Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / arch / sparc64 / kernel / irq.c
1 /* $Id: irq.c,v 1.114 2002/01/11 08:45:38 davem Exp $
2  * irq.c: UltraSparc IRQ handling/init/registry.
3  *
4  * Copyright (C) 1997  David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
6  * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
7  */
8
9 #include <linux/module.h>
10 #include <linux/sched.h>
11 #include <linux/ptrace.h>
12 #include <linux/errno.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/bootmem.h>
24 #include <linux/irq.h>
25 #include <linux/msi.h>
26
27 #include <asm/ptrace.h>
28 #include <asm/processor.h>
29 #include <asm/atomic.h>
30 #include <asm/system.h>
31 #include <asm/irq.h>
32 #include <asm/io.h>
33 #include <asm/sbus.h>
34 #include <asm/iommu.h>
35 #include <asm/upa.h>
36 #include <asm/oplib.h>
37 #include <asm/prom.h>
38 #include <asm/timer.h>
39 #include <asm/smp.h>
40 #include <asm/starfire.h>
41 #include <asm/uaccess.h>
42 #include <asm/cache.h>
43 #include <asm/cpudata.h>
44 #include <asm/auxio.h>
45 #include <asm/head.h>
46
47 /* UPA nodes send interrupt packet to UltraSparc with first data reg
48  * value low 5 (7 on Starfire) bits holding the IRQ identifier being
49  * delivered.  We must translate this into a non-vector IRQ so we can
50  * set the softint on this cpu.
51  *
52  * To make processing these packets efficient and race free we use
53  * an array of irq buckets below.  The interrupt vector handler in
54  * entry.S feeds incoming packets into per-cpu pil-indexed lists.
55  * The IVEC handler does not need to act atomically, the PIL dispatch
56  * code uses CAS to get an atomic snapshot of the list and clear it
57  * at the same time.
58  *
59  * If you make changes to ino_bucket, please update hand coded assembler
60  * of the vectored interrupt trap handler(s) in entry.S and sun4v_ivec.S
61  */
62 struct ino_bucket {
63         /* Next handler in per-CPU IRQ worklist.  We know that
64          * bucket pointers have the high 32-bits clear, so to
65          * save space we only store the bits we need.
66          */
67 /*0x00*/unsigned int irq_chain;
68
69         /* Virtual interrupt number assigned to this INO.  */
70 /*0x04*/unsigned int virt_irq;
71 };
72
73 #define NUM_IVECS       (IMAP_INR + 1)
74 struct ino_bucket ivector_table[NUM_IVECS] __attribute__ ((aligned (SMP_CACHE_BYTES)));
75
76 #define __irq_ino(irq) \
77         (((struct ino_bucket *)(unsigned long)(irq)) - &ivector_table[0])
78 #define __bucket(irq) ((struct ino_bucket *)(unsigned long)(irq))
79 #define __irq(bucket) ((unsigned int)(unsigned long)(bucket))
80
81 /* This has to be in the main kernel image, it cannot be
82  * turned into per-cpu data.  The reason is that the main
83  * kernel image is locked into the TLB and this structure
84  * is accessed from the vectored interrupt trap handler.  If
85  * access to this structure takes a TLB miss it could cause
86  * the 5-level sparc v9 trap stack to overflow.
