Merge master.kernel.org:/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-2.6] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/config.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/syscalls.h>
29
30 #include <asm/pgtable.h>
31 #include <asm/tlbflush.h>
32 #include <linux/swapops.h>
33
34 DEFINE_SPINLOCK(swap_lock);
35 unsigned int nr_swapfiles;
36 long total_swap_pages;
37 static int swap_overflow;
38
39 EXPORT_SYMBOL(total_swap_pages);
40
41 static const char Bad_file[] = "Bad swap file entry ";
42 static const char Unused_file[] = "Unused swap file entry ";
43 static const char Bad_offset[] = "Bad swap offset entry ";
44 static const char Unused_offset[] = "Unused swap offset entry ";
45
46 struct swap_list_t swap_list = {-1, -1};
47
48 struct swap_info_struct swap_info[MAX_SWAPFILES];
49
50 static DECLARE_MUTEX(swapon_sem);
51
52 /*
53  * We need this because the bdev->unplug_fn can sleep and we cannot
54  * hold swap_lock while calling the unplug_fn. And swap_lock
55  * cannot be turned into a semaphore.
56  */
57 static DECLARE_RWSEM(swap_unplug_sem);
58
59 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
60 {
61         swp_entry_t entry;
62
63         down_read(&swap_unplug_sem);
64         entry.val = page_private(page);
65         if (PageSwapCache(page)) {
66                 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
67                 struct backing_dev_info *bdi;
68
69                 /*
70                  * If the page is removed from swapcache from under us (with a
71                  * racy try_to_unuse/swapoff) we need an additional reference
72                  * count to avoid reading garbage from page_private(page) above.
73                  * If the WARN_ON triggers during a swapoff it maybe the race
74                  * condition and it's harmless. However if it triggers without
75                  * swapoff it signals a problem.
76                  */
77                 WARN_ON(page_count(page) <= 1);
78
79                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
80                 blk_run_backing_dev(bdi, page);
81         }
82         up_read(&swap_unplug_sem);
83 }
84
85 #define SWAPFILE_CLUSTER        256
86 #define LATENCY_LIMIT           256
87
88 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
89 {
90         unsigned long offset, last_in_cluster;
91         int latency_ration = LATENCY_LIMIT;
92
93         /* 
94          * We try to cluster swap pages by allocating them sequentially
95          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
96          * way, however, we resort to first-free allocation, starting
97          * a new cluster.  This prevents us from scattering swap pages
98          * all over the entire swap partition, so that we reduce
99          * overall disk seek times between swap pages.  -- sct
100          * But we do now try to find an empty cluster.  -Andrea
101          */
102
103         si->flags += SWP_SCANNING;
104         if (unlikely(!si->cluster_nr)) {
105                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
106                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
107                         goto lowest;
108                 spin_unlock(&swap_lock);
109
110                 offset = si->lowest_bit;
111                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
112
113                 /* Locate the first empty (unaligned) cluster */
114                 for (; last_in_cluster <= si->highest_bit; offset++) {
115                         if (si->swap_map[offset])
116                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
117                         else if (offset == last_in_cluster) {
118                                 spin_lock(&swap_lock);
119                                 si->cluster_next = offset-SWAPFILE_CLUSTER-1;
120                                 goto cluster;
121                         }
122                         if (unlikely(--latency_ration < 0)) {
123                                 cond_resched();
124                                 latency_ration = LATENCY_LIMIT;
125                         }
126                 }
127                 spin_lock(&swap_lock);
128                 goto lowest;
129         }
130
131         si->cluster_nr--;
132 cluster:
133         offset = si->cluster_next;
134         if (offset > si->highest_bit)
135 lowest:         offset = si->lowest_bit;
136 checks: if (!(si->flags & SWP_WRITEOK))
137                 goto no_page;
138         if (!si->highest_bit)
139                 goto no_page;
140         if (!si->swap_map[offset]) {
141                 if (offset == si->lowest_bit)
142                         si->lowest_bit++;
143                 if (offset == si->highest_bit)
144                         si->highest_bit--;
145                 si->inuse_pages++;
146                 if (si->inuse_pages == si->pages) {
147                         si->lowest_bit = si->max;
148                         si->highest_bit = 0;
149                 }
150                 si->swap_map[offset] = 1;
151                 si->cluster_next = offset + 1;
152                 si->flags -= SWP_SCANNING;
153                 return offset;
154         }
155
156         spin_unlock(&swap_lock);
157         while (++offset <= si->highest_bit) {
158                 if (!si->swap_map[offset]) {
159                         spin_lock(&swap_lock);
160                         goto checks;
161                 }
162                 if (unlikely(--latency_ration < 0)) {
163                         cond_resched();
164                         latency_ration = LATENCY_LIMIT;
165                 }
166         }
167         spin_lock(&swap_lock);
168         goto lowest;
169
170 no_page:
171         si->flags -= SWP_SCANNING;
172         return 0;
173 }
174
175 swp_entry_t get_swap_page(void)
176 {
177         struct swap_info_struct *si;
178         pgoff_t offset;
179         int type, next;
180         int wrapped = 0;
181
182         spin_lock(&swap_lock);
183         if (nr_swap_pages <= 0)
184                 goto noswap;
185         nr_swap_pages--;
186
187         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
188                 si = swap_info + type;
189                 next = si->next;
190                 if (next < 0 ||
191                     (!wrapped && si->prio != swap_info[next].prio)) {
192                         next = swap_list.head;
193                         wrapped++;
194                 }
195
196                 if (!si->highest_bit)
197                         continue;
198                 if (!(si->flags & SWP_WRITEOK))
199                         continue;
200
201                 swap_list.next = next;
202                 offset = scan_swap_map(si);
203                 if (offset) {
204                         spin_unlock(&swap_lock);
205                         return swp_entry(type, offset);
206                 }
207                 next = swap_list.next;
208         }
209
210         nr_swap_pages++;
211 noswap:
212         spin_unlock(&swap_lock);
213         return (swp_entry_t) {0};
214 }
215
216 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
217 {
218         struct swap_info_struct * p;
219         unsigned long offset, type;
220
221         if (!entry.val)
222                 goto out;
223         type = swp_type(entry);
224         if (type >= nr_swapfiles)
225                 goto bad_nofile;
226         p = & swap_info[type];
227         if (!(p->flags & SWP_USED))
228                 goto bad_device;
229         offset = swp_offset(entry);
230         if (offset >= p->max)
231                 goto bad_offset;
232         if (!p->swap_map[offset])
233                 goto bad_free;
234         spin_lock(&swap_lock);
235         return p;
236
237 bad_free:
238         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
239         goto out;
240 bad_offset:
241         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
242         goto out;
243 bad_device:
244         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
245         goto out;
246 bad_nofile:
247         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
248 out:
249         return NULL;
250 }       
251
252 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
253 {
254         int count = p->swap_map[offset];
255
256         if (count < SWAP_MAP_MAX) {
257                 count--;
258                 p->swap_map[offset] = count;
259                 if (!count) {
260                         if (offset < p->lowest_bit)
261                                 p->lowest_bit = offset;
262                         if (offset > p->highest_bit)
263                                 p->highest_bit = offset;
264                         if (p->prio > swap_info[swap_list.next].prio)
265                                 swap_list.next = p - swap_info;
266                         nr_swap_pages++;
267                         p->inuse_pages--;
268                 }
269         }
270         return count;
271 }
272
273 /*
274  * Caller has made sure that the swapdevice corresponding to entry
275  * is still around or has not been recycled.
