2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
32 #include <linux/swap.h>
33 #include <linux/pci.h>
35 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
47 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
50 static int i915_gem_evict_something(struct drm_device *dev);
51 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
52 struct drm_i915_gem_pwrite *args,
53 struct drm_file *file_priv);
55 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
58 drm_i915_private_t *dev_priv = dev->dev_private;
61 (start & (PAGE_SIZE - 1)) != 0 ||
62 (end & (PAGE_SIZE - 1)) != 0) {
66 drm_mm_init(&dev_priv->mm.gtt_space, start,
69 dev->gtt_total = (uint32_t) (end - start);
75 i915_gem_init_ioctl(struct drm_device *dev, void *data,
76 struct drm_file *file_priv)
78 struct drm_i915_gem_init *args = data;
81 mutex_lock(&dev->struct_mutex);
82 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
83 mutex_unlock(&dev->struct_mutex);
89 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
90 struct drm_file *file_priv)
92 struct drm_i915_gem_get_aperture *args = data;
94 if (!(dev->driver->driver_features & DRIVER_GEM))
97 args->aper_size = dev->gtt_total;
98 args->aper_available_size = (args->aper_size -
99 atomic_read(&dev->pin_memory));
106 * Creates a new mm object and returns a handle to it.
109 i915_gem_create_ioctl(struct drm_device *dev, void *data,
110 struct drm_file *file_priv)
112 struct drm_i915_gem_create *args = data;
113 struct drm_gem_object *obj;
116 args->size = roundup(args->size, PAGE_SIZE);
118 /* Allocate the new object */
119 obj = drm_gem_object_alloc(dev, args->size);
123 ret = drm_gem_handle_create(file_priv, obj, &handle);
124 mutex_lock(&dev->struct_mutex);
125 drm_gem_object_handle_unreference(obj);
126 mutex_unlock(&dev->struct_mutex);
131 args->handle = handle;
137 fast_shmem_read(struct page **pages,
138 loff_t page_base, int page_offset,
145 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
148 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
149 kunmap_atomic(vaddr, KM_USER0);
157 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
159 drm_i915_private_t *dev_priv = obj->dev->dev_private;
160 struct drm_i915_gem_object *obj_priv = obj->driver_private;
162 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
163 obj_priv->tiling_mode != I915_TILING_NONE;
167 slow_shmem_copy(struct page *dst_page,
169 struct page *src_page,
173 char *dst_vaddr, *src_vaddr;
175 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
176 if (dst_vaddr == NULL)
179 src_vaddr = kmap_atomic(src_page, KM_USER1);
180 if (src_vaddr == NULL) {
181 kunmap_atomic(dst_vaddr, KM_USER0);
185 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
187 kunmap_atomic(src_vaddr, KM_USER1);
188 kunmap_atomic(dst_vaddr, KM_USER0);
194 slow_shmem_bit17_copy(struct page *gpu_page,
196 struct page *cpu_page,
201 char *gpu_vaddr, *cpu_vaddr;
203 /* Use the unswizzled path if this page isn't affected. */
204 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
206 return slow_shmem_copy(cpu_page, cpu_offset,
207 gpu_page, gpu_offset, length);
209 return slow_shmem_copy(gpu_page, gpu_offset,
210 cpu_page, cpu_offset, length);
213 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
214 if (gpu_vaddr == NULL)
217 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
218 if (cpu_vaddr == NULL) {
219 kunmap_atomic(gpu_vaddr, KM_USER0);
223 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
224 * XORing with the other bits (A9 for Y, A9 and A10 for X)
227 int cacheline_end = ALIGN(gpu_offset + 1, 64);
228 int this_length = min(cacheline_end - gpu_offset, length);
229 int swizzled_gpu_offset = gpu_offset ^ 64;
232 memcpy(cpu_vaddr + cpu_offset,
233 gpu_vaddr + swizzled_gpu_offset,
236 memcpy(gpu_vaddr + swizzled_gpu_offset,
237 cpu_vaddr + cpu_offset,
240 cpu_offset += this_length;
241 gpu_offset += this_length;
242 length -= this_length;
245 kunmap_atomic(cpu_vaddr, KM_USER1);
246 kunmap_atomic(gpu_vaddr, KM_USER0);
252 * This is the fast shmem pread path, which attempts to copy_from_user directly
253 * from the backing pages of the object to the user's address space. On a
254 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
257 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
258 struct drm_i915_gem_pread *args,
259 struct drm_file *file_priv)
261 struct drm_i915_gem_object *obj_priv = obj->driver_private;
263 loff_t offset, page_base;
264 char __user *user_data;
265 int page_offset, page_length;
268 user_data = (char __user *) (uintptr_t) args->data_ptr;
271 mutex_lock(&dev->struct_mutex);
273 ret = i915_gem_object_get_pages(obj);
277 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
282 obj_priv = obj->driver_private;
283 offset = args->offset;
286 /* Operation in this page
288 * page_base = page offset within aperture
289 * page_offset = offset within page
290 * page_length = bytes to copy for this page
292 page_base = (offset & ~(PAGE_SIZE-1));
293 page_offset = offset & (PAGE_SIZE-1);
294 page_length = remain;
295 if ((page_offset + remain) > PAGE_SIZE)
296 page_length = PAGE_SIZE - page_offset;
298 ret = fast_shmem_read(obj_priv->pages,
299 page_base, page_offset,
300 user_data, page_length);
304 remain -= page_length;
305 user_data += page_length;
306 offset += page_length;
310 i915_gem_object_put_pages(obj);
312 mutex_unlock(&dev->struct_mutex);
318 * This is the fallback shmem pread path, which allocates temporary storage
319 * in kernel space to copy_to_user into outside of the struct_mutex, so we
320 * can copy out of the object's backing pages while holding the struct mutex
321 * and not take page faults.
