[ACPI] merge 3549 4320 4485 4588 4980 5483 5651 acpica asus fops pnpacpi branches...
[linux-2.6] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004       Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>        /* need_resched() */
41
42 #include <asm/io.h>
43 #include <asm/uaccess.h>
44
45 #include <acpi/acpi_bus.h>
46 #include <acpi/processor.h>
47
48 #define ACPI_PROCESSOR_COMPONENT        0x01000000
49 #define ACPI_PROCESSOR_CLASS            "processor"
50 #define ACPI_PROCESSOR_DRIVER_NAME      "ACPI Processor Driver"
51 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
52 ACPI_MODULE_NAME("acpi_processor")
53 #define ACPI_PROCESSOR_FILE_POWER       "power"
54 #define US_TO_PM_TIMER_TICKS(t)         ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
55 #define C2_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
56 #define C3_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
57 static void (*pm_idle_save) (void);
58 module_param(max_cstate, uint, 0644);
59
60 static unsigned int nocst = 0;
61 module_param(nocst, uint, 0000);
62
63 /*
64  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
65  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
66  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
67  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
68  * reduce history for more aggressive entry into C3
69  */
70 static unsigned int bm_history =
71     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
72 module_param(bm_history, uint, 0644);
73 /* --------------------------------------------------------------------------
74                                 Power Management
75    -------------------------------------------------------------------------- */
76
77 /*
78  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79  * For now disable this. Probably a bug somewhere else.
80  *
81  * To skip this limit, boot/load with a large max_cstate limit.
82  */
83 static int set_max_cstate(struct dmi_system_id *id)
84 {
85         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86                 return 0;
87
88         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
89                " Override with \"processor.max_cstate=%d\"\n", id->ident,
90                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
91
92         max_cstate = (long)id->driver_data;
93
94         return 0;
95 }
96
97 static struct dmi_system_id __initdata processor_power_dmi_table[] = {
98         { set_max_cstate, "IBM ThinkPad R40e", {
99           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
100           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
101         { set_max_cstate, "IBM ThinkPad R40e", {
102           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
103           DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
104         { set_max_cstate, "IBM ThinkPad R40e", {
105           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
106           DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
107         { set_max_cstate, "IBM ThinkPad R40e", {
108           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
109           DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
110         { set_max_cstate, "IBM ThinkPad R40e", {
111           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
112           DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
113         { set_max_cstate, "IBM ThinkPad R40e", {
114           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
115           DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
116         { set_max_cstate, "IBM ThinkPad R40e", {
117           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
118           DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
119         { set_max_cstate, "IBM ThinkPad R40e", {
120           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
121           DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
122         { set_max_cstate, "IBM ThinkPad R40e", {
123           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
124           DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
125         { set_max_cstate, "IBM ThinkPad R40e", {
126           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
127           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
128         { set_max_cstate, "IBM ThinkPad R40e", {
129           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
130           DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
131         { set_max_cstate, "IBM ThinkPad R40e", {
132           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133           DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
134         { set_max_cstate, "IBM ThinkPad R40e", {
135           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136           DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
137         { set_max_cstate, "IBM ThinkPad R40e", {
138           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139           DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
140         { set_max_cstate, "IBM ThinkPad R40e", {
141           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142           DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
143         { set_max_cstate, "Medion 41700", {
144           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
145           DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
146         { set_max_cstate, "Clevo 5600D", {
147           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
148           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
149          (void *)2},
150         {},
151 };
152
153 static inline u32 ticks_elapsed(u32 t1, u32 t2)
154 {
155         if (t2 >= t1)
156                 return (t2 - t1);
157         else if (!acpi_fadt.tmr_val_ext)
158                 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
159         else