276  */
277 void swap_free(swp_entry_t entry)
278 {
279         struct swap_info_struct * p;
280
281         p = swap_info_get(entry);
282         if (p) {
283                 swap_entry_free(p, swp_offset(entry));
284                 spin_unlock(&swap_lock);
285         }
286 }
287
288 /*
289  * How many references to page are currently swapped out?
290  */
291 static inline int page_swapcount(struct page *page)
292 {
293         int count = 0;
294         struct swap_info_struct *p;
295         swp_entry_t entry;
296
297         entry.val = page_private(page);
298         p = swap_info_get(entry);
299         if (p) {
300                 /* Subtract the 1 for the swap cache itself */
301                 count = p->swap_map[swp_offset(entry)] - 1;
302                 spin_unlock(&swap_lock);
303         }
304         return count;
305 }
306
307 /*
308  * We can use this swap cache entry directly
309  * if there are no other references to it.
310  */
311 int can_share_swap_page(struct page *page)
312 {
313         int count;
314
315         BUG_ON(!PageLocked(page));
316         count = page_mapcount(page);
317         if (count <= 1 && PageSwapCache(page))
318                 count += page_swapcount(page);
319         return count == 1;
320 }
321
322 /*
323  * Work out if there are any other processes sharing this
324  * swap cache page. Free it if you can. Return success.
325  */
326 int remove_exclusive_swap_page(struct page *page)
327 {
328         int retval;
329         struct swap_info_struct * p;
330         swp_entry_t entry;
331
332         BUG_ON(PagePrivate(page));
333         BUG_ON(!PageLocked(page));
334
335         if (!PageSwapCache(page))
336                 return 0;
337         if (PageWriteback(page))
338                 return 0;
339         if (page_count(page) != 2) /* 2: us + cache */
340                 return 0;
341
342         entry.val = page_private(page);
343         p = swap_info_get(entry);
344         if (!p)
345                 return 0;
346
347         /* Is the only swap cache user the cache itself? */
348         retval = 0;
349         if (p->swap_map[swp_offset(entry)] == 1) {
350                 /* Recheck the page count with the swapcache lock held.. */
351                 write_lock_irq(&swapper_space.tree_lock);
352                 if ((page_count(page) == 2) && !PageWriteback(page)) {
353                         __delete_from_swap_cache(page);
354                         SetPageDirty(page);
355                         retval = 1;
356                 }
357                 write_unlock_irq(&swapper_space.tree_lock);
358         }
359         spin_unlock(&swap_lock);
360
361         if (retval) {
362                 swap_free(entry);
363                 page_cache_release(page);
364         }
365
366         return retval;
367 }
368
369 /*
370  * Free the swap entry like above, but also try to
371  * free the page cache entry if it is the last user.
372  */
373 void free_swap_and_cache(swp_entry_t entry)
374 {
375         struct swap_info_struct * p;
376         struct page *page = NULL;
377
378         p = swap_info_get(entry);
379         if (p) {
380                 if (swap_entry_free(p, swp_offset(entry)) == 1)
381                         page = find_trylock_page(&swapper_space, entry.val);
382                 spin_unlock(&swap_lock);
383         }
384         if (page) {
385                 int one_user;
386
387                 BUG_ON(PagePrivate(page));
388                 page_cache_get(page);
389                 one_user = (page_count(page) == 2);
390                 /* Only cache user (+us), or swap space full? Free it! */
391                 if (!PageWriteback(page) && (one_user || vm_swap_full())) {
392                         delete_from_swap_cache(page);
393                         SetPageDirty(page);
394                 }
395                 unlock_page(page);
396                 page_cache_release(page);
397         }
398 }
399
400 /*
401  * No need to decide whether this PTE shares the swap entry with others,
402  * just let do_wp_page work it out if a write is requested later - to
403  * force COW, vm_page_prot omits write permission from any private vma.
404  */
405 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
406                 unsigned long addr, swp_entry_t entry, struct page *page)
407 {
408         inc_mm_counter(vma->vm_mm, anon_rss);
409         get_page(page);
410         set_pte_at(vma->vm_mm, addr, pte,
411                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
412         page_add_anon_rmap(page, vma, addr);
413         swap_free(entry);
414         /*
415          * Move the page to the active list so it is not
416          * immediately swapped out again after swapon.
417          */
418         activate_page(page);
419 }
420
421 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
422                                 unsigned long addr, unsigned long end,
423                                 swp_entry_t entry, struct page *page)
424 {
425         pte_t swp_pte = swp_entry_to_pte(entry);
426         pte_t *pte;
427         spinlock_t *ptl;
428         int found = 0;
429
430         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
431         do {
432                 /*
433                  * swapoff spends a _lot_ of time in this loop!
434                  * Test inline before going to call unuse_pte.