87  */
88 #define irq_work(__cpu) &(trap_block[(__cpu)].irq_worklist)
89
90 static unsigned int virt_to_real_irq_table[NR_IRQS];
91
92 static unsigned char virt_irq_alloc(unsigned int real_irq)
93 {
94         unsigned char ent;
95
96         BUILD_BUG_ON(NR_IRQS >= 256);
97
98         for (ent = 1; ent < NR_IRQS; ent++) {
99                 if (!virt_to_real_irq_table[ent])
100                         break;
101         }
102         if (ent >= NR_IRQS) {
103                 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
104                 return 0;
105         }
106
107         virt_to_real_irq_table[ent] = real_irq;
108
109         return ent;
110 }
111
112 #ifdef CONFIG_PCI_MSI
113 static void virt_irq_free(unsigned int virt_irq)
114 {
115         unsigned int real_irq;
116
117         if (virt_irq >= NR_IRQS)
118                 return;
119
120         real_irq = virt_to_real_irq_table[virt_irq];
121         virt_to_real_irq_table[virt_irq] = 0;
122
123         __bucket(real_irq)->virt_irq = 0;
124 }
125 #endif
126
127 static unsigned int virt_to_real_irq(unsigned char virt_irq)
128 {
129         return virt_to_real_irq_table[virt_irq];
130 }
131
132 /*
133  * /proc/interrupts printing:
134  */
135
136 int show_interrupts(struct seq_file *p, void *v)
137 {
138         int i = *(loff_t *) v, j;
139         struct irqaction * action;
140         unsigned long flags;
141
142         if (i == 0) {
143                 seq_printf(p, "           ");
144                 for_each_online_cpu(j)
145                         seq_printf(p, "CPU%d       ",j);
146                 seq_putc(p, '\n');
147         }
148
149         if (i < NR_IRQS) {
150                 spin_lock_irqsave(&irq_desc[i].lock, flags);
151                 action = irq_desc[i].action;
152                 if (!action)
153                         goto skip;
154                 seq_printf(p, "%3d: ",i);
155 #ifndef CONFIG_SMP
156                 seq_printf(p, "%10u ", kstat_irqs(i));
157 #else
158                 for_each_online_cpu(j)
159                         seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
160 #endif
161                 seq_printf(p, " %9s", irq_desc[i].chip->typename);
162                 seq_printf(p, "  %s", action->name);
163
164                 for (action=action->next; action; action = action->next)
165                         seq_printf(p, ", %s", action->name);
166
167                 seq_putc(p, '\n');
168 skip:
169                 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
170         }
171         return 0;
172 }
173
174 extern unsigned long real_hard_smp_processor_id(void);
175
176 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
177 {
178         unsigned int tid;
179
180         if (this_is_starfire) {
181                 tid = starfire_translate(imap, cpuid);
182                 tid <<= IMAP_TID_SHIFT;
183                 tid &= IMAP_TID_UPA;
184         } else {
185                 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
186                         unsigned long ver;
187
188                         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
189                         if ((ver >> 32UL) == __JALAPENO_ID ||
190                             (ver >> 32UL) == __SERRANO_ID) {
191                                 tid = cpuid << IMAP_TID_SHIFT;
192                                 tid &= IMAP_TID_JBUS;
193                         } else {
194                                 unsigned int a = cpuid & 0x1f;
195                                 unsigned int n = (cpuid >> 5) & 0x1f;
196
197                                 tid = ((a << IMAP_AID_SHIFT) |
198                                        (n << IMAP_NID_SHIFT));
199                                 tid &= (IMAP_AID_SAFARI |
200                                         IMAP_NID_SAFARI);;
201                         }
202                 } else {
203                         tid = cpuid << IMAP_TID_SHIFT;
204                         tid &= IMAP_TID_UPA;
205                 }
206         }
207
208         return tid;
209 }
210
211 struct irq_handler_data {
212         unsigned long   iclr;
213         unsigned long   imap;
214
215         void            (*pre_handler)(unsigned int, void *, void *);
216         void            *pre_handler_arg1;
217         void            *pre_handler_arg2;
218 };
219
220 static inline struct ino_bucket *virt_irq_to_bucket(unsigned int virt_irq)
221 {
222         unsigned int real_irq = virt_to_real_irq(virt_irq);
223         struct ino_bucket *bucket = NULL;
224
225         if (likely(real_irq))
226                 bucket = __bucket(real_irq);
227
228         return bucket;
229 }
230
231 #ifdef CONFIG_SMP
232 static int irq_choose_cpu(unsigned int virt_irq)
233 {
234         cpumask_t mask = irq_desc[virt_irq].affinity;
235         int cpuid;
236