324 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
325 struct drm_i915_gem_pread *args,
326 struct drm_file *file_priv)
328 struct drm_i915_gem_object *obj_priv = obj->driver_private;
329 struct mm_struct *mm = current->mm;
330 struct page **user_pages;
332 loff_t offset, pinned_pages, i;
333 loff_t first_data_page, last_data_page, num_pages;
334 int shmem_page_index, shmem_page_offset;
335 int data_page_index, data_page_offset;
338 uint64_t data_ptr = args->data_ptr;
339 int do_bit17_swizzling;
343 /* Pin the user pages containing the data. We can't fault while
344 * holding the struct mutex, yet we want to hold it while
345 * dereferencing the user data.
347 first_data_page = data_ptr / PAGE_SIZE;
348 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
349 num_pages = last_data_page - first_data_page + 1;
351 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
352 if (user_pages == NULL)
355 down_read(&mm->mmap_sem);
356 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
357 num_pages, 1, 0, user_pages, NULL);
358 up_read(&mm->mmap_sem);
359 if (pinned_pages < num_pages) {
361 goto fail_put_user_pages;
364 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
366 mutex_lock(&dev->struct_mutex);
368 ret = i915_gem_object_get_pages(obj);
372 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
377 obj_priv = obj->driver_private;
378 offset = args->offset;
381 /* Operation in this page
383 * shmem_page_index = page number within shmem file
384 * shmem_page_offset = offset within page in shmem file
385 * data_page_index = page number in get_user_pages return
386 * data_page_offset = offset with data_page_index page.
387 * page_length = bytes to copy for this page
389 shmem_page_index = offset / PAGE_SIZE;
390 shmem_page_offset = offset & ~PAGE_MASK;
391 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
392 data_page_offset = data_ptr & ~PAGE_MASK;
394 page_length = remain;
395 if ((shmem_page_offset + page_length) > PAGE_SIZE)
396 page_length = PAGE_SIZE - shmem_page_offset;
397 if ((data_page_offset + page_length) > PAGE_SIZE)
398 page_length = PAGE_SIZE - data_page_offset;
400 if (do_bit17_swizzling) {
401 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
403 user_pages[data_page_index],
408 ret = slow_shmem_copy(user_pages[data_page_index],
410 obj_priv->pages[shmem_page_index],
417 remain -= page_length;
418 data_ptr += page_length;
419 offset += page_length;
423 i915_gem_object_put_pages(obj);
425 mutex_unlock(&dev->struct_mutex);
427 for (i = 0; i < pinned_pages; i++) {
428 SetPageDirty(user_pages[i]);
429 page_cache_release(user_pages[i]);
431 drm_free_large(user_pages);
437 * Reads data from the object referenced by handle.
439 * On error, the contents of *data are undefined.
442 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
443 struct drm_file *file_priv)
445 struct drm_i915_gem_pread *args = data;
446 struct drm_gem_object *obj;
447 struct drm_i915_gem_object *obj_priv;
450 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
453 obj_priv = obj->driver_private;
455 /* Bounds check source.
457 * XXX: This could use review for overflow issues...