435                  */
436                 if (unlikely(pte_same(*pte, swp_pte))) {
437                         unuse_pte(vma, pte++, addr, entry, page);
438                         found = 1;
439                         break;
440                 }
441         } while (pte++, addr += PAGE_SIZE, addr != end);
442         pte_unmap_unlock(pte - 1, ptl);
443         return found;
444 }
445
446 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
447                                 unsigned long addr, unsigned long end,
448                                 swp_entry_t entry, struct page *page)
449 {
450         pmd_t *pmd;
451         unsigned long next;
452
453         pmd = pmd_offset(pud, addr);
454         do {
455                 next = pmd_addr_end(addr, end);
456                 if (pmd_none_or_clear_bad(pmd))
457                         continue;
458                 if (unuse_pte_range(vma, pmd, addr, next, entry, page))
459                         return 1;
460         } while (pmd++, addr = next, addr != end);
461         return 0;
462 }
463
464 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
465                                 unsigned long addr, unsigned long end,
466                                 swp_entry_t entry, struct page *page)
467 {
468         pud_t *pud;
469         unsigned long next;
470
471         pud = pud_offset(pgd, addr);
472         do {
473                 next = pud_addr_end(addr, end);
474                 if (pud_none_or_clear_bad(pud))
475                         continue;
476                 if (unuse_pmd_range(vma, pud, addr, next, entry, page))
477                         return 1;
478         } while (pud++, addr = next, addr != end);
479         return 0;
480 }
481
482 static int unuse_vma(struct vm_area_struct *vma,
483                                 swp_entry_t entry, struct page *page)
484 {
485         pgd_t *pgd;
486         unsigned long addr, end, next;
487
488         if (page->mapping) {
489                 addr = page_address_in_vma(page, vma);
490                 if (addr == -EFAULT)
491                         return 0;
492                 else
493                         end = addr + PAGE_SIZE;
494         } else {
495                 addr = vma->vm_start;
496                 end = vma->vm_end;
497         }
498
499         pgd = pgd_offset(vma->vm_mm, addr);
500         do {
501                 next = pgd_addr_end(addr, end);
502                 if (pgd_none_or_clear_bad(pgd))
503                         continue;
504                 if (unuse_pud_range(vma, pgd, addr, next, entry, page))
505                         return 1;
506         } while (pgd++, addr = next, addr != end);
507         return 0;
508 }
509
510 static int unuse_mm(struct mm_struct *mm,
511                                 swp_entry_t entry, struct page *page)
512 {
513         struct vm_area_struct *vma;
514
515         if (!down_read_trylock(&mm->mmap_sem)) {
516                 /*
517                  * Activate page so shrink_cache is unlikely to unmap its
518                  * ptes while lock is dropped, so swapoff can make progress.
519                  */
520                 activate_page(page);
521                 unlock_page(page);
522                 down_read(&mm->mmap_sem);
523                 lock_page(page);
524         }
525         for (vma = mm->mmap; vma; vma = vma->vm_next) {
526                 if (vma->anon_vma && unuse_vma(vma, entry, page))
527                         break;
528         }
529         up_read(&mm->mmap_sem);
530         /*
531          * Currently unuse_mm cannot fail, but leave error handling
532          * at call sites for now, since we change it from time to time.
533          */
534         return 0;
535 }
536
537 /*
538  * Scan swap_map from current position to next entry still in use.
539  * Recycle to start on reaching the end, returning 0 when empty.
540  */
541 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
542                                         unsigned int prev)
543 {
544         unsigned int max = si->max;
545         unsigned int i = prev;
546         int count;
547
548         /*
549          * No need for swap_lock here: we're just looking
550          * for whether an entry is in use, not modifying it; false
551          * hits are okay, and sys_swapoff() has already prevented new
552          * allocations from this area (while holding swap_lock).
553          */
554         for (;;) {
555                 if (++i >= max) {
556                         if (!prev) {
557                                 i = 0;
558                                 break;
559                         }
560                         /*
561                          * No entries in use at top of swap_map,
562                          * loop back to start and recheck there.
563                          */
564                         max = prev + 1;
565                         prev = 0;
566                         i = 1;
567                 }
568                 count = si->swap_map[i];
569                 if (count && count != SWAP_MAP_BAD)
570                         break;
571         }
572         return i;
573 }
574
575 /*
576  * We completely avoid races by reading each swap page in advance,
577  * and then search for the process using it.  All the necessary
578  * page table adjustments can then be made atomically.
579  */
580 static int try_to_unuse(unsigned int type)
581 {
582         struct swap_info_struct * si = &swap_info[type];
583         struct mm_struct *start_mm;
584         unsigned short *swap_map;
585         unsigned short swcount;
586         struct page *page;
587         swp_entry_t entry;
588         unsigned int i = 0;
589         int retval = 0;
590         int reset_overflow = 0;
591         int shmem;
592
593         /*
594          * When searching mms for an entry, a good strategy is to
595          * start at the first mm we freed the previous entry from
596          * (though actually we don't notice whether we or coincidence
597          * freed the entry).  Initialize this start_mm with a hold.
598          *
599          * A simpler strategy would be to start at the last mm we
600          * freed the previous entry from; but that would take less
601          * advantage of mmlist ordering, which clusters forked mms
602          * together, child after parent.  If we race with dup_mmap(), we
603          * prefer to resolve parent before child, lest we miss entries
604          * duplicated after we scanned child: using last mm would invert
605          * that.  Though it's only a serious concern when an overflowed
606          * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
607          */
608         start_mm = &init_mm;
609         atomic_inc(&init_mm.mm_users);
610
611         /*
612          * Keep on scanning until all entries have gone.  Usually,
613          * one pass through swap_map is enough, but not necessarily:
614          * there are races when an instance of an entry might be missed.
615          */
616         while ((i = find_next_to_unuse(si, i)) != 0) {
617                 if (signal_pending(current)) {
618                         retval = -EINTR;
619                         break;
620                 }
621
622                 /* 
623                  * Get a page for the entry, using the existing swap
624                  * cache page if there is one.  Otherwise, get a clean
625                  * page and read the swap into it. 
626                  */
627                 swap_map = &si->swap_map[i];
628                 entry = swp_entry(type, i);
629                 page = read_swap_cache_async(entry, NULL, 0);
630                 if (!page) {
631                         /*
632                          * Either swap_duplicate() failed because entry
633                          * has been freed independently, and will not be
634                          * reused since sys_swapoff() already disabled
635                          * allocation from here, or alloc_page() failed.
636                          */
637                         if (!*swap_map)
638                                 continue;
639                         retval = -ENOMEM;
640                         break;
641                 }
642
643                 /*
644                  * Don't hold on to start_mm if it looks like exiting.
645                  */
646                 if (atomic_read(&start_mm->mm_users) == 1) {
647                         mmput(start_mm);
648                         start_mm = &init_mm;
649                         atomic_inc(&init_mm.mm_users);
650                 }
651
652                 /*
653                  * Wait for and lock page.  When do_swap_page races with
654                  * try_to_unuse, do_swap_page can handle the fault much
655                  * faster than try_to_unuse can locate the entry.  This
656                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
657                  * defer to do_swap_page in such a case - in some tests,
658                  * do_swap_page and try_to_unuse repeatedly compete.
659                  */
660                 wait_on_page_locked(page);
661                 wait_on_page_writeback(page);
662                 lock_page(page);
663                 wait_on_page_writeback(page);
664
665                 /*
666                  * Remove all references to entry.
667                  * Whenever we reach init_mm, there's no address space
668                  * to search, but use it as a reminder to search shmem.
