2  * Device driver for the thermostats & fan controller of  the
 
   3  * Apple G5 "PowerMac7,2" desktop machines.
 
   5  * (c) Copyright IBM Corp. 2003-2004
 
   7  * Maintained by: Benjamin Herrenschmidt
 
   8  *                <benh@kernel.crashing.org>
 
  11  * The algorithm used is the PID control algorithm, used the same
 
  12  * way the published Darwin code does, using the same values that
 
  13  * are present in the Darwin 7.0 snapshot property lists.
 
  15  * As far as the CPUs control loops are concerned, I use the
 
  16  * calibration & PID constants provided by the EEPROM,
 
  17  * I do _not_ embed any value from the property lists, as the ones
 
  18  * provided by Darwin 7.0 seem to always have an older version that
 
  19  * what I've seen on the actual computers.
 
  20  * It would be interesting to verify that though. Darwin has a
 
  21  * version code of 1.0.0d11 for all control loops it seems, while
 
  22  * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
 
  24  * Darwin doesn't provide source to all parts, some missing
 
  25  * bits like the AppleFCU driver or the actual scale of some
 
  26  * of the values returned by sensors had to be "guessed" some
 
  27  * way... or based on what Open Firmware does.
 
  29  * I didn't yet figure out how to get the slots power consumption
 
  30  * out of the FCU, so that part has not been implemented yet and
 
  31  * the slots fan is set to a fixed 50% PWM, hoping this value is
 
  34  * Note: I have observed strange oscillations of the CPU control
 
  35  * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
 
  36  * oscillates slowly (over several minutes) between the minimum
 
  37  * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
 
  38  * this, it could be some incorrect constant or an error in the
 
  39  * way I ported the algorithm, or it could be just normal. I
 
  40  * don't have full understanding on the way Apple tweaked the PID
 
  41  * algorithm for the CPU control, it is definitely not a standard
 
  44  * TODO:  - Check MPU structure version/signature
 
  45  *        - Add things like /sbin/overtemp for non-critical
 
  46  *          overtemp conditions so userland can take some policy
 
  47  *          decisions, like slewing down CPUs
 
  48  *        - Deal with fan and i2c failures in a better way
 
  49  *        - Maybe do a generic PID based on params used for
 
  50  *          U3 and Drives ? Definitely need to factor code a bit
 
  51  *          bettter... also make sensor detection more robust using
 
  52  *          the device-tree to probe for them
 
  53  *        - Figure out how to get the slots consumption and set the
 
  54  *          slots fan accordingly
 
  62  *      - Read fan speed from FCU, low level fan routines now deal
 
  63  *        with errors & check fan status, though higher level don't
 
  65  *      - Move a bunch of definitions to .h file
 
  68  *      - Fix build on ppc64 kernel
 
  69  *      - Move back statics definitions to .c file
 
  70  *      - Avoid calling schedule_timeout with a negative number
 
  73  *      - Fix typo when reading back fan speed on 2 CPU machines
 
  76  *      - Rework code accessing the ADC chips, make it more robust and
 
  77  *        closer to the chip spec. Also make sure it is configured properly,
 
  78  *        I've seen yet unexplained cases where on startup, I would have stale
 
  79  *        values in the configuration register
 
  80  *      - Switch back to use of target fan speed for PID, thus lowering
 
  84  *      - Add device-tree lookup for fan IDs, should detect liquid cooling
 
  86  *      - Enable driver for PowerMac7,3 machines
 
  87  *      - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
 
  88  *      - Add new CPU cooling algorithm for machines with liquid cooling
 
  89  *      - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
 
  90  *      - Fix a signed/unsigned compare issue in some PID loops
 
  93  *      - Add basic support for Xserve G5
 
  94  *      - Retreive pumps min/max from EEPROM image in device-tree (broken)
 
  95  *      - Use min/max macros here or there
 
  96  *      - Latest darwin updated U3H min fan speed to 20% PWM
 
  98  *  July. 06, 2006 : 1.3
 
  99  *      - Fix setting of RPM fans on Xserve G5 (they were going too fast)
 
 100  *      - Add missing slots fan control loop for Xserve G5
 
 101  *      - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
 
 102  *        still can't properly implement the control loop for these, so let's
 
 103  *        reduce the noise a little bit, it appears that 40% still gives us
 
 104  *        a pretty good air flow
 
 105  *      - Add code to "tickle" the FCU regulary so it doesn't think that
 
 106  *        we are gone while in fact, the machine just didn't need any fan
 
 107  *        speed change lately
 
 111 #include <linux/types.h>
 
 112 #include <linux/module.h>
 
 113 #include <linux/errno.h>
 
 114 #include <linux/kernel.h>
 
 115 #include <linux/delay.h>
 
 116 #include <linux/sched.h>
 
 117 #include <linux/slab.h>
 
 118 #include <linux/init.h>
 
 119 #include <linux/spinlock.h>
 
 120 #include <linux/wait.h>
 
 121 #include <linux/reboot.h>
 
 122 #include <linux/kmod.h>
 
 123 #include <linux/i2c.h>
 
 124 #include <linux/kthread.h>
 
 125 #include <linux/mutex.h>
 
 126 #include <linux/of_device.h>
 
 127 #include <linux/of_platform.h>
 
 128 #include <asm/prom.h>
 
 129 #include <asm/machdep.h>
 
 131 #include <asm/system.h>
 
 132 #include <asm/sections.h>
 
 133 #include <asm/macio.h>
 
 135 #include "therm_pm72.h"
 
 137 #define VERSION "1.3"
 
 142 #define DBG(args...)    printk(args)
 
 144 #define DBG(args...)    do { } while(0)
 
 152 static struct of_device *               of_dev;
 
 153 static struct i2c_adapter *             u3_0;
 
 154 static struct i2c_adapter *             u3_1;
 
 155 static struct i2c_adapter *             k2;
 
 156 static struct i2c_client *              fcu;
 
 157 static struct cpu_pid_state             cpu_state[2];
 
 158 static struct basckside_pid_params      backside_params;
 
 159 static struct backside_pid_state        backside_state;
 
 160 static struct drives_pid_state          drives_state;
 
 161 static struct dimm_pid_state            dimms_state;
 
 162 static struct slots_pid_state           slots_state;
 
 164 static int                              cpu_count;
 
 165 static int                              cpu_pid_type;
 
 166 static struct task_struct               *ctrl_task;
 
 167 static struct completion                ctrl_complete;
 
 168 static int                              critical_state;
 
 170 static s32                              dimm_output_clamp;
 
 171 static int                              fcu_rpm_shift;
 
 172 static int                              fcu_tickle_ticks;
 
 173 static DEFINE_MUTEX(driver_lock);
 
 176  * We have 3 types of CPU PID control. One is "split" old style control
 
 177  * for intake & exhaust fans, the other is "combined" control for both
 
 178  * CPUs that also deals with the pumps when present. To be "compatible"
 
 179  * with OS X at this point, we only use "COMBINED" on the machines that
 
 180  * are identified as having the pumps (though that identification is at
 
 181  * least dodgy). Ultimately, we could probably switch completely to this
 
 182  * algorithm provided we hack it to deal with the UP case
 
 184 #define CPU_PID_TYPE_SPLIT      0
 
 185 #define CPU_PID_TYPE_COMBINED   1
 
 186 #define CPU_PID_TYPE_RACKMAC    2
 
 189  * This table describes all fans in the FCU. The "id" and "type" values
 
 190  * are defaults valid for all earlier machines. Newer machines will
 
 191  * eventually override the table content based on the device-tree
 
 195         char*   loc;    /* location code */
 
 196         int     type;   /* 0 = rpm, 1 = pwm, 2 = pump */
 
 197         int     id;     /* id or -1 */
 
 200 #define FCU_FAN_RPM             0
 
 201 #define FCU_FAN_PWM             1
 
 203 #define FCU_FAN_ABSENT_ID       -1
 
 205 #define FCU_FAN_COUNT           ARRAY_SIZE(fcu_fans)
 