237         if (cpus_equal(mask, CPU_MASK_ALL)) {
238                 static int irq_rover;
239                 static DEFINE_SPINLOCK(irq_rover_lock);
240                 unsigned long flags;
241
242                 /* Round-robin distribution... */
243         do_round_robin:
244                 spin_lock_irqsave(&irq_rover_lock, flags);
245
246                 while (!cpu_online(irq_rover)) {
247                         if (++irq_rover >= NR_CPUS)
248                                 irq_rover = 0;
249                 }
250                 cpuid = irq_rover;
251                 do {
252                         if (++irq_rover >= NR_CPUS)
253                                 irq_rover = 0;
254                 } while (!cpu_online(irq_rover));
255
256                 spin_unlock_irqrestore(&irq_rover_lock, flags);
257         } else {
258                 cpumask_t tmp;
259
260                 cpus_and(tmp, cpu_online_map, mask);
261
262                 if (cpus_empty(tmp))
263                         goto do_round_robin;
264
265                 cpuid = first_cpu(tmp);
266         }
267
268         return cpuid;
269 }
270 #else
271 static int irq_choose_cpu(unsigned int virt_irq)
272 {
273         return real_hard_smp_processor_id();
274 }
275 #endif
276
277 static void sun4u_irq_enable(unsigned int virt_irq)
278 {
279         struct irq_handler_data *data = get_irq_chip_data(virt_irq);
280
281         if (likely(data)) {
282                 unsigned long cpuid, imap, val;
283                 unsigned int tid;
284
285                 cpuid = irq_choose_cpu(virt_irq);
286                 imap = data->imap;
287
288                 tid = sun4u_compute_tid(imap, cpuid);
289
290                 val = upa_readq(imap);
291                 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
292                          IMAP_AID_SAFARI | IMAP_NID_SAFARI);
293                 val |= tid | IMAP_VALID;
294                 upa_writeq(val, imap);
295         }
296 }
297
298 static void sun4u_irq_disable(unsigned int virt_irq)
299 {
300         struct irq_handler_data *data = get_irq_chip_data(virt_irq);
301
302         if (likely(data)) {
303                 unsigned long imap = data->imap;
304                 u32 tmp = upa_readq(imap);
305
306                 tmp &= ~IMAP_VALID;
307                 upa_writeq(tmp, imap);
308         }
309 }
310
311 static void sun4u_irq_end(unsigned int virt_irq)
312 {
313         struct irq_handler_data *data = get_irq_chip_data(virt_irq);
314
315         if (likely(data))
316                 upa_writeq(ICLR_IDLE, data->iclr);
317 }
318
319 static void sun4v_irq_enable(unsigned int virt_irq)
320 {
321         struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
322         unsigned int ino = bucket - &ivector_table[0];
323
324         if (likely(bucket)) {
325                 unsigned long cpuid;
326                 int err;
327
328                 cpuid = irq_choose_cpu(virt_irq);
329
330                 err = sun4v_intr_settarget(ino, cpuid);
331                 if (err != HV_EOK)
332                         printk("sun4v_intr_settarget(%x,%lu): err(%d)\n",
333                                ino, cpuid, err);
334                 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
335                 if (err != HV_EOK)
336                         printk("sun4v_intr_setenabled(%x): err(%d)\n",
337                                ino, err);
338         }
339 }
340
341 static void sun4v_irq_disable(unsigned int virt_irq)
342 {
343         struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
344         unsigned int ino = bucket - &ivector_table[0];
345
346         if (likely(bucket)) {
347                 int err;
348
349                 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
350                 if (err != HV_EOK)
351                         printk("sun4v_intr_setenabled(%x): "
352                                "err(%d)\n", ino, err);
353         }
354 }
355
356 #ifdef CONFIG_PCI_MSI
357 static void sun4v_msi_enable(unsigned int virt_irq)
358 {
359         sun4v_irq_enable(virt_irq);
360         unmask_msi_irq(virt_irq);
361 }
362
363 static void sun4v_msi_disable(unsigned int virt_irq)
364 {
365         mask_msi_irq(virt_irq);
366         sun4v_irq_disable(virt_irq);
367 }
368 #endif
369
370 static void sun4v_irq_end(unsigned int virt_irq)
371 {
372         struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
373         unsigned int ino = bucket - &ivector_table[0];
374
375         if (likely(bucket)) {
376                 int err;
377
378                 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
379                 if (err != HV_EOK)
380                         printk("sun4v_intr_setstate(%x): "
381                                "err(%d)\n", ino, err);
382         }
383 }
384
385 static void run_pre_handler(unsigned int virt_irq)
