffer_info->skb = NULL;
4173 pci_unmap_single(pdev, buffer_info->dma,
4174 adapter->rx_buffer_len,
4175 PCI_DMA_FROMDEVICE);
4177 break; /* while !buffer_info->skb */
4179 rx_desc = E1000_RX_DESC(*rx_ring, i);
4180 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4182 if (unlikely(++i == rx_ring->count))
4184 buffer_info = &rx_ring->buffer_info[i];
4187 if (likely(rx_ring->next_to_use != i)) {
4188 rx_ring->next_to_use = i;
4189 if (unlikely(i-- == 0))
4190 i = (rx_ring->count - 1);
4192 /* Force memory writes to complete before letting h/w
4193 * know there are new descriptors to fetch. (Only
4194 * applicable for weak-ordered memory model archs,
4195 * such as IA-64). */
4197 writel(i, hw->hw_addr + rx_ring->rdt);
4202 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4206 static void e1000_smartspeed(struct e1000_adapter *adapter)
4208 struct e1000_hw *hw = &adapter->hw;
4212 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4213 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4216 if (adapter->smartspeed == 0) {
4217 /* If Master/Slave config fault is asserted twice,
4218 * we assume back-to-back */
4219 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4220 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4221 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4222 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4223 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4224 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4225 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4226 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4228 adapter->smartspeed++;
4229 if (!e1000_phy_setup_autoneg(hw) &&
4230 !e1000_read_phy_reg(hw, PHY_CTRL,
4232 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4233 MII_CR_RESTART_AUTO_NEG);
4234 e1000_write_phy_reg(hw, PHY_CTRL,
4239 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4240 /* If still no link, perhaps using 2/3 pair cable */
4241 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4242 phy_ctrl |= CR_1000T_MS_ENABLE;
4243 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4244 if (!e1000_phy_setup_autoneg(hw) &&
4245 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4246 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4247 MII_CR_RESTART_AUTO_NEG);
4248 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4251 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4252 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4253 adapter->smartspeed = 0;
4263 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4269 return e1000_mii_ioctl(netdev, ifr, cmd);
4282 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4285 struct e1000_adapter *adapter = netdev_priv(netdev);
4286 struct e1000_hw *hw = &adapter->hw;
4287 struct mii_ioctl_data *data = if_mii(ifr);
4291 unsigned long flags;
4293 if (hw->media_type != e1000_media_type_copper)
4298 data->phy_id = hw->phy_addr;
4301 if (!capable(CAP_NET_ADMIN))
4303 spin_lock_irqsave(&adapter->stats_lock, flags);
4304 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4306 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4309 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4312 if (!capable(CAP_NET_ADMIN))
4314 if (data->reg_num & ~(0x1F))
4316 mii_reg = data->val_in;
4317 spin_lock_irqsave(&adapter->stats_lock, flags);
4318 if (e1000_write_phy_reg(hw, data->reg_num,
4320 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4323 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4324 if (hw->media_type == e1000_media_type_copper) {
4325 switch (data->reg_num) {
4327 if (mii_reg & MII_CR_POWER_DOWN)
4329 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4331 hw->autoneg_advertised = 0x2F;
4334 spddplx = SPEED_1000;
4335 else if (mii_reg & 0x2000)
4336 spddplx = SPEED_100;
4339 spddplx += (mii_reg & 0x100)
4342 retval = e1000_set_spd_dplx(adapter,
4347 if (netif_running(adapter->netdev))
4348 e1000_reinit_locked(adapter);
4350 e1000_reset(adapter);
4352 case M88E1000_PHY_SPEC_CTRL:
4353 case M88E1000_EXT_PHY_SPEC_CTRL:
4354 if (e1000_phy_reset(hw))