 207 struct fcu_fan_table    fcu_fans[] = {
 
 208         [BACKSIDE_FAN_PWM_INDEX] = {
 
 209                 .loc    = "BACKSIDE,SYS CTRLR FAN",
 
 211                 .id     = BACKSIDE_FAN_PWM_DEFAULT_ID,
 
 213         [DRIVES_FAN_RPM_INDEX] = {
 
 216                 .id     = DRIVES_FAN_RPM_DEFAULT_ID,
 
 218         [SLOTS_FAN_PWM_INDEX] = {
 
 219                 .loc    = "SLOT,PCI FAN",
 
 221                 .id     = SLOTS_FAN_PWM_DEFAULT_ID,
 
 223         [CPUA_INTAKE_FAN_RPM_INDEX] = {
 
 224                 .loc    = "CPU A INTAKE",
 
 226                 .id     = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
 
 228         [CPUA_EXHAUST_FAN_RPM_INDEX] = {
 
 229                 .loc    = "CPU A EXHAUST",
 
 231                 .id     = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
 
 233         [CPUB_INTAKE_FAN_RPM_INDEX] = {
 
 234                 .loc    = "CPU B INTAKE",
 
 236                 .id     = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
 
 238         [CPUB_EXHAUST_FAN_RPM_INDEX] = {
 
 239                 .loc    = "CPU B EXHAUST",
 
 241                 .id     = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
 
 243         /* pumps aren't present by default, have to be looked up in the
 
 246         [CPUA_PUMP_RPM_INDEX] = {
 
 249                 .id     = FCU_FAN_ABSENT_ID,
 
 251         [CPUB_PUMP_RPM_INDEX] = {
 
 254                 .id     = FCU_FAN_ABSENT_ID,
 
 257         [CPU_A1_FAN_RPM_INDEX] = {
 
 260                 .id     = FCU_FAN_ABSENT_ID,
 
 262         [CPU_A2_FAN_RPM_INDEX] = {
 
 265                 .id     = FCU_FAN_ABSENT_ID,
 
 267         [CPU_A3_FAN_RPM_INDEX] = {
 
 270                 .id     = FCU_FAN_ABSENT_ID,
 
 272         [CPU_B1_FAN_RPM_INDEX] = {
 
 275                 .id     = FCU_FAN_ABSENT_ID,
 
 277         [CPU_B2_FAN_RPM_INDEX] = {
 
 280                 .id     = FCU_FAN_ABSENT_ID,
 
 282         [CPU_B3_FAN_RPM_INDEX] = {
 
 285                 .id     = FCU_FAN_ABSENT_ID,
 
 290  * i2c_driver structure to attach to the host i2c controller
 
 293 static int therm_pm72_attach(struct i2c_adapter *adapter);
 
 294 static int therm_pm72_detach(struct i2c_adapter *adapter);
 
 296 static struct i2c_driver therm_pm72_driver =
 
 299                 .name   = "therm_pm72",
 
 301         .attach_adapter = therm_pm72_attach,
 
 302         .detach_adapter = therm_pm72_detach,
 
 306  * Utility function to create an i2c_client structure and
 
 307  * attach it to one of u3 adapters
 
 309 static struct i2c_client *attach_i2c_chip(int id, const char *name)
 
 311         struct i2c_client *clt;
 
 312         struct i2c_adapter *adap;
 
 323         clt = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
 
 327         clt->addr = (id >> 1) & 0x7f;
 
 329         clt->driver = &therm_pm72_driver;
 
 330         strncpy(clt->name, name, I2C_NAME_SIZE-1);
 
 332         if (i2c_attach_client(clt)) {
 
 333                 printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
 
 341  * Utility function to get rid of the i2c_client structure
 
 342  * (will also detach from the adapter hopepfully)
 
 344 static void detach_i2c_chip(struct i2c_client *clt)
 
 346         i2c_detach_client(clt);
 
 351  * Here are the i2c chip access wrappers
 
 354 static void initialize_adc(struct cpu_pid_state *state)
 
 359         /* Read ADC the configuration register and cache it. We
 
 360          * also make sure Config2 contains proper values, I've seen
 
 361          * cases where we got stale grabage in there, thus preventing
 
 362          * proper reading of conv. values
 
 368         i2c_master_send(state->monitor, buf, 2);
 
 370         /* Read & cache Config1 */
 
 372         rc = i2c_master_send(state->monitor, buf, 1);
 
 374                 rc = i2c_master_recv(state->monitor, buf, 1);
 
 376                         state->adc_config = buf[0];
 
 377                         DBG("ADC config reg: %02x\n", state->adc_config);
 
 378                         /* Disable shutdown mode */
 
 379                         state->adc_config &= 0xfe;
 
 381                         buf[1] = state->adc_config;
 
 382                         rc = i2c_master_send(state->monitor, buf, 2);
 
 386                 printk(KERN_ERR "therm_pm72: Error reading ADC config"
 
 390 static int read_smon_adc(struct cpu_pid_state *state, int chan)
 
 392         int rc, data, tries = 0;
 
 398                 buf[1] = (state->adc_config & 0x1f) | (chan << 5);
 
 399                 rc = i2c_master_send(state->monitor, buf, 2);
 
 402                 /* Wait for convertion */
 
 404                 /* Switch to data register */
 
 406                 rc = i2c_master_send(state->monitor, buf, 1);
 
 410                 rc = i2c_master_recv(state->monitor, buf, 2);
 
 413                 data = ((u16)buf[0]) << 8 | (u16)buf[1];
 
 416                 DBG("Error reading ADC, retrying...\n");
 
 418                         printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
 
 425 static int read_lm87_reg(struct i2c_client * chip, int reg)
 
 433                 rc = i2c_master_send(chip, &buf, 1);
 
 436                 rc = i2c_master_recv(chip, &buf, 1);
 
 441                 DBG("Error reading LM87, retrying...\n");
 
 443                         printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
 
 450 static int fan_read_reg(int reg, unsigned char *buf, int nb)
 
 457                 nw = i2c_master_send(fcu, buf, 1);
 
 458                 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
 
 464                 printk(KERN_ERR "Failure writing address to FCU: %d", nw);
 
 469                 nr = i2c_master_recv(fcu, buf, nb);
 
 470                 if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
 
 476                 printk(KERN_ERR "Failure reading data from FCU: %d", nw);
 
 480 static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
 
 483         unsigned char buf[16];
 
 486         memcpy(buf+1, ptr, nb);
 
 490                 nw = i2c_master_send(fcu, buf, nb);
 
 491                 if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
 
 497                 printk(KERN_ERR "Failure writing to FCU: %d", nw);
 
 501 static int start_fcu(void)
 
 503         unsigned char buf = 0xff;
 
 506         rc = fan_write_reg(0xe, &buf, 1);
 
 509         rc = fan_write_reg(0x2e, &buf, 1);
 
 512         rc = fan_read_reg(0, &buf, 1);
 
 515         fcu_rpm_shift = (buf == 1) ? 2 : 3;
 