669                  */
670                 shmem = 0;
671                 swcount = *swap_map;
672                 if (swcount > 1) {
673                         if (start_mm == &init_mm)
674                                 shmem = shmem_unuse(entry, page);
675                         else
676                                 retval = unuse_mm(start_mm, entry, page);
677                 }
678                 if (*swap_map > 1) {
679                         int set_start_mm = (*swap_map >= swcount);
680                         struct list_head *p = &start_mm->mmlist;
681                         struct mm_struct *new_start_mm = start_mm;
682                         struct mm_struct *prev_mm = start_mm;
683                         struct mm_struct *mm;
684
685                         atomic_inc(&new_start_mm->mm_users);
686                         atomic_inc(&prev_mm->mm_users);
687                         spin_lock(&mmlist_lock);
688                         while (*swap_map > 1 && !retval &&
689                                         (p = p->next) != &start_mm->mmlist) {
690                                 mm = list_entry(p, struct mm_struct, mmlist);
691                                 if (atomic_inc_return(&mm->mm_users) == 1) {
692                                         atomic_dec(&mm->mm_users);
693                                         continue;
694                                 }
695                                 spin_unlock(&mmlist_lock);
696                                 mmput(prev_mm);
697                                 prev_mm = mm;
698
699                                 cond_resched();
700
701                                 swcount = *swap_map;
702                                 if (swcount <= 1)
703                                         ;
704                                 else if (mm == &init_mm) {
705                                         set_start_mm = 1;
706                                         shmem = shmem_unuse(entry, page);
707                                 } else
708                                         retval = unuse_mm(mm, entry, page);
709                                 if (set_start_mm && *swap_map < swcount) {
710                                         mmput(new_start_mm);
711                                         atomic_inc(&mm->mm_users);
712                                         new_start_mm = mm;
713                                         set_start_mm = 0;
714                                 }
715                                 spin_lock(&mmlist_lock);
716                         }
717                         spin_unlock(&mmlist_lock);
718                         mmput(prev_mm);
719                         mmput(start_mm);
720                         start_mm = new_start_mm;
721                 }
722                 if (retval) {
723                         unlock_page(page);
724                         page_cache_release(page);
725                         break;
726                 }
727
728                 /*
729                  * How could swap count reach 0x7fff when the maximum
730                  * pid is 0x7fff, and there's no way to repeat a swap
731                  * page within an mm (except in shmem, where it's the
732                  * shared object which takes the reference count)?
733                  * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
734                  *
735                  * If that's wrong, then we should worry more about
736                  * exit_mmap() and do_munmap() cases described above:
737                  * we might be resetting SWAP_MAP_MAX too early here.
738                  * We know "Undead"s can happen, they're okay, so don't
739                  * report them; but do report if we reset SWAP_MAP_MAX.
740                  */
741                 if (*swap_map == SWAP_MAP_MAX) {
742                         spin_lock(&swap_lock);
743                         *swap_map = 1;
744                         spin_unlock(&swap_lock);
745                         reset_overflow = 1;
746                 }
747
748                 /*
749                  * If a reference remains (rare), we would like to leave
750                  * the page in the swap cache; but try_to_unmap could
751                  * then re-duplicate the entry once we drop page lock,
752                  * so we might loop indefinitely; also, that page could
753                  * not be swapped out to other storage meanwhile.  So:
754                  * delete from cache even if there's another reference,
755                  * after ensuring that the data has been saved to disk -
756                  * since if the reference remains (rarer), it will be
757                  * read from disk into another page.  Splitting into two
758                  * pages would be incorrect if swap supported "shared
759                  * private" pages, but they are handled by tmpfs files.
760                  *
761                  * Note shmem_unuse already deleted a swappage from
762                  * the swap cache, unless the move to filepage failed:
763                  * in which case it left swappage in cache, lowered its
764                  * swap count to pass quickly through the loops above,
765                  * and now we must reincrement count to try again later.
766                  */
767                 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
768                         struct writeback_control wbc = {
769                                 .sync_mode = WB_SYNC_NONE,
770                         };
771
772                         swap_writepage(page, &wbc);
773                         lock_page(page);
774                         wait_on_page_writeback(page);
775                 }
776                 if (PageSwapCache(page)) {
777                         if (shmem)
778                                 swap_duplicate(entry);
779                         else
780                                 delete_from_swap_cache(page);
781                 }
782
783                 /*
784                  * So we could skip searching mms once swap count went
785                  * to 1, we did not mark any present ptes as dirty: must
786                  * mark page dirty so shrink_list will preserve it.
787                  */
788                 SetPageDirty(page);
789                 unlock_page(page);
790                 page_cache_release(page);
791
792                 /*
793                  * Make sure that we aren't completely killing
794                  * interactive performance.
795                  */
796                 cond_resched();
797         }
798
799         mmput(start_mm);
800         if (reset_overflow) {
801                 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
802                 swap_overflow = 0;
803         }
804         return retval;
805 }
806
807 /*
808  * After a successful try_to_unuse, if no swap is now in use, we know
809  * we can empty the mmlist.  swap_lock must be held on entry and exit.
810  * Note that mmlist_lock nests inside swap_lock, and an mm must be
811  * added to the mmlist just after page_duplicate - before would be racy.
812  */
813 static void drain_mmlist(void)
814 {
815         struct list_head *p, *next;
816         unsigned int i;
817
818         for (i = 0; i < nr_swapfiles; i++)
819                 if (swap_info[i].inuse_pages)
820                         return;
821         spin_lock(&mmlist_lock);
822         list_for_each_safe(p, next, &init_mm.mmlist)
823                 list_del_init(p);
824         spin_unlock(&mmlist_lock);
825 }
826
827 /*
828  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
829  * corresponds to page offset `offset'.
830  */
831 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
832 {
833         struct swap_extent *se = sis->curr_swap_extent;
834         struct swap_extent *start_se = se;
835
836         for ( ; ; ) {
837                 struct list_head *lh;
838
839                 if (se->start_page <= offset &&
840                                 offset < (se->start_page + se->nr_pages)) {
841                         return se->start_block + (offset - se->start_page);
842                 }
843                 lh = se->list.next;
844                 if (lh == &sis->extent_list)
845                         lh = lh->next;
846                 se = list_entry(lh, struct swap_extent, list);
847                 sis->curr_swap_extent = se;
848                 BUG_ON(se == start_se);         /* It *must* be present */
849         }
850 }
851
852 /*
853  * Free all of a swapdev's extent information
854  */
855 static void destroy_swap_extents(struct swap_info_struct *sis)
856 {
857         while (!list_empty(&sis->extent_list)) {
858                 struct swap_extent *se;
859
860                 se = list_entry(sis->extent_list.next,
861                                 struct swap_extent, list);
862                 list_del(&se->list);
863                 kfree(se);
864         }
865 }
866
867 /*
868  * Add a block range (and the corresponding page range) into this swapdev's
869  * extent list.  The extent list is kept sorted in page order.