459 if (args->offset > obj->size || args->size > obj->size ||
460 args->offset + args->size > obj->size) {
461 drm_gem_object_unreference(obj);
465 if (i915_gem_object_needs_bit17_swizzle(obj)) {
466 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
468 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
470 ret = i915_gem_shmem_pread_slow(dev, obj, args,
474 drm_gem_object_unreference(obj);
479 /* This is the fast write path which cannot handle
480 * page faults in the source data
484 fast_user_write(struct io_mapping *mapping,
485 loff_t page_base, int page_offset,
486 char __user *user_data,
490 unsigned long unwritten;
492 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
493 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
495 io_mapping_unmap_atomic(vaddr_atomic);
501 /* Here's the write path which can sleep for
506 slow_kernel_write(struct io_mapping *mapping,
507 loff_t gtt_base, int gtt_offset,
508 struct page *user_page, int user_offset,
511 char *src_vaddr, *dst_vaddr;
512 unsigned long unwritten;
514 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
515 src_vaddr = kmap_atomic(user_page, KM_USER1);
516 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
517 src_vaddr + user_offset,
519 kunmap_atomic(src_vaddr, KM_USER1);
520 io_mapping_unmap_atomic(dst_vaddr);
527 fast_shmem_write(struct page **pages,
528 loff_t page_base, int page_offset,
533 unsigned long unwritten;
535 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
538 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
539 kunmap_atomic(vaddr, KM_USER0);
547 * This is the fast pwrite path, where we copy the data directly from the
548 * user into the GTT, uncached.
551 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
552 struct drm_i915_gem_pwrite *args,
553 struct drm_file *file_priv)
555 struct drm_i915_gem_object *obj_priv = obj->driver_private;
556 drm_i915_private_t *dev_priv = dev->dev_private;
558 loff_t offset, page_base;
559 char __user *user_data;
560 int page_offset, page_length;
563 user_data = (char __user *) (uintptr_t) args->data_ptr;
565 if (!access_ok(VERIFY_READ, user_data, remain))
569 mutex_lock(&dev->struct_mutex);
570 ret = i915_gem_object_pin(obj, 0);
572 mutex_unlock(&dev->struct_mutex);
575 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
579 obj_priv = obj->driver_private;
580 offset = obj_priv->gtt_offset + args->offset;
583 /* Operation in this page
585 * page_base = page offset within aperture
586 * page_offset = offset within page
587 * page_length = bytes to copy for this page
589 page_base = (offset & ~(PAGE_SIZE-1));
590 page_offset = offset & (PAGE_SIZE-1);
591 page_length = remain;
592 if ((page_offset + remain) > PAGE_SIZE)
593 page_length = PAGE_SIZE - page_offset;
595 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
596 page_offset, user_data, page_length);
598 /* If we get a fault while copying data, then (presumably) our
599 * source page isn't available. Return the error and we'll
600 * retry in the slow path.
605 remain -= page_length;
606 user_data += page_length;
607 offset += page_length;
611 i915_gem_object_unpin(obj);
612 mutex_unlock(&dev->struct_mutex);
618 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
619 * the memory and maps it using kmap_atomic for copying.
621 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
622 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
625 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
626 struct drm_i915_gem_pwrite *args,
627 struct drm_file *file_priv)
629 struct drm_i915_gem_object *obj_priv = obj->driver_private;
630 drm_i915_private_t *dev_priv = dev->dev_private;
632 loff_t gtt_page_base, offset;
633 loff_t first_data_page, last_data_page, num_pages;
634 loff_t pinned_pages, i;
635 struct page **user_pages;
636 struct mm_struct *mm = current->mm;
637 int gtt_page_offset, data_page_offset, data_page_index, page_length;
639 uint64_t data_ptr = args->data_ptr;
643 /* Pin the user pages containing the data. We can't fault while
644 * holding the struct mutex, and all of the pwrite implementations
645 * want to hold it while dereferencing the user data.
647 first_data_page = data_ptr / PAGE_SIZE;
648 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
649 num_pages = last_data_page - first_data_page + 1;
651 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
652 if (user_pages == NULL)
655 down_read(&mm->mmap_sem);
656 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
657 num_pages, 0, 0, user_pages, NULL);
658 up_read(&mm->mmap_sem);
659 if (pinned_pages < num_pages) {
661 goto out_unpin_pages;
664 mutex_lock(&dev->struct_mutex);
665 ret = i915_gem_object_pin(obj, 0);
669 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
671 goto out_unpin_object;
673 obj_priv = obj->driver_private;
674 offset = obj_priv->gtt_offset + args->offset;
677 /* Operation in this page
679 * gtt_page_base = page offset within aperture
680 * gtt_page_offset = offset within page in aperture
681 * data_page_index = page number in get_user_pages return
682 * data_page_offset = offset with data_page_index page.