 516         printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
 
 522 static int set_rpm_fan(int fan_index, int rpm)
 
 524         unsigned char buf[2];
 
 525         int rc, id, min, max;
 
 527         if (fcu_fans[fan_index].type != FCU_FAN_RPM)
 
 529         id = fcu_fans[fan_index].id; 
 
 530         if (id == FCU_FAN_ABSENT_ID)
 
 533         min = 2400 >> fcu_rpm_shift;
 
 534         max = 56000 >> fcu_rpm_shift;
 
 540         buf[0] = rpm >> (8 - fcu_rpm_shift);
 
 541         buf[1] = rpm << fcu_rpm_shift;
 
 542         rc = fan_write_reg(0x10 + (id * 2), buf, 2);
 
 548 static int get_rpm_fan(int fan_index, int programmed)
 
 550         unsigned char failure;
 
 551         unsigned char active;
 
 552         unsigned char buf[2];
 
 553         int rc, id, reg_base;
 
 555         if (fcu_fans[fan_index].type != FCU_FAN_RPM)
 
 557         id = fcu_fans[fan_index].id; 
 
 558         if (id == FCU_FAN_ABSENT_ID)
 
 561         rc = fan_read_reg(0xb, &failure, 1);
 
 564         if ((failure & (1 << id)) != 0)
 
 566         rc = fan_read_reg(0xd, &active, 1);
 
 569         if ((active & (1 << id)) == 0)
 
 572         /* Programmed value or real current speed */
 
 573         reg_base = programmed ? 0x10 : 0x11;
 
 574         rc = fan_read_reg(reg_base + (id * 2), buf, 2);
 
 578         return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
 
 581 static int set_pwm_fan(int fan_index, int pwm)
 
 583         unsigned char buf[2];
 
 586         if (fcu_fans[fan_index].type != FCU_FAN_PWM)
 
 588         id = fcu_fans[fan_index].id; 
 
 589         if (id == FCU_FAN_ABSENT_ID)
 
 596         pwm = (pwm * 2559) / 1000;
 
 598         rc = fan_write_reg(0x30 + (id * 2), buf, 1);
 
 604 static int get_pwm_fan(int fan_index)
 
 606         unsigned char failure;
 
 607         unsigned char active;
 
 608         unsigned char buf[2];
 
 611         if (fcu_fans[fan_index].type != FCU_FAN_PWM)
 
 613         id = fcu_fans[fan_index].id; 
 
 614         if (id == FCU_FAN_ABSENT_ID)
 
 617         rc = fan_read_reg(0x2b, &failure, 1);
 
 620         if ((failure & (1 << id)) != 0)
 
 622         rc = fan_read_reg(0x2d, &active, 1);
 
 625         if ((active & (1 << id)) == 0)
 
 628         /* Programmed value or real current speed */
 
 629         rc = fan_read_reg(0x30 + (id * 2), buf, 1);
 
 633         return (buf[0] * 1000) / 2559;
 
 636 static void tickle_fcu(void)
 
 640         pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
 
 642         DBG("FCU Tickle, slots fan is: %d\n", pwm);
 
 647                 pwm = SLOTS_FAN_DEFAULT_PWM;
 
 648         } else if (pwm < SLOTS_PID_OUTPUT_MIN)
 
 649                 pwm = SLOTS_PID_OUTPUT_MIN;
 
 651         /* That is hopefully enough to make the FCU happy */
 
 652         set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
 
 657  * Utility routine to read the CPU calibration EEPROM data
 
 658  * from the device-tree
 
 660 static int read_eeprom(int cpu, struct mpu_data *out)
 
 662         struct device_node *np;
 
 667         /* prom.c routine for finding a node by path is a bit brain dead
 
 668          * and requires exact @xxx unit numbers. This is a bit ugly but
 
 669          * will work for these machines
 
 671         sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
 
 672         np = of_find_node_by_path(nodename);
 
 674                 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
 
 677         data = of_get_property(np, "cpuid", &len);
 
 679                 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
 
 683         memcpy(out, data, sizeof(struct mpu_data));
 
 689 static void fetch_cpu_pumps_minmax(void)
 
 691         struct cpu_pid_state *state0 = &cpu_state[0];
 
 692         struct cpu_pid_state *state1 = &cpu_state[1];
 
 693         u16 pump_min = 0, pump_max = 0xffff;
 
 696         /* Try to fetch pumps min/max infos from eeprom */
 
 698         memcpy(&tmp, &state0->mpu.processor_part_num, 8);
 
 699         if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
 
 700                 pump_min = max(pump_min, tmp[0]);
 
 701                 pump_max = min(pump_max, tmp[1]);
 
 703         if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
 
 704                 pump_min = max(pump_min, tmp[2]);
 
 705                 pump_max = min(pump_max, tmp[3]);
 
 708         /* Double check the values, this _IS_ needed as the EEPROM on
 
 709          * some dual 2.5Ghz G5s seem, at least, to have both min & max
 
 710          * same to the same value ... (grrrr)
 
 712         if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
 
 713                 pump_min = CPU_PUMP_OUTPUT_MIN;
 
 714                 pump_max = CPU_PUMP_OUTPUT_MAX;
 
 717         state0->pump_min = state1->pump_min = pump_min;
 
 718         state0->pump_max = state1->pump_max = pump_max;
 
 722  * Now, unfortunately, sysfs doesn't give us a nice void * we could
 
 723  * pass around to the attribute functions, so we don't really have
 
 724  * choice but implement a bunch of them...
 
 726  * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
 
 727  * the input twice... I accept patches :)
 
 729 #define BUILD_SHOW_FUNC_FIX(name, data)                         \
 
 730 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
 
 733         mutex_lock(&driver_lock);                                       \
 
 734         r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));        \
 
 735         mutex_unlock(&driver_lock);                                     \
 
 738 #define BUILD_SHOW_FUNC_INT(name, data)                         \
 
 739 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
 
 741         return sprintf(buf, "%d", data);                        \
 
 744 BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
 
 745 BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
 
 746 BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
 
 747 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
 
 748 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)
 
 750 BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
 
 751 BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
 
 752 BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
 
 753 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
 
 754 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)
 
 756 BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
 
 757 BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
 
 759 BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
 
 760 BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
 
 762 BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
 
 763 BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
 
 765 BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
 
 767 static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
 
 768 static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
 
 769 static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
 
 770 static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
 
 771 static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
 
 773 static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
 
 774 static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
 
 775 static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
 
 776 static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
 
 777 static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
 
 779 static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
 
 780 static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
 
 782 static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
 
 783 static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
 
 785 static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
 
 786 static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
 
 788 static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
 
 791  * CPUs fans control loop
 
 794 static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
 
 796         s32 ltemp, volts, amps;
 
 799         /* Default (in case of error) */
 
 800         *temp = state->cur_temp;
 
 801         *power = state->cur_power;
 
 803         if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
 
 804                 index = (state->index == 0) ?
 
 805                         CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
 
 807                 index = (state->index == 0) ?
 
