virtio: indirect ring entries (VIRTIO_RING_F_INDIRECT_DESC)
[linux-2.6] / include / linux / pagemap.h
1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
3
4 /*
5  * Copyright 1995 Linus Torvalds
6  */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <asm/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15 #include <linux/hardirq.h> /* for in_interrupt() */
16
17 /*
18  * Bits in mapping->flags.  The lower __GFP_BITS_SHIFT bits are the page
19  * allocation mode flags.
20  */
21 enum mapping_flags {
22         AS_EIO          = __GFP_BITS_SHIFT + 0, /* IO error on async write */
23         AS_ENOSPC       = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
24         AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
25 #ifdef CONFIG_UNEVICTABLE_LRU
26         AS_UNEVICTABLE  = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
27 #endif
28 };
29
30 static inline void mapping_set_error(struct address_space *mapping, int error)
31 {
32         if (unlikely(error)) {
33                 if (error == -ENOSPC)
34                         set_bit(AS_ENOSPC, &mapping->flags);
35                 else
36                         set_bit(AS_EIO, &mapping->flags);
37         }
38 }
39
40 #ifdef CONFIG_UNEVICTABLE_LRU
41
42 static inline void mapping_set_unevictable(struct address_space *mapping)
43 {
44         set_bit(AS_UNEVICTABLE, &mapping->flags);
45 }
46
47 static inline void mapping_clear_unevictable(struct address_space *mapping)
48 {
49         clear_bit(AS_UNEVICTABLE, &mapping->flags);
50 }
51
52 static inline int mapping_unevictable(struct address_space *mapping)
53 {
54         if (likely(mapping))
55                 return test_bit(AS_UNEVICTABLE, &mapping->flags);
56         return !!mapping;
57 }
58 #else
59 static inline void mapping_set_unevictable(struct address_space *mapping) { }
60 static inline void mapping_clear_unevictable(struct address_space *mapping) { }
61 static inline int mapping_unevictable(struct address_space *mapping)
62 {
63         return 0;
64 }
65 #endif
66
67 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
68 {
69         return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
70 }
71
72 /*
73  * This is non-atomic.  Only to be used before the mapping is activated.
74  * Probably needs a barrier...
75  */
76 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
77 {
78         m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
79                                 (__force unsigned long)mask;
80 }
81
82 /*
83  * The page cache can done in larger chunks than
84  * one page, because it allows for more efficient
85  * throughput (it can then be mapped into user
86  * space in smaller chunks for same flexibility).
87  *
88  * Or rather, it _will_ be done in larger chunks.
89  */
90 #define PAGE_CACHE_SHIFT        PAGE_SHIFT
91 #define PAGE_CACHE_SIZE         PAGE_SIZE
92 #define PAGE_CACHE_MASK         PAGE_MASK
93 #define PAGE_CACHE_ALIGN(addr)  (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
94
95 #define page_cache_get(page)            get_page(page)
96 #define page_cache_release(page)        put_page(page)
97 void release_pages(struct page **pages, int nr, int cold);
98
99 /*
100  * speculatively take a reference to a page.
101  * If the page is free (_count == 0), then _count is untouched, and 0
102  * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
103  *
104  * This function must be called inside the same rcu_read_lock() section as has
105  * been used to lookup the page in the pagecache radix-tree (or page table):
106  * this allows allocators to use a synchronize_rcu() to stabilize _count.
107  *
108  * Unless an RCU grace period has passed, the count of all pages coming out
109  * of the allocator must be considered unstable. page_count may return higher
110  * than expected, and put_page must be able to do the right thing when the
111  * page has been finished with, no matter what it is subsequently allocated
112  * for (because put_page is what is used here to drop an invalid speculative
113  * reference).
114  *
115  * This is the interesting part of the lockless pagecache (and lockless
116  * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
117  * has the following pattern:
118  * 1. find page in radix tree
119  * 2. conditionally increment refcount
120  * 3. check the page is still in pagecache (if no, goto 1)
121  *
122  * Remove-side that cares about stability of _count (eg. reclaim) has the
123  * following (with tree_lock held for write):
124  * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
125  * B. remove page from pagecache
126  * C. free the page
127  *
128  * There are 2 critical interleavings that matter:
129  * - 2 runs before A: in this case, A sees elevated refcount and bails out
130  * - A runs before 2: in this case, 2 sees zero refcount and retries;
131  *   subsequently, B will complete and 1 will find no page, causing the
132  *   lookup to return NULL.
133  *
134  * It is possible that between 1 and 2, the page is removed then the exact same
135  * page is inserted into the same position in pagecache. That's OK: the
136  * old find_get_page using tree_lock could equally have run before or after
137  * such a re-insertion, depending on order that locks are granted.
