1 /*****************************************************************************/
4 * stallion.c -- stallion multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/serial.h>
35 #include <linux/cd1400.h>
36 #include <linux/sc26198.h>
37 #include <linux/comstats.h>
38 #include <linux/stallion.h>
39 #include <linux/ioport.h>
40 #include <linux/init.h>
41 #include <linux/smp_lock.h>
42 #include <linux/device.h>
43 #include <linux/delay.h>
44 #include <linux/ctype.h>
47 #include <asm/uaccess.h>
49 #include <linux/pci.h>
51 /*****************************************************************************/
54 * Define different board types. Use the standard Stallion "assigned"
55 * board numbers. Boards supported in this driver are abbreviated as
56 * EIO = EasyIO and ECH = EasyConnection 8/32.
62 #define BRD_ECH64PCI 27
63 #define BRD_EASYIOPCI 28
69 unsigned long memaddr;
74 static unsigned int stl_nrbrds;
76 /*****************************************************************************/
79 * Define some important driver characteristics. Device major numbers
80 * allocated as per Linux Device Registry.
82 #ifndef STL_SIOMEMMAJOR
83 #define STL_SIOMEMMAJOR 28
85 #ifndef STL_SERIALMAJOR
86 #define STL_SERIALMAJOR 24
88 #ifndef STL_CALLOUTMAJOR
89 #define STL_CALLOUTMAJOR 25
93 * Set the TX buffer size. Bigger is better, but we don't want
94 * to chew too much memory with buffers!
96 #define STL_TXBUFLOW 512
97 #define STL_TXBUFSIZE 4096
99 /*****************************************************************************/
102 * Define our local driver identity first. Set up stuff to deal with
103 * all the local structures required by a serial tty driver.
105 static char *stl_drvtitle = "Stallion Multiport Serial Driver";
106 static char *stl_drvname = "stallion";
107 static char *stl_drvversion = "5.6.0";
109 static struct tty_driver *stl_serial;
112 * Define a local default termios struct. All ports will be created
113 * with this termios initially. Basically all it defines is a raw port
114 * at 9600, 8 data bits, 1 stop bit.
116 static struct ktermios stl_deftermios = {
117 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
124 * Define global place to put buffer overflow characters.
126 static char stl_unwanted[SC26198_RXFIFOSIZE];
128 /*****************************************************************************/
130 static DEFINE_MUTEX(stl_brdslock);
131 static struct stlbrd *stl_brds[STL_MAXBRDS];
134 * Per board state flags. Used with the state field of the board struct.
135 * Not really much here!
137 #define BRD_FOUND 0x1
138 #define STL_PROBED 0x2
142 * Define the port structure istate flags. These set of flags are
143 * modified at interrupt time - so setting and reseting them needs
144 * to be atomic. Use the bit clear/setting routines for this.
146 #define ASYI_TXBUSY 1
148 #define ASYI_TXFLOWED 3
151 * Define an array of board names as printable strings. Handy for
152 * referencing boards when printing trace and stuff.
154 static char *stl_brdnames[] = {
186 /*****************************************************************************/
189 * Define some string labels for arguments passed from the module
190 * load line. These allow for easy board definitions, and easy
191 * modification of the io, memory and irq resoucres.
193 static unsigned int stl_nargs;
194 static char *board0[4];
195 static char *board1[4];
196 static char *board2[4];
197 static char *board3[4];
199 static char **stl_brdsp[] = {
207 * Define a set of common board names, and types. This is used to
208 * parse any module arguments.
215 { "easyio", BRD_EASYIO },
216 { "eio", BRD_EASYIO },
217 { "20", BRD_EASYIO },
218 { "ec8/32", BRD_ECH },
219 { "ec8/32-at", BRD_ECH },
220 { "ec8/32-isa", BRD_ECH },
222 { "echat", BRD_ECH },
224 { "ec8/32-mc", BRD_ECHMC },
225 { "ec8/32-mca", BRD_ECHMC },
226 { "echmc", BRD_ECHMC },
227 { "echmca", BRD_ECHMC },
229 { "ec8/32-pc", BRD_ECHPCI },
230 { "ec8/32-pci", BRD_ECHPCI },
231 { "26", BRD_ECHPCI },
232 { "ec8/64-pc", BRD_ECH64PCI },
233 { "ec8/64-pci", BRD_ECH64PCI },
234 { "ech-pci", BRD_ECH64PCI },
235 { "echpci", BRD_ECH64PCI },
236 { "echpc", BRD_ECH64PCI },
237 { "27", BRD_ECH64PCI },
238 { "easyio-pc", BRD_EASYIOPCI },
239 { "easyio-pci", BRD_EASYIOPCI },
240 { "eio-pci", BRD_EASYIOPCI },
241 { "eiopci", BRD_EASYIOPCI },
242 { "28", BRD_EASYIOPCI },
246 * Define the module agruments.
249 module_param_array(board0, charp, &stl_nargs, 0);
250 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
251 module_param_array(board1, charp, &stl_nargs, 0);
252 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
253 module_param_array(board2, charp, &stl_nargs, 0);
254 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
255 module_param_array(board3, charp, &stl_nargs, 0);
256 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
258 /*****************************************************************************/
261 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
262 * to the directly accessible io ports of these boards (not the uarts -
263 * they are in cd1400.h and sc26198.h).
265 #define EIO_8PORTRS 0x04
266 #define EIO_4PORTRS 0x05
267 #define EIO_8PORTDI 0x00
268 #define EIO_8PORTM 0x06
270 #define EIO_IDBITMASK 0x07
272 #define EIO_BRDMASK 0xf0
275 #define ID_BRD16 0x30
277 #define EIO_INTRPEND 0x08
278 #define EIO_INTEDGE 0x00
279 #define EIO_INTLEVEL 0x08
283 #define ECH_IDBITMASK 0xe0
284 #define ECH_BRDENABLE 0x08
285 #define ECH_BRDDISABLE 0x00
286 #define ECH_INTENABLE 0x01
287 #define ECH_INTDISABLE 0x00
288 #define ECH_INTLEVEL 0x02
289 #define ECH_INTEDGE 0x00
290 #define ECH_INTRPEND 0x01
291 #define ECH_BRDRESET 0x01
293 #define ECHMC_INTENABLE 0x01
294 #define ECHMC_BRDRESET 0x02
296 #define ECH_PNLSTATUS 2
297 #define ECH_PNL16PORT 0x20
298 #define ECH_PNLIDMASK 0x07
299 #define ECH_PNLXPID 0x40
300 #define ECH_PNLINTRPEND 0x80
302 #define ECH_ADDR2MASK 0x1e0
305 * Define the vector mapping bits for the programmable interrupt board
306 * hardware. These bits encode the interrupt for the board to use - it
307 * is software selectable (except the EIO-8M).
309 static unsigned char stl_vecmap[] = {
310 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
311 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
315 * Lock ordering is that you may not take stallion_lock holding
319 static spinlock_t brd_lock; /* Guard the board mapping */
320 static spinlock_t stallion_lock; /* Guard the tty driver */
323 * Set up enable and disable macros for the ECH boards. They require
324 * the secondary io address space to be activated and deactivated.
325 * This way all ECH boards can share their secondary io region.
326 * If this is an ECH-PCI board then also need to set the page pointer
327 * to point to the correct page.
329 #define BRDENABLE(brdnr,pagenr) \
330 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
331 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
332 stl_brds[(brdnr)]->ioctrl); \
333 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
334 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
336 #define BRDDISABLE(brdnr) \
337 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
338 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
339 stl_brds[(brdnr)]->ioctrl);
341 #define STL_CD1400MAXBAUD 230400
342 #define STL_SC26198MAXBAUD 460800
344 #define STL_BAUDBASE 115200
345 #define STL_CLOSEDELAY (5 * HZ / 10)
347 /*****************************************************************************/
350 * Define the Stallion PCI vendor and device IDs.
352 #ifndef PCI_VENDOR_ID_STALLION
353 #define PCI_VENDOR_ID_STALLION 0x124d
355 #ifndef PCI_DEVICE_ID_ECHPCI832
356 #define PCI_DEVICE_ID_ECHPCI832 0x0000
358 #ifndef PCI_DEVICE_ID_ECHPCI864
359 #define PCI_DEVICE_ID_ECHPCI864 0x0002
361 #ifndef PCI_DEVICE_ID_EIOPCI
362 #define PCI_DEVICE_ID_EIOPCI 0x0003
366 * Define structure to hold all Stallion PCI boards.
369 static struct pci_device_id stl_pcibrds[] = {
370 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864),
371 .driver_data = BRD_ECH64PCI },
372 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI),
373 .driver_data = BRD_EASYIOPCI },
374 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832),
375 .driver_data = BRD_ECHPCI },
376 { PCI_DEVICE(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410),
377 .driver_data = BRD_ECHPCI },
380 MODULE_DEVICE_TABLE(pci, stl_pcibrds);
382 /*****************************************************************************/
385 * Define macros to extract a brd/port number from a minor number.
387 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
388 #define MINOR2PORT(min) ((min) & 0x3f)
391 * Define a baud rate table that converts termios baud rate selector
392 * into the actual baud rate value. All baud rate calculations are
393 * based on the actual baud rate required.
395 static unsigned int stl_baudrates[] = {
396 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
397 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
400 /*****************************************************************************/
403 * Declare all those functions in this driver!
406 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
407 static int stl_brdinit(struct stlbrd *brdp);
408 static int stl_getportstats(struct stlport *portp, comstats_t __user *cp);
409 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp);
410 static int stl_waitcarrier(struct stlport *portp, struct file *filp);
413 * CD1400 uart specific handling functions.
415 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value);
416 static int stl_cd1400getreg(struct stlport *portp, int regnr);
417 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value);
418 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
419 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
420 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp);
421 static int stl_cd1400getsignals(struct stlport *portp);
422 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts);
423 static void stl_cd1400ccrwait(struct stlport *portp);
424 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx);
425 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx);
426 static void stl_cd1400disableintrs(struct stlport *portp);
427 static void stl_cd1400sendbreak(struct stlport *portp, int len);
428 static void stl_cd1400flowctrl(struct stlport *portp, int state);
429 static void stl_cd1400sendflow(struct stlport *portp, int state);
430 static void stl_cd1400flush(struct stlport *portp);
431 static int stl_cd1400datastate(struct stlport *portp);
432 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase);
433 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase);
434 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr);
435 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr);
436 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr);
438 static inline int stl_cd1400breakisr(struct stlport *portp, int ioaddr);
441 * SC26198 uart specific handling functions.
443 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value);
444 static int stl_sc26198getreg(struct stlport *portp, int regnr);
445 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value);
446 static int stl_sc26198getglobreg(struct stlport *portp, int regnr);
447 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
448 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
449 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp);
450 static int stl_sc26198getsignals(struct stlport *portp);
451 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts);
452 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx);
453 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx);
454 static void stl_sc26198disableintrs(struct stlport *portp);
455 static void stl_sc26198sendbreak(struct stlport *portp, int len);
456 static void stl_sc26198flowctrl(struct stlport *portp, int state);
457 static void stl_sc26198sendflow(struct stlport *portp, int state);
458 static void stl_sc26198flush(struct stlport *portp);
459 static int stl_sc26198datastate(struct stlport *portp);
460 static void stl_sc26198wait(struct stlport *portp);
461 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty);
462 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase);
463 static void stl_sc26198txisr(struct stlport *port);
464 static void stl_sc26198rxisr(struct stlport *port, unsigned int iack);
465 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch);
466 static void stl_sc26198rxbadchars(struct stlport *portp);
467 static void stl_sc26198otherisr(struct stlport *port, unsigned int iack);
469 /*****************************************************************************/
472 * Generic UART support structure.
474 typedef struct uart {
475 int (*panelinit)(struct stlbrd *brdp, struct stlpanel *panelp);
476 void (*portinit)(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
477 void (*setport)(struct stlport *portp, struct ktermios *tiosp);
478 int (*getsignals)(struct stlport *portp);
479 void (*setsignals)(struct stlport *portp, int dtr, int rts);
480 void (*enablerxtx)(struct stlport *portp, int rx, int tx);
481 void (*startrxtx)(struct stlport *portp, int rx, int tx);
482 void (*disableintrs)(struct stlport *portp);
483 void (*sendbreak)(struct stlport *portp, int len);
484 void (*flowctrl)(struct stlport *portp, int state);
485 void (*sendflow)(struct stlport *portp, int state);
486 void (*flush)(struct stlport *portp);
487 int (*datastate)(struct stlport *portp);
488 void (*intr)(struct stlpanel *panelp, unsigned int iobase);
492 * Define some macros to make calling these functions nice and clean.
494 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
495 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
496 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
497 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
498 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
499 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
500 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
501 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
502 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
503 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
504 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
505 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
506 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
508 /*****************************************************************************/
511 * CD1400 UART specific data initialization.
513 static uart_t stl_cd1400uart = {
517 stl_cd1400getsignals,
518 stl_cd1400setsignals,
519 stl_cd1400enablerxtx,
521 stl_cd1400disableintrs,
531 * Define the offsets within the register bank of a cd1400 based panel.
532 * These io address offsets are common to the EasyIO board as well.
540 #define EREG_BANKSIZE 8
542 #define CD1400_CLK 25000000
543 #define CD1400_CLK8M 20000000
546 * Define the cd1400 baud rate clocks. These are used when calculating
547 * what clock and divisor to use for the required baud rate. Also
548 * define the maximum baud rate allowed, and the default base baud.
550 static int stl_cd1400clkdivs[] = {
551 CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
554 /*****************************************************************************/
557 * SC26198 UART specific data initization.
559 static uart_t stl_sc26198uart = {
560 stl_sc26198panelinit,
563 stl_sc26198getsignals,
564 stl_sc26198setsignals,
565 stl_sc26198enablerxtx,
566 stl_sc26198startrxtx,
567 stl_sc26198disableintrs,
568 stl_sc26198sendbreak,
572 stl_sc26198datastate,
577 * Define the offsets within the register bank of a sc26198 based panel.
585 #define XP_BANKSIZE 4
588 * Define the sc26198 baud rate table. Offsets within the table
589 * represent the actual baud rate selector of sc26198 registers.
591 static unsigned int sc26198_baudtable[] = {
592 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
593 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
594 230400, 460800, 921600
597 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
599 /*****************************************************************************/
602 * Define the driver info for a user level control device. Used mainly
603 * to get at port stats - only not using the port device itself.
605 static const struct file_operations stl_fsiomem = {
606 .owner = THIS_MODULE,
607 .ioctl = stl_memioctl,
610 static struct class *stallion_class;
612 static void stl_cd_change(struct stlport *portp)
614 unsigned int oldsigs = portp->sigs;
616 if (!portp->port.tty)
619 portp->sigs = stl_getsignals(portp);
621 if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
622 wake_up_interruptible(&portp->port.open_wait);
624 if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0))
625 if (portp->port.flags & ASYNC_CHECK_CD)
626 tty_hangup(portp->port.tty);
630 * Check for any arguments passed in on the module load command line.