386 {
387         struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
388         struct irq_handler_data *data = get_irq_chip_data(virt_irq);
389
390         if (likely(data->pre_handler)) {
391                 data->pre_handler(__irq_ino(__irq(bucket)),
392                                   data->pre_handler_arg1,
393                                   data->pre_handler_arg2);
394         }
395 }
396
397 static struct irq_chip sun4u_irq = {
398         .typename       = "sun4u",
399         .enable         = sun4u_irq_enable,
400         .disable        = sun4u_irq_disable,
401         .end            = sun4u_irq_end,
402 };
403
404 static struct irq_chip sun4u_irq_ack = {
405         .typename       = "sun4u+ack",
406         .enable         = sun4u_irq_enable,
407         .disable        = sun4u_irq_disable,
408         .ack            = run_pre_handler,
409         .end            = sun4u_irq_end,
410 };
411
412 static struct irq_chip sun4v_irq = {
413         .typename       = "sun4v",
414         .enable         = sun4v_irq_enable,
415         .disable        = sun4v_irq_disable,
416         .end            = sun4v_irq_end,
417 };
418
419 static struct irq_chip sun4v_irq_ack = {
420         .typename       = "sun4v+ack",
421         .enable         = sun4v_irq_enable,
422         .disable        = sun4v_irq_disable,
423         .ack            = run_pre_handler,
424         .end            = sun4v_irq_end,
425 };
426
427 #ifdef CONFIG_PCI_MSI
428 static struct irq_chip sun4v_msi = {
429         .typename       = "sun4v+msi",
430         .mask           = mask_msi_irq,
431         .unmask         = unmask_msi_irq,
432         .enable         = sun4v_msi_enable,
433         .disable        = sun4v_msi_disable,
434         .ack            = run_pre_handler,
435         .end            = sun4v_irq_end,
436 };
437 #endif
438
439 void irq_install_pre_handler(int virt_irq,
440                              void (*func)(unsigned int, void *, void *),
441                              void *arg1, void *arg2)
442 {
443         struct irq_handler_data *data = get_irq_chip_data(virt_irq);
444         struct irq_chip *chip;
445
446         data->pre_handler = func;
447         data->pre_handler_arg1 = arg1;
448         data->pre_handler_arg2 = arg2;
449
450         chip = get_irq_chip(virt_irq);
451         if (chip == &sun4u_irq_ack ||
452             chip == &sun4v_irq_ack
453 #ifdef CONFIG_PCI_MSI
454             || chip == &sun4v_msi
455 #endif
456             )
457                 return;
458
459         chip = (chip == &sun4u_irq ?
460                 &sun4u_irq_ack : &sun4v_irq_ack);
461         set_irq_chip(virt_irq, chip);
462 }
463
464 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
465 {
466         struct ino_bucket *bucket;
467         struct irq_handler_data *data;
468         int ino;
469
470         BUG_ON(tlb_type == hypervisor);
471
472         ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
473         bucket = &ivector_table[ino];
474         if (!bucket->virt_irq) {
475                 bucket->virt_irq = virt_irq_alloc(__irq(bucket));
476                 set_irq_chip(bucket->virt_irq, &sun4u_irq);
477         }
478
479         data = get_irq_chip_data(bucket->virt_irq);
480         if (unlikely(data))
481                 goto out;
482
483         data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
484         if (unlikely(!data)) {
485                 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
486                 prom_halt();
487         }
488         set_irq_chip_data(bucket->virt_irq, data);
489
490         data->imap  = imap;
491         data->iclr  = iclr;
492
493 out:
494         return bucket->virt_irq;
495 }
496
497 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
498 {
499         struct ino_bucket *bucket;
500         struct irq_handler_data *data;
501         unsigned long sysino;
502
503         BUG_ON(tlb_type != hypervisor);
504
505         sysino = sun4v_devino_to_sysino(devhandle, devino);
506         bucket = &ivector_table[sysino];
507         if (!bucket->virt_irq) {
508                 bucket->virt_irq = virt_irq_alloc(__irq(bucket));
509                 set_irq_chip(bucket->virt_irq, &sun4v_irq);
510         }
511
512         data = get_irq_chip_data(bucket->virt_irq);
513         if (unlikely(data))
514                 goto out;
515
516         data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
517         if (unlikely(!data)) {
518                 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
519                 prom_halt();
520         }
521         set_irq_chip_data(bucket->virt_irq, data);
522
523         /* Catch accidental accesses to these things.  IMAP/ICLR handling
524          * is done by hypervisor calls on sun4v platforms, not by direct
525          * register accesses.
