2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
25 * Pedro Roque : Fast Retransmit/Recovery.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
58 * J Hadi Salim: ECN support
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
66 #include <linux/config.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
75 int sysctl_tcp_timestamps = 1;
76 int sysctl_tcp_window_scaling = 1;
77 int sysctl_tcp_sack = 1;
78 int sysctl_tcp_fack = 1;
79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
81 int sysctl_tcp_dsack = 1;
82 int sysctl_tcp_app_win = 31;
83 int sysctl_tcp_adv_win_scale = 2;
85 int sysctl_tcp_stdurg;
86 int sysctl_tcp_rfc1337;
87 int sysctl_tcp_max_orphans = NR_FILE;
89 int sysctl_tcp_nometrics_save;
91 int sysctl_tcp_moderate_rcvbuf = 1;
92 int sysctl_tcp_abc = 1;
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
115 /* Adapt the MSS value used to make delayed ack decision to the
118 static void tcp_measure_rcv_mss(struct sock *sk,
119 const struct sk_buff *skb)
121 struct inet_connection_sock *icsk = inet_csk(sk);
122 const unsigned int lss = icsk->icsk_ack.last_seg_size;
125 icsk->icsk_ack.last_seg_size = 0;
127 /* skb->len may jitter because of SACKs, even if peer
128 * sends good full-sized frames.
131 if (len >= icsk->icsk_ack.rcv_mss) {
132 icsk->icsk_ack.rcv_mss = len;
134 /* Otherwise, we make more careful check taking into account,
135 * that SACKs block is variable.
137 * "len" is invariant segment length, including TCP header.
139 len += skb->data - skb->h.raw;
140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 /* If PSH is not set, packet should be
142 * full sized, provided peer TCP is not badly broken.
143 * This observation (if it is correct 8)) allows
144 * to handle super-low mtu links fairly.
146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 /* Subtract also invariant (if peer is RFC compliant),
149 * tcp header plus fixed timestamp option length.
150 * Resulting "len" is MSS free of SACK jitter.
152 len -= tcp_sk(sk)->tcp_header_len;
153 icsk->icsk_ack.last_seg_size = len;
155 icsk->icsk_ack.rcv_mss = len;
159 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
163 static void tcp_incr_quickack(struct sock *sk)
165 struct inet_connection_sock *icsk = inet_csk(sk);
166 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
170 if (quickacks > icsk->icsk_ack.quick)
171 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
174 void tcp_enter_quickack_mode(struct sock *sk)
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 tcp_incr_quickack(sk);
178 icsk->icsk_ack.pingpong = 0;
179 icsk->icsk_ack.ato = TCP_ATO_MIN;
182 /* Send ACKs quickly, if "quick" count is not exhausted
183 * and the session is not interactive.
186 static inline int tcp_in_quickack_mode(const struct sock *sk)
188 const struct inet_connection_sock *icsk = inet_csk(sk);
189 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
192 /* Buffer size and advertised window tuning.
194 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
197 static void tcp_fixup_sndbuf(struct sock *sk)
199 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
200 sizeof(struct sk_buff);
202 if (sk->sk_sndbuf < 3 * sndmem)
203 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
206 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
208 * All tcp_full_space() is split to two parts: "network" buffer, allocated
209 * forward and advertised in receiver window (tp->rcv_wnd) and
210 * "application buffer", required to isolate scheduling/application
211 * latencies from network.
212 * window_clamp is maximal advertised window. It can be less than
213 * tcp_full_space(), in this case tcp_full_space() - window_clamp
214 * is reserved for "application" buffer. The less window_clamp is
215 * the smoother our behaviour from viewpoint of network, but the lower
216 * throughput and the higher sensitivity of the connection to losses. 8)
218 * rcv_ssthresh is more strict window_clamp used at "slow start"
219 * phase to predict further behaviour of this connection.
220 * It is used for two goals:
221 * - to enforce header prediction at sender, even when application
222 * requires some significant "application buffer". It is check #1.
223 * - to prevent pruning of receive queue because of misprediction
224 * of receiver window. Check #2.
226 * The scheme does not work when sender sends good segments opening
227 * window and then starts to feed us spaghetti. But it should work
228 * in common situations. Otherwise, we have to rely on queue collapsing.
231 /* Slow part of check#2. */
232 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
233 const struct sk_buff *skb)
236 int truesize = tcp_win_from_space(skb->truesize)/2;
237 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
239 while (tp->rcv_ssthresh <= window) {
240 if (truesize <= skb->len)
241 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
249 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
253 if (tp->rcv_ssthresh < tp->window_clamp &&
254 (int)tp->rcv_ssthresh < tcp_space(sk) &&
255 !tcp_memory_pressure) {
258 /* Check #2. Increase window, if skb with such overhead
259 * will fit to rcvbuf in future.
261 if (tcp_win_from_space(skb->truesize) <= skb->len)
264 incr = __tcp_grow_window(sk, tp, skb);
267 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
268 inet_csk(sk)->icsk_ack.quick |= 1;
273 /* 3. Tuning rcvbuf, when connection enters established state. */
275 static void tcp_fixup_rcvbuf(struct sock *sk)
277 struct tcp_sock *tp = tcp_sk(sk);
278 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
280 /* Try to select rcvbuf so that 4 mss-sized segments
281 * will fit to window and corresponding skbs will fit to our rcvbuf.
282 * (was 3; 4 is minimum to allow fast retransmit to work.)
284 while (tcp_win_from_space(rcvmem) < tp->advmss)
286 if (sk->sk_rcvbuf < 4 * rcvmem)
287 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
290 /* 4. Try to fixup all. It is made immediately after connection enters
293 static void tcp_init_buffer_space(struct sock *sk)
295 struct tcp_sock *tp = tcp_sk(sk);
298 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
299 tcp_fixup_rcvbuf(sk);
300 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
301 tcp_fixup_sndbuf(sk);
303 tp->rcvq_space.space = tp->rcv_wnd;
305 maxwin = tcp_full_space(sk);
307 if (tp->window_clamp >= maxwin) {
308 tp->window_clamp = maxwin;
310 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
311 tp->window_clamp = max(maxwin -
312 (maxwin >> sysctl_tcp_app_win),
316 /* Force reservation of one segment. */
317 if (sysctl_tcp_app_win &&
318 tp->window_clamp > 2 * tp->advmss &&
319 tp->window_clamp + tp->advmss > maxwin)
320 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
322 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
323 tp->snd_cwnd_stamp = tcp_time_stamp;
326 /* 5. Recalculate window clamp after socket hit its memory bounds. */
327 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
329 struct inet_connection_sock *icsk = inet_csk(sk);
331 icsk->icsk_ack.quick = 0;
333 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
334 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
335 !tcp_memory_pressure &&
336 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
337 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
340 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
341 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
345 /* Initialize RCV_MSS value.
346 * RCV_MSS is an our guess about MSS used by the peer.
347 * We haven't any direct information about the MSS.
348 * It's better to underestimate the RCV_MSS rather than overestimate.
349 * Overestimations make us ACKing less frequently than needed.
350 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
352 void tcp_initialize_rcv_mss(struct sock *sk)
354 struct tcp_sock *tp = tcp_sk(sk);
355 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
357 hint = min(hint, tp->rcv_wnd/2);
358 hint = min(hint, TCP_MIN_RCVMSS);
359 hint = max(hint, TCP_MIN_MSS);
361 inet_csk(sk)->icsk_ack.rcv_mss = hint;
364 /* Receiver "autotuning" code.
366 * The algorithm for RTT estimation w/o timestamps is based on
367 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
368 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
370 * More detail on this code can be found at
371 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
372 * though this reference is out of date. A new paper
375 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
377 u32 new_sample = tp->rcv_rtt_est.rtt;
383 if (new_sample != 0) {
384 /* If we sample in larger samples in the non-timestamp
385 * case, we could grossly overestimate the RTT especially
386 * with chatty applications or bulk transfer apps which
387 * are stalled on filesystem I/O.
389 * Also, since we are only going for a minimum in the
390 * non-timestamp case, we do not smooth things out
391 * else with timestamps disabled convergence takes too
395 m -= (new_sample >> 3);
397 } else if (m < new_sample)
400 /* No previous measure. */
404 if (tp->rcv_rtt_est.rtt != new_sample)
405 tp->rcv_rtt_est.rtt = new_sample;
408 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
410 if (tp->rcv_rtt_est.time == 0)
412 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
414 tcp_rcv_rtt_update(tp,
415 jiffies - tp->rcv_rtt_est.time,
419 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
420 tp->rcv_rtt_est.time = tcp_time_stamp;
423 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
425 struct tcp_sock *tp = tcp_sk(sk);
426 if (tp->rx_opt.rcv_tsecr &&
427 (TCP_SKB_CB(skb)->end_seq -
428 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
429 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
433 * This function should be called every time data is copied to user space.
434 * It calculates the appropriate TCP receive buffer space.
436 void tcp_rcv_space_adjust(struct sock *sk)
438 struct tcp_sock *tp = tcp_sk(sk);
442 if (tp->rcvq_space.time == 0)
445 time = tcp_time_stamp - tp->rcvq_space.time;
446 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
447 tp->rcv_rtt_est.rtt == 0)
450 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
452 space = max(tp->rcvq_space.space, space);
454 if (tp->rcvq_space.space != space) {
457 tp->rcvq_space.space = space;
459 if (sysctl_tcp_moderate_rcvbuf) {
460 int new_clamp = space;
462 /* Receive space grows, normalize in order to
463 * take into account packet headers and sk_buff
464 * structure overhead.
469 rcvmem = (tp->advmss + MAX_TCP_HEADER +
470 16 + sizeof(struct sk_buff));
471 while (tcp_win_from_space(rcvmem) < tp->advmss)
474 space = min(space, sysctl_tcp_rmem[2]);
475 if (space > sk->sk_rcvbuf) {
476 sk->sk_rcvbuf = space;
478 /* Make the window clamp follow along. */
479 tp->window_clamp = new_clamp;
485 tp->rcvq_space.seq = tp->copied_seq;
486 tp->rcvq_space.time = tcp_time_stamp;
489 /* There is something which you must keep in mind when you analyze the
490 * behavior of the tp->ato delayed ack timeout interval. When a
491 * connection starts up, we want to ack as quickly as possible. The
492 * problem is that "good" TCP's do slow start at the beginning of data
493 * transmission. The means that until we send the first few ACK's the
494 * sender will sit on his end and only queue most of his data, because
495 * he can only send snd_cwnd unacked packets at any given time. For
496 * each ACK we send, he increments snd_cwnd and transmits more of his
499 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
501 struct inet_connection_sock *icsk = inet_csk(sk);
504 inet_csk_schedule_ack(sk);
506 tcp_measure_rcv_mss(sk, skb);
508 tcp_rcv_rtt_measure(tp);
510 now = tcp_time_stamp;
512 if (!icsk->icsk_ack.ato) {
513 /* The _first_ data packet received, initialize
514 * delayed ACK engine.
516 tcp_incr_quickack(sk);
517 icsk->icsk_ack.ato = TCP_ATO_MIN;
519 int m = now - icsk->icsk_ack.lrcvtime;
521 if (m <= TCP_ATO_MIN/2) {
522 /* The fastest case is the first. */
523 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
524 } else if (m < icsk->icsk_ack.ato) {
525 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
526 if (icsk->icsk_ack.ato > icsk->icsk_rto)
527 icsk->icsk_ack.ato = icsk->icsk_rto;
528 } else if (m > icsk->icsk_rto) {
529 /* Too long gap. Apparently sender failed to
530 * restart window, so that we send ACKs quickly.
532 tcp_incr_quickack(sk);
533 sk_stream_mem_reclaim(sk);
536 icsk->icsk_ack.lrcvtime = now;
538 TCP_ECN_check_ce(tp, skb);
541 tcp_grow_window(sk, tp, skb);
544 /* Called to compute a smoothed rtt estimate. The data fed to this
545 * routine either comes from timestamps, or from segments that were
546 * known _not_ to have been retransmitted [see Karn/Partridge
547 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
548 * piece by Van Jacobson.
549 * NOTE: the next three routines used to be one big routine.
550 * To save cycles in the RFC 1323 implementation it was better to break
551 * it up into three procedures. -- erics
553 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
555 struct tcp_sock *tp = tcp_sk(sk);
556 long m = mrtt; /* RTT */
558 /* The following amusing code comes from Jacobson's
559 * article in SIGCOMM '88. Note that rtt and mdev
560 * are scaled versions of rtt and mean deviation.
561 * This is designed to be as fast as possible
562 * m stands for "measurement".
564 * On a 1990 paper the rto value is changed to:
565 * RTO = rtt + 4 * mdev
567 * Funny. This algorithm seems to be very broken.
568 * These formulae increase RTO, when it should be decreased, increase
569 * too slowly, when it should be increased quickly, decrease too quickly
570 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
571 * does not matter how to _calculate_ it. Seems, it was trap
572 * that VJ failed to avoid. 8)
577 m -= (tp->srtt >> 3); /* m is now error in rtt est */
578 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
580 m = -m; /* m is now abs(error) */
581 m -= (tp->mdev >> 2); /* similar update on mdev */
582 /* This is similar to one of Eifel findings.
583 * Eifel blocks mdev updates when rtt decreases.
584 * This solution is a bit different: we use finer gain
585 * for mdev in this case (alpha*beta).
586 * Like Eifel it also prevents growth of rto,
587 * but also it limits too fast rto decreases,
588 * happening in pure Eifel.