870  *
871  * This function rather assumes that it is called in ascending page order.
872  */
873 static int
874 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
875                 unsigned long nr_pages, sector_t start_block)
876 {
877         struct swap_extent *se;
878         struct swap_extent *new_se;
879         struct list_head *lh;
880
881         lh = sis->extent_list.prev;     /* The highest page extent */
882         if (lh != &sis->extent_list) {
883                 se = list_entry(lh, struct swap_extent, list);
884                 BUG_ON(se->start_page + se->nr_pages != start_page);
885                 if (se->start_block + se->nr_pages == start_block) {
886                         /* Merge it */
887                         se->nr_pages += nr_pages;
888                         return 0;
889                 }
890         }
891
892         /*
893          * No merge.  Insert a new extent, preserving ordering.
894          */
895         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
896         if (new_se == NULL)
897                 return -ENOMEM;
898         new_se->start_page = start_page;
899         new_se->nr_pages = nr_pages;
900         new_se->start_block = start_block;
901
902         list_add_tail(&new_se->list, &sis->extent_list);
903         return 1;
904 }
905
906 /*
907  * A `swap extent' is a simple thing which maps a contiguous range of pages
908  * onto a contiguous range of disk blocks.  An ordered list of swap extents
909  * is built at swapon time and is then used at swap_writepage/swap_readpage
910  * time for locating where on disk a page belongs.
911  *
912  * If the swapfile is an S_ISBLK block device, a single extent is installed.
913  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
914  * swap files identically.
915  *
916  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
917  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
918  * swapfiles are handled *identically* after swapon time.
919  *
920  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
921  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
922  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
923  * requirements, they are simply tossed out - we will never use those blocks
924  * for swapping.
925  *
926  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
927  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
928  * which will scribble on the fs.
929  *
930  * The amount of disk space which a single swap extent represents varies.
931  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
932  * extents in the list.  To avoid much list walking, we cache the previous
933  * search location in `curr_swap_extent', and start new searches from there.
934  * This is extremely effective.  The average number of iterations in
935  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
936  */
937 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
938 {
939         struct inode *inode;
940         unsigned blocks_per_page;
941         unsigned long page_no;
942         unsigned blkbits;
943         sector_t probe_block;
944         sector_t last_block;
945         sector_t lowest_block = -1;
946         sector_t highest_block = 0;
947         int nr_extents = 0;
948         int ret;
949
950         inode = sis->swap_file->f_mapping->host;
951         if (S_ISBLK(inode->i_mode)) {
952                 ret = add_swap_extent(sis, 0, sis->max, 0);
953                 *span = sis->pages;
954                 goto done;
955         }
956
957         blkbits = inode->i_blkbits;
958         blocks_per_page = PAGE_SIZE >> blkbits;
959
960         /*
961          * Map all the blocks into the extent list.  This code doesn't try
962          * to be very smart.
963          */
964         probe_block = 0;
965         page_no = 0;
966         last_block = i_size_read(inode) >> blkbits;
967         while ((probe_block + blocks_per_page) <= last_block &&
968                         page_no < sis->max) {
969                 unsigned block_in_page;
970                 sector_t first_block;
971
972                 first_block = bmap(inode, probe_block);
973                 if (first_block == 0)
974                         goto bad_bmap;
975
976                 /*
977                  * It must be PAGE_SIZE aligned on-disk
978                  */
979                 if (first_block & (blocks_per_page - 1)) {
980                         probe_block++;
981                         goto reprobe;
982                 }
983
984                 for (block_in_page = 1; block_in_page < blocks_per_page;
985                                         block_in_page++) {
986                         sector_t block;
987
988                         block = bmap(inode, probe_block + block_in_page);
989                         if (block == 0)
990                                 goto bad_bmap;
991                         if (block != first_block + block_in_page) {
992                                 /* Discontiguity */
993                                 probe_block++;
994                                 goto reprobe;
995                         }
996                 }
997
998                 first_block >>= (PAGE_SHIFT - blkbits);
999                 if (page_no) {  /* exclude the header page */
1000                         if (first_block < lowest_block)
1001                                 lowest_block = first_block;
1002                         if (first_block > highest_block)
1003                                 highest_block = first_block;
1004                 }
1005
1006                 /*
1007                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1008                  */
1009                 ret = add_swap_extent(sis, page_no, 1, first_block);
1010                 if (ret < 0)
1011                         goto out;
1012                 nr_extents += ret;
1013                 page_no++;
1014                 probe_block += blocks_per_page;
1015 reprobe:
1016                 continue;
1017         }
1018         ret = nr_extents;
1019         *span = 1 + highest_block - lowest_block;
1020         if (page_no == 0)
1021                 page_no = 1;    /* force Empty message */
1022         sis->max = page_no;
1023         sis->pages = page_no - 1;
1024         sis->highest_bit = page_no - 1;
1025 done:
1026         sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1027                                         struct swap_extent, list);
1028         goto out;
1029 bad_bmap:
1030         printk(KERN_ERR "swapon: swapfile has holes\n");
1031         ret = -EINVAL;
1032 out:
1033         return ret;
1034 }
1035
1036 #if 0   /* We don't need this yet */
1037 #include <linux/backing-dev.h>
1038 int page_queue_congested(struct page *page)
1039 {
1040         struct backing_dev_info *bdi;
1041
1042         BUG_ON(!PageLocked(page));      /* It pins the swap_info_struct */
1043
1044         if (PageSwapCache(page)) {
1045                 swp_entry_t entry = { .val = page_private(page) };
1046                 struct swap_info_struct *sis;
1047
1048                 sis = get_swap_info_struct(swp_type(entry));
1049                 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1050         } else
1051                 bdi = page->mapping->backing_dev_info;
1052         return bdi_write_congested(bdi);
1053 }
1054 #endif
1055
1056 asmlinkage long sys_swapoff(const char __user * specialfile)
1057 {
1058         struct swap_info_struct * p = NULL;
1059         unsigned short *swap_map;
1060         struct file *swap_file, *victim;
1061         struct address_space *mapping;
1062         struct inode *inode;
1063         char * pathname;
1064         int i, type, prev;
1065         int err;
1066         
1067         if (!capable(CAP_SYS_ADMIN))
1068                 return -EPERM;
1069
1070         pathname = getname(specialfile);
1071         err = PTR_ERR(pathname);
1072         if (IS_ERR(pathname))
1073                 goto out;
1074
1075         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1076         putname(pathname);
1077         err = PTR_ERR(victim);
1078         if (IS_ERR(victim))
1079                 goto out;
1080
1081         mapping = victim->f_mapping;
1082         prev = -1;
1083         spin_lock(&swap_lock);
1084         for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1085                 p = swap_info + type;
1086                 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1087                         if (p->swap_file->f_mapping == mapping)