 808                         CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
 
 810         /* Read current fan status */
 
 811         rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
 
 813                 /* XXX What do we do now ? Nothing for now, keep old value, but
 
 814                  * return error upstream
 
 816                 DBG("  cpu %d, fan reading error !\n", state->index);
 
 819                 DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
 
 822         /* Get some sensor readings and scale it */
 
 823         ltemp = read_smon_adc(state, 1);
 
 825                 /* XXX What do we do now ? */
 
 829                 DBG("  cpu %d, temp reading error !\n", state->index);
 
 831                 /* Fixup temperature according to diode calibration
 
 833                 DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
 
 835                     ltemp, state->mpu.mdiode, state->mpu.bdiode);
 
 836                 *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
 
 837                 state->last_temp = *temp;
 
 838                 DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
 
 842          * Read voltage & current and calculate power
 
 844         volts = read_smon_adc(state, 3);
 
 845         amps = read_smon_adc(state, 4);
 
 847         /* Scale voltage and current raw sensor values according to fixed scales
 
 848          * obtained in Darwin and calculate power from I and V
 
 850         volts *= ADC_CPU_VOLTAGE_SCALE;
 
 851         amps *= ADC_CPU_CURRENT_SCALE;
 
 852         *power = (((u64)volts) * ((u64)amps)) >> 16;
 
 853         state->voltage = volts;
 
 854         state->current_a = amps;
 
 855         state->last_power = *power;
 
 857         DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
 
 858             state->index, FIX32TOPRINT(state->current_a),
 
 859             FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
 
 864 static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
 
 866         s32 power_target, integral, derivative, proportional, adj_in_target, sval;
 
 867         s64 integ_p, deriv_p, prop_p, sum; 
 
 870         /* Calculate power target value (could be done once for all)
 
 871          * and convert to a 16.16 fp number
 
 873         power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
 
 874         DBG("  power target: %d.%03d, error: %d.%03d\n",
 
 875             FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
 
 877         /* Store temperature and power in history array */
 
 878         state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
 
 879         state->temp_history[state->cur_temp] = temp;
 
 880         state->cur_power = (state->cur_power + 1) % state->count_power;
 
 881         state->power_history[state->cur_power] = power;
 
 882         state->error_history[state->cur_power] = power_target - power;
 
 884         /* If first loop, fill the history table */
 
 886                 for (i = 0; i < (state->count_power - 1); i++) {
 
 887                         state->cur_power = (state->cur_power + 1) % state->count_power;
 
 888                         state->power_history[state->cur_power] = power;
 
 889                         state->error_history[state->cur_power] = power_target - power;
 
 891                 for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
 
 892                         state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
 
 893                         state->temp_history[state->cur_temp] = temp;                    
 
 898         /* Calculate the integral term normally based on the "power" values */
 
 901         for (i = 0; i < state->count_power; i++)
 
 902                 integral += state->error_history[i];
 
 903         integral *= CPU_PID_INTERVAL;
 
 904         DBG("  integral: %08x\n", integral);
 
 906         /* Calculate the adjusted input (sense value).
 
 909          *   so the result is 28.36
 
 911          * input target is mpu.ttarget, input max is mpu.tmax
 
 913         integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
 
 914         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
 
 915         sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
 
 916         adj_in_target = (state->mpu.ttarget << 16);
 
 917         if (adj_in_target > sval)
 
 918                 adj_in_target = sval;
 
 919         DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
 
 922         /* Calculate the derivative term */
 
 923         derivative = state->temp_history[state->cur_temp] -
 
 924                 state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
 
 925                                     % CPU_TEMP_HISTORY_SIZE];
 
 926         derivative /= CPU_PID_INTERVAL;
 
 927         deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
 
 928         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
 
 931         /* Calculate the proportional term */
 
 932         proportional = temp - adj_in_target;
 
 933         prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
 
 934         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
 
 940         DBG("   sum: %d\n", (int)sum);
 
 941         state->rpm += (s32)sum;
 
 944 static void do_monitor_cpu_combined(void)
 
 946         struct cpu_pid_state *state0 = &cpu_state[0];
 
 947         struct cpu_pid_state *state1 = &cpu_state[1];
 
 948         s32 temp0, power0, temp1, power1;
 
 949         s32 temp_combi, power_combi;
 
 950         int rc, intake, pump;
 
 952         rc = do_read_one_cpu_values(state0, &temp0, &power0);
 
 954                 /* XXX What do we do now ? */
 
 956         state1->overtemp = 0;
 
 957         rc = do_read_one_cpu_values(state1, &temp1, &power1);
 
 959                 /* XXX What do we do now ? */
 
 961         if (state1->overtemp)
 
 964         temp_combi = max(temp0, temp1);
 
 965         power_combi = max(power0, power1);
 
 967         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
 
 968          * full blown immediately and try to trigger a shutdown
 
 970         if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
 
 971                 printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
 
 973                 state0->overtemp += CPU_MAX_OVERTEMP / 4;
 
 974         } else if (temp_combi > (state0->mpu.tmax << 16))
 
 977                 state0->overtemp = 0;
 
 978         if (state0->overtemp >= CPU_MAX_OVERTEMP)
 
 980         if (state0->overtemp > 0) {
 
 981                 state0->rpm = state0->mpu.rmaxn_exhaust_fan;
 
 982                 state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
 
 983                 pump = state0->pump_max;
 
 988         do_cpu_pid(state0, temp_combi, power_combi);
 
 991         state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
 
 992         state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
 
 994         /* Calculate intake fan speed */
 
 995         intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
 
 996         intake = max(intake, (int)state0->mpu.rminn_intake_fan);
 
 997         intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
 
 998         state0->intake_rpm = intake;
 
1000         /* Calculate pump speed */
 
1001         pump = (state0->rpm * state0->pump_max) /
 
1002                 state0->mpu.rmaxn_exhaust_fan;
 
1003         pump = min(pump, state0->pump_max);
 
1004         pump = max(pump, state0->pump_min);
 
1007         /* We copy values from state 0 to state 1 for /sysfs */
 
1008         state1->rpm = state0->rpm;
 
1009         state1->intake_rpm = state0->intake_rpm;
 
1011         DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
 
1012             state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
 
1014         /* We should check for errors, shouldn't we ? But then, what
 
1015          * do we do once the error occurs ? For FCU notified fan
 
1016          * failures (-EFAULT) we probably want to notify userland
 
1019         set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
 
1020         set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
 
1021         set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
 
1022         set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
 
1024         if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
 
1025                 set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
 
1026         if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
 
1027                 set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
 
1030 static void do_monitor_cpu_split(struct cpu_pid_state *state)
 
1035         /* Read current fan status */
 
1036         rc = do_read_one_cpu_values(state, &temp, &power);
 
1038                 /* XXX What do we do now ? */
 
1041         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
 
1042          * full blown immediately and try to trigger a shutdown
 
1044         if (temp >= ((state->mpu.tmax + 8) << 16)) {
 
1045                 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
 
1047                        state->index, temp >> 16);
 
1048                 state->overtemp += CPU_MAX_OVERTEMP / 4;
 
1049         } else if (temp > (state->mpu.tmax << 16))
 
1052                 state->overtemp = 0;
 
1053         if (state->overtemp >= CPU_MAX_OVERTEMP)
 
1055         if (state->overtemp > 0) {
 
1056                 state->rpm = state->mpu.rmaxn_exhaust_fan;
 
1057                 state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
 
1062         do_cpu_pid(state, temp, power);
 
1065         state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
 
1066         state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
 
1068         /* Calculate intake fan */
 
1069         intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
 
1070         intake = max(intake, (int)state->mpu.rminn_intake_fan);
 
1071         intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
 
1072         state->intake_rpm = intake;
 
1075         DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
 
1076             state->index, (int)state->rpm, intake, state->overtemp);
 