593 m -= (tp->mdev >> 2); /* similar update on mdev */
595 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
596 if (tp->mdev > tp->mdev_max) {
597 tp->mdev_max = tp->mdev;
598 if (tp->mdev_max > tp->rttvar)
599 tp->rttvar = tp->mdev_max;
601 if (after(tp->snd_una, tp->rtt_seq)) {
602 if (tp->mdev_max < tp->rttvar)
603 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
604 tp->rtt_seq = tp->snd_nxt;
605 tp->mdev_max = TCP_RTO_MIN;
608 /* no previous measure. */
609 tp->srtt = m<<3; /* take the measured time to be rtt */
610 tp->mdev = m<<1; /* make sure rto = 3*rtt */
611 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
612 tp->rtt_seq = tp->snd_nxt;
616 /* Calculate rto without backoff. This is the second half of Van Jacobson's
617 * routine referred to above.
619 static inline void tcp_set_rto(struct sock *sk)
621 const struct tcp_sock *tp = tcp_sk(sk);
622 /* Old crap is replaced with new one. 8)
625 * 1. If rtt variance happened to be less 50msec, it is hallucination.
626 * It cannot be less due to utterly erratic ACK generation made
627 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
628 * to do with delayed acks, because at cwnd>2 true delack timeout
629 * is invisible. Actually, Linux-2.4 also generates erratic
630 * ACKs in some circumstances.
632 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
634 /* 2. Fixups made earlier cannot be right.
635 * If we do not estimate RTO correctly without them,
636 * all the algo is pure shit and should be replaced
637 * with correct one. It is exactly, which we pretend to do.
641 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
642 * guarantees that rto is higher.
644 static inline void tcp_bound_rto(struct sock *sk)
646 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
647 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
650 /* Save metrics learned by this TCP session.
651 This function is called only, when TCP finishes successfully
652 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
654 void tcp_update_metrics(struct sock *sk)
656 struct tcp_sock *tp = tcp_sk(sk);
657 struct dst_entry *dst = __sk_dst_get(sk);
659 if (sysctl_tcp_nometrics_save)
664 if (dst && (dst->flags&DST_HOST)) {
665 const struct inet_connection_sock *icsk = inet_csk(sk);
668 if (icsk->icsk_backoff || !tp->srtt) {
669 /* This session failed to estimate rtt. Why?
670 * Probably, no packets returned in time.
673 if (!(dst_metric_locked(dst, RTAX_RTT)))
674 dst->metrics[RTAX_RTT-1] = 0;
678 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
680 /* If newly calculated rtt larger than stored one,
681 * store new one. Otherwise, use EWMA. Remember,
682 * rtt overestimation is always better than underestimation.
684 if (!(dst_metric_locked(dst, RTAX_RTT))) {
686 dst->metrics[RTAX_RTT-1] = tp->srtt;
688 dst->metrics[RTAX_RTT-1] -= (m>>3);
691 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
695 /* Scale deviation to rttvar fixed point */
700 if (m >= dst_metric(dst, RTAX_RTTVAR))
701 dst->metrics[RTAX_RTTVAR-1] = m;
703 dst->metrics[RTAX_RTTVAR-1] -=
704 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
707 if (tp->snd_ssthresh >= 0xFFFF) {
708 /* Slow start still did not finish. */
709 if (dst_metric(dst, RTAX_SSTHRESH) &&
710 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
711 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
712 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
713 if (!dst_metric_locked(dst, RTAX_CWND) &&
714 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
715 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
716 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
717 icsk->icsk_ca_state == TCP_CA_Open) {
718 /* Cong. avoidance phase, cwnd is reliable. */
719 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
720 dst->metrics[RTAX_SSTHRESH-1] =
721 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
722 if (!dst_metric_locked(dst, RTAX_CWND))
723 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
725 /* Else slow start did not finish, cwnd is non-sense,
726 ssthresh may be also invalid.
728 if (!dst_metric_locked(dst, RTAX_CWND))
729 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
730 if (dst->metrics[RTAX_SSTHRESH-1] &&
731 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
732 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
733 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
736 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
737 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
738 tp->reordering != sysctl_tcp_reordering)
739 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
744 /* Numbers are taken from RFC2414. */
745 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
747 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
750 if (tp->mss_cache > 1460)
753 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
755 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
758 /* Set slow start threshold and cwnd not falling to slow start */
759 void tcp_enter_cwr(struct sock *sk)
761 struct tcp_sock *tp = tcp_sk(sk);
763 tp->prior_ssthresh = 0;
765 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
767 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
768 tp->snd_cwnd = min(tp->snd_cwnd,
769 tcp_packets_in_flight(tp) + 1U);
770 tp->snd_cwnd_cnt = 0;
771 tp->high_seq = tp->snd_nxt;
772 tp->snd_cwnd_stamp = tcp_time_stamp;
773 TCP_ECN_queue_cwr(tp);
775 tcp_set_ca_state(sk, TCP_CA_CWR);
779 /* Initialize metrics on socket. */
781 static void tcp_init_metrics(struct sock *sk)
783 struct tcp_sock *tp = tcp_sk(sk);
784 struct dst_entry *dst = __sk_dst_get(sk);
791 if (dst_metric_locked(dst, RTAX_CWND))
792 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
793 if (dst_metric(dst, RTAX_SSTHRESH)) {
794 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
795 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
796 tp->snd_ssthresh = tp->snd_cwnd_clamp;
798 if (dst_metric(dst, RTAX_REORDERING) &&
799 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
800 tp->rx_opt.sack_ok &= ~2;
801 tp->reordering = dst_metric(dst, RTAX_REORDERING);
804 if (dst_metric(dst, RTAX_RTT) == 0)
807 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
810 /* Initial rtt is determined from SYN,SYN-ACK.
811 * The segment is small and rtt may appear much
812 * less than real one. Use per-dst memory
813 * to make it more realistic.
815 * A bit of theory. RTT is time passed after "normal" sized packet
816 * is sent until it is ACKed. In normal circumstances sending small
817 * packets force peer to delay ACKs and calculation is correct too.
818 * The algorithm is adaptive and, provided we follow specs, it
819 * NEVER underestimate RTT. BUT! If peer tries to make some clever
820 * tricks sort of "quick acks" for time long enough to decrease RTT
821 * to low value, and then abruptly stops to do it and starts to delay
822 * ACKs, wait for troubles.
824 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
825 tp->srtt = dst_metric(dst, RTAX_RTT);
826 tp->rtt_seq = tp->snd_nxt;
828 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
829 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
830 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
834 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
836 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
837 tp->snd_cwnd_stamp = tcp_time_stamp;
841 /* Play conservative. If timestamps are not
842 * supported, TCP will fail to recalculate correct
843 * rtt, if initial rto is too small. FORGET ALL AND RESET!
845 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
847 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
848 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
852 static void tcp_update_reordering(struct sock *sk, const int metric,
855 struct tcp_sock *tp = tcp_sk(sk);
856 if (metric > tp->reordering) {
857 tp->reordering = min(TCP_MAX_REORDERING, metric);
859 /* This exciting event is worth to be remembered. 8) */
861 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
863 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
865 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
867 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
868 #if FASTRETRANS_DEBUG > 1
869 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
870 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
874 tp->undo_marker ? tp->undo_retrans : 0);
876 /* Disable FACK yet. */
877 tp->rx_opt.sack_ok &= ~2;
881 /* This procedure tags the retransmission queue when SACKs arrive.
883 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
884 * Packets in queue with these bits set are counted in variables
885 * sacked_out, retrans_out and lost_out, correspondingly.
887 * Valid combinations are:
888 * Tag InFlight Description
889 * 0 1 - orig segment is in flight.
890 * S 0 - nothing flies, orig reached receiver.
891 * L 0 - nothing flies, orig lost by net.
892 * R 2 - both orig and retransmit are in flight.
893 * L|R 1 - orig is lost, retransmit is in flight.
894 * S|R 1 - orig reached receiver, retrans is still in flight.
895 * (L|S|R is logically valid, it could occur when L|R is sacked,
896 * but it is equivalent to plain S and code short-curcuits it to S.
897 * L|S is logically invalid, it would mean -1 packet in flight 8))
899 * These 6 states form finite state machine, controlled by the following events:
900 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
901 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
902 * 3. Loss detection event of one of three flavors:
903 * A. Scoreboard estimator decided the packet is lost.
904 * A'. Reno "three dupacks" marks head of queue lost.
905 * A''. Its FACK modfication, head until snd.fack is lost.
906 * B. SACK arrives sacking data transmitted after never retransmitted
908 * C. SACK arrives sacking SND.NXT at the moment, when the
909 * segment was retransmitted.
910 * 4. D-SACK added new rule: D-SACK changes any tag to S.
912 * It is pleasant to note, that state diagram turns out to be commutative,
913 * so that we are allowed not to be bothered by order of our actions,
914 * when multiple events arrive simultaneously. (see the function below).
916 * Reordering detection.
917 * --------------------
918 * Reordering metric is maximal distance, which a packet can be displaced
919 * in packet stream. With SACKs we can estimate it:
921 * 1. SACK fills old hole and the corresponding segment was not
922 * ever retransmitted -> reordering. Alas, we cannot use it
923 * when segment was retransmitted.
924 * 2. The last flaw is solved with D-SACK. D-SACK arrives
925 * for retransmitted and already SACKed segment -> reordering..
926 * Both of these heuristics are not used in Loss state, when we cannot
927 * account for retransmits accurately.
930 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
932 const struct inet_connection_sock *icsk = inet_csk(sk);
933 struct tcp_sock *tp = tcp_sk(sk);
934 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
935 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
936 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
937 int reord = tp->packets_out;
939 u32 lost_retrans = 0;
946 prior_fackets = tp->fackets_out;
949 * if the only SACK change is the increase of the end_seq of
950 * the first block then only apply that SACK block
951 * and use retrans queue hinting otherwise slowpath */
953 for (i = 0; i< num_sacks; i++) {
954 __u32 start_seq = ntohl(sp[i].start_seq);
955 __u32 end_seq = ntohl(sp[i].end_seq);
958 if (tp->recv_sack_cache[i].start_seq != start_seq)
961 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
962 (tp->recv_sack_cache[i].end_seq != end_seq))
965 tp->recv_sack_cache[i].start_seq = start_seq;
966 tp->recv_sack_cache[i].end_seq = end_seq;
968 /* Check for D-SACK. */
970 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
972 if (before(start_seq, ack)) {
974 tp->rx_opt.sack_ok |= 4;
975 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
976 } else if (num_sacks > 1 &&
977 !after(end_seq, ntohl(sp[1].end_seq)) &&
978 !before(start_seq, ntohl(sp[1].start_seq))) {
980 tp->rx_opt.sack_ok |= 4;
981 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
984 /* D-SACK for already forgotten data...
985 * Do dumb counting. */
987 !after(end_seq, prior_snd_una) &&
988 after(end_seq, tp->undo_marker))
991 /* Eliminate too old ACKs, but take into
992 * account more or less fresh ones, they can
993 * contain valid SACK info.
995 if (before(ack, prior_snd_una - tp->max_window))
1004 tp->fastpath_skb_hint = NULL;
1006 /* order SACK blocks to allow in order walk of the retrans queue */
1007 for (i = num_sacks-1; i > 0; i--) {
1008 for (j = 0; j < i; j++){
1009 if (after(ntohl(sp[j].start_seq),
1010 ntohl(sp[j+1].start_seq))){
1011 sp[j].start_seq = htonl(tp->recv_sack_cache[j+1].start_seq);
1012 sp[j].end_seq = htonl(tp->recv_sack_cache[j+1].end_seq);
1013 sp[j+1].start_seq = htonl(tp->recv_sack_cache[j].start_seq);
1014 sp[j+1].end_seq = htonl(tp->recv_sack_cache[j].end_seq);
1021 /* clear flag as used for different purpose in following code */
1024 for (i=0; i<num_sacks; i++, sp++) {
1025 struct sk_buff *skb;
1026 __u32 start_seq = ntohl(sp->start_seq);
1027 __u32 end_seq = ntohl(sp->end_seq);
1030 /* Use SACK fastpath hint if valid */
1031 if (tp->fastpath_skb_hint) {
1032 skb = tp->fastpath_skb_hint;
1033 fack_count = tp->fastpath_cnt_hint;
1035 skb = sk->sk_write_queue.next;
1039 /* Event "B" in the comment above. */
1040 if (after(end_seq, tp->high_seq))
1041 flag |= FLAG_DATA_LOST;
1043 sk_stream_for_retrans_queue_from(skb, sk) {
1044 int in_sack, pcount;
1047 tp->fastpath_skb_hint = skb;
1048 tp->fastpath_cnt_hint = fack_count;
1050 /* The retransmission queue is always in order, so
1051 * we can short-circuit the walk early.
1053 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1056 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1057 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1059 pcount = tcp_skb_pcount(skb);
1061 if (pcount > 1 && !in_sack &&
1062 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1063 unsigned int pkt_len;
1065 in_sack = !after(start_seq,
1066 TCP_SKB_CB(skb)->seq);
1069 pkt_len = (start_seq -
1070 TCP_SKB_CB(skb)->seq);
1072 pkt_len = (end_seq -
1073 TCP_SKB_CB(skb)->seq);
1074 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->tso_size))
1076 pcount = tcp_skb_pcount(skb);
1079 fack_count += pcount;
1081 sacked = TCP_SKB_CB(skb)->sacked;
1083 /* Account D-SACK for retransmitted packet. */
1084 if ((dup_sack && in_sack) &&
1085 (sacked & TCPCB_RETRANS) &&
1086 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1089 /* The frame is ACKed. */
1090 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1091 if (sacked&TCPCB_RETRANS) {
1092 if ((dup_sack && in_sack) &&
1093 (sacked&TCPCB_SACKED_ACKED))
1094 reord = min(fack_count, reord);
1096 /* If it was in a hole, we detected reordering. */
1097 if (fack_count < prior_fackets &&
1098 !(sacked&TCPCB_SACKED_ACKED))
1099 reord = min(fack_count, reord);
1102 /* Nothing to do; acked frame is about to be dropped. */
1106 if ((sacked&TCPCB_SACKED_RETRANS) &&
1107 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1108 (!lost_retrans || after(end_seq, lost_retrans)))
1109 lost_retrans = end_seq;
1114 if (!(sacked&TCPCB_SACKED_ACKED)) {
1115 if (sacked & TCPCB_SACKED_RETRANS) {
1116 /* If the segment is not tagged as lost,
1117 * we do not clear RETRANS, believing
1118 * that retransmission is still in flight.