160                 return ((0xFFFFFFFF - t1) + t2);
161 }
162
163 static void
164 acpi_processor_power_activate(struct acpi_processor *pr,
165                               struct acpi_processor_cx *new)
166 {
167         struct acpi_processor_cx *old;
168
169         if (!pr || !new)
170                 return;
171
172         old = pr->power.state;
173
174         if (old)
175                 old->promotion.count = 0;
176         new->demotion.count = 0;
177
178         /* Cleanup from old state. */
179         if (old) {
180                 switch (old->type) {
181                 case ACPI_STATE_C3:
182                         /* Disable bus master reload */
183                         if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
184                                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0,
185                                                   ACPI_MTX_DO_NOT_LOCK);
186                         break;
187                 }
188         }
189
190         /* Prepare to use new state. */
191         switch (new->type) {
192         case ACPI_STATE_C3:
193                 /* Enable bus master reload */
194                 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
195                         acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1,
196                                           ACPI_MTX_DO_NOT_LOCK);
197                 break;
198         }
199
200         pr->power.state = new;
201
202         return;
203 }
204
205 static void acpi_safe_halt(void)
206 {
207         clear_thread_flag(TIF_POLLING_NRFLAG);
208         smp_mb__after_clear_bit();
209         if (!need_resched())
210                 safe_halt();
211         set_thread_flag(TIF_POLLING_NRFLAG);
212 }
213
214 static atomic_t c3_cpu_count;
215
216 static void acpi_processor_idle(void)
217 {
218         struct acpi_processor *pr = NULL;
219         struct acpi_processor_cx *cx = NULL;
220         struct acpi_processor_cx *next_state = NULL;
221         int sleep_ticks = 0;
222         u32 t1, t2 = 0;
223
224         pr = processors[smp_processor_id()];
225         if (!pr)
226                 return;
227
228         /*
229          * Interrupts must be disabled during bus mastering calculations and
230          * for C2/C3 transitions.
231          */
232         local_irq_disable();
233
234         /*
235          * Check whether we truly need to go idle, or should
236          * reschedule:
237          */
238         if (unlikely(need_resched())) {
239                 local_irq_enable();
240                 return;
241         }
242
243         cx = pr->power.state;
244         if (!cx) {
245                 if (pm_idle_save)
246                         pm_idle_save();
247                 else
248                         acpi_safe_halt();
249                 return;
250         }
251
252         /*
253          * Check BM Activity
254          * -----------------
255          * Check for bus mastering activity (if required), record, and check
256          * for demotion.
257          */
258         if (pr->flags.bm_check) {
259                 u32 bm_status = 0;
260                 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
261
262                 if (diff > 32)
263                         diff = 32;
264
265                 while (diff) {
266                         /* if we didn't get called, assume there was busmaster activity */
267                         diff--;
268                         if (diff)
269                                 pr->power.bm_activity |= 0x1;
270                         pr->power.bm_activity <<= 1;
271                 }
272
273                 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
274                                   &bm_status, ACPI_MTX_DO_NOT_LOCK);
275                 if (bm_status) {
276                         pr->power.bm_activity++;
277                         acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
278                                           1, ACPI_MTX_DO_NOT_LOCK);
279                 }
280                 /*
281                  * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
282                  * the true state of bus mastering activity; forcing us to
283                  * manually check the BMIDEA bit of each IDE channel.
284                  */
285                 else if (errata.piix4.bmisx) {
286                         if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
287                             || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
288                                 pr->power.bm_activity++;
289                 }
290
291                 pr->power.bm_check_timestamp = jiffies;
292
293                 /*
294                  * Apply bus mastering demotion policy.  Automatically demote
295                  * to avoid a faulty transition.  Note that the processor
296                  * won't enter a low-power state during this call (to this
297                  * funciton) but should upon the next.
298                  *
299                  * TBD: A better policy might be to fallback to the demotion
300                  *      state (use it for this quantum only) istead of
301                  *      demoting -- and rely on duration as our sole demotion
302                  *      qualification.  This may, however, introduce DMA
303                  *      issues (e.g. floppy DMA transfer overrun/underrun).
304                  */
305                 if (pr->power.bm_activity & cx->demotion.threshold.bm) {
306                         local_irq_enable();
307                         next_state = cx->demotion.state;
308                         goto end;
309                 }
310         }
311
312 #ifdef CONFIG_HOTPLUG_CPU
313         /*
314          * Check for P_LVL2_UP flag before entering C2 and above on
315          * an SMP system. We do it here instead of doing it at _CST/P_LVL
316          * detection phase, to work cleanly with logical CPU hotplug.