1078         /* We should check for errors, shouldn't we ? But then, what
 
1079          * do we do once the error occurs ? For FCU notified fan
 
1080          * failures (-EFAULT) we probably want to notify userland
 
1083         if (state->index == 0) {
 
1084                 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
 
1085                 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
 
1087                 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
 
1088                 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
 
1092 static void do_monitor_cpu_rack(struct cpu_pid_state *state)
 
1094         s32 temp, power, fan_min;
 
1097         /* Read current fan status */
 
1098         rc = do_read_one_cpu_values(state, &temp, &power);
 
1100                 /* XXX What do we do now ? */
 
1103         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
 
1104          * full blown immediately and try to trigger a shutdown
 
1106         if (temp >= ((state->mpu.tmax + 8) << 16)) {
 
1107                 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
 
1109                        state->index, temp >> 16);
 
1110                 state->overtemp = CPU_MAX_OVERTEMP / 4;
 
1111         } else if (temp > (state->mpu.tmax << 16))
 
1114                 state->overtemp = 0;
 
1115         if (state->overtemp >= CPU_MAX_OVERTEMP)
 
1117         if (state->overtemp > 0) {
 
1118                 state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
 
1123         do_cpu_pid(state, temp, power);
 
1125         /* Check clamp from dimms */
 
1126         fan_min = dimm_output_clamp;
 
1127         fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
 
1129         DBG(" CPU min mpu = %d, min dimm = %d\n",
 
1130             state->mpu.rminn_intake_fan, dimm_output_clamp);
 
1132         state->rpm = max(state->rpm, (int)fan_min);
 
1133         state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
 
1134         state->intake_rpm = state->rpm;
 
1137         DBG("** CPU %d RPM: %d overtemp: %d\n",
 
1138             state->index, (int)state->rpm, state->overtemp);
 
1140         /* We should check for errors, shouldn't we ? But then, what
 
1141          * do we do once the error occurs ? For FCU notified fan
 
1142          * failures (-EFAULT) we probably want to notify userland
 
1145         if (state->index == 0) {
 
1146                 set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
 
1147                 set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
 
1148                 set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
 
1150                 set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
 
1151                 set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
 
1152                 set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
 
1157  * Initialize the state structure for one CPU control loop
 
1159 static int init_cpu_state(struct cpu_pid_state *state, int index)
 
1163         state->index = index;
 
1165         state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
 
1166         state->overtemp = 0;
 
1167         state->adc_config = 0x00;
 
1171                 state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
 
1172         else if (index == 1)
 
1173                 state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
 
1174         if (state->monitor == NULL)
 
1177         if (read_eeprom(index, &state->mpu))
 
1180         state->count_power = state->mpu.tguardband;
 
1181         if (state->count_power > CPU_POWER_HISTORY_SIZE) {
 
1182                 printk(KERN_WARNING "Warning ! too many power history slots\n");
 
1183                 state->count_power = CPU_POWER_HISTORY_SIZE;
 
1185         DBG("CPU %d Using %d power history entries\n", index, state->count_power);
 
1188                 err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
 
1189                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
 
1190                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
 
1191                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
 
1192                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
 
1194                 err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
 
1195                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
 
1196                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
 
1197                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
 
1198                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
 
1201                 printk(KERN_WARNING "Failed to create some of the atribute"
 
1202                         "files for CPU %d\n", index);
 
1207                 detach_i2c_chip(state->monitor);
 
1208         state->monitor = NULL;
 
1214  * Dispose of the state data for one CPU control loop
 
1216 static void dispose_cpu_state(struct cpu_pid_state *state)
 
1218         if (state->monitor == NULL)
 
1221         if (state->index == 0) {
 
1222                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
 
1223                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
 
1224                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
 
1225                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
 
1226                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
 
1228                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
 
1229                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
 
1230                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
 
1231                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
 
1232                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
 
1235         detach_i2c_chip(state->monitor);
 
1236         state->monitor = NULL;
 
1240  * Motherboard backside & U3 heatsink fan control loop
 
1242 static void do_monitor_backside(struct backside_pid_state *state)
 
1244         s32 temp, integral, derivative, fan_min;
 
1245         s64 integ_p, deriv_p, prop_p, sum; 
 
1248         if (--state->ticks != 0)
 
1250         state->ticks = backside_params.interval;
 
1254         /* Check fan status */
 
1255         rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
 
1257                 printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
 
1258                 /* XXX What do we do now ? */
 
1261         DBG("  current pwm: %d\n", state->pwm);
 
1263         /* Get some sensor readings */
 
1264         temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
 
1265         state->last_temp = temp;
 
1266         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
 
1267             FIX32TOPRINT(backside_params.input_target));
 
1269         /* Store temperature and error in history array */
 
1270         state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
 
1271         state->sample_history[state->cur_sample] = temp;
 
1272         state->error_history[state->cur_sample] = temp - backside_params.input_target;
 
1274         /* If first loop, fill the history table */
 
1276                 for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
 
1277                         state->cur_sample = (state->cur_sample + 1) %
 
1278                                 BACKSIDE_PID_HISTORY_SIZE;
 
1279                         state->sample_history[state->cur_sample] = temp;
 
1280                         state->error_history[state->cur_sample] =
 
1281                                 temp - backside_params.input_target;
 
1286         /* Calculate the integral term */
 
1289         for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
 
1290                 integral += state->error_history[i];
 
1291         integral *= backside_params.interval;
 
1292         DBG("  integral: %08x\n", integral);
 
1293         integ_p = ((s64)backside_params.G_r) * (s64)integral;
 
1294         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
 
1297         /* Calculate the derivative term */
 
1298         derivative = state->error_history[state->cur_sample] -
 
1299                 state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
 
1300                                     % BACKSIDE_PID_HISTORY_SIZE];
 
1301         derivative /= backside_params.interval;
 
1302         deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
 
1303         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
 
1306         /* Calculate the proportional term */
 
1307         prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
 
1308         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
 
1314         DBG("   sum: %d\n", (int)sum);
 
1315         if (backside_params.additive)
 
1316                 state->pwm += (s32)sum;
 
1320         /* Check for clamp */
 
1321         fan_min = (dimm_output_clamp * 100) / 14000;
 
1322         fan_min = max(fan_min, backside_params.output_min);
 
1324         state->pwm = max(state->pwm, fan_min);
 
1325         state->pwm = min(state->pwm, backside_params.output_max);
 
1327         DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
 
1328         set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
 
1332  * Initialize the state structure for the backside fan control loop
 
1334 static int init_backside_state(struct backside_pid_state *state)
 
1336         struct device_node *u3;
 
1337         int u3h = 1; /* conservative by default */
 
1341          * There are different PID params for machines with U3 and machines
 
1342          * with U3H, pick the right ones now
 
1344         u3 = of_find_node_by_path("/u3@0,f8000000");
 
1346                 const u32 *vers = of_get_property(u3, "device-rev", NULL);
 
1348                         if (((*vers) & 0x3f) < 0x34)
 
1354                 backside_params.G_d = BACKSIDE_PID_RACK_G_d;
 
1355                 backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
 
1356                 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
 
1357                 backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
 
1358                 backside_params.G_p = BACKSIDE_PID_RACK_G_p;
 
1359                 backside_params.G_r = BACKSIDE_PID_G_r;
 
1360                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
 
1361                 backside_params.additive = 0;
 
1363                 backside_params.G_d = BACKSIDE_PID_U3H_G_d;
 
1364                 backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
 
1365                 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
 
1366                 backside_params.interval = BACKSIDE_PID_INTERVAL;
 
1367                 backside_params.G_p = BACKSIDE_PID_G_p;
 
