2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright (C) 2001-2003 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
10 * $Id: nodemgmt.c,v 1.127 2005/09/20 15:49:12 dedekind Exp $
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/compiler.h>
18 #include <linux/sched.h> /* For cond_resched() */
23 * jffs2_reserve_space - request physical space to write nodes to flash
25 * @minsize: Minimum acceptable size of allocation
26 * @len: Returned value of allocation length
27 * @prio: Allocation type - ALLOC_{NORMAL,DELETION}
29 * Requests a block of physical space on the flash. Returns zero for success
30 * and puts 'len' into the appropriate place, or returns -ENOSPC or other
31 * error if appropriate. Doesn't return len since that's
33 * If it returns zero, jffs2_reserve_space() also downs the per-filesystem
34 * allocation semaphore, to prevent more than one allocation from being
35 * active at any time. The semaphore is later released by jffs2_commit_allocation()
37 * jffs2_reserve_space() may trigger garbage collection in order to make room
38 * for the requested allocation.
41 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
42 uint32_t *len, uint32_t sumsize);
44 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
45 uint32_t *len, int prio, uint32_t sumsize)
48 int blocksneeded = c->resv_blocks_write;
50 minsize = PAD(minsize);
52 D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
55 D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
57 spin_lock(&c->erase_completion_lock);
59 /* this needs a little more thought (true <tglx> :)) */
60 while(ret == -EAGAIN) {
61 while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
63 uint32_t dirty, avail;
65 /* calculate real dirty size
66 * dirty_size contains blocks on erase_pending_list
67 * those blocks are counted in c->nr_erasing_blocks.
68 * If one block is actually erased, it is not longer counted as dirty_space
69 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
70 * with c->nr_erasing_blocks * c->sector_size again.
71 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
72 * This helps us to force gc and pick eventually a clean block to spread the load.
73 * We add unchecked_size here, as we hopefully will find some space to use.
74 * This will affect the sum only once, as gc first finishes checking
77 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
78 if (dirty < c->nospc_dirty_size) {
79 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
80 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
83 D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
84 dirty, c->unchecked_size, c->sector_size));
86 spin_unlock(&c->erase_completion_lock);
91 /* Calc possibly available space. Possibly available means that we
92 * don't know, if unchecked size contains obsoleted nodes, which could give us some
93 * more usable space. This will affect the sum only once, as gc first finishes checking
95 + Return -ENOSPC, if the maximum possibly available space is less or equal than
96 * blocksneeded * sector_size.
97 * This blocks endless gc looping on a filesystem, which is nearly full, even if
98 * the check above passes.
100 avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
101 if ( (avail / c->sector_size) <= blocksneeded) {
102 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
103 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
107 D1(printk(KERN_DEBUG "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
108 avail, blocksneeded * c->sector_size));
109 spin_unlock(&c->erase_completion_lock);
116 D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
117 c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
118 c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
119 spin_unlock(&c->erase_completion_lock);
121 ret = jffs2_garbage_collect_pass(c);
127 if (signal_pending(current))
131 spin_lock(&c->erase_completion_lock);
134 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
136 D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
139 spin_unlock(&c->erase_completion_lock);
145 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
146 uint32_t *len, uint32_t sumsize)
149 minsize = PAD(minsize);
151 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
153 spin_lock(&c->erase_completion_lock);
154 while(ret == -EAGAIN) {
155 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
157 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
160 spin_unlock(&c->erase_completion_lock);
165 /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
167 static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
170 /* Check, if we have a dirty block now, or if it was dirty already */
171 if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
172 c->dirty_size += jeb->wasted_size;
173 c->wasted_size -= jeb->wasted_size;
174 jeb->dirty_size += jeb->wasted_size;
175 jeb->wasted_size = 0;
176 if (VERYDIRTY(c, jeb->dirty_size)) {
177 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
178 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
179 list_add_tail(&jeb->list, &c->very_dirty_list);
181 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
182 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
183 list_add_tail(&jeb->list, &c->dirty_list);
186 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
187 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
188 list_add_tail(&jeb->list, &c->clean_list);
194 /* Select a new jeb for nextblock */
196 static int jffs2_find_nextblock(struct jffs2_sb_info *c)
198 struct list_head *next;
200 /* Take the next block off the 'free' list */
202 if (list_empty(&c->free_list)) {
204 if (!c->nr_erasing_blocks &&
205 !list_empty(&c->erasable_list)) {
206 struct jffs2_eraseblock *ejeb;
208 ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
209 list_del(&ejeb->list);
210 list_add_tail(&ejeb->list, &c->erase_pending_list);
211 c->nr_erasing_blocks++;
212 jffs2_erase_pending_trigger(c);
213 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
217 if (!c->nr_erasing_blocks &&
218 !list_empty(&c->erasable_pending_wbuf_list)) {
219 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n"));
220 /* c->nextblock is NULL, no update to c->nextblock allowed */
221 spin_unlock(&c->erase_completion_lock);
222 jffs2_flush_wbuf_pad(c);
223 spin_lock(&c->erase_completion_lock);
224 /* Have another go. It'll be on the erasable_list now */
228 if (!c->nr_erasing_blocks) {
229 /* Ouch. We're in GC, or we wouldn't have got here.