633 /*****************************************************************************/
636 * Parse the supplied argument string, into the board conf struct.
639 static int __init stl_parsebrd(struct stlconf *confp, char **argp)
644 pr_debug("stl_parsebrd(confp=%p,argp=%p)\n", confp, argp);
646 if ((argp[0] == NULL) || (*argp[0] == 0))
649 for (sp = argp[0], i = 0; (*sp != 0) && (i < 25); sp++, i++)
652 for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++)
653 if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
656 if (i == ARRAY_SIZE(stl_brdstr)) {
657 printk("STALLION: unknown board name, %s?\n", argp[0]);
661 confp->brdtype = stl_brdstr[i].type;
664 if ((argp[i] != NULL) && (*argp[i] != 0))
665 confp->ioaddr1 = simple_strtoul(argp[i], NULL, 0);
667 if (confp->brdtype == BRD_ECH) {
668 if ((argp[i] != NULL) && (*argp[i] != 0))
669 confp->ioaddr2 = simple_strtoul(argp[i], NULL, 0);
672 if ((argp[i] != NULL) && (*argp[i] != 0))
673 confp->irq = simple_strtoul(argp[i], NULL, 0);
677 /*****************************************************************************/
680 * Allocate a new board structure. Fill out the basic info in it.
683 static struct stlbrd *stl_allocbrd(void)
687 brdp = kzalloc(sizeof(struct stlbrd), GFP_KERNEL);
689 printk("STALLION: failed to allocate memory (size=%Zd)\n",
690 sizeof(struct stlbrd));
694 brdp->magic = STL_BOARDMAGIC;
698 /*****************************************************************************/
700 static int stl_open(struct tty_struct *tty, struct file *filp)
702 struct stlport *portp;
704 unsigned int minordev, brdnr, panelnr;
707 pr_debug("stl_open(tty=%p,filp=%p): device=%s\n", tty, filp, tty->name);
709 minordev = tty->index;
710 brdnr = MINOR2BRD(minordev);
711 if (brdnr >= stl_nrbrds)
713 brdp = stl_brds[brdnr];
716 minordev = MINOR2PORT(minordev);
717 for (portnr = -1, panelnr = 0; panelnr < STL_MAXPANELS; panelnr++) {
718 if (brdp->panels[panelnr] == NULL)
720 if (minordev < brdp->panels[panelnr]->nrports) {
724 minordev -= brdp->panels[panelnr]->nrports;
729 portp = brdp->panels[panelnr]->ports[portnr];
734 * On the first open of the device setup the port hardware, and
735 * initialize the per port data structure.
737 portp->port.tty = tty;
738 tty->driver_data = portp;
741 if ((portp->port.flags & ASYNC_INITIALIZED) == 0) {
742 if (!portp->tx.buf) {
743 portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
746 portp->tx.head = portp->tx.buf;
747 portp->tx.tail = portp->tx.buf;
749 stl_setport(portp, tty->termios);
750 portp->sigs = stl_getsignals(portp);
751 stl_setsignals(portp, 1, 1);
752 stl_enablerxtx(portp, 1, 1);
753 stl_startrxtx(portp, 1, 0);
754 clear_bit(TTY_IO_ERROR, &tty->flags);
755 portp->port.flags |= ASYNC_INITIALIZED;
759 * Check if this port is in the middle of closing. If so then wait
760 * until it is closed then return error status, based on flag settings.
761 * The sleep here does not need interrupt protection since the wakeup
762 * for it is done with the same context.
764 if (portp->port.flags & ASYNC_CLOSING) {
765 interruptible_sleep_on(&portp->port.close_wait);
766 if (portp->port.flags & ASYNC_HUP_NOTIFY)
772 * Based on type of open being done check if it can overlap with any
773 * previous opens still in effect. If we are a normal serial device
774 * then also we might have to wait for carrier.
776 if (!(filp->f_flags & O_NONBLOCK))
777 if ((rc = stl_waitcarrier(portp, filp)) != 0)
780 portp->port.flags |= ASYNC_NORMAL_ACTIVE;
785 /*****************************************************************************/
788 * Possibly need to wait for carrier (DCD signal) to come high. Say
789 * maybe because if we are clocal then we don't need to wait...
792 static int stl_waitcarrier(struct stlport *portp, struct file *filp)
797 pr_debug("stl_waitcarrier(portp=%p,filp=%p)\n", portp, filp);
802 spin_lock_irqsave(&stallion_lock, flags);
804 if (portp->port.tty->termios->c_cflag & CLOCAL)
807 portp->openwaitcnt++;
808 if (! tty_hung_up_p(filp))
812 /* Takes brd_lock internally */
813 stl_setsignals(portp, 1, 1);
814 if (tty_hung_up_p(filp) ||
815 ((portp->port.flags & ASYNC_INITIALIZED) == 0)) {
816 if (portp->port.flags & ASYNC_HUP_NOTIFY)
822 if (((portp->port.flags & ASYNC_CLOSING) == 0) &&
823 (doclocal || (portp->sigs & TIOCM_CD)))
825 if (signal_pending(current)) {
830 interruptible_sleep_on(&portp->port.open_wait);
833 if (! tty_hung_up_p(filp))
835 portp->openwaitcnt--;
836 spin_unlock_irqrestore(&stallion_lock, flags);
841 /*****************************************************************************/
843 static void stl_flushbuffer(struct tty_struct *tty)
845 struct stlport *portp;
847 pr_debug("stl_flushbuffer(tty=%p)\n", tty);
851 portp = tty->driver_data;
859 /*****************************************************************************/
861 static void stl_waituntilsent(struct tty_struct *tty, int timeout)
863 struct stlport *portp;
866 pr_debug("stl_waituntilsent(tty=%p,timeout=%d)\n", tty, timeout);
870 portp = tty->driver_data;
876 tend = jiffies + timeout;
879 while (stl_datastate(portp)) {
880 if (signal_pending(current))
882 msleep_interruptible(20);
883 if (time_after_eq(jiffies, tend))
889 /*****************************************************************************/
891 static void stl_close(struct tty_struct *tty, struct file *filp)
893 struct stlport *portp;
896 pr_debug("stl_close(tty=%p,filp=%p)\n", tty, filp);
898 portp = tty->driver_data;
902 spin_lock_irqsave(&stallion_lock, flags);
903 if (tty_hung_up_p(filp)) {
904 spin_unlock_irqrestore(&stallion_lock, flags);
907 if ((tty->count == 1) && (portp->port.count != 1))
908 portp->port.count = 1;
909 if (portp->port.count-- > 1) {
910 spin_unlock_irqrestore(&stallion_lock, flags);
914 portp->port.count = 0;
915 portp->port.flags |= ASYNC_CLOSING;
918 * May want to wait for any data to drain before closing. The BUSY
919 * flag keeps track of whether we are still sending or not - it is
920 * very accurate for the cd1400, not quite so for the sc26198.
921 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
925 spin_unlock_irqrestore(&stallion_lock, flags);
927 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
928 tty_wait_until_sent(tty, portp->closing_wait);
929 stl_waituntilsent(tty, (HZ / 2));
932 spin_lock_irqsave(&stallion_lock, flags);
933 portp->port.flags &= ~ASYNC_INITIALIZED;
934 spin_unlock_irqrestore(&stallion_lock, flags);
936 stl_disableintrs(portp);
937 if (tty->termios->c_cflag & HUPCL)
938 stl_setsignals(portp, 0, 0);
939 stl_enablerxtx(portp, 0, 0);
940 stl_flushbuffer(tty);
942 if (portp->tx.buf != NULL) {
943 kfree(portp->tx.buf);
944 portp->tx.buf = NULL;
945 portp->tx.head = NULL;
946 portp->tx.tail = NULL;
948 set_bit(TTY_IO_ERROR, &tty->flags);
949 tty_ldisc_flush(tty);
952 portp->port.tty = NULL;
954 if (portp->openwaitcnt) {
955 if (portp->close_delay)
956 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
957 wake_up_interruptible(&portp->port.open_wait);
960 portp->port.flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
961 wake_up_interruptible(&portp->port.close_wait);
964 /*****************************************************************************/
967 * Write routine. Take data and stuff it in to the TX ring queue.
968 * If transmit interrupts are not running then start them.
971 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
973 struct stlport *portp;
974 unsigned int len, stlen;
975 unsigned char *chbuf;
978 pr_debug("stl_write(tty=%p,buf=%p,count=%d)\n", tty, buf, count);
980 portp = tty->driver_data;
983 if (portp->tx.buf == NULL)
987 * If copying direct from user space we must cater for page faults,
988 * causing us to "sleep" here for a while. To handle this copy in all
989 * the data we need now, into a local buffer. Then when we got it all
990 * copy it into the TX buffer.
992 chbuf = (unsigned char *) buf;
994 head = portp->tx.head;
995 tail = portp->tx.tail;
997 len = STL_TXBUFSIZE - (head - tail) - 1;
998 stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
1000 len = tail - head - 1;
1004 len = min(len, (unsigned int)count);
1007 stlen = min(len, stlen);
1008 memcpy(head, chbuf, stlen);
1013 if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
1014 head = portp->tx.buf;
1015 stlen = tail - head;
1018 portp->tx.head = head;
1020 clear_bit(ASYI_TXLOW, &portp->istate);
1021 stl_startrxtx(portp, -1, 1);
1026 /*****************************************************************************/
1028 static int stl_putchar(struct tty_struct *tty, unsigned char ch)
1030 struct stlport *portp;
1034 pr_debug("stl_putchar(tty=%p,ch=%x)\n", tty, ch);
1038 portp = tty->driver_data;
1041 if (portp->tx.buf == NULL)
1044 head = portp->tx.head;
1045 tail = portp->tx.tail;
1047 len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
1052 if (head >= (portp->tx.buf + STL_TXBUFSIZE))
1053 head = portp->tx.buf;
1055 portp->tx.head = head;
1059 /*****************************************************************************/
1062 * If there are any characters in the buffer then make sure that TX
1063 * interrupts are on and get'em out. Normally used after the putchar
1064 * routine has been called.
1067 static void stl_flushchars(struct tty_struct *tty)
1069 struct stlport *portp;
1071 pr_debug("stl_flushchars(tty=%p)\n", tty);
1075 portp = tty->driver_data;
1078 if (portp->tx.buf == NULL)
1081 stl_startrxtx(portp, -1, 1);
1084 /*****************************************************************************/
1086 static int stl_writeroom(struct tty_struct *tty)
1088 struct stlport *portp;
1091 pr_debug("stl_writeroom(tty=%p)\n", tty);
1095 portp = tty->driver_data;
1098 if (portp->tx.buf == NULL)
1101 head = portp->tx.head;
1102 tail = portp->tx.tail;
1103 return (head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1);
1106 /*****************************************************************************/
1109 * Return number of chars in the TX buffer. Normally we would just
1110 * calculate the number of chars in the buffer and return that, but if
1111 * the buffer is empty and TX interrupts are still on then we return
1112 * that the buffer still has 1 char in it. This way whoever called us
1113 * will not think that ALL chars have drained - since the UART still
1114 * must have some chars in it (we are busy after all).
1117 static int stl_charsinbuffer(struct tty_struct *tty)
1119 struct stlport *portp;
1123 pr_debug("stl_charsinbuffer(tty=%p)\n", tty);
1127 portp = tty->driver_data;
1130 if (portp->tx.buf == NULL)
1133 head = portp->tx.head;
1134 tail = portp->tx.tail;
1135 size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
1136 if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
1141 /*****************************************************************************/
1144 * Generate the serial struct info.
1147 static int stl_getserial(struct stlport *portp, struct serial_struct __user *sp)
1149 struct serial_struct sio;
1150 struct stlbrd *brdp;
1152 pr_debug("stl_getserial(portp=%p,sp=%p)\n", portp, sp);
1154 memset(&sio, 0, sizeof(struct serial_struct));
1155 sio.line = portp->portnr;
1156 sio.port = portp->ioaddr;
1157 sio.flags = portp->port.flags;
1158 sio.baud_base = portp->baud_base;
1159 sio.close_delay = portp->close_delay;
1160 sio.closing_wait = portp->closing_wait;
1161 sio.custom_divisor = portp->custom_divisor;
1163 if (portp->uartp == &stl_cd1400uart) {
1164 sio.type = PORT_CIRRUS;
1165 sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
1167 sio.type = PORT_UNKNOWN;
1168 sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
1171 brdp = stl_brds[portp->brdnr];
1173 sio.irq = brdp->irq;
1175 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
1178 /*****************************************************************************/
1181 * Set port according to the serial struct info.
1182 * At this point we do not do any auto-configure stuff, so we will
1183 * just quietly ignore any requests to change irq, etc.
1186 static int stl_setserial(struct stlport *portp, struct serial_struct __user *sp)
1188 struct serial_struct sio;
1190 pr_debug("stl_setserial(portp=%p,sp=%p)\n", portp, sp);
1192 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1194 if (!capable(CAP_SYS_ADMIN)) {
1195 if ((sio.baud_base != portp->baud_base) ||
1196 (sio.close_delay != portp->close_delay) ||
1197 ((sio.flags & ~ASYNC_USR_MASK) !=
1198 (portp->port.flags & ~ASYNC_USR_MASK)))
1202 portp->port.flags = (portp->port.flags & ~ASYNC_USR_MASK) |
1203 (sio.flags & ASYNC_USR_MASK);
1204 portp->baud_base = sio.baud_base;
1205 portp->close_delay = sio.close_delay;
1206 portp->closing_wait = sio.closing_wait;
1207 portp->custom_divisor = sio.custom_divisor;
1208 stl_setport(portp, portp->port.tty->termios);
1212 /*****************************************************************************/
1214 static int stl_tiocmget(struct tty_struct *tty, struct file *file)
1216 struct stlport *portp;
1220 portp = tty->driver_data;
1223 if (tty->flags & (1 << TTY_IO_ERROR))
1226 return stl_getsignals(portp);
1229 static int stl_tiocmset(struct tty_struct *tty, struct file *file,
1230 unsigned int set, unsigned int clear)
1232 struct stlport *portp;
1233 int rts = -1, dtr = -1;
1237 portp = tty->driver_data;
1240 if (tty->flags & (1 << TTY_IO_ERROR))
1243 if (set & TIOCM_RTS)
1245 if (set & TIOCM_DTR)
1247 if (clear & TIOCM_RTS)
1249 if (clear & TIOCM_DTR)
1252 stl_setsignals(portp, dtr, rts);
1256 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1258 struct stlport *portp;
1260 void __user *argp = (void __user *)arg;
1262 pr_debug("stl_ioctl(tty=%p,file=%p,cmd=%x,arg=%lx)\n", tty, file, cmd,
1267 portp = tty->driver_data;
1271 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1272 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS))
1273 if (tty->flags & (1 << TTY_IO_ERROR))
1282 rc = stl_getserial(portp, argp);
1285 rc = stl_setserial(portp, argp);
1287 case COM_GETPORTSTATS:
1288 rc = stl_getportstats(portp, argp);
1290 case COM_CLRPORTSTATS:
1291 rc = stl_clrportstats(portp, argp);
1297 case TIOCSERGSTRUCT:
1298 case TIOCSERGETMULTI:
1299 case TIOCSERSETMULTI:
1308 /*****************************************************************************/
1311 * Start the transmitter again. Just turn TX interrupts back on.