1120 if (sacked & TCPCB_LOST) {
1121 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1122 tp->lost_out -= tcp_skb_pcount(skb);
1123 tp->retrans_out -= tcp_skb_pcount(skb);
1125 /* clear lost hint */
1126 tp->retransmit_skb_hint = NULL;
1129 /* New sack for not retransmitted frame,
1130 * which was in hole. It is reordering.
1132 if (!(sacked & TCPCB_RETRANS) &&
1133 fack_count < prior_fackets)
1134 reord = min(fack_count, reord);
1136 if (sacked & TCPCB_LOST) {
1137 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1138 tp->lost_out -= tcp_skb_pcount(skb);
1140 /* clear lost hint */
1141 tp->retransmit_skb_hint = NULL;
1145 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1146 flag |= FLAG_DATA_SACKED;
1147 tp->sacked_out += tcp_skb_pcount(skb);
1149 if (fack_count > tp->fackets_out)
1150 tp->fackets_out = fack_count;
1152 if (dup_sack && (sacked&TCPCB_RETRANS))
1153 reord = min(fack_count, reord);
1156 /* D-SACK. We can detect redundant retransmission
1157 * in S|R and plain R frames and clear it.
1158 * undo_retrans is decreased above, L|R frames
1159 * are accounted above as well.
1162 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1163 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1164 tp->retrans_out -= tcp_skb_pcount(skb);
1165 tp->retransmit_skb_hint = NULL;
1170 /* Check for lost retransmit. This superb idea is
1171 * borrowed from "ratehalving". Event "C".
1172 * Later note: FACK people cheated me again 8),
1173 * we have to account for reordering! Ugly,
1176 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1177 struct sk_buff *skb;
1179 sk_stream_for_retrans_queue(skb, sk) {
1180 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1182 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1184 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1185 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1187 !before(lost_retrans,
1188 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1190 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1191 tp->retrans_out -= tcp_skb_pcount(skb);
1193 /* clear lost hint */
1194 tp->retransmit_skb_hint = NULL;
1196 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1197 tp->lost_out += tcp_skb_pcount(skb);
1198 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1199 flag |= FLAG_DATA_SACKED;
1200 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1206 tp->left_out = tp->sacked_out + tp->lost_out;
1208 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1209 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1211 #if FASTRETRANS_DEBUG > 0
1212 BUG_TRAP((int)tp->sacked_out >= 0);
1213 BUG_TRAP((int)tp->lost_out >= 0);
1214 BUG_TRAP((int)tp->retrans_out >= 0);
1215 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1220 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1221 * segments to see from the next ACKs whether any data was really missing.
1222 * If the RTO was spurious, new ACKs should arrive.
1224 void tcp_enter_frto(struct sock *sk)
1226 const struct inet_connection_sock *icsk = inet_csk(sk);
1227 struct tcp_sock *tp = tcp_sk(sk);
1228 struct sk_buff *skb;
1230 tp->frto_counter = 1;
1232 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1233 tp->snd_una == tp->high_seq ||
1234 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1235 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1236 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1237 tcp_ca_event(sk, CA_EVENT_FRTO);
1240 /* Have to clear retransmission markers here to keep the bookkeeping
1241 * in shape, even though we are not yet in Loss state.
1242 * If something was really lost, it is eventually caught up
1243 * in tcp_enter_frto_loss.
1245 tp->retrans_out = 0;
1246 tp->undo_marker = tp->snd_una;
1247 tp->undo_retrans = 0;
1249 sk_stream_for_retrans_queue(skb, sk) {
1250 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1252 tcp_sync_left_out(tp);
1254 tcp_set_ca_state(sk, TCP_CA_Open);
1255 tp->frto_highmark = tp->snd_nxt;
1258 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1259 * which indicates that we should follow the traditional RTO recovery,
1260 * i.e. mark everything lost and do go-back-N retransmission.
1262 static void tcp_enter_frto_loss(struct sock *sk)
1264 struct tcp_sock *tp = tcp_sk(sk);
1265 struct sk_buff *skb;
1270 tp->fackets_out = 0;
1272 sk_stream_for_retrans_queue(skb, sk) {
1273 cnt += tcp_skb_pcount(skb);
1274 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1275 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1277 /* Do not mark those segments lost that were
1278 * forward transmitted after RTO
1280 if (!after(TCP_SKB_CB(skb)->end_seq,
1281 tp->frto_highmark)) {
1282 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1283 tp->lost_out += tcp_skb_pcount(skb);
1286 tp->sacked_out += tcp_skb_pcount(skb);
1287 tp->fackets_out = cnt;
1290 tcp_sync_left_out(tp);
1292 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1293 tp->snd_cwnd_cnt = 0;
1294 tp->snd_cwnd_stamp = tcp_time_stamp;
1295 tp->undo_marker = 0;
1296 tp->frto_counter = 0;
1298 tp->reordering = min_t(unsigned int, tp->reordering,
1299 sysctl_tcp_reordering);
1300 tcp_set_ca_state(sk, TCP_CA_Loss);
1301 tp->high_seq = tp->frto_highmark;
1302 TCP_ECN_queue_cwr(tp);
1304 clear_all_retrans_hints(tp);
1307 void tcp_clear_retrans(struct tcp_sock *tp)
1310 tp->retrans_out = 0;
1312 tp->fackets_out = 0;
1316 tp->undo_marker = 0;
1317 tp->undo_retrans = 0;
1320 /* Enter Loss state. If "how" is not zero, forget all SACK information
1321 * and reset tags completely, otherwise preserve SACKs. If receiver
1322 * dropped its ofo queue, we will know this due to reneging detection.
1324 void tcp_enter_loss(struct sock *sk, int how)
1326 const struct inet_connection_sock *icsk = inet_csk(sk);
1327 struct tcp_sock *tp = tcp_sk(sk);
1328 struct sk_buff *skb;
1331 /* Reduce ssthresh if it has not yet been made inside this window. */
1332 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1333 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1334 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1335 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1336 tcp_ca_event(sk, CA_EVENT_LOSS);
1339 tp->snd_cwnd_cnt = 0;
1340 tp->snd_cwnd_stamp = tcp_time_stamp;
1342 tp->bytes_acked = 0;
1343 tcp_clear_retrans(tp);
1345 /* Push undo marker, if it was plain RTO and nothing
1346 * was retransmitted. */
1348 tp->undo_marker = tp->snd_una;
1350 sk_stream_for_retrans_queue(skb, sk) {
1351 cnt += tcp_skb_pcount(skb);
1352 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1353 tp->undo_marker = 0;
1354 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1355 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1356 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1357 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1358 tp->lost_out += tcp_skb_pcount(skb);
1360 tp->sacked_out += tcp_skb_pcount(skb);
1361 tp->fackets_out = cnt;
1364 tcp_sync_left_out(tp);
1366 tp->reordering = min_t(unsigned int, tp->reordering,
1367 sysctl_tcp_reordering);
1368 tcp_set_ca_state(sk, TCP_CA_Loss);
1369 tp->high_seq = tp->snd_nxt;
1370 TCP_ECN_queue_cwr(tp);
1372 clear_all_retrans_hints(tp);
1375 static int tcp_check_sack_reneging(struct sock *sk)
1377 struct sk_buff *skb;
1379 /* If ACK arrived pointing to a remembered SACK,
1380 * it means that our remembered SACKs do not reflect
1381 * real state of receiver i.e.
1382 * receiver _host_ is heavily congested (or buggy).
1383 * Do processing similar to RTO timeout.
1385 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1386 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1387 struct inet_connection_sock *icsk = inet_csk(sk);
1388 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1390 tcp_enter_loss(sk, 1);
1391 icsk->icsk_retransmits++;
1392 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1393 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1394 icsk->icsk_rto, TCP_RTO_MAX);
1400 static inline int tcp_fackets_out(struct tcp_sock *tp)
1402 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1405 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1407 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1410 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1412 return tp->packets_out &&
1413 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1416 /* Linux NewReno/SACK/FACK/ECN state machine.
1417 * --------------------------------------
1419 * "Open" Normal state, no dubious events, fast path.
1420 * "Disorder" In all the respects it is "Open",
1421 * but requires a bit more attention. It is entered when
1422 * we see some SACKs or dupacks. It is split of "Open"
1423 * mainly to move some processing from fast path to slow one.
1424 * "CWR" CWND was reduced due to some Congestion Notification event.
1425 * It can be ECN, ICMP source quench, local device congestion.
1426 * "Recovery" CWND was reduced, we are fast-retransmitting.
1427 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1429 * tcp_fastretrans_alert() is entered:
1430 * - each incoming ACK, if state is not "Open"
1431 * - when arrived ACK is unusual, namely:
1436 * Counting packets in flight is pretty simple.
1438 * in_flight = packets_out - left_out + retrans_out
1440 * packets_out is SND.NXT-SND.UNA counted in packets.
1442 * retrans_out is number of retransmitted segments.
1444 * left_out is number of segments left network, but not ACKed yet.
1446 * left_out = sacked_out + lost_out
1448 * sacked_out: Packets, which arrived to receiver out of order
1449 * and hence not ACKed. With SACKs this number is simply
1450 * amount of SACKed data. Even without SACKs
1451 * it is easy to give pretty reliable estimate of this number,
1452 * counting duplicate ACKs.
1454 * lost_out: Packets lost by network. TCP has no explicit
1455 * "loss notification" feedback from network (for now).
1456 * It means that this number can be only _guessed_.
1457 * Actually, it is the heuristics to predict lossage that
1458 * distinguishes different algorithms.
1460 * F.e. after RTO, when all the queue is considered as lost,
1461 * lost_out = packets_out and in_flight = retrans_out.
1463 * Essentially, we have now two algorithms counting
1466 * FACK: It is the simplest heuristics. As soon as we decided
1467 * that something is lost, we decide that _all_ not SACKed
1468 * packets until the most forward SACK are lost. I.e.
1469 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1470 * It is absolutely correct estimate, if network does not reorder
1471 * packets. And it loses any connection to reality when reordering
1472 * takes place. We use FACK by default until reordering
1473 * is suspected on the path to this destination.
1475 * NewReno: when Recovery is entered, we assume that one segment
1476 * is lost (classic Reno). While we are in Recovery and
1477 * a partial ACK arrives, we assume that one more packet
1478 * is lost (NewReno). This heuristics are the same in NewReno
1481 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1482 * deflation etc. CWND is real congestion window, never inflated, changes
1483 * only according to classic VJ rules.
1485 * Really tricky (and requiring careful tuning) part of algorithm
1486 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1487 * The first determines the moment _when_ we should reduce CWND and,
1488 * hence, slow down forward transmission. In fact, it determines the moment
1489 * when we decide that hole is caused by loss, rather than by a reorder.
1491 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1492 * holes, caused by lost packets.
1494 * And the most logically complicated part of algorithm is undo
1495 * heuristics. We detect false retransmits due to both too early
1496 * fast retransmit (reordering) and underestimated RTO, analyzing
1497 * timestamps and D-SACKs. When we detect that some segments were
1498 * retransmitted by mistake and CWND reduction was wrong, we undo
1499 * window reduction and abort recovery phase. This logic is hidden
1500 * inside several functions named tcp_try_undo_<something>.
1503 /* This function decides, when we should leave Disordered state
1504 * and enter Recovery phase, reducing congestion window.
1506 * Main question: may we further continue forward transmission
1507 * with the same cwnd?
1509 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1513 /* Trick#1: The loss is proven. */
1517 /* Not-A-Trick#2 : Classic rule... */
1518 if (tcp_fackets_out(tp) > tp->reordering)
1521 /* Trick#3 : when we use RFC2988 timer restart, fast
1522 * retransmit can be triggered by timeout of queue head.
1524 if (tcp_head_timedout(sk, tp))
1527 /* Trick#4: It is still not OK... But will it be useful to delay
1530 packets_out = tp->packets_out;
1531 if (packets_out <= tp->reordering &&
1532 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1533 !tcp_may_send_now(sk, tp)) {
1534 /* We have nothing to send. This connection is limited
1535 * either by receiver window or by application.
1543 /* If we receive more dupacks than we expected counting segments
1544 * in assumption of absent reordering, interpret this as reordering.
1545 * The only another reason could be bug in receiver TCP.
1547 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1549 struct tcp_sock *tp = tcp_sk(sk);
1552 holes = max(tp->lost_out, 1U);
1553 holes = min(holes, tp->packets_out);
1555 if ((tp->sacked_out + holes) > tp->packets_out) {
1556 tp->sacked_out = tp->packets_out - holes;
1557 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1561 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1563 static void tcp_add_reno_sack(struct sock *sk)
1565 struct tcp_sock *tp = tcp_sk(sk);
1567 tcp_check_reno_reordering(sk, 0);
1568 tcp_sync_left_out(tp);
1571 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1573 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1576 /* One ACK acked hole. The rest eat duplicate ACKs. */
1577 if (acked-1 >= tp->sacked_out)
1580 tp->sacked_out -= acked-1;
1582 tcp_check_reno_reordering(sk, acked);
1583 tcp_sync_left_out(tp);
1586 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1589 tp->left_out = tp->lost_out;
1592 /* Mark head of queue up as lost. */
1593 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1594 int packets, u32 high_seq)
1596 struct sk_buff *skb;
1599 BUG_TRAP(packets <= tp->packets_out);
1600 if (tp->lost_skb_hint) {
1601 skb = tp->lost_skb_hint;
1602 cnt = tp->lost_cnt_hint;
1604 skb = sk->sk_write_queue.next;
1608 sk_stream_for_retrans_queue_from(skb, sk) {
1609 /* TODO: do this better */
1610 /* this is not the most efficient way to do this... */
1611 tp->lost_skb_hint = skb;
1612 tp->lost_cnt_hint = cnt;
1613 cnt += tcp_skb_pcount(skb);
1614 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1616 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1617 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1618 tp->lost_out += tcp_skb_pcount(skb);
1620 /* clear xmit_retransmit_queue hints
1621 * if this is beyond hint */
1622 if(tp->retransmit_skb_hint != NULL &&
1623 before(TCP_SKB_CB(skb)->seq,
1624 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1626 tp->retransmit_skb_hint = NULL;
1630 tcp_sync_left_out(tp);
1633 /* Account newly detected lost packet(s) */
1635 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1638 int lost = tp->fackets_out - tp->reordering;
1641 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1643 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1646 /* New heuristics: it is possible only after we switched
1647 * to restart timer each time when something is ACKed.