683 * page_length = bytes to copy for this page
685 gtt_page_base = offset & PAGE_MASK;
686 gtt_page_offset = offset & ~PAGE_MASK;
687 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
688 data_page_offset = data_ptr & ~PAGE_MASK;
690 page_length = remain;
691 if ((gtt_page_offset + page_length) > PAGE_SIZE)
692 page_length = PAGE_SIZE - gtt_page_offset;
693 if ((data_page_offset + page_length) > PAGE_SIZE)
694 page_length = PAGE_SIZE - data_page_offset;
696 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
697 gtt_page_base, gtt_page_offset,
698 user_pages[data_page_index],
702 /* If we get a fault while copying data, then (presumably) our
703 * source page isn't available. Return the error and we'll
704 * retry in the slow path.
707 goto out_unpin_object;
709 remain -= page_length;
710 offset += page_length;
711 data_ptr += page_length;
715 i915_gem_object_unpin(obj);
717 mutex_unlock(&dev->struct_mutex);
719 for (i = 0; i < pinned_pages; i++)
720 page_cache_release(user_pages[i]);
721 drm_free_large(user_pages);
727 * This is the fast shmem pwrite path, which attempts to directly
728 * copy_from_user into the kmapped pages backing the object.
731 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
732 struct drm_i915_gem_pwrite *args,
733 struct drm_file *file_priv)
735 struct drm_i915_gem_object *obj_priv = obj->driver_private;
737 loff_t offset, page_base;
738 char __user *user_data;
739 int page_offset, page_length;
742 user_data = (char __user *) (uintptr_t) args->data_ptr;
745 mutex_lock(&dev->struct_mutex);
747 ret = i915_gem_object_get_pages(obj);
751 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
755 obj_priv = obj->driver_private;
756 offset = args->offset;
760 /* Operation in this page
762 * page_base = page offset within aperture
763 * page_offset = offset within page
764 * page_length = bytes to copy for this page
766 page_base = (offset & ~(PAGE_SIZE-1));
767 page_offset = offset & (PAGE_SIZE-1);
768 page_length = remain;
769 if ((page_offset + remain) > PAGE_SIZE)
770 page_length = PAGE_SIZE - page_offset;
772 ret = fast_shmem_write(obj_priv->pages,
773 page_base, page_offset,
774 user_data, page_length);
778 remain -= page_length;
779 user_data += page_length;
780 offset += page_length;
784 i915_gem_object_put_pages(obj);
786 mutex_unlock(&dev->struct_mutex);
792 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
793 * the memory and maps it using kmap_atomic for copying.
795 * This avoids taking mmap_sem for faulting on the user's address while the
796 * struct_mutex is held.
799 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
800 struct drm_i915_gem_pwrite *args,
801 struct drm_file *file_priv)
803 struct drm_i915_gem_object *obj_priv = obj->driver_private;
804 struct mm_struct *mm = current->mm;
805 struct page **user_pages;
807 loff_t offset, pinned_pages, i;
808 loff_t first_data_page, last_data_page, num_pages;
809 int shmem_page_index, shmem_page_offset;
810 int data_page_index, data_page_offset;
813 uint64_t data_ptr = args->data_ptr;
814 int do_bit17_swizzling;
818 /* Pin the user pages containing the data. We can't fault while
819 * holding the struct mutex, and all of the pwrite implementations
820 * want to hold it while dereferencing the user data.
822 first_data_page = data_ptr / PAGE_SIZE;
823 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
824 num_pages = last_data_page - first_data_page + 1;
826 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
827 if (user_pages == NULL)
830 down_read(&mm->mmap_sem);
831 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
832 num_pages, 0, 0, user_pages, NULL);
833 up_read(&mm->mmap_sem);
834 if (pinned_pages < num_pages) {
836 goto fail_put_user_pages;
839 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
841 mutex_lock(&dev->struct_mutex);
843 ret = i915_gem_object_get_pages(obj);
847 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
851 obj_priv = obj->driver_private;
852 offset = args->offset;
856 /* Operation in this page
858 * shmem_page_index = page number within shmem file
859 * shmem_page_offset = offset within page in shmem file
860 * data_page_index = page number in get_user_pages return
861 * data_page_offset = offset with data_page_index page.