1314 static void stl_start(struct tty_struct *tty)
1316 struct stlport *portp;
1318 pr_debug("stl_start(tty=%p)\n", tty);
1322 portp = tty->driver_data;
1325 stl_startrxtx(portp, -1, 1);
1328 /*****************************************************************************/
1330 static void stl_settermios(struct tty_struct *tty, struct ktermios *old)
1332 struct stlport *portp;
1333 struct ktermios *tiosp;
1335 pr_debug("stl_settermios(tty=%p,old=%p)\n", tty, old);
1339 portp = tty->driver_data;
1343 tiosp = tty->termios;
1344 if ((tiosp->c_cflag == old->c_cflag) &&
1345 (tiosp->c_iflag == old->c_iflag))
1348 stl_setport(portp, tiosp);
1349 stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
1351 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
1352 tty->hw_stopped = 0;
1355 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1356 wake_up_interruptible(&portp->port.open_wait);
1359 /*****************************************************************************/
1362 * Attempt to flow control who ever is sending us data. Based on termios
1363 * settings use software or/and hardware flow control.
1366 static void stl_throttle(struct tty_struct *tty)
1368 struct stlport *portp;
1370 pr_debug("stl_throttle(tty=%p)\n", tty);
1374 portp = tty->driver_data;
1377 stl_flowctrl(portp, 0);
1380 /*****************************************************************************/
1383 * Unflow control the device sending us data...
1386 static void stl_unthrottle(struct tty_struct *tty)
1388 struct stlport *portp;
1390 pr_debug("stl_unthrottle(tty=%p)\n", tty);
1394 portp = tty->driver_data;
1397 stl_flowctrl(portp, 1);
1400 /*****************************************************************************/
1403 * Stop the transmitter. Basically to do this we will just turn TX
1407 static void stl_stop(struct tty_struct *tty)
1409 struct stlport *portp;
1411 pr_debug("stl_stop(tty=%p)\n", tty);
1415 portp = tty->driver_data;
1418 stl_startrxtx(portp, -1, 0);
1421 /*****************************************************************************/
1424 * Hangup this port. This is pretty much like closing the port, only
1425 * a little more brutal. No waiting for data to drain. Shutdown the
1426 * port and maybe drop signals.
1429 static void stl_hangup(struct tty_struct *tty)
1431 struct stlport *portp;
1433 pr_debug("stl_hangup(tty=%p)\n", tty);
1437 portp = tty->driver_data;
1441 portp->port.flags &= ~ASYNC_INITIALIZED;
1442 stl_disableintrs(portp);
1443 if (tty->termios->c_cflag & HUPCL)
1444 stl_setsignals(portp, 0, 0);
1445 stl_enablerxtx(portp, 0, 0);
1446 stl_flushbuffer(tty);
1448 set_bit(TTY_IO_ERROR, &tty->flags);
1449 if (portp->tx.buf != NULL) {
1450 kfree(portp->tx.buf);
1451 portp->tx.buf = NULL;
1452 portp->tx.head = NULL;
1453 portp->tx.tail = NULL;
1455 portp->port.tty = NULL;
1456 portp->port.flags &= ~ASYNC_NORMAL_ACTIVE;
1457 portp->port.count = 0;
1458 wake_up_interruptible(&portp->port.open_wait);
1461 /*****************************************************************************/
1463 static int stl_breakctl(struct tty_struct *tty, int state)
1465 struct stlport *portp;
1467 pr_debug("stl_breakctl(tty=%p,state=%d)\n", tty, state);
1471 portp = tty->driver_data;
1475 stl_sendbreak(portp, ((state == -1) ? 1 : 2));
1479 /*****************************************************************************/
1481 static void stl_sendxchar(struct tty_struct *tty, char ch)
1483 struct stlport *portp;
1485 pr_debug("stl_sendxchar(tty=%p,ch=%x)\n", tty, ch);
1489 portp = tty->driver_data;
1493 if (ch == STOP_CHAR(tty))
1494 stl_sendflow(portp, 0);
1495 else if (ch == START_CHAR(tty))
1496 stl_sendflow(portp, 1);
1498 stl_putchar(tty, ch);
1501 /*****************************************************************************/
1506 * Format info for a specified port. The line is deliberately limited
1507 * to 80 characters. (If it is too long it will be truncated, if too
1508 * short then padded with spaces).
1511 static int stl_portinfo(struct stlport *portp, int portnr, char *pos)
1517 sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d",
1518 portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
1519 (int) portp->stats.txtotal, (int) portp->stats.rxtotal);
1521 if (portp->stats.rxframing)
1522 sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing);
1523 if (portp->stats.rxparity)
1524 sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity);
1525 if (portp->stats.rxbreaks)
1526 sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks);
1527 if (portp->stats.rxoverrun)
1528 sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun);
1530 sigs = stl_getsignals(portp);
1531 cnt = sprintf(sp, "%s%s%s%s%s ",
1532 (sigs & TIOCM_RTS) ? "|RTS" : "",
1533 (sigs & TIOCM_CTS) ? "|CTS" : "",
1534 (sigs & TIOCM_DTR) ? "|DTR" : "",
1535 (sigs & TIOCM_CD) ? "|DCD" : "",
1536 (sigs & TIOCM_DSR) ? "|DSR" : "");
1540 for (cnt = sp - pos; cnt < (MAXLINE - 1); cnt++)
1543 pos[(MAXLINE - 2)] = '+';
1544 pos[(MAXLINE - 1)] = '\n';
1549 /*****************************************************************************/
1552 * Port info, read from the /proc file system.
1555 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
1557 struct stlbrd *brdp;
1558 struct stlpanel *panelp;
1559 struct stlport *portp;
1560 unsigned int brdnr, panelnr, portnr;
1561 int totalport, curoff, maxoff;
1564 pr_debug("stl_readproc(page=%p,start=%p,off=%lx,count=%d,eof=%p,"
1565 "data=%p\n", page, start, off, count, eof, data);
1572 pos += sprintf(pos, "%s: version %s", stl_drvtitle,
1574 while (pos < (page + MAXLINE - 1))
1581 * We scan through for each board, panel and port. The offset is
1582 * calculated on the fly, and irrelevant ports are skipped.
1584 for (brdnr = 0; brdnr < stl_nrbrds; brdnr++) {
1585 brdp = stl_brds[brdnr];
1588 if (brdp->state == 0)
1591 maxoff = curoff + (brdp->nrports * MAXLINE);
1592 if (off >= maxoff) {
1597 totalport = brdnr * STL_MAXPORTS;
1598 for (panelnr = 0; panelnr < brdp->nrpanels; panelnr++) {
1599 panelp = brdp->panels[panelnr];
1603 maxoff = curoff + (panelp->nrports * MAXLINE);
1604 if (off >= maxoff) {
1606 totalport += panelp->nrports;
1610 for (portnr = 0; portnr < panelp->nrports; portnr++,
1612 portp = panelp->ports[portnr];
1615 if (off >= (curoff += MAXLINE))
1617 if ((pos - page + MAXLINE) > count)
1619 pos += stl_portinfo(portp, totalport, pos);
1631 /*****************************************************************************/
1634 * All board interrupts are vectored through here first. This code then
1635 * calls off to the approrpriate board interrupt handlers.
1638 static irqreturn_t stl_intr(int irq, void *dev_id)
1640 struct stlbrd *brdp = dev_id;
1642 pr_debug("stl_intr(brdp=%p,irq=%d)\n", brdp, brdp->irq);
1644 return IRQ_RETVAL((* brdp->isr)(brdp));
1647 /*****************************************************************************/
1650 * Interrupt service routine for EasyIO board types.
1653 static int stl_eiointr(struct stlbrd *brdp)
1655 struct stlpanel *panelp;
1656 unsigned int iobase;
1659 spin_lock(&brd_lock);
1660 panelp = brdp->panels[0];
1661 iobase = panelp->iobase;
1662 while (inb(brdp->iostatus) & EIO_INTRPEND) {
1664 (* panelp->isr)(panelp, iobase);
1666 spin_unlock(&brd_lock);
1670 /*****************************************************************************/
1673 * Interrupt service routine for ECH-AT board types.
1676 static int stl_echatintr(struct stlbrd *brdp)
1678 struct stlpanel *panelp;
1679 unsigned int ioaddr, bnknr;
1682 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1684 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1686 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1687 ioaddr = brdp->bnkstataddr[bnknr];
1688 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1689 panelp = brdp->bnk2panel[bnknr];
1690 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1695 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
1700 /*****************************************************************************/
1703 * Interrupt service routine for ECH-MCA board types.
1706 static int stl_echmcaintr(struct stlbrd *brdp)
1708 struct stlpanel *panelp;
1709 unsigned int ioaddr, bnknr;
1712 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1714 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1715 ioaddr = brdp->bnkstataddr[bnknr];
1716 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1717 panelp = brdp->bnk2panel[bnknr];
1718 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1725 /*****************************************************************************/
1728 * Interrupt service routine for ECH-PCI board types.
1731 static int stl_echpciintr(struct stlbrd *brdp)
1733 struct stlpanel *panelp;
1734 unsigned int ioaddr, bnknr, recheck;
1739 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1740 outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
1741 ioaddr = brdp->bnkstataddr[bnknr];
1742 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1743 panelp = brdp->bnk2panel[bnknr];
1744 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1755 /*****************************************************************************/
1758 * Interrupt service routine for ECH-8/64-PCI board types.
1761 static int stl_echpci64intr(struct stlbrd *brdp)
1763 struct stlpanel *panelp;
1764 unsigned int ioaddr, bnknr;
1767 while (inb(brdp->ioctrl) & 0x1) {
1769 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1770 ioaddr = brdp->bnkstataddr[bnknr];
1771 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1772 panelp = brdp->bnk2panel[bnknr];
1773 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1781 /*****************************************************************************/
1784 * Initialize all the ports on a panel.
1787 static int __devinit stl_initports(struct stlbrd *brdp, struct stlpanel *panelp)
1789 struct stlport *portp;
1793 pr_debug("stl_initports(brdp=%p,panelp=%p)\n", brdp, panelp);
1795 chipmask = stl_panelinit(brdp, panelp);
1798 * All UART's are initialized (if found!). Now go through and setup
1799 * each ports data structures.
1801 for (i = 0; i < panelp->nrports; i++) {
1802 portp = kzalloc(sizeof(struct stlport), GFP_KERNEL);
1804 printk("STALLION: failed to allocate memory "
1805 "(size=%Zd)\n", sizeof(struct stlport));
1809 portp->magic = STL_PORTMAGIC;
1811 portp->brdnr = panelp->brdnr;
1812 portp->panelnr = panelp->panelnr;
1813 portp->uartp = panelp->uartp;
1814 portp->clk = brdp->clk;
1815 portp->baud_base = STL_BAUDBASE;
1816 portp->close_delay = STL_CLOSEDELAY;
1817 portp->closing_wait = 30 * HZ;
1818 init_waitqueue_head(&portp->port.open_wait);
1819 init_waitqueue_head(&portp->port.close_wait);
1820 portp->stats.brd = portp->brdnr;
1821 portp->stats.panel = portp->panelnr;
1822 portp->stats.port = portp->portnr;
1823 panelp->ports[i] = portp;
1824 stl_portinit(brdp, panelp, portp);
1830 static void stl_cleanup_panels(struct stlbrd *brdp)
1832 struct stlpanel *panelp;
1833 struct stlport *portp;
1836 for (j = 0; j < STL_MAXPANELS; j++) {
1837 panelp = brdp->panels[j];
1840 for (k = 0; k < STL_PORTSPERPANEL; k++) {
1841 portp = panelp->ports[k];
1844 if (portp->port.tty != NULL)
1845 stl_hangup(portp->port.tty);
1846 kfree(portp->tx.buf);
1853 /*****************************************************************************/
1856 * Try to find and initialize an EasyIO board.
1859 static int __devinit stl_initeio(struct stlbrd *brdp)
1861 struct stlpanel *panelp;
1862 unsigned int status;
1866 pr_debug("stl_initeio(brdp=%p)\n", brdp);
1868 brdp->ioctrl = brdp->ioaddr1 + 1;
1869 brdp->iostatus = brdp->ioaddr1 + 2;
1871 status = inb(brdp->iostatus);
1872 if ((status & EIO_IDBITMASK) == EIO_MK3)
1876 * Handle board specific stuff now. The real difference is PCI
1879 if (brdp->brdtype == BRD_EASYIOPCI) {
1880 brdp->iosize1 = 0x80;
1881 brdp->iosize2 = 0x80;
1882 name = "serial(EIO-PCI)";
1883 outb(0x41, (brdp->ioaddr2 + 0x4c));
1886 name = "serial(EIO)";
1887 if ((brdp->irq < 0) || (brdp->irq > 15) ||
1888 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
1889 printk("STALLION: invalid irq=%d for brd=%d\n",
1890 brdp->irq, brdp->brdnr);
1894 outb((stl_vecmap[brdp->irq] | EIO_0WS |
1895 ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
1900 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
1901 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
1902 "%x conflicts with another device\n", brdp->brdnr,
1907 if (brdp->iosize2 > 0)
1908 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
1909 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
1910 "address %x conflicts with another device\n",
1911 brdp->brdnr, brdp->ioaddr2);
1912 printk(KERN_WARNING "STALLION: Warning, also "
1913 "releasing board %d I/O address %x \n",
1914 brdp->brdnr, brdp->ioaddr1);
1919 * Everything looks OK, so let's go ahead and probe for the hardware.
1921 brdp->clk = CD1400_CLK;
1922 brdp->isr = stl_eiointr;
1925 switch (status & EIO_IDBITMASK) {
1927 brdp->clk = CD1400_CLK8M;
1937 switch (status & EIO_BRDMASK) {
1956 * We have verified that the board is actually present, so now we
1957 * can complete the setup.