138  *
139  * Lookups racing against pagecache insertion isn't a big problem: either 1
140  * will find the page or it will not. Likewise, the old find_get_page could run
141  * either before the insertion or afterwards, depending on timing.
142  */
143 static inline int page_cache_get_speculative(struct page *page)
144 {
145         VM_BUG_ON(in_interrupt());
146
147 #if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
148 # ifdef CONFIG_PREEMPT
149         VM_BUG_ON(!in_atomic());
150 # endif
151         /*
152          * Preempt must be disabled here - we rely on rcu_read_lock doing
153          * this for us.
154          *
155          * Pagecache won't be truncated from interrupt context, so if we have
156          * found a page in the radix tree here, we have pinned its refcount by
157          * disabling preempt, and hence no need for the "speculative get" that
158          * SMP requires.
159          */
160         VM_BUG_ON(page_count(page) == 0);
161         atomic_inc(&page->_count);
162
163 #else
164         if (unlikely(!get_page_unless_zero(page))) {
165                 /*
166                  * Either the page has been freed, or will be freed.
167                  * In either case, retry here and the caller should
168                  * do the right thing (see comments above).
169                  */
170                 return 0;
171         }
172 #endif
173         VM_BUG_ON(PageTail(page));
174
175         return 1;
176 }
177
178 /*
179  * Same as above, but add instead of inc (could just be merged)
180  */
181 static inline int page_cache_add_speculative(struct page *page, int count)
182 {
183         VM_BUG_ON(in_interrupt());
184
185 #if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
186 # ifdef CONFIG_PREEMPT
187         VM_BUG_ON(!in_atomic());
188 # endif
189         VM_BUG_ON(page_count(page) == 0);
190         atomic_add(count, &page->_count);
191
192 #else
193         if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
194                 return 0;
195 #endif
196         VM_BUG_ON(PageCompound(page) && page != compound_head(page));
197
198         return 1;
199 }
200
201 static inline int page_freeze_refs(struct page *page, int count)
202 {
203         return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
204 }
205
206 static inline void page_unfreeze_refs(struct page *page, int count)
207 {
208         VM_BUG_ON(page_count(page) != 0);
209         VM_BUG_ON(count == 0);
210
211         atomic_set(&page->_count, count);
212 }
213
214 #ifdef CONFIG_NUMA
215 extern struct page *__page_cache_alloc(gfp_t gfp);
216 #else
217 static inline struct page *__page_cache_alloc(gfp_t gfp)
218 {
219         return alloc_pages(gfp, 0);
220 }
221 #endif
222
223 static inline struct page *page_cache_alloc(struct address_space *x)
224 {
225         return __page_cache_alloc(mapping_gfp_mask(x));
226 }
227
228 static inline struct page *page_cache_alloc_cold(struct address_space *x)
229 {
230         return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
231 }
232
233 typedef int filler_t(void *, struct page *);
234
235 extern struct page * find_get_page(struct address_space *mapping,
236                                 pgoff_t index);
237 extern struct page * find_lock_page(struct address_space *mapping,
238                                 pgoff_t index);
239 extern struct page * find_or_create_page(struct address_space *mapping,
240                                 pgoff_t index, gfp_t gfp_mask);
241 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
242                         unsigned int nr_pages, struct page **pages);
243 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
244                                unsigned int nr_pages, struct page **pages);
245 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
246                         int tag, unsigned int nr_pages, struct page **pages);
247
248 struct page *grab_cache_page_write_begin(struct address_space *mapping,
249                         pgoff_t index, unsigned flags);
250
251 /*
252  * Returns locked page at given index in given cache, creating it if needed.
253  */
254 static inline struct page *grab_cache_page(struct address_space *mapping,
255                                                                 pgoff_t index)
256 {
257         return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
258 }
259
260 extern struct page * grab_cache_page_nowait(struct address_space *mapping,
261                                 pgoff_t index);
262 extern struct page * read_cache_page_async(struct address_space *mapping,
263                                 pgoff_t index, filler_t *filler,
264                                 void *data);
265 extern struct page * read_cache_page(struct address_space *mapping,
266                                 pgoff_t index, filler_t *filler,
267                                 void *data);
268 extern int read_cache_pages(struct address_space *mapping,
269                 struct list_head *pages, filler_t *filler, void *data);
270
271 static inline struct page *read_mapping_page_async(
272                                                 struct address_space *mapping,
273                                                      pgoff_t index, void *data)
274 {
275         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
276         return read_cache_page_async(mapping, index, filler, data);
277 }
278
279 static inline struct page *read_mapping_page(struct address_space *mapping,
280                                              pgoff_t index, void *data)
281 {
282         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
283         return read_cache_page(mapping, index, filler, data);
284 }
285
286 /*
287  * Return byte-offset into filesystem object for page.