317          */
318         if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && 
319             !pr->flags.has_cst && !acpi_fadt.plvl2_up)
320                 cx = &pr->power.states[ACPI_STATE_C1];
321 #endif
322
323         cx->usage++;
324
325         /*
326          * Sleep:
327          * ------
328          * Invoke the current Cx state to put the processor to sleep.
329          */
330         if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
331                 clear_thread_flag(TIF_POLLING_NRFLAG);
332                 smp_mb__after_clear_bit();
333                 if (need_resched()) {
334                         set_thread_flag(TIF_POLLING_NRFLAG);
335                         local_irq_enable();
336                         return;
337                 }
338         }
339
340         switch (cx->type) {
341
342         case ACPI_STATE_C1:
343                 /*
344                  * Invoke C1.
345                  * Use the appropriate idle routine, the one that would
346                  * be used without acpi C-states.
347                  */
348                 if (pm_idle_save)
349                         pm_idle_save();
350                 else
351                         acpi_safe_halt();
352
353                 /*
354                  * TBD: Can't get time duration while in C1, as resumes
355                  *      go to an ISR rather than here.  Need to instrument
356                  *      base interrupt handler.
357                  */
358                 sleep_ticks = 0xFFFFFFFF;
359                 break;
360
361         case ACPI_STATE_C2:
362                 /* Get start time (ticks) */
363                 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
364                 /* Invoke C2 */
365                 inb(cx->address);
366                 /* Dummy op - must do something useless after P_LVL2 read */
367                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
368                 /* Get end time (ticks) */
369                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
370                 /* Re-enable interrupts */
371                 local_irq_enable();
372                 set_thread_flag(TIF_POLLING_NRFLAG);
373                 /* Compute time (ticks) that we were actually asleep */
374                 sleep_ticks =
375                     ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
376                 break;
377
378         case ACPI_STATE_C3:
379
380                 if (pr->flags.bm_check) {
381                         if (atomic_inc_return(&c3_cpu_count) ==
382                             num_online_cpus()) {
383                                 /*
384                                  * All CPUs are trying to go to C3
385                                  * Disable bus master arbitration
386                                  */
387                                 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1,
388                                                   ACPI_MTX_DO_NOT_LOCK);
389                         }
390                 } else {
391                         /* SMP with no shared cache... Invalidate cache  */
392                         ACPI_FLUSH_CPU_CACHE();
393                 }
394
395                 /* Get start time (ticks) */
396                 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
397                 /* Invoke C3 */
398                 inb(cx->address);
399                 /* Dummy op - must do something useless after P_LVL3 read */
400                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
401                 /* Get end time (ticks) */
402                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
403                 if (pr->flags.bm_check) {
404                         /* Enable bus master arbitration */
405                         atomic_dec(&c3_cpu_count);
406                         acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0,
407                                           ACPI_MTX_DO_NOT_LOCK);
408                 }
409
410                 /* Re-enable interrupts */
411                 local_irq_enable();
412                 set_thread_flag(TIF_POLLING_NRFLAG);
413                 /* Compute time (ticks) that we were actually asleep */
414                 sleep_ticks =
415                     ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
416                 break;
417
418         default:
419                 local_irq_enable();
420                 return;
421         }
422
423         next_state = pr->power.state;
424
425 #ifdef CONFIG_HOTPLUG_CPU
426         /* Don't do promotion/demotion */
427         if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
428             !pr->flags.has_cst && !acpi_fadt.plvl2_up) {
429                 next_state = cx;
430                 goto end;
431         }
432 #endif
433
434         /*
435          * Promotion?
436          * ----------
437          * Track the number of longs (time asleep is greater than threshold)
438          * and promote when the count threshold is reached.  Note that bus
439          * mastering activity may prevent promotions.
440          * Do not promote above max_cstate.
441          */
442         if (cx->promotion.state &&
443             ((cx->promotion.state - pr->power.states) <= max_cstate)) {
444                 if (sleep_ticks > cx->promotion.threshold.ticks) {
445                         cx->promotion.count++;
446                         cx->demotion.count = 0;
447                         if (cx->promotion.count >=
448                             cx->promotion.threshold.count) {
449                                 if (pr->flags.bm_check) {
450                                         if (!