4359 switch (data->reg_num) {
4361 if (mii_reg & MII_CR_POWER_DOWN)
4363 if (netif_running(adapter->netdev))
4364 e1000_reinit_locked(adapter);
4366 e1000_reset(adapter);
4374 return E1000_SUCCESS;
4377 void e1000_pci_set_mwi(struct e1000_hw *hw)
4379 struct e1000_adapter *adapter = hw->back;
4380 int ret_val = pci_set_mwi(adapter->pdev);
4383 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4386 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4388 struct e1000_adapter *adapter = hw->back;
4390 pci_clear_mwi(adapter->pdev);
4393 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4395 struct e1000_adapter *adapter = hw->back;
4396 return pcix_get_mmrbc(adapter->pdev);
4399 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4401 struct e1000_adapter *adapter = hw->back;
4402 pcix_set_mmrbc(adapter->pdev, mmrbc);
4405 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4407 struct e1000_adapter *adapter = hw->back;
4410 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4412 return -E1000_ERR_CONFIG;
4414 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4416 return E1000_SUCCESS;
4419 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4424 static void e1000_vlan_rx_register(struct net_device *netdev,
4425 struct vlan_group *grp)
4427 struct e1000_adapter *adapter = netdev_priv(netdev);
4428 struct e1000_hw *hw = &adapter->hw;
4431 if (!test_bit(__E1000_DOWN, &adapter->flags))
4432 e1000_irq_disable(adapter);
4433 adapter->vlgrp = grp;
4436 /* enable VLAN tag insert/strip */
4438 ctrl |= E1000_CTRL_VME;
4441 if (adapter->hw.mac_type != e1000_ich8lan) {
4442 /* enable VLAN receive filtering */
4444 rctl &= ~E1000_RCTL_CFIEN;
4446 e1000_update_mng_vlan(adapter);
4449 /* disable VLAN tag insert/strip */
4451 ctrl &= ~E1000_CTRL_VME;
4454 if (adapter->hw.mac_type != e1000_ich8lan) {
4455 if (adapter->mng_vlan_id !=
4456 (u16)E1000_MNG_VLAN_NONE) {
4457 e1000_vlan_rx_kill_vid(netdev,
4458 adapter->mng_vlan_id);
4459 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4464 if (!test_bit(__E1000_DOWN, &adapter->flags))
4465 e1000_irq_enable(adapter);
4468 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4470 struct e1000_adapter *adapter = netdev_priv(netdev);
4471 struct e1000_hw *hw = &adapter->hw;
4474 if ((hw->mng_cookie.status &
4475 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4476 (vid == adapter->mng_vlan_id))
4478 /* add VID to filter table */
4479 index = (vid >> 5) & 0x7F;
4480 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4481 vfta |= (1 << (vid & 0x1F));
4482 e1000_write_vfta(hw, index, vfta);
4485 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4487 struct e1000_adapter *adapter = netdev_priv(netdev);
4488 struct e1000_hw *hw = &adapter->hw;
4491 if (!test_bit(__E1000_DOWN, &adapter->flags))
4492 e1000_irq_disable(adapter);
4493 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4494 if (!test_bit(__E1000_DOWN, &adapter->flags))
4495 e1000_irq_enable(adapter);
4497 if ((hw->mng_cookie.status &
4498 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4499 (vid == adapter->mng_vlan_id)) {
4500 /* release control to f/w */
4501 e1000_release_hw_control(adapter);
4505 /* remove VID from filter table */
4506 index = (vid >> 5) & 0x7F;
4507 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4508 vfta &= ~(1 << (vid & 0x1F));
4509 e1000_write_vfta(hw, index, vfta);
4512 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4514 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4516 if (adapter->vlgrp) {
4518 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4519 if (!vlan_group_get_device(adapter->vlgrp, vid))
4521 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4526 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4528 struct e1000_hw *hw = &adapter->hw;
4532 /* Fiber NICs only allow 1000 gbps Full duplex */
4533 if ((hw->media_type == e1000_media_type_fiber) &&
4534 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4535 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4540 case SPEED_10 + DUPLEX_HALF:
4541 hw->forced_speed_duplex = e1000_10_half;