1368                 backside_params.G_r = BACKSIDE_PID_G_r;
 
1369                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
 
1370                 backside_params.additive = 1;
 
1372                 backside_params.G_d = BACKSIDE_PID_U3_G_d;
 
1373                 backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
 
1374                 backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
 
1375                 backside_params.interval = BACKSIDE_PID_INTERVAL;
 
1376                 backside_params.G_p = BACKSIDE_PID_G_p;
 
1377                 backside_params.G_r = BACKSIDE_PID_G_r;
 
1378                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
 
1379                 backside_params.additive = 1;
 
1386         state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
 
1387         if (state->monitor == NULL)
 
1390         err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
 
1391         err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
 
1393                 printk(KERN_WARNING "Failed to create attribute file(s)"
 
1394                         " for backside fan\n");
 
1400  * Dispose of the state data for the backside control loop
 
1402 static void dispose_backside_state(struct backside_pid_state *state)
 
1404         if (state->monitor == NULL)
 
1407         device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
 
1408         device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
 
1410         detach_i2c_chip(state->monitor);
 
1411         state->monitor = NULL;
 
1415  * Drives bay fan control loop
 
1417 static void do_monitor_drives(struct drives_pid_state *state)
 
1419         s32 temp, integral, derivative;
 
1420         s64 integ_p, deriv_p, prop_p, sum; 
 
1423         if (--state->ticks != 0)
 
1425         state->ticks = DRIVES_PID_INTERVAL;
 
1429         /* Check fan status */
 
1430         rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
 
1432                 printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
 
1433                 /* XXX What do we do now ? */
 
1436         DBG("  current rpm: %d\n", state->rpm);
 
1438         /* Get some sensor readings */
 
1439         temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
 
1441         state->last_temp = temp;
 
1442         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
 
1443             FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
 
1445         /* Store temperature and error in history array */
 
1446         state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
 
1447         state->sample_history[state->cur_sample] = temp;
 
1448         state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
 
1450         /* If first loop, fill the history table */
 
1452                 for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
 
1453                         state->cur_sample = (state->cur_sample + 1) %
 
1454                                 DRIVES_PID_HISTORY_SIZE;
 
1455                         state->sample_history[state->cur_sample] = temp;
 
1456                         state->error_history[state->cur_sample] =
 
1457                                 temp - DRIVES_PID_INPUT_TARGET;
 
1462         /* Calculate the integral term */
 
1465         for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
 
1466                 integral += state->error_history[i];
 
1467         integral *= DRIVES_PID_INTERVAL;
 
1468         DBG("  integral: %08x\n", integral);
 
1469         integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
 
1470         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
 
1473         /* Calculate the derivative term */
 
1474         derivative = state->error_history[state->cur_sample] -
 
1475                 state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
 
1476                                     % DRIVES_PID_HISTORY_SIZE];
 
1477         derivative /= DRIVES_PID_INTERVAL;
 
1478         deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
 
1479         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
 
1482         /* Calculate the proportional term */
 
1483         prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
 
1484         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
 
1490         DBG("   sum: %d\n", (int)sum);
 
1491         state->rpm += (s32)sum;
 
1493         state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
 
1494         state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
 
1496         DBG("** DRIVES RPM: %d\n", (int)state->rpm);
 
1497         set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
 
1501  * Initialize the state structure for the drives bay fan control loop
 
1503 static int init_drives_state(struct drives_pid_state *state)
 
1511         state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
 
1512         if (state->monitor == NULL)
 
1515         err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
 
1516         err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
 
1518                 printk(KERN_WARNING "Failed to create attribute file(s)"
 
1519                         " for drives bay fan\n");
 
1525  * Dispose of the state data for the drives control loop
 
1527 static void dispose_drives_state(struct drives_pid_state *state)
 
1529         if (state->monitor == NULL)
 
1532         device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
 
1533         device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
 
1535         detach_i2c_chip(state->monitor);
 
1536         state->monitor = NULL;
 
1540  * DIMMs temp control loop
 
1542 static void do_monitor_dimms(struct dimm_pid_state *state)
 
1544         s32 temp, integral, derivative, fan_min;
 
1545         s64 integ_p, deriv_p, prop_p, sum;
 
1548         if (--state->ticks != 0)
 
1550         state->ticks = DIMM_PID_INTERVAL;
 
1554         DBG("  current value: %d\n", state->output);
 
1556         temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
 
1560         state->last_temp = temp;
 
1561         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
 
1562             FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
 
1564         /* Store temperature and error in history array */
 
1565         state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
 
1566         state->sample_history[state->cur_sample] = temp;
 
1567         state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
 
1569         /* If first loop, fill the history table */
 
1571                 for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
 
1572                         state->cur_sample = (state->cur_sample + 1) %
 
1573                                 DIMM_PID_HISTORY_SIZE;
 
1574                         state->sample_history[state->cur_sample] = temp;
 
1575                         state->error_history[state->cur_sample] =
 
1576                                 temp - DIMM_PID_INPUT_TARGET;
 
1581         /* Calculate the integral term */
 
1584         for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
 
1585                 integral += state->error_history[i];
 
1586         integral *= DIMM_PID_INTERVAL;
 
1587         DBG("  integral: %08x\n", integral);
 
1588         integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
 
1589         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
 
1592         /* Calculate the derivative term */
 
1593         derivative = state->error_history[state->cur_sample] -
 
1594                 state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
 
1595                                     % DIMM_PID_HISTORY_SIZE];
 
1596         derivative /= DIMM_PID_INTERVAL;
 
1597         deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
 
1598         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
 
1601         /* Calculate the proportional term */
 
1602         prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
 
1603         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
 
1609         DBG("   sum: %d\n", (int)sum);
 
1610         state->output = (s32)sum;
 
1611         state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
 
1612         state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
 
1613         dimm_output_clamp = state->output;
 
1615         DBG("** DIMM clamp value: %d\n", (int)state->output);
 
1617         /* Backside PID is only every 5 seconds, force backside fan clamping now */
 
1618         fan_min = (dimm_output_clamp * 100) / 14000;
 
1619         fan_min = max(fan_min, backside_params.output_min);
 
1620         if (backside_state.pwm < fan_min) {
 
1621                 backside_state.pwm = fan_min;
 
1622                 DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
 
1623                 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
 
1628  * Initialize the state structure for the DIMM temp control loop
 
1630 static int init_dimms_state(struct dimm_pid_state *state)
 
1634         state->output = 4000;
 
1636         state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
 
1637         if (state->monitor == NULL)
 
1640         if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
 
1641                 printk(KERN_WARNING "Failed to create attribute file"
 
1642                         " for DIMM temperature\n");
 
1648  * Dispose of the state data for the DIMM control loop
 
1650 static void dispose_dimms_state(struct dimm_pid_state *state)
 
1652         if (state->monitor == NULL)
 
1655         device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
 
1657         detach_i2c_chip(state->monitor);
 
1658         state->monitor = NULL;
 
1662  * Slots fan control loop
 
1664 static void do_monitor_slots(struct slots_pid_state *state)
 
1666         s32 temp, integral, derivative;
 
1667         s64 integ_p, deriv_p, prop_p, sum;
 
1670         if (--state->ticks != 0)
 
1672         state->ticks = SLOTS_PID_INTERVAL;
 
1676         /* Check fan status */
 
1677         rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
 
1679                 printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
 
1680                 /* XXX What do we do now ? */
 
1683         DBG("  current pwm: %d\n", state->pwm);
 
1685         /* Get some sensor readings */
 
1686         temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
 
1688         state->last_temp = temp;
 