451                                             (pr->power.bm_activity & cx->
452                                              promotion.threshold.bm)) {
453                                                 next_state =
454                                                     cx->promotion.state;
455                                                 goto end;
456                                         }
457                                 } else {
458                                         next_state = cx->promotion.state;
459                                         goto end;
460                                 }
461                         }
462                 }
463         }
464
465         /*
466          * Demotion?
467          * ---------
468          * Track the number of shorts (time asleep is less than time threshold)
469          * and demote when the usage threshold is reached.
470          */
471         if (cx->demotion.state) {
472                 if (sleep_ticks < cx->demotion.threshold.ticks) {
473                         cx->demotion.count++;
474                         cx->promotion.count = 0;
475                         if (cx->demotion.count >= cx->demotion.threshold.count) {
476                                 next_state = cx->demotion.state;
477                                 goto end;
478                         }
479                 }
480         }
481
482       end:
483         /*
484          * Demote if current state exceeds max_cstate
485          */
486         if ((pr->power.state - pr->power.states) > max_cstate) {
487                 if (cx->demotion.state)
488                         next_state = cx->demotion.state;
489         }
490
491         /*
492          * New Cx State?
493          * -------------
494          * If we're going to start using a new Cx state we must clean up
495          * from the previous and prepare to use the new.
496          */
497         if (next_state != pr->power.state)
498                 acpi_processor_power_activate(pr, next_state);
499 }
500
501 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
502 {
503         unsigned int i;
504         unsigned int state_is_set = 0;
505         struct acpi_processor_cx *lower = NULL;
506         struct acpi_processor_cx *higher = NULL;
507         struct acpi_processor_cx *cx;
508
509         ACPI_FUNCTION_TRACE("acpi_processor_set_power_policy");
510
511         if (!pr)
512                 return_VALUE(-EINVAL);
513
514         /*
515          * This function sets the default Cx state policy (OS idle handler).
516          * Our scheme is to promote quickly to C2 but more conservatively
517          * to C3.  We're favoring C2  for its characteristics of low latency
518          * (quick response), good power savings, and ability to allow bus
519          * mastering activity.  Note that the Cx state policy is completely
520          * customizable and can be altered dynamically.
521          */
522
523         /* startup state */
524         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
525                 cx = &pr->power.states[i];
526                 if (!cx->valid)
527                         continue;
528
529                 if (!state_is_set)
530                         pr->power.state = cx;
531                 state_is_set++;
532                 break;
533         }
534
535         if (!state_is_set)
536                 return_VALUE(-ENODEV);
537
538         /* demotion */
539         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
540                 cx = &pr->power.states[i];
541                 if (!cx->valid)
542                         continue;
543
544                 if (lower) {
545                         cx->demotion.state = lower;
546                         cx->demotion.threshold.ticks = cx->latency_ticks;
547                         cx->demotion.threshold.count = 1;
548                         if (cx->type == ACPI_STATE_C3)
549                                 cx->demotion.threshold.bm = bm_history;
550                 }
551
552                 lower = cx;
553         }
554
555         /* promotion */
556         for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
557                 cx = &pr->power.states[i];
558                 if (!cx->valid)
559                         continue;
560
561                 if (higher) {
562                         cx->promotion.state = higher;
563                         cx->promotion.threshold.ticks = cx->latency_ticks;
564                         if (cx->type >= ACPI_STATE_C2)
565                                 cx->promotion.threshold.count = 4;
566                         else
567                                 cx->promotion.threshold.count = 10;
568                         if (higher->type == ACPI_STATE_C3)
569                                 cx->promotion.threshold.bm = bm_history;
570                 }
571
572                 higher = cx;
573         }
574
575         return_VALUE(0);
576 }
577
578 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
579 {
580         ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_fadt");
581
582         if (!pr)
583                 return_VALUE(-EINVAL);
584
585         if (!pr->pblk)
586                 return_VALUE(-ENODEV);
587
588         /* if info is obtained from pblk/fadt, type equals state */
589         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
590         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
591
592 #ifndef CONFIG_HOTPLUG_CPU
593         /*
594          * Check for P_LVL2_UP flag before entering C2 and above on
595          * an SMP system. 