1648 * Hence, we can detect timed out packets during fast
1649 * retransmit without falling to slow start.
1651 if (tcp_head_timedout(sk, tp)) {
1652 struct sk_buff *skb;
1654 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1655 : sk->sk_write_queue.next;
1657 sk_stream_for_retrans_queue_from(skb, sk) {
1658 if (!tcp_skb_timedout(sk, skb))
1661 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1662 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1663 tp->lost_out += tcp_skb_pcount(skb);
1665 /* clear xmit_retrans hint */
1666 if (tp->retransmit_skb_hint &&
1667 before(TCP_SKB_CB(skb)->seq,
1668 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1670 tp->retransmit_skb_hint = NULL;
1674 tp->scoreboard_skb_hint = skb;
1676 tcp_sync_left_out(tp);
1680 /* CWND moderation, preventing bursts due to too big ACKs
1681 * in dubious situations.
1683 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1685 tp->snd_cwnd = min(tp->snd_cwnd,
1686 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1687 tp->snd_cwnd_stamp = tcp_time_stamp;
1690 /* Decrease cwnd each second ack. */
1691 static void tcp_cwnd_down(struct sock *sk)
1693 const struct inet_connection_sock *icsk = inet_csk(sk);
1694 struct tcp_sock *tp = tcp_sk(sk);
1695 int decr = tp->snd_cwnd_cnt + 1;
1697 tp->snd_cwnd_cnt = decr&1;
1700 if (decr && tp->snd_cwnd > icsk->icsk_ca_ops->min_cwnd(sk))
1701 tp->snd_cwnd -= decr;
1703 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1704 tp->snd_cwnd_stamp = tcp_time_stamp;
1707 /* Nothing was retransmitted or returned timestamp is less
1708 * than timestamp of the first retransmission.
1710 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1712 return !tp->retrans_stamp ||
1713 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1714 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1717 /* Undo procedures. */
1719 #if FASTRETRANS_DEBUG > 1
1720 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1722 struct inet_sock *inet = inet_sk(sk);
1723 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1725 NIPQUAD(inet->daddr), ntohs(inet->dport),
1726 tp->snd_cwnd, tp->left_out,
1727 tp->snd_ssthresh, tp->prior_ssthresh,
1731 #define DBGUNDO(x...) do { } while (0)
1734 static void tcp_undo_cwr(struct sock *sk, const int undo)
1736 struct tcp_sock *tp = tcp_sk(sk);
1738 if (tp->prior_ssthresh) {
1739 const struct inet_connection_sock *icsk = inet_csk(sk);
1741 if (icsk->icsk_ca_ops->undo_cwnd)
1742 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1744 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1746 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1747 tp->snd_ssthresh = tp->prior_ssthresh;
1748 TCP_ECN_withdraw_cwr(tp);
1751 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1753 tcp_moderate_cwnd(tp);
1754 tp->snd_cwnd_stamp = tcp_time_stamp;
1756 /* There is something screwy going on with the retrans hints after
1758 clear_all_retrans_hints(tp);
1761 static inline int tcp_may_undo(struct tcp_sock *tp)
1763 return tp->undo_marker &&
1764 (!tp->undo_retrans || tcp_packet_delayed(tp));
1767 /* People celebrate: "We love our President!" */
1768 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1770 if (tcp_may_undo(tp)) {
1771 /* Happy end! We did not retransmit anything
1772 * or our original transmission succeeded.
1774 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1775 tcp_undo_cwr(sk, 1);
1776 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1777 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1779 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1780 tp->undo_marker = 0;
1782 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1783 /* Hold old state until something *above* high_seq
1784 * is ACKed. For Reno it is MUST to prevent false
1785 * fast retransmits (RFC2582). SACK TCP is safe. */
1786 tcp_moderate_cwnd(tp);
1789 tcp_set_ca_state(sk, TCP_CA_Open);
1793 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1794 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1796 if (tp->undo_marker && !tp->undo_retrans) {
1797 DBGUNDO(sk, tp, "D-SACK");
1798 tcp_undo_cwr(sk, 1);
1799 tp->undo_marker = 0;
1800 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1804 /* Undo during fast recovery after partial ACK. */
1806 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1809 /* Partial ACK arrived. Force Hoe's retransmit. */
1810 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1812 if (tcp_may_undo(tp)) {
1813 /* Plain luck! Hole if filled with delayed
1814 * packet, rather than with a retransmit.
1816 if (tp->retrans_out == 0)
1817 tp->retrans_stamp = 0;
1819 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1821 DBGUNDO(sk, tp, "Hoe");
1822 tcp_undo_cwr(sk, 0);
1823 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1825 /* So... Do not make Hoe's retransmit yet.
1826 * If the first packet was delayed, the rest
1827 * ones are most probably delayed as well.
1834 /* Undo during loss recovery after partial ACK. */
1835 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1837 if (tcp_may_undo(tp)) {
1838 struct sk_buff *skb;
1839 sk_stream_for_retrans_queue(skb, sk) {
1840 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1843 clear_all_retrans_hints(tp);
1845 DBGUNDO(sk, tp, "partial loss");
1847 tp->left_out = tp->sacked_out;
1848 tcp_undo_cwr(sk, 1);
1849 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1850 inet_csk(sk)->icsk_retransmits = 0;
1851 tp->undo_marker = 0;
1853 tcp_set_ca_state(sk, TCP_CA_Open);
1859 static inline void tcp_complete_cwr(struct sock *sk)
1861 struct tcp_sock *tp = tcp_sk(sk);
1862 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1863 tp->snd_cwnd_stamp = tcp_time_stamp;
1864 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1867 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1869 tp->left_out = tp->sacked_out;
1871 if (tp->retrans_out == 0)
1872 tp->retrans_stamp = 0;
1877 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1878 int state = TCP_CA_Open;
1880 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1881 state = TCP_CA_Disorder;
1883 if (inet_csk(sk)->icsk_ca_state != state) {
1884 tcp_set_ca_state(sk, state);
1885 tp->high_seq = tp->snd_nxt;
1887 tcp_moderate_cwnd(tp);
1893 /* Process an event, which can update packets-in-flight not trivially.
1894 * Main goal of this function is to calculate new estimate for left_out,
1895 * taking into account both packets sitting in receiver's buffer and
1896 * packets lost by network.
1898 * Besides that it does CWND reduction, when packet loss is detected
1899 * and changes state of machine.
1901 * It does _not_ decide what to send, it is made in function
1902 * tcp_xmit_retransmit_queue().
1905 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1906 int prior_packets, int flag)
1908 struct inet_connection_sock *icsk = inet_csk(sk);
1909 struct tcp_sock *tp = tcp_sk(sk);
1910 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1912 /* Some technical things:
1913 * 1. Reno does not count dupacks (sacked_out) automatically. */
1914 if (!tp->packets_out)
1916 /* 2. SACK counts snd_fack in packets inaccurately. */
1917 if (tp->sacked_out == 0)
1918 tp->fackets_out = 0;
1920 /* Now state machine starts.
1921 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1923 tp->prior_ssthresh = 0;
1925 /* B. In all the states check for reneging SACKs. */
1926 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1929 /* C. Process data loss notification, provided it is valid. */
1930 if ((flag&FLAG_DATA_LOST) &&
1931 before(tp->snd_una, tp->high_seq) &&
1932 icsk->icsk_ca_state != TCP_CA_Open &&
1933 tp->fackets_out > tp->reordering) {
1934 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1935 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1938 /* D. Synchronize left_out to current state. */
1939 tcp_sync_left_out(tp);
1941 /* E. Check state exit conditions. State can be terminated
1942 * when high_seq is ACKed. */
1943 if (icsk->icsk_ca_state == TCP_CA_Open) {
1944 if (!sysctl_tcp_frto)
1945 BUG_TRAP(tp->retrans_out == 0);
1946 tp->retrans_stamp = 0;
1947 } else if (!before(tp->snd_una, tp->high_seq)) {
1948 switch (icsk->icsk_ca_state) {
1950 icsk->icsk_retransmits = 0;
1951 if (tcp_try_undo_recovery(sk, tp))
1956 /* CWR is to be held something *above* high_seq
1957 * is ACKed for CWR bit to reach receiver. */
1958 if (tp->snd_una != tp->high_seq) {
1959 tcp_complete_cwr(sk);
1960 tcp_set_ca_state(sk, TCP_CA_Open);
1964 case TCP_CA_Disorder:
1965 tcp_try_undo_dsack(sk, tp);
1966 if (!tp->undo_marker ||
1967 /* For SACK case do not Open to allow to undo
1968 * catching for all duplicate ACKs. */
1969 IsReno(tp) || tp->snd_una != tp->high_seq) {
1970 tp->undo_marker = 0;
1971 tcp_set_ca_state(sk, TCP_CA_Open);
1975 case TCP_CA_Recovery:
1977 tcp_reset_reno_sack(tp);
1978 if (tcp_try_undo_recovery(sk, tp))
1980 tcp_complete_cwr(sk);
1985 /* F. Process state. */
1986 switch (icsk->icsk_ca_state) {
1987 case TCP_CA_Recovery:
1988 if (prior_snd_una == tp->snd_una) {
1989 if (IsReno(tp) && is_dupack)
1990 tcp_add_reno_sack(sk);
1992 int acked = prior_packets - tp->packets_out;
1994 tcp_remove_reno_sacks(sk, tp, acked);
1995 is_dupack = tcp_try_undo_partial(sk, tp, acked);
1999 if (flag&FLAG_DATA_ACKED)
2000 icsk->icsk_retransmits = 0;
2001 if (!tcp_try_undo_loss(sk, tp)) {
2002 tcp_moderate_cwnd(tp);
2003 tcp_xmit_retransmit_queue(sk);
2006 if (icsk->icsk_ca_state != TCP_CA_Open)
2008 /* Loss is undone; fall through to processing in Open state. */
2011 if (tp->snd_una != prior_snd_una)
2012 tcp_reset_reno_sack(tp);
2014 tcp_add_reno_sack(sk);
2017 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2018 tcp_try_undo_dsack(sk, tp);
2020 if (!tcp_time_to_recover(sk, tp)) {
2021 tcp_try_to_open(sk, tp, flag);
2025 /* Otherwise enter Recovery state */
2028 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2030 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2032 tp->high_seq = tp->snd_nxt;
2033 tp->prior_ssthresh = 0;
2034 tp->undo_marker = tp->snd_una;
2035 tp->undo_retrans = tp->retrans_out;
2037 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2038 if (!(flag&FLAG_ECE))
2039 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2040 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2041 TCP_ECN_queue_cwr(tp);
2044 tp->bytes_acked = 0;
2045 tp->snd_cwnd_cnt = 0;
2046 tcp_set_ca_state(sk, TCP_CA_Recovery);
2049 if (is_dupack || tcp_head_timedout(sk, tp))
2050 tcp_update_scoreboard(sk, tp);
2052 tcp_xmit_retransmit_queue(sk);
2055 /* Read draft-ietf-tcplw-high-performance before mucking
2056 * with this code. (Supersedes RFC1323)
2058 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2060 /* RTTM Rule: A TSecr value received in a segment is used to
2061 * update the averaged RTT measurement only if the segment
2062 * acknowledges some new data, i.e., only if it advances the
2063 * left edge of the send window.
2065 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2066 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2068 * Changed: reset backoff as soon as we see the first valid sample.
2069 * If we do not, we get strongly overestimated rto. With timestamps
2070 * samples are accepted even from very old segments: f.e., when rtt=1
2071 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2072 * answer arrives rto becomes 120 seconds! If at least one of segments
2073 * in window is lost... Voila. --ANK (010210)
2075 struct tcp_sock *tp = tcp_sk(sk);
2076 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2077 tcp_rtt_estimator(sk, seq_rtt);
2079 inet_csk(sk)->icsk_backoff = 0;
2083 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2085 /* We don't have a timestamp. Can only use
2086 * packets that are not retransmitted to determine
2087 * rtt estimates. Also, we must not reset the
2088 * backoff for rto until we get a non-retransmitted
2089 * packet. This allows us to deal with a situation
2090 * where the network delay has increased suddenly.
2091 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2094 if (flag & FLAG_RETRANS_DATA_ACKED)
2097 tcp_rtt_estimator(sk, seq_rtt);
2099 inet_csk(sk)->icsk_backoff = 0;
2103 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2106 const struct tcp_sock *tp = tcp_sk(sk);
2107 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2108 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2109 tcp_ack_saw_tstamp(sk, flag);
2110 else if (seq_rtt >= 0)
2111 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2114 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2115 u32 in_flight, int good)
2117 const struct inet_connection_sock *icsk = inet_csk(sk);
2118 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2119 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2122 /* Restart timer after forward progress on connection.
2123 * RFC2988 recommends to restart timer to now+rto.