862 * page_length = bytes to copy for this page
864 shmem_page_index = offset / PAGE_SIZE;
865 shmem_page_offset = offset & ~PAGE_MASK;
866 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
867 data_page_offset = data_ptr & ~PAGE_MASK;
869 page_length = remain;
870 if ((shmem_page_offset + page_length) > PAGE_SIZE)
871 page_length = PAGE_SIZE - shmem_page_offset;
872 if ((data_page_offset + page_length) > PAGE_SIZE)
873 page_length = PAGE_SIZE - data_page_offset;
875 if (do_bit17_swizzling) {
876 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
878 user_pages[data_page_index],
883 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
885 user_pages[data_page_index],
892 remain -= page_length;
893 data_ptr += page_length;
894 offset += page_length;
898 i915_gem_object_put_pages(obj);
900 mutex_unlock(&dev->struct_mutex);
902 for (i = 0; i < pinned_pages; i++)
903 page_cache_release(user_pages[i]);
904 drm_free_large(user_pages);
910 * Writes data to the object referenced by handle.
912 * On error, the contents of the buffer that were to be modified are undefined.
915 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
916 struct drm_file *file_priv)
918 struct drm_i915_gem_pwrite *args = data;
919 struct drm_gem_object *obj;
920 struct drm_i915_gem_object *obj_priv;
923 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
926 obj_priv = obj->driver_private;
928 /* Bounds check destination.
930 * XXX: This could use review for overflow issues...
932 if (args->offset > obj->size || args->size > obj->size ||
933 args->offset + args->size > obj->size) {
934 drm_gem_object_unreference(obj);
938 /* We can only do the GTT pwrite on untiled buffers, as otherwise
939 * it would end up going through the fenced access, and we'll get
940 * different detiling behavior between reading and writing.
941 * pread/pwrite currently are reading and writing from the CPU
942 * perspective, requiring manual detiling by the client.
944 if (obj_priv->phys_obj)
945 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
946 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
947 dev->gtt_total != 0) {
948 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
949 if (ret == -EFAULT) {
950 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
953 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
954 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
956 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
957 if (ret == -EFAULT) {
958 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
965 DRM_INFO("pwrite failed %d\n", ret);
968 drm_gem_object_unreference(obj);
974 * Called when user space prepares to use an object with the CPU, either
975 * through the mmap ioctl's mapping or a GTT mapping.
978 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
979 struct drm_file *file_priv)
981 struct drm_i915_gem_set_domain *args = data;
982 struct drm_gem_object *obj;
983 uint32_t read_domains = args->read_domains;
984 uint32_t write_domain = args->write_domain;
987 if (!(dev->driver->driver_features & DRIVER_GEM))
990 /* Only handle setting domains to types used by the CPU. */
991 if (write_domain & I915_GEM_GPU_DOMAINS)
994 if (read_domains & I915_GEM_GPU_DOMAINS)
997 /* Having something in the write domain implies it's in the read
998 * domain, and only that read domain. Enforce that in the request.
1000 if (write_domain != 0 && read_domains != write_domain)
1003 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1007 mutex_lock(&dev->struct_mutex);
1009 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1010 obj, obj->size, read_domains, write_domain);
1012 if (read_domains & I915_GEM_DOMAIN_GTT) {
1013 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1015 /* Silently promote "you're not bound, there was nothing to do"
1016 * to success, since the client was just asking us to
1017 * make sure everything was done.
1022 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1025 drm_gem_object_unreference(obj);
1026 mutex_unlock(&dev->struct_mutex);
1031 * Called when user space has done writes to this buffer
1034 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1035 struct drm_file *file_priv)
1037 struct drm_i915_gem_sw_finish *args = data;
1038 struct drm_gem_object *obj;
1039 struct drm_i915_gem_object *obj_priv;
1042 if (!(dev->driver->driver_features & DRIVER_GEM))
1045 mutex_lock(&dev->struct_mutex);
1046 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1048 mutex_unlock(&dev->struct_mutex);
1053 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1054 __func__, args->handle, obj, obj->size);
1056 obj_priv = obj->driver_private;
1058 /* Pinned buffers may be scanout, so flush the cache */
1059 if (obj_priv->pin_count)
1060 i915_gem_object_flush_cpu_write_domain(obj);
1062 drm_gem_object_unreference(obj);
1063 mutex_unlock(&dev->struct_mutex);
1068 * Maps the contents of an object, returning the address it is mapped
1071 * While the mapping holds a reference on the contents of the object, it doesn't
1072 * imply a ref on the object itself.