1960 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
1962 printk(KERN_WARNING "STALLION: failed to allocate memory "
1963 "(size=%Zd)\n", sizeof(struct stlpanel));
1968 panelp->magic = STL_PANELMAGIC;
1969 panelp->brdnr = brdp->brdnr;
1970 panelp->panelnr = 0;
1971 panelp->nrports = brdp->nrports;
1972 panelp->iobase = brdp->ioaddr1;
1973 panelp->hwid = status;
1974 if ((status & EIO_IDBITMASK) == EIO_MK3) {
1975 panelp->uartp = &stl_sc26198uart;
1976 panelp->isr = stl_sc26198intr;
1978 panelp->uartp = &stl_cd1400uart;
1979 panelp->isr = stl_cd1400eiointr;
1982 brdp->panels[0] = panelp;
1984 brdp->state |= BRD_FOUND;
1985 brdp->hwid = status;
1986 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
1987 printk("STALLION: failed to register interrupt "
1988 "routine for %s irq=%d\n", name, brdp->irq);
1995 stl_cleanup_panels(brdp);
1997 if (brdp->iosize2 > 0)
1998 release_region(brdp->ioaddr2, brdp->iosize2);
2000 release_region(brdp->ioaddr1, brdp->iosize1);
2005 /*****************************************************************************/
2008 * Try to find an ECH board and initialize it. This code is capable of
2009 * dealing with all types of ECH board.
2012 static int __devinit stl_initech(struct stlbrd *brdp)
2014 struct stlpanel *panelp;
2015 unsigned int status, nxtid, ioaddr, conflict, panelnr, banknr, i;
2019 pr_debug("stl_initech(brdp=%p)\n", brdp);
2025 * Set up the initial board register contents for boards. This varies a
2026 * bit between the different board types. So we need to handle each
2027 * separately. Also do a check that the supplied IRQ is good.
2029 switch (brdp->brdtype) {
2032 brdp->isr = stl_echatintr;
2033 brdp->ioctrl = brdp->ioaddr1 + 1;
2034 brdp->iostatus = brdp->ioaddr1 + 1;
2035 status = inb(brdp->iostatus);
2036 if ((status & ECH_IDBITMASK) != ECH_ID) {
2040 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2041 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2042 printk("STALLION: invalid irq=%d for brd=%d\n",
2043 brdp->irq, brdp->brdnr);
2047 status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
2048 status |= (stl_vecmap[brdp->irq] << 1);
2049 outb((status | ECH_BRDRESET), brdp->ioaddr1);
2050 brdp->ioctrlval = ECH_INTENABLE |
2051 ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
2052 for (i = 0; i < 10; i++)
2053 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
2056 name = "serial(EC8/32)";
2057 outb(status, brdp->ioaddr1);
2061 brdp->isr = stl_echmcaintr;
2062 brdp->ioctrl = brdp->ioaddr1 + 0x20;
2063 brdp->iostatus = brdp->ioctrl;
2064 status = inb(brdp->iostatus);
2065 if ((status & ECH_IDBITMASK) != ECH_ID) {
2069 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2070 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2071 printk("STALLION: invalid irq=%d for brd=%d\n",
2072 brdp->irq, brdp->brdnr);
2076 outb(ECHMC_BRDRESET, brdp->ioctrl);
2077 outb(ECHMC_INTENABLE, brdp->ioctrl);
2079 name = "serial(EC8/32-MC)";
2083 brdp->isr = stl_echpciintr;
2084 brdp->ioctrl = brdp->ioaddr1 + 2;
2087 name = "serial(EC8/32-PCI)";
2091 brdp->isr = stl_echpci64intr;
2092 brdp->ioctrl = brdp->ioaddr2 + 0x40;
2093 outb(0x43, (brdp->ioaddr1 + 0x4c));
2094 brdp->iosize1 = 0x80;
2095 brdp->iosize2 = 0x80;
2096 name = "serial(EC8/64-PCI)";
2100 printk("STALLION: unknown board type=%d\n", brdp->brdtype);
2106 * Check boards for possible IO address conflicts and return fail status
2107 * if an IO conflict found.
2110 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2111 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2112 "%x conflicts with another device\n", brdp->brdnr,
2117 if (brdp->iosize2 > 0)
2118 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2119 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2120 "address %x conflicts with another device\n",
2121 brdp->brdnr, brdp->ioaddr2);
2122 printk(KERN_WARNING "STALLION: Warning, also "
2123 "releasing board %d I/O address %x \n",
2124 brdp->brdnr, brdp->ioaddr1);
2129 * Scan through the secondary io address space looking for panels.
2130 * As we find'em allocate and initialize panel structures for each.
2132 brdp->clk = CD1400_CLK;
2133 brdp->hwid = status;
2135 ioaddr = brdp->ioaddr2;
2140 for (i = 0; i < STL_MAXPANELS; i++) {
2141 if (brdp->brdtype == BRD_ECHPCI) {
2142 outb(nxtid, brdp->ioctrl);
2143 ioaddr = brdp->ioaddr2;
2145 status = inb(ioaddr + ECH_PNLSTATUS);
2146 if ((status & ECH_PNLIDMASK) != nxtid)
2148 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
2150 printk("STALLION: failed to allocate memory "
2151 "(size=%Zd)\n", sizeof(struct stlpanel));
2155 panelp->magic = STL_PANELMAGIC;
2156 panelp->brdnr = brdp->brdnr;
2157 panelp->panelnr = panelnr;
2158 panelp->iobase = ioaddr;
2159 panelp->pagenr = nxtid;
2160 panelp->hwid = status;
2161 brdp->bnk2panel[banknr] = panelp;
2162 brdp->bnkpageaddr[banknr] = nxtid;
2163 brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
2165 if (status & ECH_PNLXPID) {
2166 panelp->uartp = &stl_sc26198uart;
2167 panelp->isr = stl_sc26198intr;
2168 if (status & ECH_PNL16PORT) {
2169 panelp->nrports = 16;
2170 brdp->bnk2panel[banknr] = panelp;
2171 brdp->bnkpageaddr[banknr] = nxtid;
2172 brdp->bnkstataddr[banknr++] = ioaddr + 4 +
2175 panelp->nrports = 8;
2177 panelp->uartp = &stl_cd1400uart;
2178 panelp->isr = stl_cd1400echintr;
2179 if (status & ECH_PNL16PORT) {
2180 panelp->nrports = 16;
2181 panelp->ackmask = 0x80;
2182 if (brdp->brdtype != BRD_ECHPCI)
2183 ioaddr += EREG_BANKSIZE;
2184 brdp->bnk2panel[banknr] = panelp;
2185 brdp->bnkpageaddr[banknr] = ++nxtid;
2186 brdp->bnkstataddr[banknr++] = ioaddr +
2189 panelp->nrports = 8;
2190 panelp->ackmask = 0xc0;
2195 ioaddr += EREG_BANKSIZE;
2196 brdp->nrports += panelp->nrports;
2197 brdp->panels[panelnr++] = panelp;
2198 if ((brdp->brdtype != BRD_ECHPCI) &&
2199 (ioaddr >= (brdp->ioaddr2 + brdp->iosize2))) {
2205 brdp->nrpanels = panelnr;
2206 brdp->nrbnks = banknr;
2207 if (brdp->brdtype == BRD_ECH)
2208 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2210 brdp->state |= BRD_FOUND;
2211 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
2212 printk("STALLION: failed to register interrupt "
2213 "routine for %s irq=%d\n", name, brdp->irq);
2220 stl_cleanup_panels(brdp);
2221 if (brdp->iosize2 > 0)
2222 release_region(brdp->ioaddr2, brdp->iosize2);
2224 release_region(brdp->ioaddr1, brdp->iosize1);
2229 /*****************************************************************************/
2232 * Initialize and configure the specified board.
2233 * Scan through all the boards in the configuration and see what we
2234 * can find. Handle EIO and the ECH boards a little differently here
2235 * since the initial search and setup is very different.
2238 static int __devinit stl_brdinit(struct stlbrd *brdp)
2242 pr_debug("stl_brdinit(brdp=%p)\n", brdp);
2244 switch (brdp->brdtype) {
2247 retval = stl_initeio(brdp);
2255 retval = stl_initech(brdp);
2260 printk("STALLION: board=%d is unknown board type=%d\n",
2261 brdp->brdnr, brdp->brdtype);
2266 if ((brdp->state & BRD_FOUND) == 0) {
2267 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2268 stl_brdnames[brdp->brdtype], brdp->brdnr,
2269 brdp->ioaddr1, brdp->irq);
2273 for (i = 0; i < STL_MAXPANELS; i++)
2274 if (brdp->panels[i] != NULL)
2275 stl_initports(brdp, brdp->panels[i]);
2277 printk("STALLION: %s found, board=%d io=%x irq=%d "
2278 "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
2279 brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
2284 free_irq(brdp->irq, brdp);
2286 stl_cleanup_panels(brdp);
2288 release_region(brdp->ioaddr1, brdp->iosize1);
2289 if (brdp->iosize2 > 0)
2290 release_region(brdp->ioaddr2, brdp->iosize2);
2295 /*****************************************************************************/
2298 * Find the next available board number that is free.
2301 static int __devinit stl_getbrdnr(void)
2305 for (i = 0; i < STL_MAXBRDS; i++)
2306 if (stl_brds[i] == NULL) {
2307 if (i >= stl_nrbrds)
2315 /*****************************************************************************/
2317 * We have a Stallion board. Allocate a board structure and
2318 * initialize it. Read its IO and IRQ resources from PCI
2319 * configuration space.
2322 static int __devinit stl_pciprobe(struct pci_dev *pdev,
2323 const struct pci_device_id *ent)
2325 struct stlbrd *brdp;
2326 unsigned int i, brdtype = ent->driver_data;
2327 int brdnr, retval = -ENODEV;
2329 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE)
2332 retval = pci_enable_device(pdev);
2335 brdp = stl_allocbrd();
2340 mutex_lock(&stl_brdslock);
2341 brdnr = stl_getbrdnr();
2343 dev_err(&pdev->dev, "too many boards found, "
2344 "maximum supported %d\n", STL_MAXBRDS);
2345 mutex_unlock(&stl_brdslock);
2349 brdp->brdnr = (unsigned int)brdnr;
2350 stl_brds[brdp->brdnr] = brdp;
2351 mutex_unlock(&stl_brdslock);
2353 brdp->brdtype = brdtype;
2354 brdp->state |= STL_PROBED;
2357 * We have all resources from the board, so let's setup the actual
2358 * board structure now.
2362 brdp->ioaddr2 = pci_resource_start(pdev, 0);
2363 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2366 brdp->ioaddr2 = pci_resource_start(pdev, 2);
2367 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2370 brdp->ioaddr1 = pci_resource_start(pdev, 2);
2371 brdp->ioaddr2 = pci_resource_start(pdev, 1);
2374 dev_err(&pdev->dev, "unknown PCI board type=%u\n", brdtype);
2378 brdp->irq = pdev->irq;
2379 retval = stl_brdinit(brdp);
2383 pci_set_drvdata(pdev, brdp);
2385 for (i = 0; i < brdp->nrports; i++)
2386 tty_register_device(stl_serial,
2387 brdp->brdnr * STL_MAXPORTS + i, &pdev->dev);
2391 stl_brds[brdp->brdnr] = NULL;
2398 static void __devexit stl_pciremove(struct pci_dev *pdev)
2400 struct stlbrd *brdp = pci_get_drvdata(pdev);
2403 free_irq(brdp->irq, brdp);
2405 stl_cleanup_panels(brdp);
2407 release_region(brdp->ioaddr1, brdp->iosize1);
2408 if (brdp->iosize2 > 0)
2409 release_region(brdp->ioaddr2, brdp->iosize2);
2411 for (i = 0; i < brdp->nrports; i++)
2412 tty_unregister_device(stl_serial,
2413 brdp->brdnr * STL_MAXPORTS + i);
2415 stl_brds[brdp->brdnr] = NULL;
2419 static struct pci_driver stl_pcidriver = {
2421 .id_table = stl_pcibrds,
2422 .probe = stl_pciprobe,
2423 .remove = __devexit_p(stl_pciremove)
2426 /*****************************************************************************/
2429 * Return the board stats structure to user app.
2432 static int stl_getbrdstats(combrd_t __user *bp)
2434 combrd_t stl_brdstats;
2435 struct stlbrd *brdp;
2436 struct stlpanel *panelp;
2439 if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
2441 if (stl_brdstats.brd >= STL_MAXBRDS)
2443 brdp = stl_brds[stl_brdstats.brd];
2447 memset(&stl_brdstats, 0, sizeof(combrd_t));
2448 stl_brdstats.brd = brdp->brdnr;
2449 stl_brdstats.type = brdp->brdtype;
2450 stl_brdstats.hwid = brdp->hwid;
2451 stl_brdstats.state = brdp->state;
2452 stl_brdstats.ioaddr = brdp->ioaddr1;
2453 stl_brdstats.ioaddr2 = brdp->ioaddr2;
2454 stl_brdstats.irq = brdp->irq;
2455 stl_brdstats.nrpanels = brdp->nrpanels;
2456 stl_brdstats.nrports = brdp->nrports;
2457 for (i = 0; i < brdp->nrpanels; i++) {
2458 panelp = brdp->panels[i];
2459 stl_brdstats.panels[i].panel = i;
2460 stl_brdstats.panels[i].hwid = panelp->hwid;
2461 stl_brdstats.panels[i].nrports = panelp->nrports;
2464 return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
2467 /*****************************************************************************/
2470 * Resolve the referenced port number into a port struct pointer.
2473 static struct stlport *stl_getport(int brdnr, int panelnr, int portnr)
2475 struct stlbrd *brdp;
2476 struct stlpanel *panelp;
2478 if (brdnr < 0 || brdnr >= STL_MAXBRDS)
2480 brdp = stl_brds[brdnr];
2483 if (panelnr < 0 || (unsigned int)panelnr >= brdp->nrpanels)
2485 panelp = brdp->panels[panelnr];
2488 if (portnr < 0 || (unsigned int)portnr >= panelp->nrports)
2490 return panelp->ports[portnr];
2493 /*****************************************************************************/
2496 * Return the port stats structure to user app. A NULL port struct
2497 * pointer passed in means that we need to find out from the app
2498 * what port to get stats for (used through board control device).
2501 static int stl_getportstats(struct stlport *portp, comstats_t __user *cp)
2503 comstats_t stl_comstats;
2504 unsigned char *head, *tail;
2505 unsigned long flags;
2508 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2510 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2516 portp->stats.state = portp->istate;
2517 portp->stats.flags = portp->port.flags;
2518 portp->stats.hwid = portp->hwid;
2520 portp->stats.ttystate = 0;
2521 portp->stats.cflags = 0;
2522 portp->stats.iflags = 0;
2523 portp->stats.oflags = 0;
2524 portp->stats.lflags = 0;
2525 portp->stats.rxbuffered = 0;
2527 spin_lock_irqsave(&stallion_lock, flags);
2528 if (portp->port.tty != NULL)
2529 if (portp->port.tty->driver_data == portp) {
2530 portp->stats.ttystate = portp->port.tty->flags;
2531 /* No longer available as a statistic */
2532 portp->stats.rxbuffered = 1; /*portp->port.tty->flip.count; */
2533 if (portp->port.tty->termios != NULL) {
2534 portp->stats.cflags = portp->port.tty->termios->c_cflag;
2535 portp->stats.iflags = portp->port.tty->termios->c_iflag;
2536 portp->stats.oflags = portp->port.tty->termios->c_oflag;
2537 portp->stats.lflags = portp->port.tty->termios->c_lflag;
2540 spin_unlock_irqrestore(&stallion_lock, flags);
2542 head = portp->tx.head;
2543 tail = portp->tx.tail;
2544 portp->stats.txbuffered = (head >= tail) ? (head - tail) :
2545 (STL_TXBUFSIZE - (tail - head));
2547 portp->stats.signals = (unsigned long) stl_getsignals(portp);
2549 return copy_to_user(cp, &portp->stats,
2550 sizeof(comstats_t)) ? -EFAULT : 0;
2553 /*****************************************************************************/
2556 * Clear the port stats structure. We also return it zeroed out...