596          */
597         if ((num_online_cpus() > 1) && !acpi_fadt.plvl2_up)
598                 return_VALUE(-ENODEV);
599 #endif
600
601         /* determine C2 and C3 address from pblk */
602         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
603         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
604
605         /* determine latencies from FADT */
606         pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
607         pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
608
609         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
610                           "lvl2[0x%08x] lvl3[0x%08x]\n",
611                           pr->power.states[ACPI_STATE_C2].address,
612                           pr->power.states[ACPI_STATE_C3].address));
613
614         return_VALUE(0);
615 }
616
617 static int acpi_processor_get_power_info_default_c1(struct acpi_processor *pr)
618 {
619         ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_default_c1");
620
621         /* Zero initialize all the C-states info. */
622         memset(pr->power.states, 0, sizeof(pr->power.states));
623
624         /* set the first C-State to C1 */
625         pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
626
627         /* the C0 state only exists as a filler in our array,
628          * and all processors need to support C1 */
629         pr->power.states[ACPI_STATE_C0].valid = 1;
630         pr->power.states[ACPI_STATE_C1].valid = 1;
631
632         return_VALUE(0);
633 }
634
635 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
636 {
637         acpi_status status = 0;
638         acpi_integer count;
639         int current_count;
640         int i;
641         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
642         union acpi_object *cst;
643
644         ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_cst");
645
646         if (nocst)
647                 return_VALUE(-ENODEV);
648
649         current_count = 1;
650
651         /* Zero initialize C2 onwards and prepare for fresh CST lookup */
652         for (i = 2; i < ACPI_PROCESSOR_MAX_POWER; i++)
653                 memset(&(pr->power.states[i]), 0, 
654                                 sizeof(struct acpi_processor_cx));
655
656         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
657         if (ACPI_FAILURE(status)) {
658                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
659                 return_VALUE(-ENODEV);
660         }
661
662         cst = (union acpi_object *)buffer.pointer;
663
664         /* There must be at least 2 elements */
665         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
666                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
667                                   "not enough elements in _CST\n"));
668                 status = -EFAULT;
669                 goto end;
670         }
671
672         count = cst->package.elements[0].integer.value;
673
674         /* Validate number of power states. */
675         if (count < 1 || count != cst->package.count - 1) {
676                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
677                                   "count given by _CST is not valid\n"));
678                 status = -EFAULT;
679                 goto end;
680         }
681
682         /* Tell driver that at least _CST is supported. */
683         pr->flags.has_cst = 1;
684
685         for (i = 1; i <= count; i++) {
686                 union acpi_object *element;
687                 union acpi_object *obj;
688                 struct acpi_power_register *reg;
689                 struct acpi_processor_cx cx;
690
691                 memset(&cx, 0, sizeof(cx));
692
693                 element = (union acpi_object *)&(cst->package.elements[i]);
694                 if (element->type != ACPI_TYPE_PACKAGE)
695                         continue;
696
697                 if (element->package.count != 4)
698                         continue;
699
700                 obj = (union acpi_object *)&(element->package.elements[0]);
701
702                 if (obj->type != ACPI_TYPE_BUFFER)
703                         continue;
704
705                 reg = (struct acpi_power_register *)obj->buffer.pointer;
706
707                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
708                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
709                         continue;
710
711                 cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ?
712                     0 : reg->address;
713
714                 /* There should be an easy way to extract an integer... */
715                 obj = (union acpi_object *)&(element->package.elements[1]);
716                 if (obj->type != ACPI_TYPE_INTEGER)
717                         continue;
718
719                 cx.type = obj->integer.value;
720
721                 if ((cx.type != ACPI_STATE_C1) &&
722                     (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO))
723                         continue;
724
725                 if ((cx.type < ACPI_STATE_C2) || (cx.type > ACPI_STATE_C3))
726                         continue;
727
728                 obj = (union acpi_object *)&(element->package.elements[2]);
729                 if (obj->type != ACPI_TYPE_INTEGER)
730                         continue;
731
732                 cx.latency = obj->integer.value;
733
734                 obj = (union acpi_object *)&(element->package.elements[3]);
735                 if (obj->type != ACPI_TYPE_INTEGER)
736                         continue;
737
738                 cx.power = obj->integer.value;
739
740                 current_count++;
741                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
742
743                 /*
744                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
745                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
746                  */
747                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
748                         printk(KERN_WARNING
749                                "Limiting number of power states to max (%d)\n",
750                                ACPI_PROCESSOR_MAX_POWER);
751                         printk(KERN_WARNING
752                                "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
753                         break;
754                 }
755         }
756
757         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
758                           current_count));
759
760         /* Validate number of power states discovered */
761         if (current_count < 2)
762                 status = -EFAULT;
763
764       end:
765         acpi_os_free(buffer.pointer);
766
767         return_VALUE(status);
768 }
769
770 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
771 {
772         ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c2");
773
774         if (!cx->address)
775                 return_VOID;
776
777         /*
778          * C2 latency must be less than or equal to 100
779          * microseconds.