1075 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1076 struct drm_file *file_priv)
1078 struct drm_i915_gem_mmap *args = data;
1079 struct drm_gem_object *obj;
1083 if (!(dev->driver->driver_features & DRIVER_GEM))
1086 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1090 offset = args->offset;
1092 down_write(¤t->mm->mmap_sem);
1093 addr = do_mmap(obj->filp, 0, args->size,
1094 PROT_READ | PROT_WRITE, MAP_SHARED,
1096 up_write(¤t->mm->mmap_sem);
1097 mutex_lock(&dev->struct_mutex);
1098 drm_gem_object_unreference(obj);
1099 mutex_unlock(&dev->struct_mutex);
1100 if (IS_ERR((void *)addr))
1103 args->addr_ptr = (uint64_t) addr;
1109 * i915_gem_fault - fault a page into the GTT
1110 * vma: VMA in question
1113 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1114 * from userspace. The fault handler takes care of binding the object to
1115 * the GTT (if needed), allocating and programming a fence register (again,
1116 * only if needed based on whether the old reg is still valid or the object
1117 * is tiled) and inserting a new PTE into the faulting process.
1119 * Note that the faulting process may involve evicting existing objects
1120 * from the GTT and/or fence registers to make room. So performance may
1121 * suffer if the GTT working set is large or there are few fence registers
1124 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1126 struct drm_gem_object *obj = vma->vm_private_data;
1127 struct drm_device *dev = obj->dev;
1128 struct drm_i915_private *dev_priv = dev->dev_private;
1129 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1130 pgoff_t page_offset;
1133 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1135 /* We don't use vmf->pgoff since that has the fake offset */
1136 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1139 /* Now bind it into the GTT if needed */
1140 mutex_lock(&dev->struct_mutex);
1141 if (!obj_priv->gtt_space) {
1142 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1144 mutex_unlock(&dev->struct_mutex);
1145 return VM_FAULT_SIGBUS;
1148 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1150 mutex_unlock(&dev->struct_mutex);
1151 return VM_FAULT_SIGBUS;
1154 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1157 /* Need a new fence register? */
1158 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1159 obj_priv->tiling_mode != I915_TILING_NONE) {
1160 ret = i915_gem_object_get_fence_reg(obj);
1162 mutex_unlock(&dev->struct_mutex);
1163 return VM_FAULT_SIGBUS;
1167 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1170 /* Finally, remap it using the new GTT offset */
1171 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1173 mutex_unlock(&dev->struct_mutex);
1178 return VM_FAULT_OOM;
1181 return VM_FAULT_SIGBUS;
1183 return VM_FAULT_NOPAGE;
1188 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1189 * @obj: obj in question
1191 * GEM memory mapping works by handing back to userspace a fake mmap offset
1192 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1193 * up the object based on the offset and sets up the various memory mapping
1196 * This routine allocates and attaches a fake offset for @obj.
1199 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1201 struct drm_device *dev = obj->dev;
1202 struct drm_gem_mm *mm = dev->mm_private;
1203 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1204 struct drm_map_list *list;
1205 struct drm_local_map *map;
1208 /* Set the object up for mmap'ing */
1209 list = &obj->map_list;
1210 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1215 map->type = _DRM_GEM;
1216 map->size = obj->size;
1219 /* Get a DRM GEM mmap offset allocated... */
1220 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1221 obj->size / PAGE_SIZE, 0, 0);
1222 if (!list->file_offset_node) {
1223 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1228 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1229 obj->size / PAGE_SIZE, 0);
1230 if (!list->file_offset_node) {
1235 list->hash.key = list->file_offset_node->start;
1236 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1237 DRM_ERROR("failed to add to map hash\n");
1241 /* By now we should be all set, any drm_mmap request on the offset
1242 * below will get to our mmap & fault handler */
1243 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1248 drm_mm_put_block(list->file_offset_node);
1256 * i915_gem_release_mmap - remove physical page mappings
1257 * @obj: obj in question
1259 * Preserve the reservation of the mmaping with the DRM core code, but
1260 * relinquish ownership of the pages back to the system.
1262 * It is vital that we remove the page mapping if we have mapped a tiled
1263 * object through the GTT and then lose the fence register due to
1264 * resource pressure. Similarly if the object has been moved out of the
1265 * aperture, than pages mapped into userspace must be revoked. Removing the
1266 * mapping will then trigger a page fault on the next user access, allowing
1267 * fixup by i915_gem_fault().