1088                                 break;
1089                 }
1090                 prev = type;
1091         }
1092         if (type < 0) {
1093                 err = -EINVAL;
1094                 spin_unlock(&swap_lock);
1095                 goto out_dput;
1096         }
1097         if (!security_vm_enough_memory(p->pages))
1098                 vm_unacct_memory(p->pages);
1099         else {
1100                 err = -ENOMEM;
1101                 spin_unlock(&swap_lock);
1102                 goto out_dput;
1103         }
1104         if (prev < 0) {
1105                 swap_list.head = p->next;
1106         } else {
1107                 swap_info[prev].next = p->next;
1108         }
1109         if (type == swap_list.next) {
1110                 /* just pick something that's safe... */
1111                 swap_list.next = swap_list.head;
1112         }
1113         nr_swap_pages -= p->pages;
1114         total_swap_pages -= p->pages;
1115         p->flags &= ~SWP_WRITEOK;
1116         spin_unlock(&swap_lock);
1117
1118         current->flags |= PF_SWAPOFF;
1119         err = try_to_unuse(type);
1120         current->flags &= ~PF_SWAPOFF;
1121
1122         if (err) {
1123                 /* re-insert swap space back into swap_list */
1124                 spin_lock(&swap_lock);
1125                 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1126                         if (p->prio >= swap_info[i].prio)
1127                                 break;
1128                 p->next = i;
1129                 if (prev < 0)
1130                         swap_list.head = swap_list.next = p - swap_info;
1131                 else
1132                         swap_info[prev].next = p - swap_info;
1133                 nr_swap_pages += p->pages;
1134                 total_swap_pages += p->pages;
1135                 p->flags |= SWP_WRITEOK;
1136                 spin_unlock(&swap_lock);
1137                 goto out_dput;
1138         }
1139
1140         /* wait for any unplug function to finish */
1141         down_write(&swap_unplug_sem);
1142         up_write(&swap_unplug_sem);
1143
1144         destroy_swap_extents(p);
1145         down(&swapon_sem);
1146         spin_lock(&swap_lock);
1147         drain_mmlist();
1148
1149         /* wait for anyone still in scan_swap_map */
1150         p->highest_bit = 0;             /* cuts scans short */
1151         while (p->flags >= SWP_SCANNING) {
1152                 spin_unlock(&swap_lock);
1153                 schedule_timeout_uninterruptible(1);
1154                 spin_lock(&swap_lock);
1155         }
1156
1157         swap_file = p->swap_file;
1158         p->swap_file = NULL;
1159         p->max = 0;
1160         swap_map = p->swap_map;
1161         p->swap_map = NULL;
1162         p->flags = 0;
1163         spin_unlock(&swap_lock);
1164         up(&swapon_sem);
1165         vfree(swap_map);
1166         inode = mapping->host;
1167         if (S_ISBLK(inode->i_mode)) {
1168                 struct block_device *bdev = I_BDEV(inode);
1169                 set_blocksize(bdev, p->old_block_size);
1170                 bd_release(bdev);
1171         } else {
1172                 down(&inode->i_sem);
1173                 inode->i_flags &= ~S_SWAPFILE;
1174                 up(&inode->i_sem);
1175         }
1176         filp_close(swap_file, NULL);
1177         err = 0;
1178
1179 out_dput:
1180         filp_close(victim, NULL);
1181 out:
1182         return err;
1183 }
1184
1185 #ifdef CONFIG_PROC_FS
1186 /* iterator */
1187 static void *swap_start(struct seq_file *swap, loff_t *pos)
1188 {
1189         struct swap_info_struct *ptr = swap_info;
1190         int i;
1191         loff_t l = *pos;
1192
1193         down(&swapon_sem);
1194
1195         for (i = 0; i < nr_swapfiles; i++, ptr++) {
1196                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1197                         continue;
1198                 if (!l--)
1199                         return ptr;
1200         }
1201
1202         return NULL;
1203 }
1204
1205 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1206 {
1207         struct swap_info_struct *ptr = v;
1208         struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1209
1210         for (++ptr; ptr < endptr; ptr++) {
1211                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1212                         continue;
1213                 ++*pos;
1214                 return ptr;
1215         }
1216
1217         return NULL;
1218 }
1219
1220 static void swap_stop(struct seq_file *swap, void *v)
1221 {
1222         up(&swapon_sem);
1223 }
1224
1225 static int swap_show(struct seq_file *swap, void *v)
1226 {
1227         struct swap_info_struct *ptr = v;
1228         struct file *file;
1229         int len;
1230
1231         if (v == swap_info)
1232                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1233
1234         file = ptr->swap_file;
1235         len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1236         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1237                        len < 40 ? 40 - len : 1, " ",
1238                        S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1239                                 "partition" : "file\t",
1240                        ptr->pages << (PAGE_SHIFT - 10),
1241                        ptr->inuse_pages << (PAGE_SHIFT - 10),
1242                        ptr->prio);
1243         return 0;
1244 }
1245
1246 static struct seq_operations swaps_op = {
1247         .start =        swap_start,
1248         .next =         swap_next,
1249         .stop =         swap_stop,
1250         .show =         swap_show
1251 };
1252
1253 static int swaps_open(struct inode *inode, struct file *file)
1254 {
1255         return seq_open(file, &swaps_op);
1256 }
1257
1258 static struct file_operations proc_swaps_operations = {
1259         .open           = swaps_open,
1260         .read           = seq_read,
1261         .llseek         = seq_lseek,
1262         .release        = seq_release,
1263 };
1264
1265 static int __init procswaps_init(void)
1266 {
1267         struct proc_dir_entry *entry;
1268
1269         entry = create_proc_entry("swaps", 0, NULL);
1270         if (entry)
1271                 entry->proc_fops = &proc_swaps_operations;
1272         return 0;
1273 }
1274 __initcall(procswaps_init);
1275 #endif /* CONFIG_PROC_FS */
1276
1277 /*
1278  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1279  *
1280  * The swapon system call
1281  */
1282 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1283 {
1284         struct swap_info_struct * p;
1285         char *name = NULL;
1286         struct block_device *bdev = NULL;
1287         struct file *swap_file = NULL;
1288         struct address_space *mapping;
1289         unsigned int type;
1290         int i, prev;
1291         int error;
1292         static int least_priority;
1293         union swap_header *swap_header = NULL;
1294         int swap_header_version;
1295         unsigned int nr_good_pages = 0;
1296         int nr_extents = 0;
1297         sector_t span;
1298         unsigned long maxpages = 1;
1299         int swapfilesize;
1300         unsigned short *swap_map;
1301         struct page *page = NULL;
1302         struct inode *inode = NULL;
1303         int did_down = 0;
1304
1305         if (!capable(CAP_SYS_ADMIN))
1306                 return -EPERM;
1307         spin_lock(&swap_lock);
1308         p = swap_info;
1309         for (type = 0 ; type < nr_swapfiles ; type++,p++)
1310                 if (!(p->flags & SWP_USED))
1311                         break;
1312         error = -EPERM;
1313         /*
1314          * Test if adding another swap device is possible. There are
1315          * two limiting factors: 1) the number of bits for the swap
1316          * type swp_entry_t definition and 2) the number of bits for
1317          * the swap type in the swap ptes as defined by the different
1318          * architectures. To honor both limitations a swap entry
1319          * with swap offset 0 and swap type ~0UL is created, encoded
1320          * to a swap pte, decoded to a swp_entry_t again and finally
1321          * the swap type part is extracted. This will mask all bits
1322          * from the initial ~0UL that can't be encoded in either the
1323          * swp_entry_t or the architecture definition of a swap pte.
