Page allocator: clean up pcp draining functions
[linux-2.6] / lib / reed_solomon / reed_solomon.c
1 /*
2  * lib/reed_solomon/reed_solomon.c
3  *
4  * Overview:
5  *   Generic Reed Solomon encoder / decoder library
6  *
7  * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
8  *
9  * Reed Solomon code lifted from reed solomon library written by Phil Karn
10  * Copyright 2002 Phil Karn, KA9Q
11  *
12  * $Id: rslib.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  *
18  * Description:
19  *
20  * The generic Reed Solomon library provides runtime configurable
21  * encoding / decoding of RS codes.
22  * Each user must call init_rs to get a pointer to a rs_control
23  * structure for the given rs parameters. This structure is either
24  * generated or a already available matching control structure is used.
25  * If a structure is generated then the polynomial arrays for
26  * fast encoding / decoding are built. This can take some time so
27  * make sure not to call this function from a time critical path.
28  * Usually a module / driver should initialize the necessary
29  * rs_control structure on module / driver init and release it
30  * on exit.
31  * The encoding puts the calculated syndrome into a given syndrome
32  * buffer.
33  * The decoding is a two step process. The first step calculates
34  * the syndrome over the received (data + syndrome) and calls the
35  * second stage, which does the decoding / error correction itself.
36  * Many hw encoders provide a syndrome calculation over the received
37  * data + syndrome and can call the second stage directly.
38  *
39  */
40
41 #include <linux/errno.h>
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/module.h>
45 #include <linux/rslib.h>
46 #include <linux/slab.h>
47 #include <linux/mutex.h>
48 #include <asm/semaphore.h>
49
50 /* This list holds all currently allocated rs control structures */
51 static LIST_HEAD (rslist);
52 /* Protection for the list */
53 static DEFINE_MUTEX(rslistlock);
54
55 /**
56  * rs_init - Initialize a Reed-Solomon codec
57  * @symsize:    symbol size, bits (1-8)
58  * @gfpoly:     Field generator polynomial coefficients
59  * @gffunc:     Field generator function
60  * @fcr:        first root of RS code generator polynomial, index form
61  * @prim:       primitive element to generate polynomial roots
62  * @nroots:     RS code generator polynomial degree (number of roots)
63  *
64  * Allocate a control structure and the polynom arrays for faster
65  * en/decoding. Fill the arrays according to the given parameters.
66  */
67 static struct rs_control *rs_init(int symsize, int gfpoly, int (*gffunc)(int),
68                                   int fcr, int prim, int nroots)
69 {
70         struct rs_control *rs;
71         int i, j, sr, root, iprim;
72
73         /* Allocate the control structure */
74         rs = kmalloc(sizeof (struct rs_control), GFP_KERNEL);
75         if (rs == NULL)
76                 return NULL;
77
78         INIT_LIST_HEAD(&rs->list);
79
80         rs->mm = symsize;
81         rs->nn = (1 << symsize) - 1;
82         rs->fcr = fcr;
83         rs->prim = prim;
84         rs->nroots = nroots;
85         rs->gfpoly = gfpoly;
86         rs->gffunc = gffunc;
87
88         /* Allocate the arrays */
89         rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);
90         if (rs->alpha_to == NULL)
91                 goto errrs;
92
93         rs->index_of = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);
94         if (rs->index_of == NULL)
95                 goto erralp;
96
97         rs->genpoly = kmalloc(sizeof(uint16_t) * (rs->nroots + 1), GFP_KERNEL);
98         if(rs->genpoly == NULL)
99                 goto erridx;
100
101         /* Generate Galois field lookup tables */
102         rs->index_of[0] = rs->nn;       /* log(zero) = -inf */
103         rs->alpha_to[rs->nn] = 0;       /* alpha**-inf = 0 */
104         if (gfpoly) {
105                 sr = 1;
106                 for (i = 0; i < rs->nn; i++) {
107                         rs->index_of[sr] = i;
108                         rs->alpha_to[i] = sr;
109                         sr <<= 1;
110                         if (sr & (1 << symsize))
111                                 sr ^= gfpoly;
112                         sr &= rs->nn;
113                 }
114         } else {
115                 sr = gffunc(0);
116                 for (i = 0; i < rs->nn; i++) {
117                         rs->index_of[sr] = i;
118                         rs->alpha_to[i] = sr;
119                         sr = gffunc(sr);
120                 }
121         }
122         /* If it's not primitive, exit */
123         if(sr != rs->alpha_to[0])
124                 goto errpol;
125
126         /* Find prim-th root of 1, used in decoding */
127         for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn);
128         /* prim-th root of 1, index form */
129         rs->iprim = iprim / prim;
130
131         /* Form RS code generator polynomial from its roots */
132         rs->genpoly[0] = 1;
133         for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) {
134                 rs->genpoly[i + 1] = 1;
135                 /* Multiply rs->genpoly[] by  @**(root + x) */
136                 for (j = i; j > 0; j--) {
137                         if (rs->genpoly[j] != 0) {
138                                 rs->genpoly[j] = rs->genpoly[j -1] ^
139                                         rs->alpha_to[rs_modnn(rs,
140                                         rs->index_of[rs->genpoly[j]] + root)];
141                         } else
142                                 rs->genpoly[j] = rs->genpoly[j - 1];
143                 }
144                 /* rs->genpoly[0] can never be zero */
145                 rs->genpoly[0] =
146                         rs->alpha_to[rs_modnn(rs,
147                                 rs->index_of[rs->genpoly[0]] + root)];
148         }
149         /* convert rs->genpoly[] to index form for quicker encoding */