2126 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2128 if (!tp->packets_out) {
2129 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2131 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2135 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2136 __u32 now, __s32 *seq_rtt)
2138 struct tcp_sock *tp = tcp_sk(sk);
2139 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2140 __u32 seq = tp->snd_una;
2141 __u32 packets_acked;
2144 /* If we get here, the whole TSO packet has not been
2147 BUG_ON(!after(scb->end_seq, seq));
2149 packets_acked = tcp_skb_pcount(skb);
2150 if (tcp_trim_head(sk, skb, seq - scb->seq))
2152 packets_acked -= tcp_skb_pcount(skb);
2154 if (packets_acked) {
2155 __u8 sacked = scb->sacked;
2157 acked |= FLAG_DATA_ACKED;
2159 if (sacked & TCPCB_RETRANS) {
2160 if (sacked & TCPCB_SACKED_RETRANS)
2161 tp->retrans_out -= packets_acked;
2162 acked |= FLAG_RETRANS_DATA_ACKED;
2164 } else if (*seq_rtt < 0)
2165 *seq_rtt = now - scb->when;
2166 if (sacked & TCPCB_SACKED_ACKED)
2167 tp->sacked_out -= packets_acked;
2168 if (sacked & TCPCB_LOST)
2169 tp->lost_out -= packets_acked;
2170 if (sacked & TCPCB_URG) {
2172 !before(seq, tp->snd_up))
2175 } else if (*seq_rtt < 0)
2176 *seq_rtt = now - scb->when;
2178 if (tp->fackets_out) {
2179 __u32 dval = min(tp->fackets_out, packets_acked);
2180 tp->fackets_out -= dval;
2182 tp->packets_out -= packets_acked;
2184 BUG_ON(tcp_skb_pcount(skb) == 0);
2185 BUG_ON(!before(scb->seq, scb->end_seq));
2191 static u32 tcp_usrtt(const struct sk_buff *skb)
2193 struct timeval tv, now;
2195 do_gettimeofday(&now);
2196 skb_get_timestamp(skb, &tv);
2197 return (now.tv_sec - tv.tv_sec) * 1000000 + (now.tv_usec - tv.tv_usec);
2200 /* Remove acknowledged frames from the retransmission queue. */
2201 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2203 struct tcp_sock *tp = tcp_sk(sk);
2204 const struct inet_connection_sock *icsk = inet_csk(sk);
2205 struct sk_buff *skb;
2206 __u32 now = tcp_time_stamp;
2210 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2211 = icsk->icsk_ca_ops->rtt_sample;
2213 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2214 skb != sk->sk_send_head) {
2215 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2216 __u8 sacked = scb->sacked;
2218 /* If our packet is before the ack sequence we can
2219 * discard it as it's confirmed to have arrived at
2222 if (after(scb->end_seq, tp->snd_una)) {
2223 if (tcp_skb_pcount(skb) > 1 &&
2224 after(tp->snd_una, scb->seq))
2225 acked |= tcp_tso_acked(sk, skb,
2230 /* Initial outgoing SYN's get put onto the write_queue
2231 * just like anything else we transmit. It is not
2232 * true data, and if we misinform our callers that
2233 * this ACK acks real data, we will erroneously exit
2234 * connection startup slow start one packet too
2235 * quickly. This is severely frowned upon behavior.
2237 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2238 acked |= FLAG_DATA_ACKED;
2241 acked |= FLAG_SYN_ACKED;
2242 tp->retrans_stamp = 0;
2246 if (sacked & TCPCB_RETRANS) {
2247 if(sacked & TCPCB_SACKED_RETRANS)
2248 tp->retrans_out -= tcp_skb_pcount(skb);
2249 acked |= FLAG_RETRANS_DATA_ACKED;
2251 } else if (seq_rtt < 0) {
2252 seq_rtt = now - scb->when;
2254 (*rtt_sample)(sk, tcp_usrtt(skb));
2256 if (sacked & TCPCB_SACKED_ACKED)
2257 tp->sacked_out -= tcp_skb_pcount(skb);
2258 if (sacked & TCPCB_LOST)
2259 tp->lost_out -= tcp_skb_pcount(skb);
2260 if (sacked & TCPCB_URG) {
2262 !before(scb->end_seq, tp->snd_up))
2265 } else if (seq_rtt < 0) {
2266 seq_rtt = now - scb->when;
2268 (*rtt_sample)(sk, tcp_usrtt(skb));
2270 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2271 tcp_packets_out_dec(tp, skb);
2272 __skb_unlink(skb, &sk->sk_write_queue);
2273 sk_stream_free_skb(sk, skb);
2274 clear_all_retrans_hints(tp);
2277 if (acked&FLAG_ACKED) {
2278 tcp_ack_update_rtt(sk, acked, seq_rtt);
2279 tcp_ack_packets_out(sk, tp);
2281 if (icsk->icsk_ca_ops->pkts_acked)
2282 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2285 #if FASTRETRANS_DEBUG > 0
2286 BUG_TRAP((int)tp->sacked_out >= 0);
2287 BUG_TRAP((int)tp->lost_out >= 0);
2288 BUG_TRAP((int)tp->retrans_out >= 0);
2289 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2290 const struct inet_connection_sock *icsk = inet_csk(sk);
2292 printk(KERN_DEBUG "Leak l=%u %d\n",
2293 tp->lost_out, icsk->icsk_ca_state);
2296 if (tp->sacked_out) {
2297 printk(KERN_DEBUG "Leak s=%u %d\n",
2298 tp->sacked_out, icsk->icsk_ca_state);
2301 if (tp->retrans_out) {
2302 printk(KERN_DEBUG "Leak r=%u %d\n",
2303 tp->retrans_out, icsk->icsk_ca_state);
2304 tp->retrans_out = 0;
2308 *seq_rtt_p = seq_rtt;
2312 static void tcp_ack_probe(struct sock *sk)
2314 const struct tcp_sock *tp = tcp_sk(sk);
2315 struct inet_connection_sock *icsk = inet_csk(sk);
2317 /* Was it a usable window open? */
2319 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2320 tp->snd_una + tp->snd_wnd)) {
2321 icsk->icsk_backoff = 0;
2322 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2323 /* Socket must be waked up by subsequent tcp_data_snd_check().
2324 * This function is not for random using!
2327 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2328 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2333 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2335 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2336 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2339 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2341 const struct tcp_sock *tp = tcp_sk(sk);
2342 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2343 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2346 /* Check that window update is acceptable.
2347 * The function assumes that snd_una<=ack<=snd_next.
2349 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2350 const u32 ack_seq, const u32 nwin)
2352 return (after(ack, tp->snd_una) ||
2353 after(ack_seq, tp->snd_wl1) ||
2354 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2357 /* Update our send window.
2359 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2360 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2362 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2363 struct sk_buff *skb, u32 ack, u32 ack_seq)
2366 u32 nwin = ntohs(skb->h.th->window);
2368 if (likely(!skb->h.th->syn))
2369 nwin <<= tp->rx_opt.snd_wscale;
2371 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2372 flag |= FLAG_WIN_UPDATE;
2373 tcp_update_wl(tp, ack, ack_seq);
2375 if (tp->snd_wnd != nwin) {
2378 /* Note, it is the only place, where
2379 * fast path is recovered for sending TCP.
2382 tcp_fast_path_check(sk, tp);
2384 if (nwin > tp->max_window) {
2385 tp->max_window = nwin;
2386 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2396 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2398 struct tcp_sock *tp = tcp_sk(sk);
2400 tcp_sync_left_out(tp);
2402 if (tp->snd_una == prior_snd_una ||
2403 !before(tp->snd_una, tp->frto_highmark)) {
2404 /* RTO was caused by loss, start retransmitting in
2405 * go-back-N slow start
2407 tcp_enter_frto_loss(sk);
2411 if (tp->frto_counter == 1) {
2412 /* First ACK after RTO advances the window: allow two new
2415 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2417 /* Also the second ACK after RTO advances the window.
2418 * The RTO was likely spurious. Reduce cwnd and continue
2419 * in congestion avoidance
2421 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2422 tcp_moderate_cwnd(tp);
2425 /* F-RTO affects on two new ACKs following RTO.
2426 * At latest on third ACK the TCP behavior is back to normal.
2428 tp->frto_counter = (tp->frto_counter + 1) % 3;
2431 /* This routine deals with incoming acks, but not outgoing ones. */
2432 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2434 struct inet_connection_sock *icsk = inet_csk(sk);
2435 struct tcp_sock *tp = tcp_sk(sk);
2436 u32 prior_snd_una = tp->snd_una;
2437 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2438 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2439 u32 prior_in_flight;
2443 /* If the ack is newer than sent or older than previous acks
2444 * then we can probably ignore it.
2446 if (after(ack, tp->snd_nxt))
2447 goto uninteresting_ack;
2449 if (before(ack, prior_snd_una))
2452 if (sysctl_tcp_abc && icsk->icsk_ca_state < TCP_CA_CWR)
2453 tp->bytes_acked += ack - prior_snd_una;
2455 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2456 /* Window is constant, pure forward advance.
2457 * No more checks are required.
2458 * Note, we use the fact that SND.UNA>=SND.WL2.
2460 tcp_update_wl(tp, ack, ack_seq);
2462 flag |= FLAG_WIN_UPDATE;
2464 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2466 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2468 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2471 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2473 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2475 if (TCP_SKB_CB(skb)->sacked)
2476 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2478 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2481 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2484 /* We passed data and got it acked, remove any soft error
2485 * log. Something worked...
2487 sk->sk_err_soft = 0;
2488 tp->rcv_tstamp = tcp_time_stamp;
2489 prior_packets = tp->packets_out;
2493 prior_in_flight = tcp_packets_in_flight(tp);
2495 /* See if we can take anything off of the retransmit queue. */
2496 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2498 if (tp->frto_counter)
2499 tcp_process_frto(sk, prior_snd_una);
2501 if (tcp_ack_is_dubious(sk, flag)) {
2502 /* Advance CWND, if state allows this. */
2503 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2504 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2505 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2507 if ((flag & FLAG_DATA_ACKED))
2508 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2511 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2512 dst_confirm(sk->sk_dst_cache);
2517 icsk->icsk_probes_out = 0;
2519 /* If this ack opens up a zero window, clear backoff. It was
2520 * being used to time the probes, and is probably far higher than
2521 * it needs to be for normal retransmission.
2523 if (sk->sk_send_head)
2528 if (TCP_SKB_CB(skb)->sacked)
2529 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2532 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2537 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2538 * But, this can also be called on packets in the established flow when
2539 * the fast version below fails.
2541 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2544 struct tcphdr *th = skb->h.th;
2545 int length=(th->doff*4)-sizeof(struct tcphdr);
2547 ptr = (unsigned char *)(th + 1);
2548 opt_rx->saw_tstamp = 0;
2557 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2562 if (opsize < 2) /* "silly options" */
2564 if (opsize > length)
2565 return; /* don't parse partial options */
2568 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2569 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2571 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2572 in_mss = opt_rx->user_mss;
2573 opt_rx->mss_clamp = in_mss;
2578 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2579 if (sysctl_tcp_window_scaling) {
2580 __u8 snd_wscale = *(__u8 *) ptr;
2581 opt_rx->wscale_ok = 1;
2582 if (snd_wscale > 14) {
2584 printk(KERN_INFO "tcp_parse_options: Illegal window "
2585 "scaling value %d >14 received.\n",
2589 opt_rx->snd_wscale = snd_wscale;
2592 case TCPOPT_TIMESTAMP:
2593 if(opsize==TCPOLEN_TIMESTAMP) {
2594 if ((estab && opt_rx->tstamp_ok) ||
2595 (!estab && sysctl_tcp_timestamps)) {
2596 opt_rx->saw_tstamp = 1;
2597 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2598 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2602 case TCPOPT_SACK_PERM:
2603 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2604 if (sysctl_tcp_sack) {
2605 opt_rx->sack_ok = 1;
2606 tcp_sack_reset(opt_rx);
2612 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2613 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2615 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2624 /* Fast parse options. This hopes to only see timestamps.
2625 * If it is wrong it falls back on tcp_parse_options().
2627 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2628 struct tcp_sock *tp)
2630 if (th->doff == sizeof(struct tcphdr)>>2) {
2631 tp->rx_opt.saw_tstamp = 0;
2633 } else if (tp->rx_opt.tstamp_ok &&
2634 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2635 __u32 *ptr = (__u32 *)(th + 1);
2636 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2637 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2638 tp->rx_opt.saw_tstamp = 1;
2640 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2642 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2646 tcp_parse_options(skb, &tp->rx_opt, 1);
2650 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2652 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2653 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2656 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2658 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2659 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2660 * extra check below makes sure this can only happen
2661 * for pure ACK frames. -DaveM
2663 * Not only, also it occurs for expired timestamps.
2666 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2667 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2668 tcp_store_ts_recent(tp);
2672 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2674 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2675 * it can pass through stack. So, the following predicate verifies that
2676 * this segment is not used for anything but congestion avoidance or
2677 * fast retransmit. Moreover, we even are able to eliminate most of such
2678 * second order effects, if we apply some small "replay" window (~RTO)
2679 * to timestamp space.
2681 * All these measures still do not guarantee that we reject wrapped ACKs
2682 * on networks with high bandwidth, when sequence space is recycled fastly,
2683 * but it guarantees that such events will be very rare and do not affect
2684 * connection seriously. This doesn't look nice, but alas, PAWS is really
2687 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2688 * states that events when retransmit arrives after original data are rare.
2689 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2690 * the biggest problem on large power networks even with minor reordering.
2691 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2692 * up to bandwidth of 18Gigabit/sec. 8) ]
2695 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2697 struct tcp_sock *tp = tcp_sk(sk);
2698 struct tcphdr *th = skb->h.th;
2699 u32 seq = TCP_SKB_CB(skb)->seq;
2700 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2702 return (/* 1. Pure ACK with correct sequence number. */
2703 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2705 /* 2. ... and duplicate ACK. */
2706 ack == tp->snd_una &&
2708 /* 3. ... and does not update window. */
2709 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2711 /* 4. ... and sits in replay window. */
2712 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2715 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2717 const struct tcp_sock *tp = tcp_sk(sk);
2718 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2719 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2720 !tcp_disordered_ack(sk, skb));
2723 /* Check segment sequence number for validity.