1324          */
1325         if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1326                 spin_unlock(&swap_lock);
1327                 goto out;
1328         }
1329         if (type >= nr_swapfiles)
1330                 nr_swapfiles = type+1;
1331         INIT_LIST_HEAD(&p->extent_list);
1332         p->flags = SWP_USED;
1333         p->swap_file = NULL;
1334         p->old_block_size = 0;
1335         p->swap_map = NULL;
1336         p->lowest_bit = 0;
1337         p->highest_bit = 0;
1338         p->cluster_nr = 0;
1339         p->inuse_pages = 0;
1340         p->next = -1;
1341         if (swap_flags & SWAP_FLAG_PREFER) {
1342                 p->prio =
1343                   (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1344         } else {
1345                 p->prio = --least_priority;
1346         }
1347         spin_unlock(&swap_lock);
1348         name = getname(specialfile);
1349         error = PTR_ERR(name);
1350         if (IS_ERR(name)) {
1351                 name = NULL;
1352                 goto bad_swap_2;
1353         }
1354         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1355         error = PTR_ERR(swap_file);
1356         if (IS_ERR(swap_file)) {
1357                 swap_file = NULL;
1358                 goto bad_swap_2;
1359         }
1360
1361         p->swap_file = swap_file;
1362         mapping = swap_file->f_mapping;
1363         inode = mapping->host;
1364
1365         error = -EBUSY;
1366         for (i = 0; i < nr_swapfiles; i++) {
1367                 struct swap_info_struct *q = &swap_info[i];
1368
1369                 if (i == type || !q->swap_file)
1370                         continue;
1371                 if (mapping == q->swap_file->f_mapping)
1372                         goto bad_swap;
1373         }
1374
1375         error = -EINVAL;
1376         if (S_ISBLK(inode->i_mode)) {
1377                 bdev = I_BDEV(inode);
1378                 error = bd_claim(bdev, sys_swapon);
1379                 if (error < 0) {
1380                         bdev = NULL;
1381                         error = -EINVAL;
1382                         goto bad_swap;
1383                 }
1384                 p->old_block_size = block_size(bdev);
1385                 error = set_blocksize(bdev, PAGE_SIZE);
1386                 if (error < 0)
1387                         goto bad_swap;
1388                 p->bdev = bdev;
1389         } else if (S_ISREG(inode->i_mode)) {
1390                 p->bdev = inode->i_sb->s_bdev;
1391                 down(&inode->i_sem);
1392                 did_down = 1;
1393                 if (IS_SWAPFILE(inode)) {
1394                         error = -EBUSY;
1395                         goto bad_swap;
1396                 }
1397         } else {
1398                 goto bad_swap;
1399         }
1400
1401         swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1402
1403         /*
1404          * Read the swap header.
1405          */
1406         if (!mapping->a_ops->readpage) {
1407                 error = -EINVAL;
1408                 goto bad_swap;
1409         }
1410         page = read_cache_page(mapping, 0,
1411                         (filler_t *)mapping->a_ops->readpage, swap_file);
1412         if (IS_ERR(page)) {
1413                 error = PTR_ERR(page);
1414                 goto bad_swap;
1415         }
1416         wait_on_page_locked(page);
1417         if (!PageUptodate(page))
1418                 goto bad_swap;
1419         kmap(page);
1420         swap_header = page_address(page);
1421
1422         if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1423                 swap_header_version = 1;
1424         else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1425                 swap_header_version = 2;
1426         else {
1427                 printk("Unable to find swap-space signature\n");
1428                 error = -EINVAL;
1429                 goto bad_swap;
1430         }
1431         
1432         switch (swap_header_version) {
1433         case 1:
1434                 printk(KERN_ERR "version 0 swap is no longer supported. "
1435                         "Use mkswap -v1 %s\n", name);
1436                 error = -EINVAL;
1437                 goto bad_swap;
1438         case 2:
1439                 /* Check the swap header's sub-version and the size of
1440                    the swap file and bad block lists */
1441                 if (swap_header->info.version != 1) {
1442                         printk(KERN_WARNING
1443                                "Unable to handle swap header version %d\n",
1444                                swap_header->info.version);
1445                         error = -EINVAL;
1446                         goto bad_swap;
1447                 }
1448
1449                 p->lowest_bit  = 1;
1450                 p->cluster_next = 1;
1451
1452                 /*
1453                  * Find out how many pages are allowed for a single swap
1454                  * device. There are two limiting factors: 1) the number of
1455                  * bits for the swap offset in the swp_entry_t type and
1456                  * 2) the number of bits in the a swap pte as defined by
1457                  * the different architectures. In order to find the
1458                  * largest possible bit mask a swap entry with swap type 0
1459                  * and swap offset ~0UL is created, encoded to a swap pte,
1460                  * decoded to a swp_entry_t again and finally the swap
1461                  * offset is extracted. This will mask all the bits from
1462                  * the initial ~0UL mask that can't be encoded in either
1463                  * the swp_entry_t or the architecture definition of a
1464                  * swap pte.
