3 * Stereo and SAP detection for cx88
5 * Copyright (c) 2009 Marton Balint <cus@fazekas.hu>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/jiffies.h>
25 #include <asm/div64.h>
30 #define INT_PI ((s32)(3.141592653589 * 32768.0))
32 #define compat_remainder(a, b) \
33 ((float)(((s32)((a)*100))%((s32)((b)*100)))/100.0)
35 #define baseband_freq(carrier, srate, tone) ((s32)( \
36 (compat_remainder(carrier + tone, srate)) / srate * 2 * INT_PI))
38 /* We calculate the baseband frequencies of the carrier and the pilot tones
39 * based on the the sampling rate of the audio rds fifo. */
41 #define FREQ_A2_CARRIER baseband_freq(54687.5, 2689.36, 0.0)
42 #define FREQ_A2_DUAL baseband_freq(54687.5, 2689.36, 274.1)
43 #define FREQ_A2_STEREO baseband_freq(54687.5, 2689.36, 117.5)
45 /* The frequencies below are from the reference driver. They probably need
46 * further adjustments, because they are not tested at all. You may even need
47 * to play a bit with the registers of the chip to select the proper signal
48 * for the input of the audio rds fifo, and measure it's sampling rate to
49 * calculate the proper baseband frequencies... */
51 #define FREQ_A2M_CARRIER ((s32)(2.114516 * 32768.0))
52 #define FREQ_A2M_DUAL ((s32)(2.754916 * 32768.0))
53 #define FREQ_A2M_STEREO ((s32)(2.462326 * 32768.0))
55 #define FREQ_EIAJ_CARRIER ((s32)(1.963495 * 32768.0)) /* 5pi/8 */
56 #define FREQ_EIAJ_DUAL ((s32)(2.562118 * 32768.0))
57 #define FREQ_EIAJ_STEREO ((s32)(2.601053 * 32768.0))
59 #define FREQ_BTSC_DUAL ((s32)(1.963495 * 32768.0)) /* 5pi/8 */
60 #define FREQ_BTSC_DUAL_REF ((s32)(1.374446 * 32768.0)) /* 7pi/16 */
62 #define FREQ_BTSC_SAP ((s32)(2.471532 * 32768.0))
63 #define FREQ_BTSC_SAP_REF ((s32)(1.730072 * 32768.0))
65 /* The spectrum of the signal should be empty between these frequencies. */
66 #define FREQ_NOISE_START ((s32)(0.100000 * 32768.0))
67 #define FREQ_NOISE_END ((s32)(1.200000 * 32768.0))
69 static unsigned int dsp_debug;
70 module_param(dsp_debug, int, 0644);
71 MODULE_PARM_DESC(dsp_debug, "enable audio dsp debug messages");
73 #define dprintk(level, fmt, arg...) if (dsp_debug >= level) \
74 printk(KERN_DEBUG "%s/0: " fmt, core->name , ## arg)
76 static s32 int_cos(u32 x)
80 u16 period = x / INT_PI;
82 return -int_cos(x - INT_PI);
85 return -int_cos(INT_PI/2 - (x % (INT_PI/2)));
86 /* Now x is between 0 and INT_PI/2.
87 * To calculate cos(x) we use it's Taylor polinom. */
89 t4 = t2*x/32768*x/32768/3/4;
90 t6 = t4*x/32768*x/32768/5/6;
91 t8 = t6*x/32768*x/32768/7/8;
92 ret = 32768-t2+t4-t6+t8;
96 static u32 int_goertzel(s16 x[], u32 N, u32 freq)
98 /* We use the Goertzel algorithm to determine the power of the
99 * given frequency in the signal */
102 s32 coeff = 2*int_cos(freq);
108 for (i = 0; i < N; i++) {
109 s32 s = x[i] + ((s64)coeff*s_prev/32768) - s_prev2;
114 tmp = (s64)s_prev2 * s_prev2 + (s64)s_prev * s_prev -
115 (s64)coeff * s_prev2 * s_prev / 32768;
117 /* XXX: N must be low enough so that N*N fits in s32.