2725 * Segment controls are considered valid, if the segment
2726 * fits to the window after truncation to the window. Acceptability
2727 * of data (and SYN, FIN, of course) is checked separately.
2728 * See tcp_data_queue(), for example.
2730 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2731 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2732 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2733 * (borrowed from freebsd)
2736 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2738 return !before(end_seq, tp->rcv_wup) &&
2739 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2742 /* When we get a reset we do this. */
2743 static void tcp_reset(struct sock *sk)
2745 /* We want the right error as BSD sees it (and indeed as we do). */
2746 switch (sk->sk_state) {
2748 sk->sk_err = ECONNREFUSED;
2750 case TCP_CLOSE_WAIT:
2756 sk->sk_err = ECONNRESET;
2759 if (!sock_flag(sk, SOCK_DEAD))
2760 sk->sk_error_report(sk);
2766 * Process the FIN bit. This now behaves as it is supposed to work
2767 * and the FIN takes effect when it is validly part of sequence
2768 * space. Not before when we get holes.
2770 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2771 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2774 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2775 * close and we go into CLOSING (and later onto TIME-WAIT)
2777 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2779 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2781 struct tcp_sock *tp = tcp_sk(sk);
2783 inet_csk_schedule_ack(sk);
2785 sk->sk_shutdown |= RCV_SHUTDOWN;
2786 sock_set_flag(sk, SOCK_DONE);
2788 switch (sk->sk_state) {
2790 case TCP_ESTABLISHED:
2791 /* Move to CLOSE_WAIT */
2792 tcp_set_state(sk, TCP_CLOSE_WAIT);
2793 inet_csk(sk)->icsk_ack.pingpong = 1;
2796 case TCP_CLOSE_WAIT:
2798 /* Received a retransmission of the FIN, do
2803 /* RFC793: Remain in the LAST-ACK state. */
2807 /* This case occurs when a simultaneous close
2808 * happens, we must ack the received FIN and
2809 * enter the CLOSING state.
2812 tcp_set_state(sk, TCP_CLOSING);
2815 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2817 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2820 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2821 * cases we should never reach this piece of code.
2823 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2824 __FUNCTION__, sk->sk_state);
2828 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2829 * Probably, we should reset in this case. For now drop them.
2831 __skb_queue_purge(&tp->out_of_order_queue);
2832 if (tp->rx_opt.sack_ok)
2833 tcp_sack_reset(&tp->rx_opt);
2834 sk_stream_mem_reclaim(sk);
2836 if (!sock_flag(sk, SOCK_DEAD)) {
2837 sk->sk_state_change(sk);
2839 /* Do not send POLL_HUP for half duplex close. */
2840 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2841 sk->sk_state == TCP_CLOSE)
2842 sk_wake_async(sk, 1, POLL_HUP);
2844 sk_wake_async(sk, 1, POLL_IN);
2848 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2850 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2851 if (before(seq, sp->start_seq))
2852 sp->start_seq = seq;
2853 if (after(end_seq, sp->end_seq))
2854 sp->end_seq = end_seq;
2860 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2862 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2863 if (before(seq, tp->rcv_nxt))
2864 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2866 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2868 tp->rx_opt.dsack = 1;
2869 tp->duplicate_sack[0].start_seq = seq;
2870 tp->duplicate_sack[0].end_seq = end_seq;
2871 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2875 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2877 if (!tp->rx_opt.dsack)
2878 tcp_dsack_set(tp, seq, end_seq);
2880 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2883 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2885 struct tcp_sock *tp = tcp_sk(sk);
2887 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2888 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2889 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2890 tcp_enter_quickack_mode(sk);
2892 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2893 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2895 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2896 end_seq = tp->rcv_nxt;
2897 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2904 /* These routines update the SACK block as out-of-order packets arrive or
2905 * in-order packets close up the sequence space.
2907 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2910 struct tcp_sack_block *sp = &tp->selective_acks[0];
2911 struct tcp_sack_block *swalk = sp+1;
2913 /* See if the recent change to the first SACK eats into
2914 * or hits the sequence space of other SACK blocks, if so coalesce.
2916 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2917 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2920 /* Zap SWALK, by moving every further SACK up by one slot.
2921 * Decrease num_sacks.
2923 tp->rx_opt.num_sacks--;
2924 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2925 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2929 this_sack++, swalk++;
2933 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2937 tmp = sack1->start_seq;
2938 sack1->start_seq = sack2->start_seq;
2939 sack2->start_seq = tmp;
2941 tmp = sack1->end_seq;
2942 sack1->end_seq = sack2->end_seq;
2943 sack2->end_seq = tmp;
2946 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2948 struct tcp_sock *tp = tcp_sk(sk);
2949 struct tcp_sack_block *sp = &tp->selective_acks[0];
2950 int cur_sacks = tp->rx_opt.num_sacks;
2956 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
2957 if (tcp_sack_extend(sp, seq, end_seq)) {
2958 /* Rotate this_sack to the first one. */
2959 for (; this_sack>0; this_sack--, sp--)
2960 tcp_sack_swap(sp, sp-1);
2962 tcp_sack_maybe_coalesce(tp);
2967 /* Could not find an adjacent existing SACK, build a new one,
2968 * put it at the front, and shift everyone else down. We
2969 * always know there is at least one SACK present already here.
2971 * If the sack array is full, forget about the last one.
2973 if (this_sack >= 4) {
2975 tp->rx_opt.num_sacks--;
2978 for(; this_sack > 0; this_sack--, sp--)
2982 /* Build the new head SACK, and we're done. */
2983 sp->start_seq = seq;
2984 sp->end_seq = end_seq;
2985 tp->rx_opt.num_sacks++;
2986 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2989 /* RCV.NXT advances, some SACKs should be eaten. */
2991 static void tcp_sack_remove(struct tcp_sock *tp)
2993 struct tcp_sack_block *sp = &tp->selective_acks[0];
2994 int num_sacks = tp->rx_opt.num_sacks;
2997 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
2998 if (skb_queue_empty(&tp->out_of_order_queue)) {
2999 tp->rx_opt.num_sacks = 0;
3000 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3004 for(this_sack = 0; this_sack < num_sacks; ) {
3005 /* Check if the start of the sack is covered by RCV.NXT. */
3006 if (!before(tp->rcv_nxt, sp->start_seq)) {
3009 /* RCV.NXT must cover all the block! */
3010 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3012 /* Zap this SACK, by moving forward any other SACKS. */
3013 for (i=this_sack+1; i < num_sacks; i++)
3014 tp->selective_acks[i-1] = tp->selective_acks[i];
3021 if (num_sacks != tp->rx_opt.num_sacks) {
3022 tp->rx_opt.num_sacks = num_sacks;
3023 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3027 /* This one checks to see if we can put data from the
3028 * out_of_order queue into the receive_queue.
3030 static void tcp_ofo_queue(struct sock *sk)
3032 struct tcp_sock *tp = tcp_sk(sk);
3033 __u32 dsack_high = tp->rcv_nxt;
3034 struct sk_buff *skb;
3036 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3037 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3040 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3041 __u32 dsack = dsack_high;
3042 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3043 dsack_high = TCP_SKB_CB(skb)->end_seq;
3044 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3047 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3048 SOCK_DEBUG(sk, "ofo packet was already received \n");
3049 __skb_unlink(skb, &tp->out_of_order_queue);
3053 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3054 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3055 TCP_SKB_CB(skb)->end_seq);
3057 __skb_unlink(skb, &tp->out_of_order_queue);
3058 __skb_queue_tail(&sk->sk_receive_queue, skb);
3059 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3061 tcp_fin(skb, sk, skb->h.th);
3065 static int tcp_prune_queue(struct sock *sk);
3067 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3069 struct tcphdr *th = skb->h.th;
3070 struct tcp_sock *tp = tcp_sk(sk);
3073 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3076 __skb_pull(skb, th->doff*4);
3078 TCP_ECN_accept_cwr(tp, skb);
3080 if (tp->rx_opt.dsack) {
3081 tp->rx_opt.dsack = 0;
3082 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3083 4 - tp->rx_opt.tstamp_ok);
3086 /* Queue data for delivery to the user.
3087 * Packets in sequence go to the receive queue.
3088 * Out of sequence packets to the out_of_order_queue.
3090 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3091 if (tcp_receive_window(tp) == 0)
3094 /* Ok. In sequence. In window. */
3095 if (tp->ucopy.task == current &&
3096 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3097 sock_owned_by_user(sk) && !tp->urg_data) {
3098 int chunk = min_t(unsigned int, skb->len,
3101 __set_current_state(TASK_RUNNING);
3104 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3105 tp->ucopy.len -= chunk;
3106 tp->copied_seq += chunk;
3107 eaten = (chunk == skb->len && !th->fin);
3108 tcp_rcv_space_adjust(sk);
3116 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3117 !sk_stream_rmem_schedule(sk, skb))) {
3118 if (tcp_prune_queue(sk) < 0 ||
3119 !sk_stream_rmem_schedule(sk, skb))
3122 sk_stream_set_owner_r(skb, sk);
3123 __skb_queue_tail(&sk->sk_receive_queue, skb);
3125 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3127 tcp_event_data_recv(sk, tp, skb);
3129 tcp_fin(skb, sk, th);
3131 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3134 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3135 * gap in queue is filled.
3137 if (skb_queue_empty(&tp->out_of_order_queue))
3138 inet_csk(sk)->icsk_ack.pingpong = 0;
3141 if (tp->rx_opt.num_sacks)
3142 tcp_sack_remove(tp);
3144 tcp_fast_path_check(sk, tp);
3148 else if (!sock_flag(sk, SOCK_DEAD))
3149 sk->sk_data_ready(sk, 0);
3153 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3154 /* A retransmit, 2nd most common case. Force an immediate ack. */
3155 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3156 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3159 tcp_enter_quickack_mode(sk);
3160 inet_csk_schedule_ack(sk);
3166 /* Out of window. F.e. zero window probe. */
3167 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3170 tcp_enter_quickack_mode(sk);
3172 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3173 /* Partial packet, seq < rcv_next < end_seq */
3174 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3175 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3176 TCP_SKB_CB(skb)->end_seq);
3178 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3180 /* If window is closed, drop tail of packet. But after
3181 * remembering D-SACK for its head made in previous line.
3183 if (!tcp_receive_window(tp))
3188 TCP_ECN_check_ce(tp, skb);
3190 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3191 !sk_stream_rmem_schedule(sk, skb)) {
3192 if (tcp_prune_queue(sk) < 0 ||
3193 !sk_stream_rmem_schedule(sk, skb))
3197 /* Disable header prediction. */
3199 inet_csk_schedule_ack(sk);
3201 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3202 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3204 sk_stream_set_owner_r(skb, sk);
3206 if (!skb_peek(&tp->out_of_order_queue)) {
3207 /* Initial out of order segment, build 1 SACK. */
3208 if (tp->rx_opt.sack_ok) {
3209 tp->rx_opt.num_sacks = 1;
3210 tp->rx_opt.dsack = 0;
3211 tp->rx_opt.eff_sacks = 1;
3212 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3213 tp->selective_acks[0].end_seq =
3214 TCP_SKB_CB(skb)->end_seq;
3216 __skb_queue_head(&tp->out_of_order_queue,skb);
3218 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3219 u32 seq = TCP_SKB_CB(skb)->seq;
3220 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3222 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3223 __skb_append(skb1, skb, &tp->out_of_order_queue);
3225 if (!tp->rx_opt.num_sacks ||
3226 tp->selective_acks[0].end_seq != seq)
3229 /* Common case: data arrive in order after hole. */
3230 tp->selective_acks[0].end_seq = end_seq;
3234 /* Find place to insert this segment. */
3236 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3238 } while ((skb1 = skb1->prev) !=
3239 (struct sk_buff*)&tp->out_of_order_queue);
3241 /* Do skb overlap to previous one? */
3242 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3243 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3244 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3245 /* All the bits are present. Drop. */
3247 tcp_dsack_set(tp, seq, end_seq);
3250 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3251 /* Partial overlap. */
3252 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3257 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3259 /* And clean segments covered by new one as whole. */
3260 while ((skb1 = skb->next) !=
3261 (struct sk_buff*)&tp->out_of_order_queue &&
3262 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3263 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3264 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3267 __skb_unlink(skb1, &tp->out_of_order_queue);
3268 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3273 if (tp->rx_opt.sack_ok)
3274 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3278 /* Collapse contiguous sequence of skbs head..tail with
3279 * sequence numbers start..end.
3280 * Segments with FIN/SYN are not collapsed (only because this
3284 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3285 struct sk_buff *head, struct sk_buff *tail,
3288 struct sk_buff *skb;
3290 /* First, check that queue is collapsible and find
3291 * the point where collapsing can be useful. */
3292 for (skb = head; skb != tail; ) {
3293 /* No new bits? It is possible on ofo queue. */
3294 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3295 struct sk_buff *next = skb->next;
3296 __skb_unlink(skb, list);
3298 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3303 /* The first skb to collapse is:
3305 * - bloated or contains data before "start" or
3306 * overlaps to the next one.
3308 if (!skb->h.th->syn && !skb->h.th->fin &&
3309 (tcp_win_from_space(skb->truesize) > skb->len ||
3310 before(TCP_SKB_CB(skb)->seq, start) ||
3311 (skb->next != tail &&
3312 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3315 /* Decided to skip this, advance start seq. */
3316 start = TCP_SKB_CB(skb)->end_seq;
3319 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3322 while (before(start, end)) {
3323 struct sk_buff *nskb;
3324 int header = skb_headroom(skb);
3325 int copy = SKB_MAX_ORDER(header, 0);
3327 /* Too big header? This can happen with IPv6. */
3330 if (end-start < copy)
3332 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3335 skb_reserve(nskb, header);
3336 memcpy(nskb->head, skb->head, header);
3337 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3338 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3339 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3340 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3341 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3342 __skb_insert(nskb, skb->prev, skb, list);
3343 sk_stream_set_owner_r(nskb, sk);
3345 /* Copy data, releasing collapsed skbs. */
3347 int offset = start - TCP_SKB_CB(skb)->seq;
3348 int size = TCP_SKB_CB(skb)->end_seq - start;
3352 size = min(copy, size);
3353 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3355 TCP_SKB_CB(nskb)->end_seq += size;
3359 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3360 struct sk_buff *next = skb->next;
3361 __skb_unlink(skb, list);
3363 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3365 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3372 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3373 * and tcp_collapse() them until all the queue is collapsed.