526          */
527         data->imap = ~0UL;
528         data->iclr = ~0UL;
529
530 out:
531         return bucket->virt_irq;
532 }
533
534 #ifdef CONFIG_PCI_MSI
535 unsigned int sun4v_build_msi(u32 devhandle, unsigned int *virt_irq_p,
536                              unsigned int msi_start, unsigned int msi_end)
537 {
538         struct ino_bucket *bucket;
539         struct irq_handler_data *data;
540         unsigned long sysino;
541         unsigned int devino;
542
543         BUG_ON(tlb_type != hypervisor);
544
545         /* Find a free devino in the given range.  */
546         for (devino = msi_start; devino < msi_end; devino++) {
547                 sysino = sun4v_devino_to_sysino(devhandle, devino);
548                 bucket = &ivector_table[sysino];
549                 if (!bucket->virt_irq)
550                         break;
551         }
552         if (devino >= msi_end)
553                 return 0;
554
555         sysino = sun4v_devino_to_sysino(devhandle, devino);
556         bucket = &ivector_table[sysino];
557         bucket->virt_irq = virt_irq_alloc(__irq(bucket));
558         *virt_irq_p = bucket->virt_irq;
559         set_irq_chip(bucket->virt_irq, &sun4v_msi);
560
561         data = get_irq_chip_data(bucket->virt_irq);
562         if (unlikely(data))
563                 return devino;
564
565         data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
566         if (unlikely(!data)) {
567                 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
568                 prom_halt();
569         }
570         set_irq_chip_data(bucket->virt_irq, data);
571
572         data->imap = ~0UL;
573         data->iclr = ~0UL;
574
575         return devino;
576 }
577
578 void sun4v_destroy_msi(unsigned int virt_irq)
579 {
580         virt_irq_free(virt_irq);
581 }
582 #endif
583
584 void ack_bad_irq(unsigned int virt_irq)
585 {
586         struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
587         unsigned int ino = 0xdeadbeef;
588
589         if (bucket)
590                 ino = bucket - &ivector_table[0];
591
592         printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n",
593                ino, virt_irq);
594 }
595
596 void handler_irq(int irq, struct pt_regs *regs)
597 {
598         struct ino_bucket *bucket;
599         struct pt_regs *old_regs;
600
601         clear_softint(1 << irq);
602
603         old_regs = set_irq_regs(regs);
604         irq_enter();
605
606         /* Sliiiick... */
607         bucket = __bucket(xchg32(irq_work(smp_processor_id()), 0));
608         while (bucket) {
609                 struct ino_bucket *next = __bucket(bucket->irq_chain);
610
611                 bucket->irq_chain = 0;
612                 __do_IRQ(bucket->virt_irq);
613
614                 bucket = next;
615         }
616
617         irq_exit();
618         set_irq_regs(old_regs);
619 }
620
621 struct sun5_timer {
622         u64     count0;
623         u64     limit0;
624         u64     count1;
625         u64     limit1;
626 };
627
628 static struct sun5_timer *prom_timers;
629 static u64 prom_limit0, prom_limit1;
630
631 static void map_prom_timers(void)
632 {
633         struct device_node *dp;
634         const unsigned int *addr;
635
636         /* PROM timer node hangs out in the top level of device siblings... */
637         dp = of_find_node_by_path("/");
638         dp = dp->child;
639         while (dp) {
640                 if (!strcmp(dp->name, "counter-timer"))
641                         break;
642                 dp = dp->sibling;
643         }
644
645         /* Assume if node is not present, PROM uses different tick mechanism
646          * which we should not care about.
647          */
648         if (!dp) {
649                 prom_timers = (struct sun5_timer *) 0;
650                 return;
651         }
652
653         /* If PROM is really using this, it must be mapped by him. */
654         addr = of_get_property(dp, "address", NULL);
655         if (!addr) {
656                 prom_printf("PROM does not have timer mapped, trying to continue.\n");
657                 prom_timers = (struct sun5_timer *) 0;
658                 return;
659         }
660         prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
661 }
662
663 static void kill_prom_timer(void)
664 {
665         if (!prom_timers)
666                 return;
667
668         /* Save them away for later. */
669         prom_limit0 = prom_timers->limit0;
670         prom_limit1 = prom_timers->limit1;
671
672         /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
673          * We turn both off here just to be paranoid.