2559 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp)
2561 comstats_t stl_comstats;
2564 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2566 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2572 memset(&portp->stats, 0, sizeof(comstats_t));
2573 portp->stats.brd = portp->brdnr;
2574 portp->stats.panel = portp->panelnr;
2575 portp->stats.port = portp->portnr;
2576 return copy_to_user(cp, &portp->stats,
2577 sizeof(comstats_t)) ? -EFAULT : 0;
2580 /*****************************************************************************/
2583 * Return the entire driver ports structure to a user app.
2586 static int stl_getportstruct(struct stlport __user *arg)
2588 struct stlport stl_dummyport;
2589 struct stlport *portp;
2591 if (copy_from_user(&stl_dummyport, arg, sizeof(struct stlport)))
2593 portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
2594 stl_dummyport.portnr);
2597 return copy_to_user(arg, portp, sizeof(struct stlport)) ? -EFAULT : 0;
2600 /*****************************************************************************/
2603 * Return the entire driver board structure to a user app.
2606 static int stl_getbrdstruct(struct stlbrd __user *arg)
2608 struct stlbrd stl_dummybrd;
2609 struct stlbrd *brdp;
2611 if (copy_from_user(&stl_dummybrd, arg, sizeof(struct stlbrd)))
2613 if (stl_dummybrd.brdnr >= STL_MAXBRDS)
2615 brdp = stl_brds[stl_dummybrd.brdnr];
2618 return copy_to_user(arg, brdp, sizeof(struct stlbrd)) ? -EFAULT : 0;
2621 /*****************************************************************************/
2624 * The "staliomem" device is also required to do some special operations
2625 * on the board and/or ports. In this driver it is mostly used for stats
2629 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
2632 void __user *argp = (void __user *)arg;
2634 pr_debug("stl_memioctl(ip=%p,fp=%p,cmd=%x,arg=%lx)\n", ip, fp, cmd,arg);
2637 if (brdnr >= STL_MAXBRDS)
2642 case COM_GETPORTSTATS:
2643 rc = stl_getportstats(NULL, argp);
2645 case COM_CLRPORTSTATS:
2646 rc = stl_clrportstats(NULL, argp);
2648 case COM_GETBRDSTATS:
2649 rc = stl_getbrdstats(argp);
2652 rc = stl_getportstruct(argp);
2655 rc = stl_getbrdstruct(argp);
2665 static const struct tty_operations stl_ops = {
2669 .put_char = stl_putchar,
2670 .flush_chars = stl_flushchars,
2671 .write_room = stl_writeroom,
2672 .chars_in_buffer = stl_charsinbuffer,
2674 .set_termios = stl_settermios,
2675 .throttle = stl_throttle,
2676 .unthrottle = stl_unthrottle,
2679 .hangup = stl_hangup,
2680 .flush_buffer = stl_flushbuffer,
2681 .break_ctl = stl_breakctl,
2682 .wait_until_sent = stl_waituntilsent,
2683 .send_xchar = stl_sendxchar,
2684 .read_proc = stl_readproc,
2685 .tiocmget = stl_tiocmget,
2686 .tiocmset = stl_tiocmset,
2689 /*****************************************************************************/
2690 /* CD1400 HARDWARE FUNCTIONS */
2691 /*****************************************************************************/
2694 * These functions get/set/update the registers of the cd1400 UARTs.
2695 * Access to the cd1400 registers is via an address/data io port pair.
2696 * (Maybe should make this inline...)
2699 static int stl_cd1400getreg(struct stlport *portp, int regnr)
2701 outb((regnr + portp->uartaddr), portp->ioaddr);
2702 return inb(portp->ioaddr + EREG_DATA);
2705 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value)
2707 outb(regnr + portp->uartaddr, portp->ioaddr);
2708 outb(value, portp->ioaddr + EREG_DATA);
2711 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value)
2713 outb(regnr + portp->uartaddr, portp->ioaddr);
2714 if (inb(portp->ioaddr + EREG_DATA) != value) {
2715 outb(value, portp->ioaddr + EREG_DATA);
2721 /*****************************************************************************/
2724 * Inbitialize the UARTs in a panel. We don't care what sort of board
2725 * these ports are on - since the port io registers are almost
2726 * identical when dealing with ports.
2729 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
2733 int nrchips, uartaddr, ioaddr;
2734 unsigned long flags;
2736 pr_debug("stl_panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
2738 spin_lock_irqsave(&brd_lock, flags);
2739 BRDENABLE(panelp->brdnr, panelp->pagenr);
2742 * Check that each chip is present and started up OK.
2745 nrchips = panelp->nrports / CD1400_PORTS;
2746 for (i = 0; i < nrchips; i++) {
2747 if (brdp->brdtype == BRD_ECHPCI) {
2748 outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
2749 ioaddr = panelp->iobase;
2751 ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
2752 uartaddr = (i & 0x01) ? 0x080 : 0;
2753 outb((GFRCR + uartaddr), ioaddr);
2754 outb(0, (ioaddr + EREG_DATA));
2755 outb((CCR + uartaddr), ioaddr);
2756 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2757 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2758 outb((GFRCR + uartaddr), ioaddr);
2759 for (j = 0; j < CCR_MAXWAIT; j++)
2760 if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
2763 if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
2764 printk("STALLION: cd1400 not responding, "
2765 "brd=%d panel=%d chip=%d\n",
2766 panelp->brdnr, panelp->panelnr, i);
2769 chipmask |= (0x1 << i);
2770 outb((PPR + uartaddr), ioaddr);
2771 outb(PPR_SCALAR, (ioaddr + EREG_DATA));
2774 BRDDISABLE(panelp->brdnr);
2775 spin_unlock_irqrestore(&brd_lock, flags);
2779 /*****************************************************************************/
2782 * Initialize hardware specific port registers.
2785 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
2787 unsigned long flags;
2788 pr_debug("stl_cd1400portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
2791 if ((brdp == NULL) || (panelp == NULL) ||
2795 spin_lock_irqsave(&brd_lock, flags);
2796 portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
2797 (portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
2798 portp->uartaddr = (portp->portnr & 0x04) << 5;
2799 portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
2801 BRDENABLE(portp->brdnr, portp->pagenr);
2802 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
2803 stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
2804 portp->hwid = stl_cd1400getreg(portp, GFRCR);
2805 BRDDISABLE(portp->brdnr);
2806 spin_unlock_irqrestore(&brd_lock, flags);
2809 /*****************************************************************************/
2812 * Wait for the command register to be ready. We will poll this,
2813 * since it won't usually take too long to be ready.
2816 static void stl_cd1400ccrwait(struct stlport *portp)
2820 for (i = 0; i < CCR_MAXWAIT; i++)
2821 if (stl_cd1400getreg(portp, CCR) == 0)
2824 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
2825 portp->portnr, portp->panelnr, portp->brdnr);
2828 /*****************************************************************************/
2831 * Set up the cd1400 registers for a port based on the termios port
2835 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp)
2837 struct stlbrd *brdp;
2838 unsigned long flags;
2839 unsigned int clkdiv, baudrate;
2840 unsigned char cor1, cor2, cor3;
2841 unsigned char cor4, cor5, ccr;
2842 unsigned char srer, sreron, sreroff;
2843 unsigned char mcor1, mcor2, rtpr;
2844 unsigned char clk, div;
2860 brdp = stl_brds[portp->brdnr];
2865 * Set up the RX char ignore mask with those RX error types we
2866 * can ignore. We can get the cd1400 to help us out a little here,
2867 * it will ignore parity errors and breaks for us.
2869 portp->rxignoremsk = 0;
2870 if (tiosp->c_iflag & IGNPAR) {
2871 portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
2872 cor1 |= COR1_PARIGNORE;
2874 if (tiosp->c_iflag & IGNBRK) {
2875 portp->rxignoremsk |= ST_BREAK;
2876 cor4 |= COR4_IGNBRK;
2879 portp->rxmarkmsk = ST_OVERRUN;
2880 if (tiosp->c_iflag & (INPCK | PARMRK))
2881 portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
2882 if (tiosp->c_iflag & BRKINT)
2883 portp->rxmarkmsk |= ST_BREAK;
2886 * Go through the char size, parity and stop bits and set all the
2887 * option register appropriately.
2889 switch (tiosp->c_cflag & CSIZE) {
2904 if (tiosp->c_cflag & CSTOPB)
2909 if (tiosp->c_cflag & PARENB) {
2910 if (tiosp->c_cflag & PARODD)
2911 cor1 |= (COR1_PARENB | COR1_PARODD);
2913 cor1 |= (COR1_PARENB | COR1_PAREVEN);
2915 cor1 |= COR1_PARNONE;
2919 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
2920 * space for hardware flow control and the like. This should be set to
2921 * VMIN. Also here we will set the RX data timeout to 10ms - this should
2922 * really be based on VTIME.
2924 cor3 |= FIFO_RXTHRESHOLD;
2928 * Calculate the baud rate timers. For now we will just assume that
2929 * the input and output baud are the same. Could have used a baud
2930 * table here, but this way we can generate virtually any baud rate
2933 baudrate = tiosp->c_cflag & CBAUD;
2934 if (baudrate & CBAUDEX) {
2935 baudrate &= ~CBAUDEX;
2936 if ((baudrate < 1) || (baudrate > 4))
2937 tiosp->c_cflag &= ~CBAUDEX;
2941 baudrate = stl_baudrates[baudrate];
2942 if ((tiosp->c_cflag & CBAUD) == B38400) {
2943 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2945 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2947 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2949 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2951 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2952 baudrate = (portp->baud_base / portp->custom_divisor);
2954 if (baudrate > STL_CD1400MAXBAUD)
2955 baudrate = STL_CD1400MAXBAUD;
2958 for (clk = 0; clk < CD1400_NUMCLKS; clk++) {
2959 clkdiv = (portp->clk / stl_cd1400clkdivs[clk]) / baudrate;
2963 div = (unsigned char) clkdiv;
2967 * Check what form of modem signaling is required and set it up.
2969 if ((tiosp->c_cflag & CLOCAL) == 0) {
2972 sreron |= SRER_MODEM;
2973 portp->port.flags |= ASYNC_CHECK_CD;
2975 portp->port.flags &= ~ASYNC_CHECK_CD;
2978 * Setup cd1400 enhanced modes if we can. In particular we want to
2979 * handle as much of the flow control as possible automatically. As
2980 * well as saving a few CPU cycles it will also greatly improve flow
2981 * control reliability.
2983 if (tiosp->c_iflag & IXON) {
2986 if (tiosp->c_iflag & IXANY)
2990 if (tiosp->c_cflag & CRTSCTS) {
2992 mcor1 |= FIFO_RTSTHRESHOLD;
2996 * All cd1400 register values calculated so go through and set
3000 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3001 portp->portnr, portp->panelnr, portp->brdnr);
3002 pr_debug(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
3003 cor1, cor2, cor3, cor4, cor5);
3004 pr_debug(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
3005 mcor1, mcor2, rtpr, sreron, sreroff);
3006 pr_debug(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
3007 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3008 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3009 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3011 spin_lock_irqsave(&brd_lock, flags);
3012 BRDENABLE(portp->brdnr, portp->pagenr);
3013 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
3014 srer = stl_cd1400getreg(portp, SRER);
3015 stl_cd1400setreg(portp, SRER, 0);
3016 if (stl_cd1400updatereg(portp, COR1, cor1))
3018 if (stl_cd1400updatereg(portp, COR2, cor2))
3020 if (stl_cd1400updatereg(portp, COR3, cor3))
3023 stl_cd1400ccrwait(portp);
3024 stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
3026 stl_cd1400setreg(portp, COR4, cor4);
3027 stl_cd1400setreg(portp, COR5, cor5);
3028 stl_cd1400setreg(portp, MCOR1, mcor1);
3029 stl_cd1400setreg(portp, MCOR2, mcor2);
3031 stl_cd1400setreg(portp, TCOR, clk);
3032 stl_cd1400setreg(portp, TBPR, div);
3033 stl_cd1400setreg(portp, RCOR, clk);
3034 stl_cd1400setreg(portp, RBPR, div);
3036 stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
3037 stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
3038 stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
3039 stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
3040 stl_cd1400setreg(portp, RTPR, rtpr);
3041 mcor1 = stl_cd1400getreg(portp, MSVR1);
3042 if (mcor1 & MSVR1_DCD)
3043 portp->sigs |= TIOCM_CD;
3045 portp->sigs &= ~TIOCM_CD;
3046 stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
3047 BRDDISABLE(portp->brdnr);
3048 spin_unlock_irqrestore(&brd_lock, flags);
3051 /*****************************************************************************/
3054 * Set the state of the DTR and RTS signals.
3057 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts)
3059 unsigned char msvr1, msvr2;
3060 unsigned long flags;
3062 pr_debug("stl_cd1400setsignals(portp=%p,dtr=%d,rts=%d)\n",
3072 spin_lock_irqsave(&brd_lock, flags);
3073 BRDENABLE(portp->brdnr, portp->pagenr);
3074 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3076 stl_cd1400setreg(portp, MSVR2, msvr2);
3078 stl_cd1400setreg(portp, MSVR1, msvr1);
3079 BRDDISABLE(portp->brdnr);
3080 spin_unlock_irqrestore(&brd_lock, flags);
3083 /*****************************************************************************/
3086 * Return the state of the signals.
3089 static int stl_cd1400getsignals(struct stlport *portp)
3091 unsigned char msvr1, msvr2;
3092 unsigned long flags;
3095 pr_debug("stl_cd1400getsignals(portp=%p)\n", portp);
3097 spin_lock_irqsave(&brd_lock, flags);
3098 BRDENABLE(portp->brdnr, portp->pagenr);
3099 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3100 msvr1 = stl_cd1400getreg(portp, MSVR1);
3101 msvr2 = stl_cd1400getreg(portp, MSVR2);
3102 BRDDISABLE(portp->brdnr);
3103 spin_unlock_irqrestore(&brd_lock, flags);
3106 sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
3107 sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
3108 sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
3109 sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
3111 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
3112 sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
3119 /*****************************************************************************/
3122 * Enable/Disable the Transmitter and/or Receiver.