288  */
289 static inline loff_t page_offset(struct page *page)
290 {
291         return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
292 }
293
294 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
295                                         unsigned long address)
296 {
297         pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
298         pgoff += vma->vm_pgoff;
299         return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
300 }
301
302 extern void __lock_page(struct page *page);
303 extern int __lock_page_killable(struct page *page);
304 extern void __lock_page_nosync(struct page *page);
305 extern void unlock_page(struct page *page);
306
307 static inline void __set_page_locked(struct page *page)
308 {
309         __set_bit(PG_locked, &page->flags);
310 }
311
312 static inline void __clear_page_locked(struct page *page)
313 {
314         __clear_bit(PG_locked, &page->flags);
315 }
316
317 static inline int trylock_page(struct page *page)
318 {
319         return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
320 }
321
322 /*
323  * lock_page may only be called if we have the page's inode pinned.
324  */
325 static inline void lock_page(struct page *page)
326 {
327         might_sleep();
328         if (!trylock_page(page))
329                 __lock_page(page);
330 }
331
332 /*
333  * lock_page_killable is like lock_page but can be interrupted by fatal
334  * signals.  It returns 0 if it locked the page and -EINTR if it was
335  * killed while waiting.
336  */
337 static inline int lock_page_killable(struct page *page)
338 {
339         might_sleep();
340         if (!trylock_page(page))
341                 return __lock_page_killable(page);
342         return 0;
343 }
344
345 /*
346  * lock_page_nosync should only be used if we can't pin the page's inode.
347  * Doesn't play quite so well with block device plugging.
348  */
349 static inline void lock_page_nosync(struct page *page)
350 {
351         might_sleep();
352         if (!trylock_page(page))
353                 __lock_page_nosync(page);
354 }
355         
356 /*
357  * This is exported only for wait_on_page_locked/wait_on_page_writeback.
358  * Never use this directly!
359  */
360 extern void wait_on_page_bit(struct page *page, int bit_nr);
361
362 /* 
363  * Wait for a page to be unlocked.
364  *
365  * This must be called with the caller "holding" the page,
366  * ie with increased "page->count" so that the page won't
367  * go away during the wait..
368  */
369 static inline void wait_on_page_locked(struct page *page)
370 {
371         if (PageLocked(page))
372                 wait_on_page_bit(page, PG_locked);
373 }
374
375 /* 
376  * Wait for a page to complete writeback
377  */
378 static inline void wait_on_page_writeback(struct page *page)
379 {
380         if (PageWriteback(page))
381                 wait_on_page_bit(page, PG_writeback);
382 }
383
384 extern void end_page_writeback(struct page *page);
385
386 /*
387  * Add an arbitrary waiter to a page's wait queue
388  */
389 extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
390
391 /*
392  * Fault a userspace page into pagetables.  Return non-zero on a fault.
393  *
394  * This assumes that two userspace pages are always sufficient.  That's
395  * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
396  */
397 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
398 {
399         int ret;
400
401         if (unlikely(size == 0))
402                 return 0;
403
404         /*
405          * Writing zeroes into userspace here is OK, because we know that if
406          * the zero gets there, we'll be overwriting it.
407          */
408         ret = __put_user(0, uaddr);
409         if (ret == 0) {
410                 char __user *end = uaddr + size - 1;
411
412                 /*
413                  * If the page was already mapped, this will get a cache miss
414                  * for sure, so try to avoid doing it.
415                  */
416                 if (((unsigned long)uaddr & PAGE_MASK) !=
417                                 ((unsigned long)end & PAGE_MASK))
418                         ret = __put_user(0, end);
419         }
420         return ret;
421 }
422
423 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
424 {
425         volatile char c;
426         int ret;
427
428         if (unlikely(size == 0))
429                 return 0;
430
431         ret = __get_user(c, uaddr);
432         if (ret == 0) {
433                 const char __user *end = uaddr + size - 1;
434
435                 if (((unsigned long)uaddr & PAGE_MASK) !=
436                                 ((unsigned long)end & PAGE_MASK))
437                         ret = __get_user(c, end);
438         }
439         return ret;
440 }
441
442 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
443                                 pgoff_t index, gfp_t gfp_mask);
444 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
445                                 pgoff_t index, gfp_t gfp_mask);
446 extern void remove_from_page_cache(struct page *page);
447 extern void __remove_from_page_cache(struct page *page);
448
449 /*
450  * Like add_to_page_cache_locked, but used to add newly allocated pages:
451  * the page is new, so we can just run __set_page_locked() against it.
452  */
453 static inline int add_to_page_cache(struct page *page,
454                 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
455 {
456         int error;
457
458         __set_page_locked(page);
459         error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
460         if (unlikely(error))
461                 __clear_page_locked(page);
462         return error;
463 }
464
465 #endif /* _LINUX_PAGEMAP_H */