150         for (i = 0; i <= nroots; i++)
151                 rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
152         return rs;
153
154         /* Error exit */
155 errpol:
156         kfree(rs->genpoly);
157 erridx:
158         kfree(rs->index_of);
159 erralp:
160         kfree(rs->alpha_to);
161 errrs:
162         kfree(rs);
163         return NULL;
164 }
165
166
167 /**
168  *  free_rs - Free the rs control structure, if it is no longer used
169  *  @rs:        the control structure which is not longer used by the
170  *              caller
171  */
172 void free_rs(struct rs_control *rs)
173 {
174         mutex_lock(&rslistlock);
175         rs->users--;
176         if(!rs->users) {
177                 list_del(&rs->list);
178                 kfree(rs->alpha_to);
179                 kfree(rs->index_of);
180                 kfree(rs->genpoly);
181                 kfree(rs);
182         }
183         mutex_unlock(&rslistlock);
184 }
185
186 /**
187  * init_rs_internal - Find a matching or allocate a new rs control structure
188  *  @symsize:   the symbol size (number of bits)
189  *  @gfpoly:    the extended Galois field generator polynomial coefficients,
190  *              with the 0th coefficient in the low order bit. The polynomial
191  *              must be primitive;
192  *  @gffunc:    pointer to function to generate the next field element,
193  *              or the multiplicative identity element if given 0.  Used
194  *              instead of gfpoly if gfpoly is 0
195  *  @fcr:       the first consecutive root of the rs code generator polynomial
196  *              in index form
197  *  @prim:      primitive element to generate polynomial roots
198  *  @nroots:    RS code generator polynomial degree (number of roots)
199  */
200 static struct rs_control *init_rs_internal(int symsize, int gfpoly,
201                                            int (*gffunc)(int), int fcr,
202                                            int prim, int nroots)
203 {
204         struct list_head        *tmp;
205         struct rs_control       *rs;
206
207         /* Sanity checks */
208         if (symsize < 1)
209                 return NULL;
210         if (fcr < 0 || fcr >= (1<<symsize))
211                 return NULL;
212         if (prim <= 0 || prim >= (1<<symsize))
213                 return NULL;
214         if (nroots < 0 || nroots >= (1<<symsize))
215                 return NULL;
216
217         mutex_lock(&rslistlock);
218
219         /* Walk through the list and look for a matching entry */
220         list_for_each(tmp, &rslist) {
221                 rs = list_entry(tmp, struct rs_control, list);
222                 if (symsize != rs->mm)
223                         continue;
224                 if (gfpoly != rs->gfpoly)
225                         continue;
226                 if (gffunc != rs->gffunc)
227                         continue;
228                 if (fcr != rs->fcr)
229                         continue;
230                 if (prim != rs->prim)
231                         continue;
232                 if (nroots != rs->nroots)
233                         continue;
234                 /* We have a matching one already */
235                 rs->users++;
236                 goto out;
237         }
238
239         /* Create a new one */
240         rs = rs_init(symsize, gfpoly, gffunc, fcr, prim, nroots);
241         if (rs) {
242                 rs->users = 1;
243                 list_add(&rs->list, &rslist);
244         }
245 out:
246         mutex_unlock(&rslistlock);
247         return rs;
248 }
249
250 /**
251  * init_rs - Find a matching or allocate a new rs control structure
252  *  @symsize:   the symbol size (number of bits)
253  *  @gfpoly:    the extended Galois field generator polynomial coefficients,
254  *              with the 0th coefficient in the low order bit. The polynomial
255  *              must be primitive;
256  *  @fcr:       the first consecutive root of the rs code generator polynomial
257  *              in index form
258  *  @prim:      primitive element to generate polynomial roots
259  *  @nroots:    RS code generator polynomial degree (number of roots)
260  */
261 struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
262                            int nroots)
263 {
264         return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots);
265 }
266
267 /**
268  * init_rs_non_canonical - Find a matching or allocate a new rs control
269  *                         structure, for fields with non-canonical
270  *                         representation
271  *  @symsize:   the symbol size (number of bits)
272  *  @gffunc:    pointer to function to generate the next field element,
273  *              or the multiplicative identity element if given 0.  Used
274  *              instead of gfpoly if gfpoly is 0
275  *  @fcr:       the first consecutive root of the rs code generator polynomial
276  *              in index form
277  *  @prim:      primitive element to generate polynomial roots
278  *  @nroots:    RS code generator polynomial degree (number of roots)
279  */
280 struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int),
281                                          int fcr, int prim, int nroots)
282 {
283         return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots);
284 }
285
286 #ifdef CONFIG_REED_SOLOMON_ENC8
287 /**
288  *  encode_rs8 - Calculate the parity for data values (8bit data width)
289  *  @rs:        the rs control structure
290  *  @data:      data field of a given type
291  *  @len:       data length
292  *  @par:       parity data, must be initialized by caller (usually all 0)
293  *  @invmsk:    invert data mask (will be xored on data)
294  *
295  *  The parity uses a uint16_t data type to enable
296  *  symbol size > 8. The calling code must take care of encoding of the
297  *  syndrome result for storage itself.