780          */
781         else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
782                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
783                                   "latency too large [%d]\n", cx->latency));
784                 return_VOID;
785         }
786
787         /*
788          * Otherwise we've met all of our C2 requirements.
789          * Normalize the C2 latency to expidite policy
790          */
791         cx->valid = 1;
792         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
793
794         return_VOID;
795 }
796
797 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
798                                            struct acpi_processor_cx *cx)
799 {
800         static int bm_check_flag;
801
802         ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c3");
803
804         if (!cx->address)
805                 return_VOID;
806
807         /*
808          * C3 latency must be less than or equal to 1000
809          * microseconds.
810          */
811         else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
812                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
813                                   "latency too large [%d]\n", cx->latency));
814                 return_VOID;
815         }
816
817         /*
818          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
819          * DMA transfers are used by any ISA device to avoid livelock.
820          * Note that we could disable Type-F DMA (as recommended by
821          * the erratum), but this is known to disrupt certain ISA
822          * devices thus we take the conservative approach.
823          */
824         else if (errata.piix4.fdma) {
825                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
826                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
827                 return_VOID;
828         }
829
830         /* All the logic here assumes flags.bm_check is same across all CPUs */
831         if (!bm_check_flag) {
832                 /* Determine whether bm_check is needed based on CPU  */
833                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
834                 bm_check_flag = pr->flags.bm_check;
835         } else {
836                 pr->flags.bm_check = bm_check_flag;
837         }
838
839         if (pr->flags.bm_check) {
840                 /* bus mastering control is necessary */
841                 if (!pr->flags.bm_control) {
842                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
843                                           "C3 support requires bus mastering control\n"));
844                         return_VOID;
845                 }
846         } else {
847                 /*
848                  * WBINVD should be set in fadt, for C3 state to be
849                  * supported on when bm_check is not required.
850                  */
851                 if (acpi_fadt.wb_invd != 1) {
852                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
853                                           "Cache invalidation should work properly"
854                                           " for C3 to be enabled on SMP systems\n"));
855                         return_VOID;
856                 }
857                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD,
858                                   0, ACPI_MTX_DO_NOT_LOCK);
859         }
860
861         /*
862          * Otherwise we've met all of our C3 requirements.
863          * Normalize the C3 latency to expidite policy.  Enable
864          * checking of bus mastering status (bm_check) so we can
865          * use this in our C3 policy
866          */
867         cx->valid = 1;
868         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
869
870         return_VOID;
871 }
872
873 static int acpi_processor_power_verify(struct acpi_processor *pr)
874 {
875         unsigned int i;
876         unsigned int working = 0;
877
878 #ifdef ARCH_APICTIMER_STOPS_ON_C3
879         struct cpuinfo_x86 *c = cpu_data + pr->id;
880         cpumask_t mask = cpumask_of_cpu(pr->id);
881
882         if (c->x86_vendor == X86_VENDOR_INTEL) {
883                 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
884         }
885 #endif
886
887         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
888                 struct acpi_processor_cx *cx = &pr->power.states[i];
889
890                 switch (cx->type) {
891                 case ACPI_STATE_C1:
892                         cx->valid = 1;
893                         break;
894
895                 case ACPI_STATE_C2:
896                         acpi_processor_power_verify_c2(cx);
897                         break;
898
899                 case ACPI_STATE_C3:
900                         acpi_processor_power_verify_c3(pr, cx);
901 #ifdef ARCH_APICTIMER_STOPS_ON_C3
902                         if (c->x86_vendor == X86_VENDOR_INTEL) {
903                                 on_each_cpu(switch_APIC_timer_to_ipi,
904                                                 &mask, 1, 1);
905                         }
906 #endif
907                         break;
908                 }
909
910                 if (cx->valid)
911                         working++;
912         }
913
914         return (working);
915 }
916
917 static int acpi_processor_get_power_info(struct acpi_processor *pr)
918 {
919         unsigned int i;
920         int result;
921
922         ACPI_FUNCTION_TRACE("acpi_processor_get_power_info");
923
924         /* NOTE: the idle thread may not be running while calling
925          * this function */
926
927         /* Adding C1 state */
928         acpi_processor_get_power_info_default_c1(pr);
929         result = acpi_processor_get_power_info_cst(pr);
930         if (result == -ENODEV)
931                 acpi_processor_get_power_info_fadt(pr);
932
933         pr->power.count = acpi_processor_power_verify(pr);
934
935         /*
936          * Set Default Policy
937          * ------------------
938          * Now that we know which states are supported, set the default
939          * policy.  Note that this policy can be changed dynamically
940          * (e.g. encourage deeper sleeps to conserve battery life when
941          * not on AC).