1465                  */
1466                 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1467                 if (maxpages > swap_header->info.last_page)
1468                         maxpages = swap_header->info.last_page;
1469                 p->highest_bit = maxpages - 1;
1470
1471                 error = -EINVAL;
1472                 if (!maxpages)
1473                         goto bad_swap;
1474                 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1475                         goto bad_swap;
1476                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1477                         goto bad_swap;
1478                 
1479                 /* OK, set up the swap map and apply the bad block list */
1480                 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1481                         error = -ENOMEM;
1482                         goto bad_swap;
1483                 }
1484
1485                 error = 0;
1486                 memset(p->swap_map, 0, maxpages * sizeof(short));
1487                 for (i=0; i<swap_header->info.nr_badpages; i++) {
1488                         int page = swap_header->info.badpages[i];
1489                         if (page <= 0 || page >= swap_header->info.last_page)
1490                                 error = -EINVAL;
1491                         else
1492                                 p->swap_map[page] = SWAP_MAP_BAD;
1493                 }
1494                 nr_good_pages = swap_header->info.last_page -
1495                                 swap_header->info.nr_badpages -
1496                                 1 /* header page */;
1497                 if (error) 
1498                         goto bad_swap;
1499         }
1500
1501         if (swapfilesize && maxpages > swapfilesize) {
1502                 printk(KERN_WARNING
1503                        "Swap area shorter than signature indicates\n");
1504                 error = -EINVAL;
1505                 goto bad_swap;
1506         }
1507         if (nr_good_pages) {
1508                 p->swap_map[0] = SWAP_MAP_BAD;
1509                 p->max = maxpages;
1510                 p->pages = nr_good_pages;
1511                 nr_extents = setup_swap_extents(p, &span);
1512                 if (nr_extents < 0) {
1513                         error = nr_extents;
1514                         goto bad_swap;
1515                 }
1516                 nr_good_pages = p->pages;
1517         }
1518         if (!nr_good_pages) {
1519                 printk(KERN_WARNING "Empty swap-file\n");
1520                 error = -EINVAL;
1521                 goto bad_swap;
1522         }
1523
1524         down(&swapon_sem);
1525         spin_lock(&swap_lock);
1526         p->flags = SWP_ACTIVE;
1527         nr_swap_pages += nr_good_pages;
1528         total_swap_pages += nr_good_pages;
1529
1530         printk(KERN_INFO "Adding %uk swap on %s.  "
1531                         "Priority:%d extents:%d across:%lluk\n",
1532                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1533                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1534
1535         /* insert swap space into swap_list: */
1536         prev = -1;
1537         for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1538                 if (p->prio >= swap_info[i].prio) {
1539                         break;
1540                 }
1541                 prev = i;
1542         }
1543         p->next = i;
1544         if (prev < 0) {
1545                 swap_list.head = swap_list.next = p - swap_info;
1546         } else {
1547                 swap_info[prev].next = p - swap_info;
1548         }
1549         spin_unlock(&swap_lock);
1550         up(&swapon_sem);
1551         error = 0;
1552         goto out;
1553 bad_swap:
1554         if (bdev) {
1555                 set_blocksize(bdev, p->old_block_size);
1556                 bd_release(bdev);
1557         }
1558         destroy_swap_extents(p);
1559 bad_swap_2:
1560         spin_lock(&swap_lock);
1561         swap_map = p->swap_map;
1562         p->swap_file = NULL;
1563         p->swap_map = NULL;
1564         p->flags = 0;
1565         if (!(swap_flags & SWAP_FLAG_PREFER))
1566                 ++least_priority;
1567         spin_unlock(&swap_lock);
1568         vfree(swap_map);
1569         if (swap_file)
1570                 filp_close(swap_file, NULL);
1571 out:
1572         if (page && !IS_ERR(page)) {
1573                 kunmap(page);
1574                 page_cache_release(page);
1575         }
1576         if (name)
1577                 putname(name);
1578         if (did_down) {
1579                 if (!error)
1580                         inode->i_flags |= S_SWAPFILE;
1581                 up(&inode->i_sem);
1582         }
1583         return error;
1584 }
1585
1586 void si_swapinfo(struct sysinfo *val)
1587 {
1588         unsigned int i;
1589         unsigned long nr_to_be_unused = 0;
1590
1591         spin_lock(&swap_lock);
1592         for (i = 0; i < nr_swapfiles; i++) {
1593                 if (!(swap_info[i].flags & SWP_USED) ||
1594                      (swap_info[i].flags & SWP_WRITEOK))
1595                         continue;
1596                 nr_to_be_unused += swap_info[i].inuse_pages;
1597         }
1598         val->freeswap = nr_swap_pages + nr_to_be_unused;
1599         val->totalswap = total_swap_pages + nr_to_be_unused;
1600         spin_unlock(&swap_lock);
1601 }
1602
1603 /*
1604  * Verify that a swap entry is valid and increment its swap map count.
1605  *
1606  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1607  * "permanent", but will be reclaimed by the next swapoff.
1608  */
1609 int swap_duplicate(swp_entry_t entry)
1610 {
1611         struct swap_info_struct * p;
1612         unsigned long offset, type;
1613         int result = 0;
1614
1615         type = swp_type(entry);
1616         if (type >= nr_swapfiles)
1617                 goto bad_file;
1618         p = type + swap_info;
1619         offset = swp_offset(entry);
1620
1621         spin_lock(&swap_lock);
1622         if (offset < p->max && p->swap_map[offset]) {
1623                 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1624                         p->swap_map[offset]++;
1625                         result = 1;
1626                 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1627                         if (swap_overflow++ < 5)
1628                                 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1629                         p->swap_map[offset] = SWAP_MAP_MAX;
1630                         result = 1;
1631                 }
1632         }
1633         spin_unlock(&swap_lock);
1634 out:
1635         return result;
1636
1637 bad_file:
1638         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1639         goto out;
1640 }
1641
1642 struct swap_info_struct *
1643 get_swap_info_struct(unsigned type)
1644 {
1645         return &swap_info[type];
1646 }
1647
1648 /*
1649  * swap_lock prevents swap_map being freed. Don't grab an extra
1650  * reference on the swaphandle, it doesn't matter if it becomes unused.
1651  */
1652 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1653 {
1654         int ret = 0, i = 1 << page_cluster;
1655         unsigned long toff;
1656         struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1657
1658         if (!page_cluster)      /* no readahead */
1659                 return 0;
1660         toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1661         if (!toff)              /* first page is swap header */
1662                 toff++, i--;
1663         *offset = toff;
1664
1665         spin_lock(&swap_lock);
1666         do {
1667                 /* Don't read-ahead past the end of the swap area */
1668                 if (toff >= swapdev->max)
1669                         break;
1670                 /* Don't read in free or bad pages */
1671                 if (!swapdev->swap_map[toff])
1672                         break;
1673                 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1674                         break;
1675                 toff++;
1676                 ret++;
1677         } while (--i);
1678         spin_unlock(&swap_lock);
1679         return ret;
1680 }