230 And there's no space left. At all. */
231 printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
232 c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
233 list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
237 spin_unlock(&c->erase_completion_lock);
238 /* Don't wait for it; just erase one right now */
239 jffs2_erase_pending_blocks(c, 1);
240 spin_lock(&c->erase_completion_lock);
242 /* An erase may have failed, decreasing the
243 amount of free space available. So we must
244 restart from the beginning */
248 next = c->free_list.next;
250 c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
253 jffs2_sum_reset_collected(c->summary); /* reset collected summary */
255 D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
260 /* Called with alloc sem _and_ erase_completion_lock */
261 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
262 uint32_t *len, uint32_t sumsize)
264 struct jffs2_eraseblock *jeb = c->nextblock;
265 uint32_t reserved_size; /* for summary information at the end of the jeb */
271 if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
272 /* NOSUM_SIZE means not to generate summary */
275 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
276 dbg_summary("minsize=%d , jeb->free=%d ,"
277 "summary->size=%d , sumsize=%d\n",
278 minsize, jeb->free_size,
279 c->summary->sum_size, sumsize);
282 /* Is there enough space for writing out the current node, or we have to
283 write out summary information now, close this jeb and select new nextblock? */
284 if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
285 JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
287 /* Has summary been disabled for this jeb? */
288 if (jffs2_sum_is_disabled(c->summary)) {
289 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
293 /* Writing out the collected summary information */
294 dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
295 ret = jffs2_sum_write_sumnode(c);
300 if (jffs2_sum_is_disabled(c->summary)) {
301 /* jffs2_write_sumnode() couldn't write out the summary information
302 diabling summary for this jeb and free the collected information
304 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
308 jffs2_close_nextblock(c, jeb);
310 /* keep always valid value in reserved_size */
311 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
314 if (jeb && minsize > jeb->free_size) {
315 /* Skip the end of this block and file it as having some dirty space */
316 /* If there's a pending write to it, flush now */
318 if (jffs2_wbuf_dirty(c)) {
319 spin_unlock(&c->erase_completion_lock);
320 D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
321 jffs2_flush_wbuf_pad(c);
322 spin_lock(&c->erase_completion_lock);
327 c->wasted_size += jeb->free_size;
328 c->free_size -= jeb->free_size;
329 jeb->wasted_size += jeb->free_size;
332 jffs2_close_nextblock(c, jeb);
339 ret = jffs2_find_nextblock(c);
345 if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
346 printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
350 /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
352 *len = jeb->free_size - reserved_size;
354 if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
355 !jeb->first_node->next_in_ino) {
356 /* Only node in it beforehand was a CLEANMARKER node (we think).
357 So mark it obsolete now that there's going to be another node
358 in the block. This will reduce used_size to zero but We've
359 already set c->nextblock so that jffs2_mark_node_obsolete()
360 won't try to refile it to the dirty_list.
362 spin_unlock(&c->erase_completion_lock);
363 jffs2_mark_node_obsolete(c, jeb->first_node);
364 spin_lock(&c->erase_completion_lock);
367 D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n",
368 *len, jeb->offset + (c->sector_size - jeb->free_size)));
373 * jffs2_add_physical_node_ref - add a physical node reference to the list
374 * @c: superblock info
375 * @new: new node reference to add
376 * @len: length of this physical node
378 * Should only be used to report nodes for which space has been allocated
379 * by jffs2_reserve_space.
381 * Must be called with the alloc_sem held.