942          */
943         result = acpi_processor_set_power_policy(pr);
944         if (result)
945                 return_VALUE(result);
946
947         /*
948          * if one state of type C2 or C3 is available, mark this
949          * CPU as being "idle manageable"
950          */
951         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
952                 if (pr->power.states[i].valid) {
953                         pr->power.count = i;
954                         if (pr->power.states[i].type >= ACPI_STATE_C2)
955                                 pr->flags.power = 1;
956                 }
957         }
958
959         return_VALUE(0);
960 }
961
962 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
963 {
964         int result = 0;
965
966         ACPI_FUNCTION_TRACE("acpi_processor_cst_has_changed");
967
968         if (!pr)
969                 return_VALUE(-EINVAL);
970
971         if (nocst) {
972                 return_VALUE(-ENODEV);
973         }
974
975         if (!pr->flags.power_setup_done)
976                 return_VALUE(-ENODEV);
977
978         /* Fall back to the default idle loop */
979         pm_idle = pm_idle_save;
980         synchronize_sched();    /* Relies on interrupts forcing exit from idle. */
981
982         pr->flags.power = 0;
983         result = acpi_processor_get_power_info(pr);
984         if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
985                 pm_idle = acpi_processor_idle;
986
987         return_VALUE(result);
988 }
989
990 /* proc interface */
991
992 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
993 {
994         struct acpi_processor *pr = (struct acpi_processor *)seq->private;
995         unsigned int i;
996
997         ACPI_FUNCTION_TRACE("acpi_processor_power_seq_show");
998
999         if (!pr)
1000                 goto end;
1001
1002         seq_printf(seq, "active state:            C%zd\n"
1003                    "max_cstate:              C%d\n"
1004                    "bus master activity:     %08x\n",
1005                    pr->power.state ? pr->power.state - pr->power.states : 0,
1006                    max_cstate, (unsigned)pr->power.bm_activity);
1007
1008         seq_puts(seq, "states:\n");
1009
1010         for (i = 1; i <= pr->power.count; i++) {
1011                 seq_printf(seq, "   %cC%d:                  ",
1012                            (&pr->power.states[i] ==
1013                             pr->power.state ? '*' : ' '), i);
1014
1015                 if (!pr->power.states[i].valid) {
1016                         seq_puts(seq, "<not supported>\n");
1017                         continue;
1018                 }
1019
1020                 switch (pr->power.states[i].type) {
1021                 case ACPI_STATE_C1:
1022                         seq_printf(seq, "type[C1] ");
1023                         break;
1024                 case ACPI_STATE_C2:
1025                         seq_printf(seq, "type[C2] ");
1026                         break;
1027                 case ACPI_STATE_C3:
1028                         seq_printf(seq, "type[C3] ");
1029                         break;
1030                 default:
1031                         seq_printf(seq, "type[--] ");
1032                         break;
1033                 }
1034
1035                 if (pr->power.states[i].promotion.state)
1036                         seq_printf(seq, "promotion[C%zd] ",
1037                                    (pr->power.states[i].promotion.state -
1038                                     pr->power.states));
1039                 else
1040                         seq_puts(seq, "promotion[--] ");
1041
1042                 if (pr->power.states[i].demotion.state)
1043                         seq_printf(seq, "demotion[C%zd] ",
1044                                    (pr->power.states[i].demotion.state -
1045                                     pr->power.states));
1046                 else
1047                         seq_puts(seq, "demotion[--] ");
1048
1049                 seq_printf(seq, "latency[%03d] usage[%08d]\n",
1050                            pr->power.states[i].latency,
1051                            pr->power.states[i].usage);
1052         }
1053
1054       end:
1055         return_VALUE(0);
1056 }
1057