1270 i915_gem_release_mmap(struct drm_gem_object *obj)
1272 struct drm_device *dev = obj->dev;
1273 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1275 if (dev->dev_mapping)
1276 unmap_mapping_range(dev->dev_mapping,
1277 obj_priv->mmap_offset, obj->size, 1);
1281 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1283 struct drm_device *dev = obj->dev;
1284 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1285 struct drm_gem_mm *mm = dev->mm_private;
1286 struct drm_map_list *list;
1288 list = &obj->map_list;
1289 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1291 if (list->file_offset_node) {
1292 drm_mm_put_block(list->file_offset_node);
1293 list->file_offset_node = NULL;
1301 obj_priv->mmap_offset = 0;
1305 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1306 * @obj: object to check
1308 * Return the required GTT alignment for an object, taking into account
1309 * potential fence register mapping if needed.
1312 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1314 struct drm_device *dev = obj->dev;
1315 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1319 * Minimum alignment is 4k (GTT page size), but might be greater
1320 * if a fence register is needed for the object.
1322 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1326 * Previous chips need to be aligned to the size of the smallest
1327 * fence register that can contain the object.
1334 for (i = start; i < obj->size; i <<= 1)
1341 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1343 * @data: GTT mapping ioctl data
1344 * @file_priv: GEM object info
1346 * Simply returns the fake offset to userspace so it can mmap it.
1347 * The mmap call will end up in drm_gem_mmap(), which will set things
1348 * up so we can get faults in the handler above.
1350 * The fault handler will take care of binding the object into the GTT
1351 * (since it may have been evicted to make room for something), allocating
1352 * a fence register, and mapping the appropriate aperture address into
1356 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1357 struct drm_file *file_priv)
1359 struct drm_i915_gem_mmap_gtt *args = data;
1360 struct drm_i915_private *dev_priv = dev->dev_private;
1361 struct drm_gem_object *obj;
1362 struct drm_i915_gem_object *obj_priv;
1365 if (!(dev->driver->driver_features & DRIVER_GEM))
1368 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1372 mutex_lock(&dev->struct_mutex);
1374 obj_priv = obj->driver_private;
1376 if (!obj_priv->mmap_offset) {
1377 ret = i915_gem_create_mmap_offset(obj);
1379 drm_gem_object_unreference(obj);
1380 mutex_unlock(&dev->struct_mutex);
1385 args->offset = obj_priv->mmap_offset;
1387 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1389 /* Make sure the alignment is correct for fence regs etc */
1390 if (obj_priv->agp_mem &&
1391 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1392 drm_gem_object_unreference(obj);
1393 mutex_unlock(&dev->struct_mutex);
1398 * Pull it into the GTT so that we have a page list (makes the
1399 * initial fault faster and any subsequent flushing possible).
1401 if (!obj_priv->agp_mem) {
1402 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1404 drm_gem_object_unreference(obj);
1405 mutex_unlock(&dev->struct_mutex);
1408 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1411 drm_gem_object_unreference(obj);
1412 mutex_unlock(&dev->struct_mutex);
1418 i915_gem_object_put_pages(struct drm_gem_object *obj)
1420 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1421 int page_count = obj->size / PAGE_SIZE;
1424 BUG_ON(obj_priv->pages_refcount == 0);
1426 if (--obj_priv->pages_refcount != 0)
1429 if (obj_priv->tiling_mode != I915_TILING_NONE)
1430 i915_gem_object_save_bit_17_swizzle(obj);
1432 for (i = 0; i < page_count; i++)
1433 if (obj_priv->pages[i] != NULL) {
1434 if (obj_priv->dirty)
1435 set_page_dirty(obj_priv->pages[i]);
1436 mark_page_accessed(obj_priv->pages[i]);
1437 page_cache_release(obj_priv->pages[i]);
1439 obj_priv->dirty = 0;
1441 drm_free_large(obj_priv->pages);
1442 obj_priv->pages = NULL;
1446 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1448 struct drm_device *dev = obj->dev;
1449 drm_i915_private_t *dev_priv = dev->dev_private;
1450 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1452 /* Add a reference if we're newly entering the active list. */
1453 if (!obj_priv->active) {
1454 drm_gem_object_reference(obj);
1455 obj_priv->active = 1;
1457 /* Move from whatever list we were on to the tail of execution. */
1458 spin_lock(&dev_priv->mm.active_list_lock);
1459 list_move_tail(&obj_priv->list,
1460 &dev_priv->mm.active_list);
1461 spin_unlock(&dev_priv->mm.active_list_lock);
1462 obj_priv->last_rendering_seqno = seqno;
1466 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1468 struct drm_device *dev = obj->dev;
1469 drm_i915_private_t *dev_priv = dev->dev_private;
1470 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1472 BUG_ON(!obj_priv->active);
1473 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1474 obj_priv->last_rendering_seqno = 0;
1478 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1480 struct drm_device *dev = obj->dev;
1481 drm_i915_private_t *dev_priv = dev->dev_private;
1482 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1484 i915_verify_inactive(dev, __FILE__, __LINE__);
1485 if (obj_priv->pin_count != 0)
1486 list_del_init(&obj_priv->list);
1488 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1490 obj_priv->last_rendering_seqno = 0;
1491 if (obj_priv->active) {
1492 obj_priv->active = 0;
1493 drm_gem_object_unreference(obj);
1495 i915_verify_inactive(dev, __FILE__, __LINE__);
1499 * Creates a new sequence number, emitting a write of it to the status page
1500 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1502 * Must be called with struct_lock held.