3125 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx)
3128 unsigned long flags;
3130 pr_debug("stl_cd1400enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3135 ccr |= CCR_TXDISABLE;
3137 ccr |= CCR_TXENABLE;
3139 ccr |= CCR_RXDISABLE;
3141 ccr |= CCR_RXENABLE;
3143 spin_lock_irqsave(&brd_lock, flags);
3144 BRDENABLE(portp->brdnr, portp->pagenr);
3145 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3146 stl_cd1400ccrwait(portp);
3147 stl_cd1400setreg(portp, CCR, ccr);
3148 stl_cd1400ccrwait(portp);
3149 BRDDISABLE(portp->brdnr);
3150 spin_unlock_irqrestore(&brd_lock, flags);
3153 /*****************************************************************************/
3156 * Start/stop the Transmitter and/or Receiver.
3159 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx)
3161 unsigned char sreron, sreroff;
3162 unsigned long flags;
3164 pr_debug("stl_cd1400startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3169 sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
3171 sreron |= SRER_TXDATA;
3173 sreron |= SRER_TXEMPTY;
3175 sreroff |= SRER_RXDATA;
3177 sreron |= SRER_RXDATA;
3179 spin_lock_irqsave(&brd_lock, flags);
3180 BRDENABLE(portp->brdnr, portp->pagenr);
3181 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3182 stl_cd1400setreg(portp, SRER,
3183 ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
3184 BRDDISABLE(portp->brdnr);
3186 set_bit(ASYI_TXBUSY, &portp->istate);
3187 spin_unlock_irqrestore(&brd_lock, flags);
3190 /*****************************************************************************/
3193 * Disable all interrupts from this port.
3196 static void stl_cd1400disableintrs(struct stlport *portp)
3198 unsigned long flags;
3200 pr_debug("stl_cd1400disableintrs(portp=%p)\n", portp);
3202 spin_lock_irqsave(&brd_lock, flags);
3203 BRDENABLE(portp->brdnr, portp->pagenr);
3204 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3205 stl_cd1400setreg(portp, SRER, 0);
3206 BRDDISABLE(portp->brdnr);
3207 spin_unlock_irqrestore(&brd_lock, flags);
3210 /*****************************************************************************/
3212 static void stl_cd1400sendbreak(struct stlport *portp, int len)
3214 unsigned long flags;
3216 pr_debug("stl_cd1400sendbreak(portp=%p,len=%d)\n", portp, len);
3218 spin_lock_irqsave(&brd_lock, flags);
3219 BRDENABLE(portp->brdnr, portp->pagenr);
3220 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3221 stl_cd1400setreg(portp, SRER,
3222 ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
3224 BRDDISABLE(portp->brdnr);
3225 portp->brklen = len;
3227 portp->stats.txbreaks++;
3228 spin_unlock_irqrestore(&brd_lock, flags);
3231 /*****************************************************************************/
3234 * Take flow control actions...
3237 static void stl_cd1400flowctrl(struct stlport *portp, int state)
3239 struct tty_struct *tty;
3240 unsigned long flags;
3242 pr_debug("stl_cd1400flowctrl(portp=%p,state=%x)\n", portp, state);
3246 tty = portp->port.tty;
3250 spin_lock_irqsave(&brd_lock, flags);
3251 BRDENABLE(portp->brdnr, portp->pagenr);
3252 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3255 if (tty->termios->c_iflag & IXOFF) {
3256 stl_cd1400ccrwait(portp);
3257 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3258 portp->stats.rxxon++;
3259 stl_cd1400ccrwait(portp);
3262 * Question: should we return RTS to what it was before? It may
3263 * have been set by an ioctl... Suppose not, since if you have
3264 * hardware flow control set then it is pretty silly to go and
3265 * set the RTS line by hand.
3267 if (tty->termios->c_cflag & CRTSCTS) {
3268 stl_cd1400setreg(portp, MCOR1,
3269 (stl_cd1400getreg(portp, MCOR1) |
3270 FIFO_RTSTHRESHOLD));
3271 stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
3272 portp->stats.rxrtson++;
3275 if (tty->termios->c_iflag & IXOFF) {
3276 stl_cd1400ccrwait(portp);
3277 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3278 portp->stats.rxxoff++;
3279 stl_cd1400ccrwait(portp);
3281 if (tty->termios->c_cflag & CRTSCTS) {
3282 stl_cd1400setreg(portp, MCOR1,
3283 (stl_cd1400getreg(portp, MCOR1) & 0xf0));
3284 stl_cd1400setreg(portp, MSVR2, 0);
3285 portp->stats.rxrtsoff++;
3289 BRDDISABLE(portp->brdnr);
3290 spin_unlock_irqrestore(&brd_lock, flags);
3293 /*****************************************************************************/
3296 * Send a flow control character...
3299 static void stl_cd1400sendflow(struct stlport *portp, int state)
3301 struct tty_struct *tty;
3302 unsigned long flags;
3304 pr_debug("stl_cd1400sendflow(portp=%p,state=%x)\n", portp, state);
3308 tty = portp->port.tty;
3312 spin_lock_irqsave(&brd_lock, flags);
3313 BRDENABLE(portp->brdnr, portp->pagenr);
3314 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3316 stl_cd1400ccrwait(portp);
3317 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3318 portp->stats.rxxon++;
3319 stl_cd1400ccrwait(portp);
3321 stl_cd1400ccrwait(portp);
3322 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3323 portp->stats.rxxoff++;
3324 stl_cd1400ccrwait(portp);
3326 BRDDISABLE(portp->brdnr);
3327 spin_unlock_irqrestore(&brd_lock, flags);
3330 /*****************************************************************************/
3332 static void stl_cd1400flush(struct stlport *portp)
3334 unsigned long flags;
3336 pr_debug("stl_cd1400flush(portp=%p)\n", portp);
3341 spin_lock_irqsave(&brd_lock, flags);
3342 BRDENABLE(portp->brdnr, portp->pagenr);
3343 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3344 stl_cd1400ccrwait(portp);
3345 stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
3346 stl_cd1400ccrwait(portp);
3347 portp->tx.tail = portp->tx.head;
3348 BRDDISABLE(portp->brdnr);
3349 spin_unlock_irqrestore(&brd_lock, flags);
3352 /*****************************************************************************/
3355 * Return the current state of data flow on this port. This is only
3356 * really interresting when determining if data has fully completed
3357 * transmission or not... This is easy for the cd1400, it accurately
3358 * maintains the busy port flag.
3361 static int stl_cd1400datastate(struct stlport *portp)
3363 pr_debug("stl_cd1400datastate(portp=%p)\n", portp);
3368 return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0;
3371 /*****************************************************************************/
3374 * Interrupt service routine for cd1400 EasyIO boards.
3377 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase)
3379 unsigned char svrtype;
3381 pr_debug("stl_cd1400eiointr(panelp=%p,iobase=%x)\n", panelp, iobase);
3383 spin_lock(&brd_lock);
3385 svrtype = inb(iobase + EREG_DATA);
3386 if (panelp->nrports > 4) {
3387 outb((SVRR + 0x80), iobase);
3388 svrtype |= inb(iobase + EREG_DATA);
3391 if (svrtype & SVRR_RX)
3392 stl_cd1400rxisr(panelp, iobase);
3393 else if (svrtype & SVRR_TX)
3394 stl_cd1400txisr(panelp, iobase);
3395 else if (svrtype & SVRR_MDM)
3396 stl_cd1400mdmisr(panelp, iobase);
3398 spin_unlock(&brd_lock);
3401 /*****************************************************************************/
3404 * Interrupt service routine for cd1400 panels.
3407 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase)
3409 unsigned char svrtype;
3411 pr_debug("stl_cd1400echintr(panelp=%p,iobase=%x)\n", panelp, iobase);
3414 svrtype = inb(iobase + EREG_DATA);
3415 outb((SVRR + 0x80), iobase);
3416 svrtype |= inb(iobase + EREG_DATA);
3417 if (svrtype & SVRR_RX)
3418 stl_cd1400rxisr(panelp, iobase);
3419 else if (svrtype & SVRR_TX)
3420 stl_cd1400txisr(panelp, iobase);
3421 else if (svrtype & SVRR_MDM)
3422 stl_cd1400mdmisr(panelp, iobase);
3426 /*****************************************************************************/
3429 * Unfortunately we need to handle breaks in the TX data stream, since
3430 * this is the only way to generate them on the cd1400.
3433 static int stl_cd1400breakisr(struct stlport *portp, int ioaddr)
3435 if (portp->brklen == 1) {
3436 outb((COR2 + portp->uartaddr), ioaddr);
3437 outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
3438 (ioaddr + EREG_DATA));
3439 outb((TDR + portp->uartaddr), ioaddr);
3440 outb(ETC_CMD, (ioaddr + EREG_DATA));
3441 outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
3442 outb((SRER + portp->uartaddr), ioaddr);
3443 outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
3444 (ioaddr + EREG_DATA));
3446 } else if (portp->brklen > 1) {
3447 outb((TDR + portp->uartaddr), ioaddr);
3448 outb(ETC_CMD, (ioaddr + EREG_DATA));
3449 outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
3453 outb((COR2 + portp->uartaddr), ioaddr);
3454 outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
3455 (ioaddr + EREG_DATA));
3461 /*****************************************************************************/
3464 * Transmit interrupt handler. This has gotta be fast! Handling TX
3465 * chars is pretty simple, stuff as many as possible from the TX buffer
3466 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3467 * are embedded as commands in the data stream. Oh no, had to use a goto!
3468 * This could be optimized more, will do when I get time...
3469 * In practice it is possible that interrupts are enabled but that the
3470 * port has been hung up. Need to handle not having any TX buffer here,
3471 * this is done by using the side effect that head and tail will also
3472 * be NULL if the buffer has been freed.
3475 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr)
3477 struct stlport *portp;
3480 unsigned char ioack, srer;
3482 pr_debug("stl_cd1400txisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3484 ioack = inb(ioaddr + EREG_TXACK);
3485 if (((ioack & panelp->ackmask) != 0) ||
3486 ((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
3487 printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
3490 portp = panelp->ports[(ioack >> 3)];
3493 * Unfortunately we need to handle breaks in the data stream, since
3494 * this is the only way to generate them on the cd1400. Do it now if
3495 * a break is to be sent.
3497 if (portp->brklen != 0)
3498 if (stl_cd1400breakisr(portp, ioaddr))
3501 head = portp->tx.head;
3502 tail = portp->tx.tail;
3503 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
3504 if ((len == 0) || ((len < STL_TXBUFLOW) &&
3505 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
3506 set_bit(ASYI_TXLOW, &portp->istate);
3507 if (portp->port.tty)
3508 tty_wakeup(portp->port.tty);
3512 outb((SRER + portp->uartaddr), ioaddr);
3513 srer = inb(ioaddr + EREG_DATA);
3514 if (srer & SRER_TXDATA) {
3515 srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
3517 srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
3518 clear_bit(ASYI_TXBUSY, &portp->istate);
3520 outb(srer, (ioaddr + EREG_DATA));
3522 len = min(len, CD1400_TXFIFOSIZE);
3523 portp->stats.txtotal += len;
3524 stlen = min_t(unsigned int, len,
3525 (portp->tx.buf + STL_TXBUFSIZE) - tail);
3526 outb((TDR + portp->uartaddr), ioaddr);
3527 outsb((ioaddr + EREG_DATA), tail, stlen);
3530 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
3531 tail = portp->tx.buf;
3533 outsb((ioaddr + EREG_DATA), tail, len);
3536 portp->tx.tail = tail;
3540 outb((EOSRR + portp->uartaddr), ioaddr);
3541 outb(0, (ioaddr + EREG_DATA));
3544 /*****************************************************************************/
3547 * Receive character interrupt handler. Determine if we have good chars
3548 * or bad chars and then process appropriately. Good chars are easy
3549 * just shove the lot into the RX buffer and set all status byte to 0.
3550 * If a bad RX char then process as required. This routine needs to be
3551 * fast! In practice it is possible that we get an interrupt on a port
3552 * that is closed. This can happen on hangups - since they completely
3553 * shutdown a port not in user context. Need to handle this case.
3556 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr)
3558 struct stlport *portp;
3559 struct tty_struct *tty;
3560 unsigned int ioack, len, buflen;
3561 unsigned char status;
3564 pr_debug("stl_cd1400rxisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3566 ioack = inb(ioaddr + EREG_RXACK);
3567 if ((ioack & panelp->ackmask) != 0) {
3568 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3571 portp = panelp->ports[(ioack >> 3)];
3572 tty = portp->port.tty;
3574 if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
3575 outb((RDCR + portp->uartaddr), ioaddr);
3576 len = inb(ioaddr + EREG_DATA);
3577 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
3578 len = min_t(unsigned int, len, sizeof(stl_unwanted));
3579 outb((RDSR + portp->uartaddr), ioaddr);
3580 insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
3581 portp->stats.rxlost += len;
3582 portp->stats.rxtotal += len;
3584 len = min(len, buflen);
3587 outb((RDSR + portp->uartaddr), ioaddr);
3588 tty_prepare_flip_string(tty, &ptr, len);
3589 insb((ioaddr + EREG_DATA), ptr, len);
3590 tty_schedule_flip(tty);
3591 portp->stats.rxtotal += len;
3594 } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
3595 outb((RDSR + portp->uartaddr), ioaddr);
3596 status = inb(ioaddr + EREG_DATA);
3597 ch = inb(ioaddr + EREG_DATA);
3598 if (status & ST_PARITY)
3599 portp->stats.rxparity++;
3600 if (status & ST_FRAMING)
3601 portp->stats.rxframing++;
3602 if (status & ST_OVERRUN)
3603 portp->stats.rxoverrun++;
3604 if (status & ST_BREAK)
3605 portp->stats.rxbreaks++;
3606 if (status & ST_SCHARMASK) {
3607 if ((status & ST_SCHARMASK) == ST_SCHAR1)
3608 portp->stats.txxon++;
3609 if ((status & ST_SCHARMASK) == ST_SCHAR2)
3610 portp->stats.txxoff++;
3613 if (tty != NULL && (portp->rxignoremsk & status) == 0) {
3614 if (portp->rxmarkmsk & status) {
3615 if (status & ST_BREAK) {
3617 if (portp->port.flags & ASYNC_SAK) {
3619 BRDENABLE(portp->brdnr, portp->pagenr);
3621 } else if (status & ST_PARITY)
3622 status = TTY_PARITY;
3623 else if (status & ST_FRAMING)
3625 else if(status & ST_OVERRUN)
3626 status = TTY_OVERRUN;
3631 tty_insert_flip_char(tty, ch, status);
3632 tty_schedule_flip(tty);
3635 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3640 outb((EOSRR + portp->uartaddr), ioaddr);
3641 outb(0, (ioaddr + EREG_DATA));
3644 /*****************************************************************************/
3647 * Modem interrupt handler. The is called when the modem signal line
3648 * (DCD) has changed state. Leave most of the work to the off-level
3649 * processing routine.