1058 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1059 {
1060         return single_open(file, acpi_processor_power_seq_show,
1061                            PDE(inode)->data);
1062 }
1063
1064 static struct file_operations acpi_processor_power_fops = {
1065         .open = acpi_processor_power_open_fs,
1066         .read = seq_read,
1067         .llseek = seq_lseek,
1068         .release = single_release,
1069 };
1070
1071 int acpi_processor_power_init(struct acpi_processor *pr,
1072                               struct acpi_device *device)
1073 {
1074         acpi_status status = 0;
1075         static int first_run = 0;
1076         struct proc_dir_entry *entry = NULL;
1077         unsigned int i;
1078
1079         ACPI_FUNCTION_TRACE("acpi_processor_power_init");
1080
1081         if (!first_run) {
1082                 dmi_check_system(processor_power_dmi_table);
1083                 if (max_cstate < ACPI_C_STATES_MAX)
1084                         printk(KERN_NOTICE
1085                                "ACPI: processor limited to max C-state %d\n",
1086                                max_cstate);
1087                 first_run++;
1088         }
1089
1090         if (!pr)
1091                 return_VALUE(-EINVAL);
1092
1093         if (acpi_fadt.cst_cnt && !nocst) {
1094                 status =
1095                     acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8);
1096                 if (ACPI_FAILURE(status)) {
1097                         ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1098                                           "Notifying BIOS of _CST ability failed\n"));
1099                 }
1100         }
1101
1102         acpi_processor_get_power_info(pr);
1103
1104         /*
1105          * Install the idle handler if processor power management is supported.
1106          * Note that we use previously set idle handler will be used on
1107          * platforms that only support C1.
1108          */
1109         if ((pr->flags.power) && (!boot_option_idle_override)) {
1110                 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1111                 for (i = 1; i <= pr->power.count; i++)
1112                         if (pr->power.states[i].valid)
1113                                 printk(" C%d[C%d]", i,
1114                                        pr->power.states[i].type);
1115                 printk(")\n");
1116
1117                 if (pr->id == 0) {
1118                         pm_idle_save = pm_idle;
1119                         pm_idle = acpi_processor_idle;
1120                 }
1121         }
1122
1123         /* 'power' [R] */
1124         entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1125                                   S_IRUGO, acpi_device_dir(device));
1126         if (!entry)
1127                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1128                                   "Unable to create '%s' fs entry\n",
1129                                   ACPI_PROCESSOR_FILE_POWER));
1130         else {
1131                 entry->proc_fops = &acpi_processor_power_fops;
1132                 entry->data = acpi_driver_data(device);
1133                 entry->owner = THIS_MODULE;
1134         }
1135
1136         pr->flags.power_setup_done = 1;
1137
1138         return_VALUE(0);
1139 }
1140
1141 int acpi_processor_power_exit(struct acpi_processor *pr,
1142                               struct acpi_device *device)
1143 {
1144         ACPI_FUNCTION_TRACE("acpi_processor_power_exit");
1145
1146         pr->flags.power_setup_done = 0;
1147
1148         if (acpi_device_dir(device))
1149                 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1150                                   acpi_device_dir(device));
1151
1152         /* Unregister the idle handler when processor #0 is removed. */
1153         if (pr->id == 0) {
1154                 pm_idle = pm_idle_save;
1155
1156                 /*
1157                  * We are about to unload the current idle thread pm callback
1158                  * (pm_idle), Wait for all processors to update cached/local
1159                  * copies of pm_idle before proceeding.
1160                  */
1161                 cpu_idle_wait();
1162         }
1163
1164         return_VALUE(0);
1165 }