3375 static void tcp_collapse_ofo_queue(struct sock *sk)
3377 struct tcp_sock *tp = tcp_sk(sk);
3378 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3379 struct sk_buff *head;
3385 start = TCP_SKB_CB(skb)->seq;
3386 end = TCP_SKB_CB(skb)->end_seq;
3392 /* Segment is terminated when we see gap or when
3393 * we are at the end of all the queue. */
3394 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3395 after(TCP_SKB_CB(skb)->seq, end) ||
3396 before(TCP_SKB_CB(skb)->end_seq, start)) {
3397 tcp_collapse(sk, &tp->out_of_order_queue,
3398 head, skb, start, end);
3400 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3402 /* Start new segment */
3403 start = TCP_SKB_CB(skb)->seq;
3404 end = TCP_SKB_CB(skb)->end_seq;
3406 if (before(TCP_SKB_CB(skb)->seq, start))
3407 start = TCP_SKB_CB(skb)->seq;
3408 if (after(TCP_SKB_CB(skb)->end_seq, end))
3409 end = TCP_SKB_CB(skb)->end_seq;
3414 /* Reduce allocated memory if we can, trying to get
3415 * the socket within its memory limits again.
3417 * Return less than zero if we should start dropping frames
3418 * until the socket owning process reads some of the data
3419 * to stabilize the situation.
3421 static int tcp_prune_queue(struct sock *sk)
3423 struct tcp_sock *tp = tcp_sk(sk);
3425 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3427 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3429 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3430 tcp_clamp_window(sk, tp);
3431 else if (tcp_memory_pressure)
3432 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3434 tcp_collapse_ofo_queue(sk);
3435 tcp_collapse(sk, &sk->sk_receive_queue,
3436 sk->sk_receive_queue.next,
3437 (struct sk_buff*)&sk->sk_receive_queue,
3438 tp->copied_seq, tp->rcv_nxt);
3439 sk_stream_mem_reclaim(sk);
3441 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3444 /* Collapsing did not help, destructive actions follow.
3445 * This must not ever occur. */
3447 /* First, purge the out_of_order queue. */
3448 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3449 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3450 __skb_queue_purge(&tp->out_of_order_queue);
3452 /* Reset SACK state. A conforming SACK implementation will
3453 * do the same at a timeout based retransmit. When a connection
3454 * is in a sad state like this, we care only about integrity
3455 * of the connection not performance.
3457 if (tp->rx_opt.sack_ok)
3458 tcp_sack_reset(&tp->rx_opt);
3459 sk_stream_mem_reclaim(sk);
3462 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3465 /* If we are really being abused, tell the caller to silently
3466 * drop receive data on the floor. It will get retransmitted
3467 * and hopefully then we'll have sufficient space.
3469 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3471 /* Massive buffer overcommit. */
3477 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3478 * As additional protections, we do not touch cwnd in retransmission phases,
3479 * and if application hit its sndbuf limit recently.
3481 void tcp_cwnd_application_limited(struct sock *sk)
3483 struct tcp_sock *tp = tcp_sk(sk);
3485 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3486 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3487 /* Limited by application or receiver window. */
3488 u32 win_used = max(tp->snd_cwnd_used, 2U);
3489 if (win_used < tp->snd_cwnd) {
3490 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3491 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3493 tp->snd_cwnd_used = 0;
3495 tp->snd_cwnd_stamp = tcp_time_stamp;
3498 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3500 /* If the user specified a specific send buffer setting, do
3503 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3506 /* If we are under global TCP memory pressure, do not expand. */
3507 if (tcp_memory_pressure)
3510 /* If we are under soft global TCP memory pressure, do not expand. */
3511 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3514 /* If we filled the congestion window, do not expand. */
3515 if (tp->packets_out >= tp->snd_cwnd)
3521 /* When incoming ACK allowed to free some skb from write_queue,
3522 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3523 * on the exit from tcp input handler.
3525 * PROBLEM: sndbuf expansion does not work well with largesend.
3527 static void tcp_new_space(struct sock *sk)
3529 struct tcp_sock *tp = tcp_sk(sk);
3531 if (tcp_should_expand_sndbuf(sk, tp)) {
3532 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3533 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3534 demanded = max_t(unsigned int, tp->snd_cwnd,
3535 tp->reordering + 1);
3536 sndmem *= 2*demanded;
3537 if (sndmem > sk->sk_sndbuf)
3538 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3539 tp->snd_cwnd_stamp = tcp_time_stamp;
3542 sk->sk_write_space(sk);
3545 static void tcp_check_space(struct sock *sk)
3547 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3548 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3549 if (sk->sk_socket &&
3550 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3555 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3557 tcp_push_pending_frames(sk, tp);
3558 tcp_check_space(sk);
3562 * Check if sending an ack is needed.
3564 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3566 struct tcp_sock *tp = tcp_sk(sk);
3568 /* More than one full frame received... */
3569 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3570 /* ... and right edge of window advances far enough.
3571 * (tcp_recvmsg() will send ACK otherwise). Or...
3573 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3574 /* We ACK each frame or... */
3575 tcp_in_quickack_mode(sk) ||
3576 /* We have out of order data. */
3578 skb_peek(&tp->out_of_order_queue))) {
3579 /* Then ack it now */
3582 /* Else, send delayed ack. */
3583 tcp_send_delayed_ack(sk);
3587 static inline void tcp_ack_snd_check(struct sock *sk)
3589 if (!inet_csk_ack_scheduled(sk)) {
3590 /* We sent a data segment already. */
3593 __tcp_ack_snd_check(sk, 1);
3597 * This routine is only called when we have urgent data
3598 * signaled. Its the 'slow' part of tcp_urg. It could be
3599 * moved inline now as tcp_urg is only called from one
3600 * place. We handle URGent data wrong. We have to - as
3601 * BSD still doesn't use the correction from RFC961.
3602 * For 1003.1g we should support a new option TCP_STDURG to permit
3603 * either form (or just set the sysctl tcp_stdurg).
3606 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3608 struct tcp_sock *tp = tcp_sk(sk);
3609 u32 ptr = ntohs(th->urg_ptr);
3611 if (ptr && !sysctl_tcp_stdurg)
3613 ptr += ntohl(th->seq);
3615 /* Ignore urgent data that we've already seen and read. */
3616 if (after(tp->copied_seq, ptr))
3619 /* Do not replay urg ptr.
3621 * NOTE: interesting situation not covered by specs.
3622 * Misbehaving sender may send urg ptr, pointing to segment,
3623 * which we already have in ofo queue. We are not able to fetch
3624 * such data and will stay in TCP_URG_NOTYET until will be eaten
3625 * by recvmsg(). Seems, we are not obliged to handle such wicked
3626 * situations. But it is worth to think about possibility of some
3627 * DoSes using some hypothetical application level deadlock.
3629 if (before(ptr, tp->rcv_nxt))
3632 /* Do we already have a newer (or duplicate) urgent pointer? */
3633 if (tp->urg_data && !after(ptr, tp->urg_seq))
3636 /* Tell the world about our new urgent pointer. */
3639 /* We may be adding urgent data when the last byte read was
3640 * urgent. To do this requires some care. We cannot just ignore
3641 * tp->copied_seq since we would read the last urgent byte again
3642 * as data, nor can we alter copied_seq until this data arrives
3643 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3645 * NOTE. Double Dutch. Rendering to plain English: author of comment
3646 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3647 * and expect that both A and B disappear from stream. This is _wrong_.
3648 * Though this happens in BSD with high probability, this is occasional.
3649 * Any application relying on this is buggy. Note also, that fix "works"
3650 * only in this artificial test. Insert some normal data between A and B and we will
3651 * decline of BSD again. Verdict: it is better to remove to trap
3654 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3655 !sock_flag(sk, SOCK_URGINLINE) &&
3656 tp->copied_seq != tp->rcv_nxt) {
3657 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3659 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3660 __skb_unlink(skb, &sk->sk_receive_queue);
3665 tp->urg_data = TCP_URG_NOTYET;
3668 /* Disable header prediction. */
3672 /* This is the 'fast' part of urgent handling. */
3673 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3675 struct tcp_sock *tp = tcp_sk(sk);
3677 /* Check if we get a new urgent pointer - normally not. */
3679 tcp_check_urg(sk,th);
3681 /* Do we wait for any urgent data? - normally not... */
3682 if (tp->urg_data == TCP_URG_NOTYET) {
3683 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3686 /* Is the urgent pointer pointing into this packet? */
3687 if (ptr < skb->len) {
3689 if (skb_copy_bits(skb, ptr, &tmp, 1))
3691 tp->urg_data = TCP_URG_VALID | tmp;
3692 if (!sock_flag(sk, SOCK_DEAD))
3693 sk->sk_data_ready(sk, 0);
3698 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3700 struct tcp_sock *tp = tcp_sk(sk);
3701 int chunk = skb->len - hlen;
3705 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3706 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3708 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3712 tp->ucopy.len -= chunk;
3713 tp->copied_seq += chunk;
3714 tcp_rcv_space_adjust(sk);
3721 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3725 if (sock_owned_by_user(sk)) {
3727 result = __tcp_checksum_complete(skb);
3730 result = __tcp_checksum_complete(skb);
3735 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3737 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3738 __tcp_checksum_complete_user(sk, skb);
3742 * TCP receive function for the ESTABLISHED state.
3744 * It is split into a fast path and a slow path. The fast path is
3746 * - A zero window was announced from us - zero window probing
3747 * is only handled properly in the slow path.
3748 * - Out of order segments arrived.
3749 * - Urgent data is expected.
3750 * - There is no buffer space left
3751 * - Unexpected TCP flags/window values/header lengths are received
3752 * (detected by checking the TCP header against pred_flags)
3753 * - Data is sent in both directions. Fast path only supports pure senders
3754 * or pure receivers (this means either the sequence number or the ack
3755 * value must stay constant)
3756 * - Unexpected TCP option.
3758 * When these conditions are not satisfied it drops into a standard
3759 * receive procedure patterned after RFC793 to handle all cases.
3760 * The first three cases are guaranteed by proper pred_flags setting,
3761 * the rest is checked inline. Fast processing is turned on in
3762 * tcp_data_queue when everything is OK.
3764 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3765 struct tcphdr *th, unsigned len)
3767 struct tcp_sock *tp = tcp_sk(sk);
3770 * Header prediction.
3771 * The code loosely follows the one in the famous
3772 * "30 instruction TCP receive" Van Jacobson mail.
3774 * Van's trick is to deposit buffers into socket queue
3775 * on a device interrupt, to call tcp_recv function
3776 * on the receive process context and checksum and copy
3777 * the buffer to user space. smart...
3779 * Our current scheme is not silly either but we take the
3780 * extra cost of the net_bh soft interrupt processing...
3781 * We do checksum and copy also but from device to kernel.
3784 tp->rx_opt.saw_tstamp = 0;
3786 /* pred_flags is 0xS?10 << 16 + snd_wnd
3787 * if header_prediction is to be made
3788 * 'S' will always be tp->tcp_header_len >> 2
3789 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3790 * turn it off (when there are holes in the receive
3791 * space for instance)
3792 * PSH flag is ignored.
3795 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3796 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3797 int tcp_header_len = tp->tcp_header_len;
3799 /* Timestamp header prediction: tcp_header_len
3800 * is automatically equal to th->doff*4 due to pred_flags
3804 /* Check timestamp */
3805 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3806 __u32 *ptr = (__u32 *)(th + 1);
3808 /* No? Slow path! */
3809 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3810 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3813 tp->rx_opt.saw_tstamp = 1;
3815 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3817 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3819 /* If PAWS failed, check it more carefully in slow path */
3820 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3823 /* DO NOT update ts_recent here, if checksum fails
3824 * and timestamp was corrupted part, it will result
3825 * in a hung connection since we will drop all
3826 * future packets due to the PAWS test.
3830 if (len <= tcp_header_len) {
3831 /* Bulk data transfer: sender */
3832 if (len == tcp_header_len) {
3833 /* Predicted packet is in window by definition.
3834 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3835 * Hence, check seq<=rcv_wup reduces to:
3837 if (tcp_header_len ==
3838 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3839 tp->rcv_nxt == tp->rcv_wup)
3840 tcp_store_ts_recent(tp);
3842 tcp_rcv_rtt_measure_ts(sk, skb);
3844 /* We know that such packets are checksummed
3847 tcp_ack(sk, skb, 0);
3849 tcp_data_snd_check(sk, tp);
3851 } else { /* Header too small */
3852 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3858 if (tp->ucopy.task == current &&
3859 tp->copied_seq == tp->rcv_nxt &&
3860 len - tcp_header_len <= tp->ucopy.len &&
3861 sock_owned_by_user(sk)) {
3862 __set_current_state(TASK_RUNNING);
3864 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
3865 /* Predicted packet is in window by definition.
3866 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3867 * Hence, check seq<=rcv_wup reduces to:
3869 if (tcp_header_len ==
3870 (sizeof(struct tcphdr) +
3871 TCPOLEN_TSTAMP_ALIGNED) &&
3872 tp->rcv_nxt == tp->rcv_wup)
3873 tcp_store_ts_recent(tp);
3875 tcp_rcv_rtt_measure_ts(sk, skb);
3877 __skb_pull(skb, tcp_header_len);
3878 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3879 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3884 if (tcp_checksum_complete_user(sk, skb))
3887 /* Predicted packet is in window by definition.