3652 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr)
3654 struct stlport *portp;
3658 pr_debug("stl_cd1400mdmisr(panelp=%p)\n", panelp);
3660 ioack = inb(ioaddr + EREG_MDACK);
3661 if (((ioack & panelp->ackmask) != 0) ||
3662 ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
3663 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
3666 portp = panelp->ports[(ioack >> 3)];
3668 outb((MISR + portp->uartaddr), ioaddr);
3669 misr = inb(ioaddr + EREG_DATA);
3670 if (misr & MISR_DCD) {
3671 stl_cd_change(portp);
3672 portp->stats.modem++;
3675 outb((EOSRR + portp->uartaddr), ioaddr);
3676 outb(0, (ioaddr + EREG_DATA));
3679 /*****************************************************************************/
3680 /* SC26198 HARDWARE FUNCTIONS */
3681 /*****************************************************************************/
3684 * These functions get/set/update the registers of the sc26198 UARTs.
3685 * Access to the sc26198 registers is via an address/data io port pair.
3686 * (Maybe should make this inline...)
3689 static int stl_sc26198getreg(struct stlport *portp, int regnr)
3691 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3692 return inb(portp->ioaddr + XP_DATA);
3695 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value)
3697 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3698 outb(value, (portp->ioaddr + XP_DATA));
3701 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value)
3703 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3704 if (inb(portp->ioaddr + XP_DATA) != value) {
3705 outb(value, (portp->ioaddr + XP_DATA));
3711 /*****************************************************************************/
3714 * Functions to get and set the sc26198 global registers.
3717 static int stl_sc26198getglobreg(struct stlport *portp, int regnr)
3719 outb(regnr, (portp->ioaddr + XP_ADDR));
3720 return inb(portp->ioaddr + XP_DATA);
3724 static void stl_sc26198setglobreg(struct stlport *portp, int regnr, int value)
3726 outb(regnr, (portp->ioaddr + XP_ADDR));
3727 outb(value, (portp->ioaddr + XP_DATA));
3731 /*****************************************************************************/
3734 * Inbitialize the UARTs in a panel. We don't care what sort of board
3735 * these ports are on - since the port io registers are almost
3736 * identical when dealing with ports.
3739 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
3742 int nrchips, ioaddr;
3744 pr_debug("stl_sc26198panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
3746 BRDENABLE(panelp->brdnr, panelp->pagenr);
3749 * Check that each chip is present and started up OK.
3752 nrchips = (panelp->nrports + 4) / SC26198_PORTS;
3753 if (brdp->brdtype == BRD_ECHPCI)
3754 outb(panelp->pagenr, brdp->ioctrl);
3756 for (i = 0; i < nrchips; i++) {
3757 ioaddr = panelp->iobase + (i * 4);
3758 outb(SCCR, (ioaddr + XP_ADDR));
3759 outb(CR_RESETALL, (ioaddr + XP_DATA));
3760 outb(TSTR, (ioaddr + XP_ADDR));
3761 if (inb(ioaddr + XP_DATA) != 0) {
3762 printk("STALLION: sc26198 not responding, "
3763 "brd=%d panel=%d chip=%d\n",
3764 panelp->brdnr, panelp->panelnr, i);
3767 chipmask |= (0x1 << i);
3768 outb(GCCR, (ioaddr + XP_ADDR));
3769 outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
3770 outb(WDTRCR, (ioaddr + XP_ADDR));
3771 outb(0xff, (ioaddr + XP_DATA));
3774 BRDDISABLE(panelp->brdnr);
3778 /*****************************************************************************/
3781 * Initialize hardware specific port registers.
3784 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
3786 pr_debug("stl_sc26198portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
3789 if ((brdp == NULL) || (panelp == NULL) ||
3793 portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
3794 portp->uartaddr = (portp->portnr & 0x07) << 4;
3795 portp->pagenr = panelp->pagenr;
3798 BRDENABLE(portp->brdnr, portp->pagenr);
3799 stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
3800 BRDDISABLE(portp->brdnr);
3803 /*****************************************************************************/
3806 * Set up the sc26198 registers for a port based on the termios port
3810 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp)
3812 struct stlbrd *brdp;
3813 unsigned long flags;
3814 unsigned int baudrate;
3815 unsigned char mr0, mr1, mr2, clk;
3816 unsigned char imron, imroff, iopr, ipr;
3826 brdp = stl_brds[portp->brdnr];
3831 * Set up the RX char ignore mask with those RX error types we
3834 portp->rxignoremsk = 0;
3835 if (tiosp->c_iflag & IGNPAR)
3836 portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
3838 if (tiosp->c_iflag & IGNBRK)
3839 portp->rxignoremsk |= SR_RXBREAK;
3841 portp->rxmarkmsk = SR_RXOVERRUN;
3842 if (tiosp->c_iflag & (INPCK | PARMRK))
3843 portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
3844 if (tiosp->c_iflag & BRKINT)
3845 portp->rxmarkmsk |= SR_RXBREAK;
3848 * Go through the char size, parity and stop bits and set all the
3849 * option register appropriately.
3851 switch (tiosp->c_cflag & CSIZE) {
3866 if (tiosp->c_cflag & CSTOPB)
3871 if (tiosp->c_cflag & PARENB) {
3872 if (tiosp->c_cflag & PARODD)
3873 mr1 |= (MR1_PARENB | MR1_PARODD);
3875 mr1 |= (MR1_PARENB | MR1_PAREVEN);
3879 mr1 |= MR1_ERRBLOCK;
3882 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
3883 * space for hardware flow control and the like. This should be set to
3886 mr2 |= MR2_RXFIFOHALF;
3889 * Calculate the baud rate timers. For now we will just assume that
3890 * the input and output baud are the same. The sc26198 has a fixed
3891 * baud rate table, so only discrete baud rates possible.
3893 baudrate = tiosp->c_cflag & CBAUD;
3894 if (baudrate & CBAUDEX) {
3895 baudrate &= ~CBAUDEX;
3896 if ((baudrate < 1) || (baudrate > 4))
3897 tiosp->c_cflag &= ~CBAUDEX;
3901 baudrate = stl_baudrates[baudrate];
3902 if ((tiosp->c_cflag & CBAUD) == B38400) {
3903 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3905 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3907 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3909 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3911 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3912 baudrate = (portp->baud_base / portp->custom_divisor);
3914 if (baudrate > STL_SC26198MAXBAUD)
3915 baudrate = STL_SC26198MAXBAUD;
3918 for (clk = 0; clk < SC26198_NRBAUDS; clk++)
3919 if (baudrate <= sc26198_baudtable[clk])
3923 * Check what form of modem signaling is required and set it up.
3925 if (tiosp->c_cflag & CLOCAL) {
3926 portp->port.flags &= ~ASYNC_CHECK_CD;
3928 iopr |= IOPR_DCDCOS;
3930 portp->port.flags |= ASYNC_CHECK_CD;
3934 * Setup sc26198 enhanced modes if we can. In particular we want to
3935 * handle as much of the flow control as possible automatically. As
3936 * well as saving a few CPU cycles it will also greatly improve flow
3937 * control reliability.
3939 if (tiosp->c_iflag & IXON) {
3940 mr0 |= MR0_SWFTX | MR0_SWFT;
3941 imron |= IR_XONXOFF;
3943 imroff |= IR_XONXOFF;
3945 if (tiosp->c_iflag & IXOFF)
3948 if (tiosp->c_cflag & CRTSCTS) {
3954 * All sc26198 register values calculated so go through and set
3958 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3959 portp->portnr, portp->panelnr, portp->brdnr);
3960 pr_debug(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
3961 pr_debug(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
3962 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3963 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3964 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3966 spin_lock_irqsave(&brd_lock, flags);
3967 BRDENABLE(portp->brdnr, portp->pagenr);
3968 stl_sc26198setreg(portp, IMR, 0);
3969 stl_sc26198updatereg(portp, MR0, mr0);
3970 stl_sc26198updatereg(portp, MR1, mr1);
3971 stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
3972 stl_sc26198updatereg(portp, MR2, mr2);
3973 stl_sc26198updatereg(portp, IOPIOR,
3974 ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
3977 stl_sc26198setreg(portp, TXCSR, clk);
3978 stl_sc26198setreg(portp, RXCSR, clk);
3981 stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
3982 stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
3984 ipr = stl_sc26198getreg(portp, IPR);
3986 portp->sigs &= ~TIOCM_CD;
3988 portp->sigs |= TIOCM_CD;
3990 portp->imr = (portp->imr & ~imroff) | imron;
3991 stl_sc26198setreg(portp, IMR, portp->imr);
3992 BRDDISABLE(portp->brdnr);
3993 spin_unlock_irqrestore(&brd_lock, flags);
3996 /*****************************************************************************/
3999 * Set the state of the DTR and RTS signals.
4002 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts)
4004 unsigned char iopioron, iopioroff;
4005 unsigned long flags;
4007 pr_debug("stl_sc26198setsignals(portp=%p,dtr=%d,rts=%d)\n", portp,
4013 iopioroff |= IPR_DTR;
4015 iopioron |= IPR_DTR;
4017 iopioroff |= IPR_RTS;
4019 iopioron |= IPR_RTS;
4021 spin_lock_irqsave(&brd_lock, flags);
4022 BRDENABLE(portp->brdnr, portp->pagenr);
4023 stl_sc26198setreg(portp, IOPIOR,
4024 ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
4025 BRDDISABLE(portp->brdnr);
4026 spin_unlock_irqrestore(&brd_lock, flags);
4029 /*****************************************************************************/
4032 * Return the state of the signals.
4035 static int stl_sc26198getsignals(struct stlport *portp)
4038 unsigned long flags;
4041 pr_debug("stl_sc26198getsignals(portp=%p)\n", portp);
4043 spin_lock_irqsave(&brd_lock, flags);
4044 BRDENABLE(portp->brdnr, portp->pagenr);
4045 ipr = stl_sc26198getreg(portp, IPR);
4046 BRDDISABLE(portp->brdnr);
4047 spin_unlock_irqrestore(&brd_lock, flags);
4050 sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
4051 sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
4052 sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
4053 sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
4058 /*****************************************************************************/
4061 * Enable/Disable the Transmitter and/or Receiver.
4064 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx)
4067 unsigned long flags;
4069 pr_debug("stl_sc26198enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx,tx);
4071 ccr = portp->crenable;
4073 ccr &= ~CR_TXENABLE;
4077 ccr &= ~CR_RXENABLE;
4081 spin_lock_irqsave(&brd_lock, flags);
4082 BRDENABLE(portp->brdnr, portp->pagenr);
4083 stl_sc26198setreg(portp, SCCR, ccr);
4084 BRDDISABLE(portp->brdnr);
4085 portp->crenable = ccr;
4086 spin_unlock_irqrestore(&brd_lock, flags);
4089 /*****************************************************************************/
4092 * Start/stop the Transmitter and/or Receiver.
4095 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx)
4098 unsigned long flags;
4100 pr_debug("stl_sc26198startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
4108 imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
4110 imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
4112 spin_lock_irqsave(&brd_lock, flags);
4113 BRDENABLE(portp->brdnr, portp->pagenr);
4114 stl_sc26198setreg(portp, IMR, imr);
4115 BRDDISABLE(portp->brdnr);
4118 set_bit(ASYI_TXBUSY, &portp->istate);
4119 spin_unlock_irqrestore(&brd_lock, flags);
4122 /*****************************************************************************/
4125 * Disable all interrupts from this port.
4128 static void stl_sc26198disableintrs(struct stlport *portp)
4130 unsigned long flags;
4132 pr_debug("stl_sc26198disableintrs(portp=%p)\n", portp);
4134 spin_lock_irqsave(&brd_lock, flags);
4135 BRDENABLE(portp->brdnr, portp->pagenr);
4137 stl_sc26198setreg(portp, IMR, 0);
4138 BRDDISABLE(portp->brdnr);
4139 spin_unlock_irqrestore(&brd_lock, flags);
4142 /*****************************************************************************/
4144 static void stl_sc26198sendbreak(struct stlport *portp, int len)
4146 unsigned long flags;
4148 pr_debug("stl_sc26198sendbreak(portp=%p,len=%d)\n", portp, len);
4150 spin_lock_irqsave(&brd_lock, flags);
4151 BRDENABLE(portp->brdnr, portp->pagenr);
4153 stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
4154 portp->stats.txbreaks++;
4156 stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
4158 BRDDISABLE(portp->brdnr);
4159 spin_unlock_irqrestore(&brd_lock, flags);
4162 /*****************************************************************************/
4165 * Take flow control actions...
4168 static void stl_sc26198flowctrl(struct stlport *portp, int state)
4170 struct tty_struct *tty;
4171 unsigned long flags;
4174 pr_debug("stl_sc26198flowctrl(portp=%p,state=%x)\n", portp, state);
4178 tty = portp->port.tty;
4182 spin_lock_irqsave(&brd_lock, flags);
4183 BRDENABLE(portp->brdnr, portp->pagenr);
4186 if (tty->termios->c_iflag & IXOFF) {
4187 mr0 = stl_sc26198getreg(portp, MR0);
4188 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4189 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4191 portp->stats.rxxon++;
4192 stl_sc26198wait(portp);
4193 stl_sc26198setreg(portp, MR0, mr0);
4196 * Question: should we return RTS to what it was before? It may
4197 * have been set by an ioctl... Suppose not, since if you have
4198 * hardware flow control set then it is pretty silly to go and
4199 * set the RTS line by hand.
4201 if (tty->termios->c_cflag & CRTSCTS) {
4202 stl_sc26198setreg(portp, MR1,
4203 (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
4204 stl_sc26198setreg(portp, IOPIOR,
4205 (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
4206 portp->stats.rxrtson++;
4209 if (tty->termios->c_iflag & IXOFF) {
4210 mr0 = stl_sc26198getreg(portp, MR0);
4211 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4212 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4214 portp->stats.rxxoff++;
4215 stl_sc26198wait(portp);
4216 stl_sc26198setreg(portp, MR0, mr0);
4218 if (tty->termios->c_cflag & CRTSCTS) {
4219 stl_sc26198setreg(portp, MR1,
4220 (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
4221 stl_sc26198setreg(portp, IOPIOR,
4222 (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
4223 portp->stats.rxrtsoff++;
4227 BRDDISABLE(portp->brdnr);
4228 spin_unlock_irqrestore(&brd_lock, flags);
4231 /*****************************************************************************/
4234 * Send a flow control character.