118 * Else we need two divisions. */
120 do_div(tmp, divisor);
125 static u32 freq_magnitude(s16 x[], u32 N, u32 freq)
127 u32 sum = int_goertzel(x, N, freq);
128 return (u32)int_sqrt(sum);
131 static u32 noise_magnitude(s16 x[], u32 N, u32 freq_start, u32 freq_end)
139 /* The last 192 samples are enough for noise detection */
144 freq_step = (freq_end - freq_start) / (samples - 1);
146 for (i = 0; i < samples; i++) {
147 sum += int_goertzel(x, N, freq_start);
148 freq_start += freq_step;
151 return (u32)int_sqrt(sum / samples);
154 static s32 detect_a2_a2m_eiaj(struct cx88_core *core, s16 x[], u32 N)
156 s32 carrier, stereo, dual, noise;
157 s32 carrier_freq, stereo_freq, dual_freq;
160 switch (core->tvaudio) {
163 carrier_freq = FREQ_A2_CARRIER;
164 stereo_freq = FREQ_A2_STEREO;
165 dual_freq = FREQ_A2_DUAL;
168 carrier_freq = FREQ_A2M_CARRIER;
169 stereo_freq = FREQ_A2M_STEREO;
170 dual_freq = FREQ_A2M_DUAL;
173 carrier_freq = FREQ_EIAJ_CARRIER;
174 stereo_freq = FREQ_EIAJ_STEREO;
175 dual_freq = FREQ_EIAJ_DUAL;
178 printk(KERN_WARNING "%s/0: unsupported audio mode %d for %s\n",
179 core->name, core->tvaudio, __func__);
183 carrier = freq_magnitude(x, N, carrier_freq);
184 stereo = freq_magnitude(x, N, stereo_freq);
185 dual = freq_magnitude(x, N, dual_freq);
186 noise = noise_magnitude(x, N, FREQ_NOISE_START, FREQ_NOISE_END);
188 dprintk(1, "detect a2/a2m/eiaj: carrier=%d, stereo=%d, dual=%d, "
189 "noise=%d\n", carrier, stereo, dual, noise);
192 ret = V4L2_TUNER_SUB_STEREO;
194 ret = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
196 if (core->tvaudio == WW_EIAJ) {
197 /* EIAJ checks may need adjustments */
198 if ((carrier > max(stereo, dual)*2) &&
199 (carrier < max(stereo, dual)*6) &&
200 (carrier > 20 && carrier < 200) &&
201 (max(stereo, dual) > min(stereo, dual))) {
202 /* For EIAJ the carrier is always present,
203 so we probably don't need noise detection */
207 if ((carrier > max(stereo, dual)*2) &&
208 (carrier < max(stereo, dual)*8) &&
209 (carrier > 20 && carrier < 200) &&
211 (max(stereo, dual) > min(stereo, dual)*2)) {
215 return V4L2_TUNER_SUB_MONO;
218 static s32 detect_btsc(struct cx88_core *core, s16 x[], u32 N)
220 s32 sap_ref = freq_magnitude(x, N, FREQ_BTSC_SAP_REF);
221 s32 sap = freq_magnitude(x, N, FREQ_BTSC_SAP);
222 s32 dual_ref = freq_magnitude(x, N, FREQ_BTSC_DUAL_REF);
223 s32 dual = freq_magnitude(x, N, FREQ_BTSC_DUAL);
224 dprintk(1, "detect btsc: dual_ref=%d, dual=%d, sap_ref=%d, sap=%d"
225 "\n", dual_ref, dual, sap_ref, sap);
226 /* FIXME: Currently not supported */
230 static s16 *read_rds_samples(struct cx88_core *core, u32 *N)
232 struct sram_channel *srch = &cx88_sram_channels[SRAM_CH27];
236 unsigned int bpl = srch->fifo_size/AUD_RDS_LINES;
237 unsigned int spl = bpl/4;
238 unsigned int sample_count = spl*(AUD_RDS_LINES-1);
240 u32 current_address = cx_read(srch->ptr1_reg);
241 u32 offset = (current_address - srch->fifo_start + bpl);
243 dprintk(1, "read RDS samples: current_address=%08x (offset=%08x), "
244 "sample_count=%d, aud_intstat=%08x\n", current_address,
245 current_address - srch->fifo_start, sample_count,
246 cx_read(MO_AUD_INTSTAT));
248 samples = kmalloc(sizeof(s16)*sample_count, GFP_KERNEL);
254 for (i = 0; i < sample_count; i++) {
255 offset = offset % (AUD_RDS_LINES*bpl);
256 samples[i] = cx_read(srch->fifo_start + offset);
260 if (dsp_debug >= 2) {
261 dprintk(2, "RDS samples dump: ");
262 for (i = 0; i < sample_count; i++)
263 printk("%hd ", samples[i]);
270 s32 cx88_dsp_detect_stereo_sap(struct cx88_core *core)
276 /* If audio RDS fifo is disabled, we can't read the samples */
277 if (!(cx_read(MO_AUD_DMACNTRL) & 0x04))
279 if (!(cx_read(AUD_CTL) & EN_FMRADIO_EN_RDS))
282 /* Wait at least 500 ms after an audio standard change */
283 if (time_before(jiffies, core->last_change + msecs_to_jiffies(500)))
286 samples = read_rds_samples(core, &N);
291 switch (core->tvaudio) {
294 ret = detect_a2_a2m_eiaj(core, samples, N);
297 ret = detect_btsc(core, samples, N);
304 dprintk(1, "stereo/sap detection result:%s%s%s\n",
305 (ret & V4L2_TUNER_SUB_MONO) ? " mono" : "",
306 (ret & V4L2_TUNER_SUB_STEREO) ? " stereo" : "",
307 (ret & V4L2_TUNER_SUB_LANG2) ? " dual" : "");
311 EXPORT_SYMBOL(cx88_dsp_detect_stereo_sap);