3888 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3889 * Hence, check seq<=rcv_wup reduces to:
3891 if (tcp_header_len ==
3892 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3893 tp->rcv_nxt == tp->rcv_wup)
3894 tcp_store_ts_recent(tp);
3896 tcp_rcv_rtt_measure_ts(sk, skb);
3898 if ((int)skb->truesize > sk->sk_forward_alloc)
3901 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
3903 /* Bulk data transfer: receiver */
3904 __skb_pull(skb,tcp_header_len);
3905 __skb_queue_tail(&sk->sk_receive_queue, skb);
3906 sk_stream_set_owner_r(skb, sk);
3907 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3910 tcp_event_data_recv(sk, tp, skb);
3912 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3913 /* Well, only one small jumplet in fast path... */
3914 tcp_ack(sk, skb, FLAG_DATA);
3915 tcp_data_snd_check(sk, tp);
3916 if (!inet_csk_ack_scheduled(sk))
3920 __tcp_ack_snd_check(sk, 0);
3925 sk->sk_data_ready(sk, 0);
3931 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3935 * RFC1323: H1. Apply PAWS check first.
3937 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
3938 tcp_paws_discard(sk, skb)) {
3940 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
3941 tcp_send_dupack(sk, skb);
3944 /* Resets are accepted even if PAWS failed.
3946 ts_recent update must be made after we are sure
3947 that the packet is in window.
3952 * Standard slow path.
3955 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
3956 /* RFC793, page 37: "In all states except SYN-SENT, all reset
3957 * (RST) segments are validated by checking their SEQ-fields."
3958 * And page 69: "If an incoming segment is not acceptable,
3959 * an acknowledgment should be sent in reply (unless the RST bit
3960 * is set, if so drop the segment and return)".
3963 tcp_send_dupack(sk, skb);
3972 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3974 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3975 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3976 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
3983 tcp_ack(sk, skb, FLAG_SLOWPATH);
3985 tcp_rcv_rtt_measure_ts(sk, skb);
3987 /* Process urgent data. */
3988 tcp_urg(sk, skb, th);
3990 /* step 7: process the segment text */
3991 tcp_data_queue(sk, skb);
3993 tcp_data_snd_check(sk, tp);
3994 tcp_ack_snd_check(sk);
3998 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4005 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4006 struct tcphdr *th, unsigned len)
4008 struct tcp_sock *tp = tcp_sk(sk);
4009 struct inet_connection_sock *icsk = inet_csk(sk);
4010 int saved_clamp = tp->rx_opt.mss_clamp;
4012 tcp_parse_options(skb, &tp->rx_opt, 0);
4016 * "If the state is SYN-SENT then
4017 * first check the ACK bit
4018 * If the ACK bit is set
4019 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4020 * a reset (unless the RST bit is set, if so drop
4021 * the segment and return)"
4023 * We do not send data with SYN, so that RFC-correct
4026 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4027 goto reset_and_undo;
4029 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4030 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4032 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4033 goto reset_and_undo;
4036 /* Now ACK is acceptable.
4038 * "If the RST bit is set
4039 * If the ACK was acceptable then signal the user "error:
4040 * connection reset", drop the segment, enter CLOSED state,
4041 * delete TCB, and return."
4050 * "fifth, if neither of the SYN or RST bits is set then
4051 * drop the segment and return."
4057 goto discard_and_undo;
4060 * "If the SYN bit is on ...
4061 * are acceptable then ...
4062 * (our SYN has been ACKed), change the connection
4063 * state to ESTABLISHED..."
4066 TCP_ECN_rcv_synack(tp, th);
4067 if (tp->ecn_flags&TCP_ECN_OK)
4068 sock_set_flag(sk, SOCK_NO_LARGESEND);
4070 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4071 tcp_ack(sk, skb, FLAG_SLOWPATH);
4073 /* Ok.. it's good. Set up sequence numbers and
4074 * move to established.
4076 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4077 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4079 /* RFC1323: The window in SYN & SYN/ACK segments is
4082 tp->snd_wnd = ntohs(th->window);
4083 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4085 if (!tp->rx_opt.wscale_ok) {
4086 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4087 tp->window_clamp = min(tp->window_clamp, 65535U);
4090 if (tp->rx_opt.saw_tstamp) {
4091 tp->rx_opt.tstamp_ok = 1;
4092 tp->tcp_header_len =
4093 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4094 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4095 tcp_store_ts_recent(tp);
4097 tp->tcp_header_len = sizeof(struct tcphdr);
4100 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4101 tp->rx_opt.sack_ok |= 2;
4103 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4104 tcp_initialize_rcv_mss(sk);
4106 /* Remember, tcp_poll() does not lock socket!
4107 * Change state from SYN-SENT only after copied_seq
4108 * is initialized. */
4109 tp->copied_seq = tp->rcv_nxt;
4111 tcp_set_state(sk, TCP_ESTABLISHED);
4113 /* Make sure socket is routed, for correct metrics. */
4114 icsk->icsk_af_ops->rebuild_header(sk);
4116 tcp_init_metrics(sk);
4118 tcp_init_congestion_control(sk);
4120 /* Prevent spurious tcp_cwnd_restart() on first data
4123 tp->lsndtime = tcp_time_stamp;
4125 tcp_init_buffer_space(sk);
4127 if (sock_flag(sk, SOCK_KEEPOPEN))
4128 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4130 if (!tp->rx_opt.snd_wscale)
4131 __tcp_fast_path_on(tp, tp->snd_wnd);
4135 if (!sock_flag(sk, SOCK_DEAD)) {
4136 sk->sk_state_change(sk);
4137 sk_wake_async(sk, 0, POLL_OUT);
4140 if (sk->sk_write_pending ||
4141 icsk->icsk_accept_queue.rskq_defer_accept ||
4142 icsk->icsk_ack.pingpong) {
4143 /* Save one ACK. Data will be ready after
4144 * several ticks, if write_pending is set.
4146 * It may be deleted, but with this feature tcpdumps
4147 * look so _wonderfully_ clever, that I was not able
4148 * to stand against the temptation 8) --ANK
4150 inet_csk_schedule_ack(sk);
4151 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4152 icsk->icsk_ack.ato = TCP_ATO_MIN;
4153 tcp_incr_quickack(sk);
4154 tcp_enter_quickack_mode(sk);
4155 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4156 TCP_DELACK_MAX, TCP_RTO_MAX);
4167 /* No ACK in the segment */
4171 * "If the RST bit is set
4173 * Otherwise (no ACK) drop the segment and return."
4176 goto discard_and_undo;
4180 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4181 goto discard_and_undo;
4184 /* We see SYN without ACK. It is attempt of
4185 * simultaneous connect with crossed SYNs.
4186 * Particularly, it can be connect to self.
4188 tcp_set_state(sk, TCP_SYN_RECV);
4190 if (tp->rx_opt.saw_tstamp) {
4191 tp->rx_opt.tstamp_ok = 1;
4192 tcp_store_ts_recent(tp);
4193 tp->tcp_header_len =
4194 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4196 tp->tcp_header_len = sizeof(struct tcphdr);
4199 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4200 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4202 /* RFC1323: The window in SYN & SYN/ACK segments is
4205 tp->snd_wnd = ntohs(th->window);
4206 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4207 tp->max_window = tp->snd_wnd;
4209 TCP_ECN_rcv_syn(tp, th);
4210 if (tp->ecn_flags&TCP_ECN_OK)
4211 sock_set_flag(sk, SOCK_NO_LARGESEND);
4213 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4214 tcp_initialize_rcv_mss(sk);
4217 tcp_send_synack(sk);
4219 /* Note, we could accept data and URG from this segment.
4220 * There are no obstacles to make this.
4222 * However, if we ignore data in ACKless segments sometimes,
4223 * we have no reasons to accept it sometimes.
4224 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4225 * is not flawless. So, discard packet for sanity.
4226 * Uncomment this return to process the data.
4233 /* "fifth, if neither of the SYN or RST bits is set then
4234 * drop the segment and return."
4238 tcp_clear_options(&tp->rx_opt);
4239 tp->rx_opt.mss_clamp = saved_clamp;
4243 tcp_clear_options(&tp->rx_opt);
4244 tp->rx_opt.mss_clamp = saved_clamp;
4250 * This function implements the receiving procedure of RFC 793 for
4251 * all states except ESTABLISHED and TIME_WAIT.
4252 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4253 * address independent.
4256 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4257 struct tcphdr *th, unsigned len)
4259 struct tcp_sock *tp = tcp_sk(sk);
4260 struct inet_connection_sock *icsk = inet_csk(sk);
4263 tp->rx_opt.saw_tstamp = 0;
4265 switch (sk->sk_state) {
4277 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4280 /* Now we have several options: In theory there is
4281 * nothing else in the frame. KA9Q has an option to
4282 * send data with the syn, BSD accepts data with the
4283 * syn up to the [to be] advertised window and
4284 * Solaris 2.1 gives you a protocol error. For now
4285 * we just ignore it, that fits the spec precisely
4286 * and avoids incompatibilities. It would be nice in
4287 * future to drop through and process the data.
4289 * Now that TTCP is starting to be used we ought to
4291 * But, this leaves one open to an easy denial of
4292 * service attack, and SYN cookies can't defend
4293 * against this problem. So, we drop the data
4294 * in the interest of security over speed.
4301 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4305 /* Do step6 onward by hand. */
4306 tcp_urg(sk, skb, th);
4308 tcp_data_snd_check(sk, tp);
4312 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4313 tcp_paws_discard(sk, skb)) {
4315 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4316 tcp_send_dupack(sk, skb);
4319 /* Reset is accepted even if it did not pass PAWS. */
4322 /* step 1: check sequence number */
4323 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4325 tcp_send_dupack(sk, skb);
4329 /* step 2: check RST bit */
4335 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4337 /* step 3: check security and precedence [ignored] */
4341 * Check for a SYN in window.
4343 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4344 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4349 /* step 5: check the ACK field */
4351 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4353 switch(sk->sk_state) {
4356 tp->copied_seq = tp->rcv_nxt;
4358 tcp_set_state(sk, TCP_ESTABLISHED);
4359 sk->sk_state_change(sk);
4361 /* Note, that this wakeup is only for marginal
4362 * crossed SYN case. Passively open sockets
4363 * are not waked up, because sk->sk_sleep ==
4364 * NULL and sk->sk_socket == NULL.
4366 if (sk->sk_socket) {
4367 sk_wake_async(sk,0,POLL_OUT);
4370 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4371 tp->snd_wnd = ntohs(th->window) <<
4372 tp->rx_opt.snd_wscale;
4373 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4374 TCP_SKB_CB(skb)->seq);
4376 /* tcp_ack considers this ACK as duplicate
4377 * and does not calculate rtt.
4378 * Fix it at least with timestamps.
4380 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4382 tcp_ack_saw_tstamp(sk, 0);
4384 if (tp->rx_opt.tstamp_ok)
4385 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4387 /* Make sure socket is routed, for
4390 icsk->icsk_af_ops->rebuild_header(sk);
4392 tcp_init_metrics(sk);
4394 tcp_init_congestion_control(sk);
4396 /* Prevent spurious tcp_cwnd_restart() on
4397 * first data packet.
4399 tp->lsndtime = tcp_time_stamp;
4401 tcp_initialize_rcv_mss(sk);
4402 tcp_init_buffer_space(sk);
4403 tcp_fast_path_on(tp);
4410 if (tp->snd_una == tp->write_seq) {
4411 tcp_set_state(sk, TCP_FIN_WAIT2);
4412 sk->sk_shutdown |= SEND_SHUTDOWN;
4413 dst_confirm(sk->sk_dst_cache);
4415 if (!sock_flag(sk, SOCK_DEAD))
4416 /* Wake up lingering close() */
4417 sk->sk_state_change(sk);
4421 if (tp->linger2 < 0 ||
4422 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4423 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4425 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4429 tmo = tcp_fin_time(sk);
4430 if (tmo > TCP_TIMEWAIT_LEN) {
4431 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4432 } else if (th->fin || sock_owned_by_user(sk)) {
4433 /* Bad case. We could lose such FIN otherwise.
4434 * It is not a big problem, but it looks confusing
4435 * and not so rare event. We still can lose it now,
4436 * if it spins in bh_lock_sock(), but it is really
4439 inet_csk_reset_keepalive_timer(sk, tmo);
4441 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4449 if (tp->snd_una == tp->write_seq) {
4450 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4456 if (tp->snd_una == tp->write_seq) {
4457 tcp_update_metrics(sk);
4466 /* step 6: check the URG bit */
4467 tcp_urg(sk, skb, th);
4469 /* step 7: process the segment text */
4470 switch (sk->sk_state) {
4471 case TCP_CLOSE_WAIT:
4474 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4478 /* RFC 793 says to queue data in these states,
4479 * RFC 1122 says we MUST send a reset.
4480 * BSD 4.4 also does reset.
4482 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4483 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4484 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4485 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4491 case TCP_ESTABLISHED:
4492 tcp_data_queue(sk, skb);
4497 /* tcp_data could move socket to TIME-WAIT */
4498 if (sk->sk_state != TCP_CLOSE) {
4499 tcp_data_snd_check(sk, tp);
4500 tcp_ack_snd_check(sk);
4510 EXPORT_SYMBOL(sysctl_tcp_ecn);
4511 EXPORT_SYMBOL(sysctl_tcp_reordering);
4512 EXPORT_SYMBOL(sysctl_tcp_abc);
4513 EXPORT_SYMBOL(tcp_parse_options);
4514 EXPORT_SYMBOL(tcp_rcv_established);
4515 EXPORT_SYMBOL(tcp_rcv_state_process);
4516 EXPORT_SYMBOL(tcp_initialize_rcv_mss);