4543 case SPEED_10 + DUPLEX_FULL:
4544 hw->forced_speed_duplex = e1000_10_full;
4546 case SPEED_100 + DUPLEX_HALF:
4547 hw->forced_speed_duplex = e1000_100_half;
4549 case SPEED_100 + DUPLEX_FULL:
4550 hw->forced_speed_duplex = e1000_100_full;
4552 case SPEED_1000 + DUPLEX_FULL:
4554 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4556 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4558 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4564 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4566 struct net_device *netdev = pci_get_drvdata(pdev);
4567 struct e1000_adapter *adapter = netdev_priv(netdev);
4568 struct e1000_hw *hw = &adapter->hw;
4569 u32 ctrl, ctrl_ext, rctl, status;
4570 u32 wufc = adapter->wol;
4575 netif_device_detach(netdev);
4577 if (netif_running(netdev)) {
4578 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4579 e1000_down(adapter);
4583 retval = pci_save_state(pdev);
4588 status = er32(STATUS);
4589 if (status & E1000_STATUS_LU)
4590 wufc &= ~E1000_WUFC_LNKC;
4593 e1000_setup_rctl(adapter);
4594 e1000_set_rx_mode(netdev);
4596 /* turn on all-multi mode if wake on multicast is enabled */
4597 if (wufc & E1000_WUFC_MC) {
4599 rctl |= E1000_RCTL_MPE;
4603 if (hw->mac_type >= e1000_82540) {
4605 /* advertise wake from D3Cold */
4606 #define E1000_CTRL_ADVD3WUC 0x00100000
4607 /* phy power management enable */
4608 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4609 ctrl |= E1000_CTRL_ADVD3WUC |
4610 E1000_CTRL_EN_PHY_PWR_MGMT;
4614 if (hw->media_type == e1000_media_type_fiber ||
4615 hw->media_type == e1000_media_type_internal_serdes) {
4616 /* keep the laser running in D3 */
4617 ctrl_ext = er32(CTRL_EXT);
4618 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4619 ew32(CTRL_EXT, ctrl_ext);
4622 /* Allow time for pending master requests to run */
4623 e1000_disable_pciex_master(hw);
4625 ew32(WUC, E1000_WUC_PME_EN);
4627 pci_enable_wake(pdev, PCI_D3hot, 1);
4628 pci_enable_wake(pdev, PCI_D3cold, 1);
4632 pci_enable_wake(pdev, PCI_D3hot, 0);
4633 pci_enable_wake(pdev, PCI_D3cold, 0);
4636 e1000_release_manageability(adapter);
4638 /* make sure adapter isn't asleep if manageability is enabled */
4639 if (adapter->en_mng_pt) {
4640 pci_enable_wake(pdev, PCI_D3hot, 1);
4641 pci_enable_wake(pdev, PCI_D3cold, 1);
4644 if (hw->phy_type == e1000_phy_igp_3)
4645 e1000_phy_powerdown_workaround(hw);
4647 if (netif_running(netdev))
4648 e1000_free_irq(adapter);
4650 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4651 * would have already happened in close and is redundant. */
4652 e1000_release_hw_control(adapter);
4654 pci_disable_device(pdev);
4656 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4662 static int e1000_resume(struct pci_dev *pdev)
4664 struct net_device *netdev = pci_get_drvdata(pdev);
4665 struct e1000_adapter *adapter = netdev_priv(netdev);
4666 struct e1000_hw *hw = &adapter->hw;
4669 pci_set_power_state(pdev, PCI_D0);
4670 pci_restore_state(pdev);
4672 if (adapter->need_ioport)
4673 err = pci_enable_device(pdev);
4675 err = pci_enable_device_mem(pdev);
4677 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4680 pci_set_master(pdev);
4682 pci_enable_wake(pdev, PCI_D3hot, 0);
4683 pci_enable_wake(pdev, PCI_D3cold, 0);
4685 if (netif_running(netdev)) {
4686 err = e1000_request_irq(adapter);
4691 e1000_power_up_phy(adapter);
4692 e1000_reset(adapter);
4695 e1000_init_manageability(adapter);
4697 if (netif_running(netdev))
4700 netif_device_attach(netdev);
4702 /* If the controller is 82573 and f/w is AMT, do not set
4703 * DRV_LOAD until the interface is up. For all other cases,
4704 * let the f/w know that the h/w is now under the control
4706 if (hw->mac_type != e1000_82573 ||
4707 !e1000_check_mng_mode(hw))
4708 e1000_get_hw_control(adapter);
4714 static void e1000_shutdown(struct pci_dev *pdev)
4716 e1000_suspend(pdev, PMSG_SUSPEND);
4719 #ifdef CONFIG_NET_POLL_CONTROLLER
4721 * Polling 'interrupt' - used by things like netconsole to send skbs
4722 * without having to re-enable interrupts. It's not called while
4723 * the interrupt routine is executing.