4237 static void stl_sc26198sendflow(struct stlport *portp, int state)
4239 struct tty_struct *tty;
4240 unsigned long flags;
4243 pr_debug("stl_sc26198sendflow(portp=%p,state=%x)\n", portp, state);
4247 tty = portp->port.tty;
4251 spin_lock_irqsave(&brd_lock, flags);
4252 BRDENABLE(portp->brdnr, portp->pagenr);
4254 mr0 = stl_sc26198getreg(portp, MR0);
4255 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4256 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4258 portp->stats.rxxon++;
4259 stl_sc26198wait(portp);
4260 stl_sc26198setreg(portp, MR0, mr0);
4262 mr0 = stl_sc26198getreg(portp, MR0);
4263 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4264 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4266 portp->stats.rxxoff++;
4267 stl_sc26198wait(portp);
4268 stl_sc26198setreg(portp, MR0, mr0);
4270 BRDDISABLE(portp->brdnr);
4271 spin_unlock_irqrestore(&brd_lock, flags);
4274 /*****************************************************************************/
4276 static void stl_sc26198flush(struct stlport *portp)
4278 unsigned long flags;
4280 pr_debug("stl_sc26198flush(portp=%p)\n", portp);
4285 spin_lock_irqsave(&brd_lock, flags);
4286 BRDENABLE(portp->brdnr, portp->pagenr);
4287 stl_sc26198setreg(portp, SCCR, CR_TXRESET);
4288 stl_sc26198setreg(portp, SCCR, portp->crenable);
4289 BRDDISABLE(portp->brdnr);
4290 portp->tx.tail = portp->tx.head;
4291 spin_unlock_irqrestore(&brd_lock, flags);
4294 /*****************************************************************************/
4297 * Return the current state of data flow on this port. This is only
4298 * really interresting when determining if data has fully completed
4299 * transmission or not... The sc26198 interrupt scheme cannot
4300 * determine when all data has actually drained, so we need to
4301 * check the port statusy register to be sure.
4304 static int stl_sc26198datastate(struct stlport *portp)
4306 unsigned long flags;
4309 pr_debug("stl_sc26198datastate(portp=%p)\n", portp);
4313 if (test_bit(ASYI_TXBUSY, &portp->istate))
4316 spin_lock_irqsave(&brd_lock, flags);
4317 BRDENABLE(portp->brdnr, portp->pagenr);
4318 sr = stl_sc26198getreg(portp, SR);
4319 BRDDISABLE(portp->brdnr);
4320 spin_unlock_irqrestore(&brd_lock, flags);
4322 return (sr & SR_TXEMPTY) ? 0 : 1;
4325 /*****************************************************************************/
4328 * Delay for a small amount of time, to give the sc26198 a chance
4329 * to process a command...
4332 static void stl_sc26198wait(struct stlport *portp)
4336 pr_debug("stl_sc26198wait(portp=%p)\n", portp);
4341 for (i = 0; i < 20; i++)
4342 stl_sc26198getglobreg(portp, TSTR);
4345 /*****************************************************************************/
4348 * If we are TX flow controlled and in IXANY mode then we may
4349 * need to unflow control here. We gotta do this because of the
4350 * automatic flow control modes of the sc26198.
4353 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty)
4357 mr0 = stl_sc26198getreg(portp, MR0);
4358 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4359 stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
4360 stl_sc26198wait(portp);
4361 stl_sc26198setreg(portp, MR0, mr0);
4362 clear_bit(ASYI_TXFLOWED, &portp->istate);
4365 /*****************************************************************************/
4368 * Interrupt service routine for sc26198 panels.
4371 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase)
4373 struct stlport *portp;
4376 spin_lock(&brd_lock);
4379 * Work around bug in sc26198 chip... Cannot have A6 address
4380 * line of UART high, else iack will be returned as 0.
4382 outb(0, (iobase + 1));
4384 iack = inb(iobase + XP_IACK);
4385 portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
4387 if (iack & IVR_RXDATA)
4388 stl_sc26198rxisr(portp, iack);
4389 else if (iack & IVR_TXDATA)
4390 stl_sc26198txisr(portp);
4392 stl_sc26198otherisr(portp, iack);
4394 spin_unlock(&brd_lock);
4397 /*****************************************************************************/
4400 * Transmit interrupt handler. This has gotta be fast! Handling TX
4401 * chars is pretty simple, stuff as many as possible from the TX buffer
4402 * into the sc26198 FIFO.
4403 * In practice it is possible that interrupts are enabled but that the
4404 * port has been hung up. Need to handle not having any TX buffer here,
4405 * this is done by using the side effect that head and tail will also
4406 * be NULL if the buffer has been freed.
4409 static void stl_sc26198txisr(struct stlport *portp)
4411 unsigned int ioaddr;
4416 pr_debug("stl_sc26198txisr(portp=%p)\n", portp);
4418 ioaddr = portp->ioaddr;
4419 head = portp->tx.head;
4420 tail = portp->tx.tail;
4421 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
4422 if ((len == 0) || ((len < STL_TXBUFLOW) &&
4423 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
4424 set_bit(ASYI_TXLOW, &portp->istate);
4425 if (portp->port.tty)
4426 tty_wakeup(portp->port.tty);
4430 outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
4431 mr0 = inb(ioaddr + XP_DATA);
4432 if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
4433 portp->imr &= ~IR_TXRDY;
4434 outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
4435 outb(portp->imr, (ioaddr + XP_DATA));
4436 clear_bit(ASYI_TXBUSY, &portp->istate);
4438 mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
4439 outb(mr0, (ioaddr + XP_DATA));
4442 len = min(len, SC26198_TXFIFOSIZE);
4443 portp->stats.txtotal += len;
4444 stlen = min_t(unsigned int, len,
4445 (portp->tx.buf + STL_TXBUFSIZE) - tail);
4446 outb(GTXFIFO, (ioaddr + XP_ADDR));
4447 outsb((ioaddr + XP_DATA), tail, stlen);
4450 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4451 tail = portp->tx.buf;
4453 outsb((ioaddr + XP_DATA), tail, len);
4456 portp->tx.tail = tail;
4460 /*****************************************************************************/
4463 * Receive character interrupt handler. Determine if we have good chars
4464 * or bad chars and then process appropriately. Good chars are easy
4465 * just shove the lot into the RX buffer and set all status byte to 0.
4466 * If a bad RX char then process as required. This routine needs to be
4467 * fast! In practice it is possible that we get an interrupt on a port
4468 * that is closed. This can happen on hangups - since they completely
4469 * shutdown a port not in user context. Need to handle this case.
4472 static void stl_sc26198rxisr(struct stlport *portp, unsigned int iack)
4474 struct tty_struct *tty;
4475 unsigned int len, buflen, ioaddr;
4477 pr_debug("stl_sc26198rxisr(portp=%p,iack=%x)\n", portp, iack);
4479 tty = portp->port.tty;
4480 ioaddr = portp->ioaddr;
4481 outb(GIBCR, (ioaddr + XP_ADDR));
4482 len = inb(ioaddr + XP_DATA) + 1;
4484 if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
4485 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
4486 len = min_t(unsigned int, len, sizeof(stl_unwanted));
4487 outb(GRXFIFO, (ioaddr + XP_ADDR));
4488 insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
4489 portp->stats.rxlost += len;
4490 portp->stats.rxtotal += len;
4492 len = min(len, buflen);
4495 outb(GRXFIFO, (ioaddr + XP_ADDR));
4496 tty_prepare_flip_string(tty, &ptr, len);
4497 insb((ioaddr + XP_DATA), ptr, len);
4498 tty_schedule_flip(tty);
4499 portp->stats.rxtotal += len;
4503 stl_sc26198rxbadchars(portp);
4507 * If we are TX flow controlled and in IXANY mode then we may need
4508 * to unflow control here. We gotta do this because of the automatic
4509 * flow control modes of the sc26198.
4511 if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
4512 if ((tty != NULL) &&
4513 (tty->termios != NULL) &&
4514 (tty->termios->c_iflag & IXANY)) {
4515 stl_sc26198txunflow(portp, tty);
4520 /*****************************************************************************/
4523 * Process an RX bad character.
4526 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch)
4528 struct tty_struct *tty;
4529 unsigned int ioaddr;
4531 tty = portp->port.tty;
4532 ioaddr = portp->ioaddr;
4534 if (status & SR_RXPARITY)
4535 portp->stats.rxparity++;
4536 if (status & SR_RXFRAMING)
4537 portp->stats.rxframing++;
4538 if (status & SR_RXOVERRUN)
4539 portp->stats.rxoverrun++;
4540 if (status & SR_RXBREAK)
4541 portp->stats.rxbreaks++;
4543 if ((tty != NULL) &&
4544 ((portp->rxignoremsk & status) == 0)) {
4545 if (portp->rxmarkmsk & status) {
4546 if (status & SR_RXBREAK) {
4548 if (portp->port.flags & ASYNC_SAK) {
4550 BRDENABLE(portp->brdnr, portp->pagenr);
4552 } else if (status & SR_RXPARITY)
4553 status = TTY_PARITY;
4554 else if (status & SR_RXFRAMING)
4556 else if(status & SR_RXOVERRUN)
4557 status = TTY_OVERRUN;
4563 tty_insert_flip_char(tty, ch, status);
4564 tty_schedule_flip(tty);
4567 portp->stats.rxtotal++;
4571 /*****************************************************************************/
4574 * Process all characters in the RX FIFO of the UART. Check all char
4575 * status bytes as well, and process as required. We need to check
4576 * all bytes in the FIFO, in case some more enter the FIFO while we
4577 * are here. To get the exact character error type we need to switch
4578 * into CHAR error mode (that is why we need to make sure we empty
4582 static void stl_sc26198rxbadchars(struct stlport *portp)
4584 unsigned char status, mr1;
4588 * To get the precise error type for each character we must switch
4589 * back into CHAR error mode.
4591 mr1 = stl_sc26198getreg(portp, MR1);
4592 stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
4594 while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
4595 stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
4596 ch = stl_sc26198getreg(portp, RXFIFO);
4597 stl_sc26198rxbadch(portp, status, ch);
4601 * To get correct interrupt class we must switch back into BLOCK
4604 stl_sc26198setreg(portp, MR1, mr1);
4607 /*****************************************************************************/
4610 * Other interrupt handler. This includes modem signals, flow
4611 * control actions, etc. Most stuff is left to off-level interrupt
4615 static void stl_sc26198otherisr(struct stlport *portp, unsigned int iack)
4617 unsigned char cir, ipr, xisr;
4619 pr_debug("stl_sc26198otherisr(portp=%p,iack=%x)\n", portp, iack);
4621 cir = stl_sc26198getglobreg(portp, CIR);
4623 switch (cir & CIR_SUBTYPEMASK) {
4625 ipr = stl_sc26198getreg(portp, IPR);
4626 if (ipr & IPR_DCDCHANGE) {
4627 stl_cd_change(portp);
4628 portp->stats.modem++;
4631 case CIR_SUBXONXOFF:
4632 xisr = stl_sc26198getreg(portp, XISR);
4633 if (xisr & XISR_RXXONGOT) {
4634 set_bit(ASYI_TXFLOWED, &portp->istate);
4635 portp->stats.txxoff++;
4637 if (xisr & XISR_RXXOFFGOT) {
4638 clear_bit(ASYI_TXFLOWED, &portp->istate);
4639 portp->stats.txxon++;
4643 stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
4644 stl_sc26198rxbadchars(portp);
4651 static void stl_free_isabrds(void)
4653 struct stlbrd *brdp;
4656 for (i = 0; i < stl_nrbrds; i++) {
4657 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4660 free_irq(brdp->irq, brdp);
4662 stl_cleanup_panels(brdp);
4664 release_region(brdp->ioaddr1, brdp->iosize1);
4665 if (brdp->iosize2 > 0)
4666 release_region(brdp->ioaddr2, brdp->iosize2);
4674 * Loadable module initialization stuff.
4676 static int __init stallion_module_init(void)
4678 struct stlbrd *brdp;
4679 struct stlconf conf;
4683 printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
4685 spin_lock_init(&stallion_lock);
4686 spin_lock_init(&brd_lock);
4688 stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4694 stl_serial->owner = THIS_MODULE;
4695 stl_serial->driver_name = stl_drvname;
4696 stl_serial->name = "ttyE";
4697 stl_serial->major = STL_SERIALMAJOR;
4698 stl_serial->minor_start = 0;
4699 stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
4700 stl_serial->subtype = SERIAL_TYPE_NORMAL;
4701 stl_serial->init_termios = stl_deftermios;
4702 stl_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4703 tty_set_operations(stl_serial, &stl_ops);
4705 retval = tty_register_driver(stl_serial);
4707 printk("STALLION: failed to register serial driver\n");
4712 * Find any dynamically supported boards. That is via module load
4715 for (i = stl_nrbrds; i < stl_nargs; i++) {
4716 memset(&conf, 0, sizeof(conf));
4717 if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
4719 if ((brdp = stl_allocbrd()) == NULL)
4722 brdp->brdtype = conf.brdtype;
4723 brdp->ioaddr1 = conf.ioaddr1;
4724 brdp->ioaddr2 = conf.ioaddr2;
4725 brdp->irq = conf.irq;
4726 brdp->irqtype = conf.irqtype;
4727 stl_brds[brdp->brdnr] = brdp;
4728 if (stl_brdinit(brdp)) {
4729 stl_brds[brdp->brdnr] = NULL;
4732 for (j = 0; j < brdp->nrports; j++)
4733 tty_register_device(stl_serial,
4734 brdp->brdnr * STL_MAXPORTS + j, NULL);
4739 /* this has to be _after_ isa finding because of locking */
4740 retval = pci_register_driver(&stl_pcidriver);
4741 if (retval && stl_nrbrds == 0) {
4742 printk(KERN_ERR "STALLION: can't register pci driver\n");
4747 * Set up a character driver for per board stuff. This is mainly used
4748 * to do stats ioctls on the ports.
4750 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
4751 printk("STALLION: failed to register serial board device\n");
4753 stallion_class = class_create(THIS_MODULE, "staliomem");
4754 if (IS_ERR(stallion_class))
4755 printk("STALLION: failed to create class\n");
4756 for (i = 0; i < 4; i++)
4757 device_create_drvdata(stallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4758 NULL, "staliomem%d", i);
4762 tty_unregister_driver(stl_serial);
4764 put_tty_driver(stl_serial);
4769 static void __exit stallion_module_exit(void)
4771 struct stlbrd *brdp;
4774 pr_debug("cleanup_module()\n");
4776 printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
4780 * Free up all allocated resources used by the ports. This includes
4781 * memory and interrupts. As part of this process we will also do
4782 * a hangup on every open port - to try to flush out any processes
4783 * hanging onto ports.
4785 for (i = 0; i < stl_nrbrds; i++) {
4786 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4788 for (j = 0; j < brdp->nrports; j++)
4789 tty_unregister_device(stl_serial,
4790 brdp->brdnr * STL_MAXPORTS + j);
4793 for (i = 0; i < 4; i++)
4794 device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
4795 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4796 class_destroy(stallion_class);
4798 pci_unregister_driver(&stl_pcidriver);
4802 tty_unregister_driver(stl_serial);
4803 put_tty_driver(stl_serial);
4806 module_init(stallion_module_init);
4807 module_exit(stallion_module_exit);
4809 MODULE_AUTHOR("Greg Ungerer");
4810 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
4811 MODULE_LICENSE("GPL");