384 int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *new,
385 uint32_t len, struct jffs2_inode_cache *ic)
387 struct jffs2_eraseblock *jeb;
389 jeb = &c->blocks[new->flash_offset / c->sector_size];
394 D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n", ref_offset(new), ref_flags(new), len));
396 /* we could get some obsolete nodes after nextblock was refiled
398 if ((c->nextblock || !ref_obsolete(new))
399 &&(jeb != c->nextblock || ref_offset(new) != jeb->offset + (c->sector_size - jeb->free_size))) {
400 printk(KERN_WARNING "argh. node added in wrong place\n");
401 jffs2_free_raw_node_ref(new);
405 spin_lock(&c->erase_completion_lock);
407 jffs2_link_node_ref(c, jeb, new, len, ic);
409 if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
410 /* If it lives on the dirty_list, jffs2_reserve_space will put it there */
411 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
412 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
413 if (jffs2_wbuf_dirty(c)) {
414 /* Flush the last write in the block if it's outstanding */
415 spin_unlock(&c->erase_completion_lock);
416 jffs2_flush_wbuf_pad(c);
417 spin_lock(&c->erase_completion_lock);
420 list_add_tail(&jeb->list, &c->clean_list);
423 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
424 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
426 spin_unlock(&c->erase_completion_lock);
432 void jffs2_complete_reservation(struct jffs2_sb_info *c)
434 D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
435 jffs2_garbage_collect_trigger(c);
439 static inline int on_list(struct list_head *obj, struct list_head *head)
441 struct list_head *this;
443 list_for_each(this, head) {
445 D1(printk("%p is on list at %p\n", obj, head));
453 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
455 struct jffs2_eraseblock *jeb;
457 struct jffs2_unknown_node n;
463 printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
466 if (ref_obsolete(ref)) {
467 D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
470 blocknr = ref->flash_offset / c->sector_size;
471 if (blocknr >= c->nr_blocks) {
472 printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
475 jeb = &c->blocks[blocknr];
477 if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
478 !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
479 /* Hm. This may confuse static lock analysis. If any of the above
480 three conditions is false, we're going to return from this
481 function without actually obliterating any nodes or freeing
482 any jffs2_raw_node_refs. So we don't need to stop erases from
483 happening, or protect against people holding an obsolete
484 jffs2_raw_node_ref without the erase_completion_lock. */
485 down(&c->erase_free_sem);
488 spin_lock(&c->erase_completion_lock);
490 freed_len = ref_totlen(c, jeb, ref);
492 if (ref_flags(ref) == REF_UNCHECKED) {
493 D1(if (unlikely(jeb->unchecked_size < freed_len)) {
494 printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
495 freed_len, blocknr, ref->flash_offset, jeb->used_size);
498 D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len));
499 jeb->unchecked_size -= freed_len;
500 c->unchecked_size -= freed_len;
502 D1(if (unlikely(jeb->used_size < freed_len)) {
503 printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
504 freed_len, blocknr, ref->flash_offset, jeb->used_size);
507 D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len));
508 jeb->used_size -= freed_len;
509 c->used_size -= freed_len;
512 // Take care, that wasted size is taken into concern
513 if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
514 D1(printk(KERN_DEBUG "Dirtying\n"));
515 addedsize = freed_len;
516 jeb->dirty_size += freed_len;
517 c->dirty_size += freed_len;
519 /* Convert wasted space to dirty, if not a bad block */
520 if (jeb->wasted_size) {
521 if (on_list(&jeb->list, &c->bad_used_list)) {
522 D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
524 addedsize = 0; /* To fool the refiling code later */
526 D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
527 jeb->wasted_size, jeb->offset));
528 addedsize += jeb->wasted_size;
529 jeb->dirty_size += jeb->wasted_size;
530 c->dirty_size += jeb->wasted_size;
531 c->wasted_size -= jeb->wasted_size;
532 jeb->wasted_size = 0;
536 D1(printk(KERN_DEBUG "Wasting\n"));
538 jeb->wasted_size += freed_len;
539 c->wasted_size += freed_len;
541 ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
543 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
544 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
546 if (c->flags & JFFS2_SB_FLAG_SCANNING) {
547 /* Flash scanning is in progress. Don't muck about with the block
548 lists because they're not ready yet, and don't actually
549 obliterate nodes that look obsolete. If they weren't
550 marked obsolete on the flash at the time they _became_
551 obsolete, there was probably a reason for that. */
552 spin_unlock(&c->erase_completion_lock);
553 /* We didn't lock the erase_free_sem */
557 if (jeb == c->nextblock) {
558 D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
559 } else if (!jeb->used_size && !jeb->unchecked_size) {
560 if (jeb == c->gcblock) {
561 D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
564 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
565 list_del(&jeb->list);
567 if (jffs2_wbuf_dirty(c)) {
568 D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
569 list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
572 /* Most of the time, we just erase it immediately. Otherwise we
573 spend ages scanning it on mount, etc. */
574 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
575 list_add_tail(&jeb->list, &c->erase_pending_list);