4725 static void e1000_netpoll(struct net_device *netdev)
4727 struct e1000_adapter *adapter = netdev_priv(netdev);
4729 disable_irq(adapter->pdev->irq);
4730 e1000_intr(adapter->pdev->irq, netdev);
4731 enable_irq(adapter->pdev->irq);
4736 * e1000_io_error_detected - called when PCI error is detected
4737 * @pdev: Pointer to PCI device
4738 * @state: The current pci conneection state
4740 * This function is called after a PCI bus error affecting
4741 * this device has been detected.
4743 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4744 pci_channel_state_t state)
4746 struct net_device *netdev = pci_get_drvdata(pdev);
4747 struct e1000_adapter *adapter = netdev_priv(netdev);
4749 netif_device_detach(netdev);
4751 if (netif_running(netdev))
4752 e1000_down(adapter);
4753 pci_disable_device(pdev);
4755 /* Request a slot slot reset. */
4756 return PCI_ERS_RESULT_NEED_RESET;
4760 * e1000_io_slot_reset - called after the pci bus has been reset.
4761 * @pdev: Pointer to PCI device
4763 * Restart the card from scratch, as if from a cold-boot. Implementation
4764 * resembles the first-half of the e1000_resume routine.
4766 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4768 struct net_device *netdev = pci_get_drvdata(pdev);
4769 struct e1000_adapter *adapter = netdev_priv(netdev);
4770 struct e1000_hw *hw = &adapter->hw;
4773 if (adapter->need_ioport)
4774 err = pci_enable_device(pdev);
4776 err = pci_enable_device_mem(pdev);
4778 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4779 return PCI_ERS_RESULT_DISCONNECT;
4781 pci_set_master(pdev);
4783 pci_enable_wake(pdev, PCI_D3hot, 0);
4784 pci_enable_wake(pdev, PCI_D3cold, 0);
4786 e1000_reset(adapter);
4789 return PCI_ERS_RESULT_RECOVERED;
4793 * e1000_io_resume - called when traffic can start flowing again.
4794 * @pdev: Pointer to PCI device
4796 * This callback is called when the error recovery driver tells us that
4797 * its OK to resume normal operation. Implementation resembles the
4798 * second-half of the e1000_resume routine.
4800 static void e1000_io_resume(struct pci_dev *pdev)
4802 struct net_device *netdev = pci_get_drvdata(pdev);
4803 struct e1000_adapter *adapter = netdev_priv(netdev);
4804 struct e1000_hw *hw = &adapter->hw;
4806 e1000_init_manageability(adapter);
4808 if (netif_running(netdev)) {
4809 if (e1000_up(adapter)) {
4810 printk("e1000: can't bring device back up after reset\n");
4815 netif_device_attach(netdev);
4817 /* If the controller is 82573 and f/w is AMT, do not set
4818 * DRV_LOAD until the interface is up. For all other cases,
4819 * let the f/w know that the h/w is now under the control
4821 if (hw->mac_type != e1000_82573 ||
4822 !e1000_check_mng_mode(hw))
4823 e1000_get_hw_control(adapter);