298  */
299 int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par,
300                uint16_t invmsk)
301 {
302 #include "encode_rs.c"
303 }
304 EXPORT_SYMBOL_GPL(encode_rs8);
305 #endif
306
307 #ifdef CONFIG_REED_SOLOMON_DEC8
308 /**
309  *  decode_rs8 - Decode codeword (8bit data width)
310  *  @rs:        the rs control structure
311  *  @data:      data field of a given type
312  *  @par:       received parity data field
313  *  @len:       data length
314  *  @s:         syndrome data field (if NULL, syndrome is calculated)
315  *  @no_eras:   number of erasures
316  *  @eras_pos:  position of erasures, can be NULL
317  *  @invmsk:    invert data mask (will be xored on data, not on parity!)
318  *  @corr:      buffer to store correction bitmask on eras_pos
319  *
320  *  The syndrome and parity uses a uint16_t data type to enable
321  *  symbol size > 8. The calling code must take care of decoding of the
322  *  syndrome result and the received parity before calling this code.
323  *  Returns the number of corrected bits or -EBADMSG for uncorrectable errors.
324  */
325 int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len,
326                uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
327                uint16_t *corr)
328 {
329 #include "decode_rs.c"
330 }
331 EXPORT_SYMBOL_GPL(decode_rs8);
332 #endif
333
334 #ifdef CONFIG_REED_SOLOMON_ENC16
335 /**
336  *  encode_rs16 - Calculate the parity for data values (16bit data width)
337  *  @rs:        the rs control structure
338  *  @data:      data field of a given type
339  *  @len:       data length
340  *  @par:       parity data, must be initialized by caller (usually all 0)
341  *  @invmsk:    invert data mask (will be xored on data, not on parity!)
342  *
343  *  Each field in the data array contains up to symbol size bits of valid data.
344  */
345 int encode_rs16(struct rs_control *rs, uint16_t *data, int len, uint16_t *par,
346         uint16_t invmsk)
347 {
348 #include "encode_rs.c"
349 }
350 EXPORT_SYMBOL_GPL(encode_rs16);
351 #endif
352
353 #ifdef CONFIG_REED_SOLOMON_DEC16
354 /**
355  *  decode_rs16 - Decode codeword (16bit data width)
356  *  @rs:        the rs control structure
357  *  @data:      data field of a given type
358  *  @par:       received parity data field
359  *  @len:       data length
360  *  @s:         syndrome data field (if NULL, syndrome is calculated)
361  *  @no_eras:   number of erasures
362  *  @eras_pos:  position of erasures, can be NULL
363  *  @invmsk:    invert data mask (will be xored on data, not on parity!)
364  *  @corr:      buffer to store correction bitmask on eras_pos
365  *
366  *  Each field in the data array contains up to symbol size bits of valid data.
367  *  Returns the number of corrected bits or -EBADMSG for uncorrectable errors.
368  */
369 int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len,
370                 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
371                 uint16_t *corr)
372 {
373 #include "decode_rs.c"
374 }
375 EXPORT_SYMBOL_GPL(decode_rs16);
376 #endif
377
378 EXPORT_SYMBOL_GPL(init_rs);
379 EXPORT_SYMBOL_GPL(init_rs_non_canonical);
380 EXPORT_SYMBOL_GPL(free_rs);
381
382 MODULE_LICENSE("GPL");
383 MODULE_DESCRIPTION("Reed Solomon encoder/decoder");
384 MODULE_AUTHOR("Phil Karn, Thomas Gleixner");
385