1689         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
 
1690             FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
 
1692         /* Store temperature and error in history array */
 
1693         state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
 
1694         state->sample_history[state->cur_sample] = temp;
 
1695         state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
 
1697         /* If first loop, fill the history table */
 
1699                 for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
 
1700                         state->cur_sample = (state->cur_sample + 1) %
 
1701                                 SLOTS_PID_HISTORY_SIZE;
 
1702                         state->sample_history[state->cur_sample] = temp;
 
1703                         state->error_history[state->cur_sample] =
 
1704                                 temp - SLOTS_PID_INPUT_TARGET;
 
1709         /* Calculate the integral term */
 
1712         for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
 
1713                 integral += state->error_history[i];
 
1714         integral *= SLOTS_PID_INTERVAL;
 
1715         DBG("  integral: %08x\n", integral);
 
1716         integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
 
1717         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
 
1720         /* Calculate the derivative term */
 
1721         derivative = state->error_history[state->cur_sample] -
 
1722                 state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
 
1723                                     % SLOTS_PID_HISTORY_SIZE];
 
1724         derivative /= SLOTS_PID_INTERVAL;
 
1725         deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
 
1726         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
 
1729         /* Calculate the proportional term */
 
1730         prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
 
1731         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
 
1737         DBG("   sum: %d\n", (int)sum);
 
1738         state->pwm = (s32)sum;
 
1740         state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
 
1741         state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
 
1743         DBG("** DRIVES PWM: %d\n", (int)state->pwm);
 
1744         set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
 
1748  * Initialize the state structure for the slots bay fan control loop
 
1750 static int init_slots_state(struct slots_pid_state *state)
 
1758         state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
 
1759         if (state->monitor == NULL)
 
1762         err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
 
1763         err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
 
1765                 printk(KERN_WARNING "Failed to create attribute file(s)"
 
1766                         " for slots bay fan\n");
 
1772  * Dispose of the state data for the slots control loop
 
1774 static void dispose_slots_state(struct slots_pid_state *state)
 
1776         if (state->monitor == NULL)
 
1779         device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
 
1780         device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
 
1782         detach_i2c_chip(state->monitor);
 
1783         state->monitor = NULL;
 
1787 static int call_critical_overtemp(void)
 
1789         char *argv[] = { critical_overtemp_path, NULL };
 
1790         static char *envp[] = { "HOME=/",
 
1792                                 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
 
1795         return call_usermodehelper(critical_overtemp_path,
 
1796                                    argv, envp, UMH_WAIT_EXEC);
 
1801  * Here's the kernel thread that calls the various control loops
 
1803 static int main_control_loop(void *x)
 
1805         DBG("main_control_loop started\n");
 
1807         mutex_lock(&driver_lock);
 
1809         if (start_fcu() < 0) {
 
1810                 printk(KERN_ERR "kfand: failed to start FCU\n");
 
1811                 mutex_unlock(&driver_lock);
 
1815         /* Set the PCI fan once for now on non-RackMac */
 
1817                 set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
 
1819         /* Initialize ADCs */
 
1820         initialize_adc(&cpu_state[0]);
 
1821         if (cpu_state[1].monitor != NULL)
 
1822                 initialize_adc(&cpu_state[1]);
 
1824         fcu_tickle_ticks = FCU_TICKLE_TICKS;
 
1826         mutex_unlock(&driver_lock);
 
1828         while (state == state_attached) {
 
1829                 unsigned long elapsed, start;
 
1833                 mutex_lock(&driver_lock);
 
1835                 /* Tickle the FCU just in case */
 
1836                 if (--fcu_tickle_ticks < 0) {
 
1837                         fcu_tickle_ticks = FCU_TICKLE_TICKS;
 
1841                 /* First, we always calculate the new DIMMs state on an Xserve */
 
1843                         do_monitor_dimms(&dimms_state);
 
1845                 /* Then, the CPUs */
 
1846                 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
 
1847                         do_monitor_cpu_combined();
 
1848                 else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
 
1849                         do_monitor_cpu_rack(&cpu_state[0]);
 
1850                         if (cpu_state[1].monitor != NULL)
 
1851                                 do_monitor_cpu_rack(&cpu_state[1]);
 
1852                         // better deal with UP
 
1854                         do_monitor_cpu_split(&cpu_state[0]);
 
1855                         if (cpu_state[1].monitor != NULL)
 
1856                                 do_monitor_cpu_split(&cpu_state[1]);
 
1857                         // better deal with UP
 
1859                 /* Then, the rest */
 
1860                 do_monitor_backside(&backside_state);
 
1862                         do_monitor_slots(&slots_state);
 
1864                         do_monitor_drives(&drives_state);
 
1865                 mutex_unlock(&driver_lock);
 
1867                 if (critical_state == 1) {
 
1868                         printk(KERN_WARNING "Temperature control detected a critical condition\n");
 
1869                         printk(KERN_WARNING "Attempting to shut down...\n");
 
1870                         if (call_critical_overtemp()) {
 
1871                                 printk(KERN_WARNING "Can't call %s, power off now!\n",
 
1872                                        critical_overtemp_path);
 
1873                                 machine_power_off();
 
1876                 if (critical_state > 0)
 
1878                 if (critical_state > MAX_CRITICAL_STATE) {
 
1879                         printk(KERN_WARNING "Shutdown timed out, power off now !\n");
 
1880                         machine_power_off();
 
1883                 // FIXME: Deal with signals
 
1884                 elapsed = jiffies - start;
 
1886                         schedule_timeout_interruptible(HZ - elapsed);
 
1890         DBG("main_control_loop ended\n");
 
1893         complete_and_exit(&ctrl_complete, 0);
 
1897  * Dispose the control loops when tearing down
 
1899 static void dispose_control_loops(void)
 
1901         dispose_cpu_state(&cpu_state[0]);
 
1902         dispose_cpu_state(&cpu_state[1]);
 
1903         dispose_backside_state(&backside_state);
 
1904         dispose_drives_state(&drives_state);
 
1905         dispose_slots_state(&slots_state);
 
1906         dispose_dimms_state(&dimms_state);
 
1910  * Create the control loops. U3-0 i2c bus is up, so we can now
 
1911  * get to the various sensors
 
1913 static int create_control_loops(void)
 
1915         struct device_node *np;
 
1917         /* Count CPUs from the device-tree, we don't care how many are
 
1918          * actually used by Linux
 
1921         for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
 
1924         DBG("counted %d CPUs in the device-tree\n", cpu_count);
 
1926         /* Decide the type of PID algorithm to use based on the presence of
 
1927          * the pumps, though that may not be the best way, that is good enough
 
1931                 cpu_pid_type = CPU_PID_TYPE_RACKMAC;
 
1932         else if (machine_is_compatible("PowerMac7,3")
 
1934             && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
 
1935             && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
 
1936                 printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
 
1937                 cpu_pid_type = CPU_PID_TYPE_COMBINED;
 
1939                 cpu_pid_type = CPU_PID_TYPE_SPLIT;
 
1941         /* Create control loops for everything. If any fail, everything
 
1944         if (init_cpu_state(&cpu_state[0], 0))
 
1946         if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
 
1947                 fetch_cpu_pumps_minmax();
 
1949         if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
 
1951         if (init_backside_state(&backside_state))
 
1953         if (rackmac && init_dimms_state(&dimms_state))
 
1955         if (rackmac && init_slots_state(&slots_state))
 