576 c->nr_erasing_blocks++;
577 jffs2_erase_pending_trigger(c);
579 /* Sometimes, however, we leave it elsewhere so it doesn't get
580 immediately reused, and we spread the load a bit. */
581 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
582 list_add_tail(&jeb->list, &c->erasable_list);
585 D1(printk(KERN_DEBUG "Done OK\n"));
586 } else if (jeb == c->gcblock) {
587 D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
588 } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
589 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
590 list_del(&jeb->list);
591 D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
592 list_add_tail(&jeb->list, &c->dirty_list);
593 } else if (VERYDIRTY(c, jeb->dirty_size) &&
594 !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
595 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
596 list_del(&jeb->list);
597 D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
598 list_add_tail(&jeb->list, &c->very_dirty_list);
600 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
601 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
604 spin_unlock(&c->erase_completion_lock);
606 if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
607 (c->flags & JFFS2_SB_FLAG_BUILDING)) {
608 /* We didn't lock the erase_free_sem */
612 /* The erase_free_sem is locked, and has been since before we marked the node obsolete
613 and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
614 the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
615 by jffs2_free_all_node_refs() in erase.c. Which is nice. */
617 D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
618 ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
620 printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
623 if (retlen != sizeof(n)) {
624 printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
627 if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
628 printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len);
631 if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
632 D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
635 /* XXX FIXME: This is ugly now */
636 n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
637 ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
639 printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
642 if (retlen != sizeof(n)) {
643 printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
647 /* Nodes which have been marked obsolete no longer need to be
648 associated with any inode. Remove them from the per-inode list.
650 Note we can't do this for NAND at the moment because we need
651 obsolete dirent nodes to stay on the lists, because of the
652 horridness in jffs2_garbage_collect_deletion_dirent(). Also
653 because we delete the inocache, and on NAND we need that to
654 stay around until all the nodes are actually erased, in order
655 to stop us from giving the same inode number to another newly
657 if (ref->next_in_ino) {
658 struct jffs2_inode_cache *ic;
659 struct jffs2_raw_node_ref **p;
661 spin_lock(&c->erase_completion_lock);
663 ic = jffs2_raw_ref_to_ic(ref);
664 /* It seems we should never call jffs2_mark_node_obsolete() for
665 XATTR nodes.... yet. Make sure we notice if/when we change
667 BUG_ON(ic->class != RAWNODE_CLASS_INODE_CACHE);
668 for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
671 *p = ref->next_in_ino;
672 ref->next_in_ino = NULL;
674 if (ic->nodes == (void *)ic && ic->nlink == 0)
675 jffs2_del_ino_cache(c, ic);
677 spin_unlock(&c->erase_completion_lock);
681 /* Merge with the next node in the physical list, if there is one
682 and if it's also obsolete and if it doesn't belong to any inode */
683 if (ref->next_phys && ref_obsolete(ref->next_phys) &&
684 !ref->next_phys->next_in_ino) {
685 struct jffs2_raw_node_ref *n = ref->next_phys;
687 spin_lock(&c->erase_completion_lock);
690 ref->__totlen += n->__totlen;
692 ref->next_phys = n->next_phys;
693 if (jeb->last_node == n) jeb->last_node = ref;
694 if (jeb->gc_node == n) {
695 /* gc will be happy continuing gc on this node */
698 spin_unlock(&c->erase_completion_lock);
700 jffs2_free_raw_node_ref(n);
703 /* Also merge with the previous node in the list, if there is one
704 and that one is obsolete */
705 if (ref != jeb->first_node ) {
706 struct jffs2_raw_node_ref *p = jeb->first_node;
708 spin_lock(&c->erase_completion_lock);
710 while (p->next_phys != ref)
713 if (ref_obsolete(p) && !ref->next_in_ino) {
715 p->__totlen += ref->__totlen;
717 if (jeb->last_node == ref) {
720 if (jeb->gc_node == ref) {
721 /* gc will be happy continuing gc on this node */
724 p->next_phys = ref->next_phys;
725 jffs2_free_raw_node_ref(ref);
727 spin_unlock(&c->erase_completion_lock);
730 up(&c->erase_free_sem);
733 int jffs2_thread_should_wake(struct jffs2_sb_info *c)
738 if (c->unchecked_size) {
739 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
740 c->unchecked_size, c->checked_ino));
744 /* dirty_size contains blocks on erase_pending_list
745 * those blocks are counted in c->nr_erasing_blocks.
746 * If one block is actually erased, it is not longer counted as dirty_space
747 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
748 * with c->nr_erasing_blocks * c->sector_size again.
749 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
750 * This helps us to force gc and pick eventually a clean block to spread the load.
752 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
754 if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
755 (dirty > c->nospc_dirty_size))
758 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x: %s\n",
759 c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, ret?"yes":"no"));