674          */
675         prom_timers->limit0 = 0;
676         prom_timers->limit1 = 0;
677
678         /* Wheee, eat the interrupt packet too... */
679         __asm__ __volatile__(
680 "       mov     0x40, %%g2\n"
681 "       ldxa    [%%g0] %0, %%g1\n"
682 "       ldxa    [%%g2] %1, %%g1\n"
683 "       stxa    %%g0, [%%g0] %0\n"
684 "       membar  #Sync\n"
685         : /* no outputs */
686         : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
687         : "g1", "g2");
688 }
689
690 void init_irqwork_curcpu(void)
691 {
692         int cpu = hard_smp_processor_id();
693
694         trap_block[cpu].irq_worklist = 0;
695 }
696
697 static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type)
698 {
699         unsigned long num_entries = 128;
700         unsigned long status;
701
702         status = sun4v_cpu_qconf(type, paddr, num_entries);
703         if (status != HV_EOK) {
704                 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
705                             "err %lu\n", type, paddr, num_entries, status);
706                 prom_halt();
707         }
708 }
709
710 static void __cpuinit sun4v_register_mondo_queues(int this_cpu)
711 {
712         struct trap_per_cpu *tb = &trap_block[this_cpu];
713
714         register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO);
715         register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO);
716         register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR);
717         register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR);
718 }
719
720 static void __cpuinit alloc_one_mondo(unsigned long *pa_ptr, int use_bootmem)
721 {
722         void *page;
723
724         if (use_bootmem)
725                 page = alloc_bootmem_low_pages(PAGE_SIZE);
726         else
727                 page = (void *) get_zeroed_page(GFP_ATOMIC);
728
729         if (!page) {
730                 prom_printf("SUN4V: Error, cannot allocate mondo queue.\n");
731                 prom_halt();
732         }
733
734         *pa_ptr = __pa(page);
735 }
736
737 static void __cpuinit alloc_one_kbuf(unsigned long *pa_ptr, int use_bootmem)
738 {
739         void *page;
740
741         if (use_bootmem)
742                 page = alloc_bootmem_low_pages(PAGE_SIZE);
743         else
744                 page = (void *) get_zeroed_page(GFP_ATOMIC);
745
746         if (!page) {
747                 prom_printf("SUN4V: Error, cannot allocate kbuf page.\n");
748                 prom_halt();
749         }
750
751         *pa_ptr = __pa(page);
752 }
753
754 static void __cpuinit init_cpu_send_mondo_info(struct trap_per_cpu *tb, int use_bootmem)
755 {
756 #ifdef CONFIG_SMP
757         void *page;
758
759         BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
760
761         if (use_bootmem)
762                 page = alloc_bootmem_low_pages(PAGE_SIZE);
763         else
764                 page = (void *) get_zeroed_page(GFP_ATOMIC);
765
766         if (!page) {
767                 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
768                 prom_halt();
769         }
770
771         tb->cpu_mondo_block_pa = __pa(page);
772         tb->cpu_list_pa = __pa(page + 64);
773 #endif
774 }
775
776 /* Allocate and register the mondo and error queues for this cpu.  */
777 void __cpuinit sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load)
778 {
779         struct trap_per_cpu *tb = &trap_block[cpu];
780
781         if (alloc) {
782                 alloc_one_mondo(&tb->cpu_mondo_pa, use_bootmem);
783                 alloc_one_mondo(&tb->dev_mondo_pa, use_bootmem);
784                 alloc_one_mondo(&tb->resum_mondo_pa, use_bootmem);
785                 alloc_one_kbuf(&tb->resum_kernel_buf_pa, use_bootmem);
786                 alloc_one_mondo(&tb->nonresum_mondo_pa, use_bootmem);
787                 alloc_one_kbuf(&tb->nonresum_kernel_buf_pa, use_bootmem);
788
789                 init_cpu_send_mondo_info(tb, use_bootmem);
790         }
791
792         if (load) {
793                 if (cpu != hard_smp_processor_id()) {
794                         prom_printf("SUN4V: init mondo on cpu %d not %d\n",
795                                     cpu, hard_smp_processor_id());
796                         prom_halt();
797                 }
798                 sun4v_register_mondo_queues(cpu);
799         }
800 }
801
802 static struct irqaction timer_irq_action = {
803         .name = "timer",
804 };
805
806 /* Only invoked on boot processor. */
807 void __init init_IRQ(void)
808 {
809         map_prom_timers();
810         kill_prom_timer();
811         memset(&ivector_table[0], 0, sizeof(ivector_table));
812
813         if (tlb_type == hypervisor)
814                 sun4v_init_mondo_queues(1, hard_smp_processor_id(), 1, 1);
815
816         /* We need to clear any IRQ's pending in the soft interrupt
817          * registers, a spurious one could be left around from the
818          * PROM timer which we just disabled.
819          */
820         clear_softint(get_softint());
821
822         /* Now that ivector table is initialized, it is safe
823          * to receive IRQ vector traps.  We will normally take
824          * one or two right now, in case some device PROM used
825          * to boot us wants to speak to us.  We just ignore them.
826          */
827         __asm__ __volatile__("rdpr      %%pstate, %%g1\n\t"
828                              "or        %%g1, %0, %%g1\n\t"
829                              "wrpr      %%g1, 0x0, %%pstate"
830                              : /* No outputs */
831                              : "i" (PSTATE_IE)
832                              : "g1");
833
834         irq_desc[0].action = &timer_irq_action;
835 }