1957         if (!rackmac && init_drives_state(&drives_state))
 
1960         DBG("all control loops up !\n");
 
1965         DBG("failure creating control loops, disposing\n");
 
1967         dispose_control_loops();
 
1973  * Start the control loops after everything is up, that is create
 
1974  * the thread that will make them run
 
1976 static void start_control_loops(void)
 
1978         init_completion(&ctrl_complete);
 
1980         ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
 
1984  * Stop the control loops when tearing down
 
1986 static void stop_control_loops(void)
 
1989                 wait_for_completion(&ctrl_complete);
 
1993  * Attach to the i2c FCU after detecting U3-1 bus
 
1995 static int attach_fcu(void)
 
1997         fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
 
2001         DBG("FCU attached\n");
 
2007  * Detach from the i2c FCU when tearing down
 
2009 static void detach_fcu(void)
 
2012                 detach_i2c_chip(fcu);
 
2017  * Attach to the i2c controller. We probe the various chips based
 
2018  * on the device-tree nodes and build everything for the driver to
 
2019  * run, we then kick the driver monitoring thread
 
2021 static int therm_pm72_attach(struct i2c_adapter *adapter)
 
2023         mutex_lock(&driver_lock);
 
2026         if (state == state_detached)
 
2027                 state = state_attaching;
 
2028         if (state != state_attaching) {
 
2029                 mutex_unlock(&driver_lock);
 
2033         /* Check if we are looking for one of these */
 
2034         if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
 
2036                 DBG("found U3-0\n");
 
2038                         if (create_control_loops())
 
2040         } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
 
2042                 DBG("found U3-1, attaching FCU\n");
 
2045         } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
 
2048                 if (u3_0 && rackmac)
 
2049                         if (create_control_loops())
 
2052         /* We got all we need, start control loops */
 
2053         if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
 
2054                 DBG("everything up, starting control loops\n");
 
2055                 state = state_attached;
 
2056                 start_control_loops();
 
2058         mutex_unlock(&driver_lock);
 
2064  * Called on every adapter when the driver or the i2c controller
 
2067 static int therm_pm72_detach(struct i2c_adapter *adapter)
 
2069         mutex_lock(&driver_lock);
 
2071         if (state != state_detached)
 
2072                 state = state_detaching;
 
2074         /* Stop control loops if any */
 
2075         DBG("stopping control loops\n");
 
2076         mutex_unlock(&driver_lock);
 
2077         stop_control_loops();
 
2078         mutex_lock(&driver_lock);
 
2080         if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
 
2081                 DBG("lost U3-0, disposing control loops\n");
 
2082                 dispose_control_loops();
 
2086         if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
 
2087                 DBG("lost U3-1, detaching FCU\n");
 
2091         if (u3_0 == NULL && u3_1 == NULL)
 
2092                 state = state_detached;
 
2094         mutex_unlock(&driver_lock);
 
2099 static int fan_check_loc_match(const char *loc, int fan)
 
2104         strlcpy(tmp, fcu_fans[fan].loc, 64);
 
2111                 if (strcmp(loc, c) == 0)
 
2120 static void fcu_lookup_fans(struct device_node *fcu_node)
 
2122         struct device_node *np = NULL;
 
2125         /* The table is filled by default with values that are suitable
 
2126          * for the old machines without device-tree informations. We scan
 
2127          * the device-tree and override those values with whatever is
 
2131         DBG("Looking up FCU controls in device-tree...\n");
 
2133         while ((np = of_get_next_child(fcu_node, np)) != NULL) {
 
2138                 DBG(" control: %s, type: %s\n", np->name, np->type);
 
2140                 /* Detect control type */
 
2141                 if (!strcmp(np->type, "fan-rpm-control") ||
 
2142                     !strcmp(np->type, "fan-rpm"))
 
2144                 if (!strcmp(np->type, "fan-pwm-control") ||
 
2145                     !strcmp(np->type, "fan-pwm"))
 
2147                 /* Only care about fans for now */
 
2151                 /* Lookup for a matching location */
 
2152                 loc = of_get_property(np, "location", NULL);
 
2153                 reg = of_get_property(np, "reg", NULL);
 
2154                 if (loc == NULL || reg == NULL)
 
2156                 DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
 
2158                 for (i = 0; i < FCU_FAN_COUNT; i++) {
 
2161                         if (!fan_check_loc_match(loc, i))
 
2163                         DBG(" location match, index: %d\n", i);
 
2164                         fcu_fans[i].id = FCU_FAN_ABSENT_ID;
 
2165                         if (type != fcu_fans[i].type) {
 
2166                                 printk(KERN_WARNING "therm_pm72: Fan type mismatch "
 
2167                                        "in device-tree for %s\n", np->full_name);
 
2170                         if (type == FCU_FAN_RPM)
 
2171                                 fan_id = ((*reg) - 0x10) / 2;
 
2173                                 fan_id = ((*reg) - 0x30) / 2;
 
2175                                 printk(KERN_WARNING "therm_pm72: Can't parse "
 
2176                                        "fan ID in device-tree for %s\n", np->full_name);
 
2179                         DBG(" fan id -> %d, type -> %d\n", fan_id, type);
 
2180                         fcu_fans[i].id = fan_id;
 
2184         /* Now dump the array */
 
2185         printk(KERN_INFO "Detected fan controls:\n");
 
2186         for (i = 0; i < FCU_FAN_COUNT; i++) {
 
2187                 if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
 
2189                 printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
 
2190                        fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
 
2191                        fcu_fans[i].id, fcu_fans[i].loc);
 
2195 static int fcu_of_probe(struct of_device* dev, const struct of_device_id *match)
 
2197         state = state_detached;
 
2199         /* Lookup the fans in the device tree */
 
2200         fcu_lookup_fans(dev->node);
 
2202         /* Add the driver */
 
2203         return i2c_add_driver(&therm_pm72_driver);
 
2206 static int fcu_of_remove(struct of_device* dev)
 
2208         i2c_del_driver(&therm_pm72_driver);
 
2213 static struct of_device_id fcu_match[] = 
 
2221 static struct of_platform_driver fcu_of_platform_driver = 
 
2223         .name           = "temperature",
 
2224         .match_table    = fcu_match,
 
2225         .probe          = fcu_of_probe,
 
2226         .remove         = fcu_of_remove
 
2230  * Check machine type, attach to i2c controller
 
2232 static int __init therm_pm72_init(void)
 
2234         struct device_node *np;
 
2236         rackmac = machine_is_compatible("RackMac3,1");
 
2238         if (!machine_is_compatible("PowerMac7,2") &&
 
2239             !machine_is_compatible("PowerMac7,3") &&
 
2243         printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);
 
2245         np = of_find_node_by_type(NULL, "fcu");
 
2247                 /* Some machines have strangely broken device-tree */
 
2248                 np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
 
2250                             printk(KERN_ERR "Can't find FCU in device-tree !\n");
 
2254         of_dev = of_platform_device_create(np, "temperature", NULL);
 
2255         if (of_dev == NULL) {
 
2256                 printk(KERN_ERR "Can't register FCU platform device !\n");
 
2260         of_register_platform_driver(&fcu_of_platform_driver);
 
2265 static void __exit therm_pm72_exit(void)
 
2267         of_unregister_platform_driver(&fcu_of_platform_driver);
 
2270                 of_device_unregister(of_dev);
 
2273 module_init(therm_pm72_init);
 
2274 module_exit(therm_pm72_exit);
 
2276 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
 
2277 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
 
2278 MODULE_LICENSE("GPL");