1504 * Returned sequence numbers are nonzero on success.
1507 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1508 uint32_t flush_domains)
1510 drm_i915_private_t *dev_priv = dev->dev_private;
1511 struct drm_i915_file_private *i915_file_priv = NULL;
1512 struct drm_i915_gem_request *request;
1517 if (file_priv != NULL)
1518 i915_file_priv = file_priv->driver_priv;
1520 request = kzalloc(sizeof(*request), GFP_KERNEL);
1521 if (request == NULL)
1524 /* Grab the seqno we're going to make this request be, and bump the
1525 * next (skipping 0 so it can be the reserved no-seqno value).
1527 seqno = dev_priv->mm.next_gem_seqno;
1528 dev_priv->mm.next_gem_seqno++;
1529 if (dev_priv->mm.next_gem_seqno == 0)
1530 dev_priv->mm.next_gem_seqno++;
1533 OUT_RING(MI_STORE_DWORD_INDEX);
1534 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1537 OUT_RING(MI_USER_INTERRUPT);
1540 DRM_DEBUG("%d\n", seqno);
1542 request->seqno = seqno;
1543 request->emitted_jiffies = jiffies;
1544 was_empty = list_empty(&dev_priv->mm.request_list);
1545 list_add_tail(&request->list, &dev_priv->mm.request_list);
1546 if (i915_file_priv) {
1547 list_add_tail(&request->client_list,
1548 &i915_file_priv->mm.request_list);
1550 INIT_LIST_HEAD(&request->client_list);
1553 /* Associate any objects on the flushing list matching the write
1554 * domain we're flushing with our flush.
1556 if (flush_domains != 0) {
1557 struct drm_i915_gem_object *obj_priv, *next;
1559 list_for_each_entry_safe(obj_priv, next,
1560 &dev_priv->mm.flushing_list, list) {
1561 struct drm_gem_object *obj = obj_priv->obj;
1563 if ((obj->write_domain & flush_domains) ==
1564 obj->write_domain) {
1565 obj->write_domain = 0;
1566 i915_gem_object_move_to_active(obj, seqno);
1572 if (was_empty && !dev_priv->mm.suspended)
1573 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1578 * Command execution barrier
1580 * Ensures that all commands in the ring are finished
1581 * before signalling the CPU
1584 i915_retire_commands(struct drm_device *dev)
1586 drm_i915_private_t *dev_priv = dev->dev_private;
1587 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1588 uint32_t flush_domains = 0;
1591 /* The sampler always gets flushed on i965 (sigh) */
1593 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1596 OUT_RING(0); /* noop */
1598 return flush_domains;
1602 * Moves buffers associated only with the given active seqno from the active
1603 * to inactive list, potentially freeing them.
1606 i915_gem_retire_request(struct drm_device *dev,
1607 struct drm_i915_gem_request *request)
1609 drm_i915_private_t *dev_priv = dev->dev_private;
1611 /* Move any buffers on the active list that are no longer referenced
1612 * by the ringbuffer to the flushing/inactive lists as appropriate.
1614 spin_lock(&dev_priv->mm.active_list_lock);
1615 while (!list_empty(&dev_priv->mm.active_list)) {
1616 struct drm_gem_object *obj;
1617 struct drm_i915_gem_object *obj_priv;
1619 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1620 struct drm_i915_gem_object,
1622 obj = obj_priv->obj;
1624 /* If the seqno being retired doesn't match the oldest in the
1625 * list, then the oldest in the list must still be newer than
1628 if (obj_priv->last_rendering_seqno != request->seqno)
1632 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1633 __func__, request->seqno, obj);
1636 if (obj->write_domain != 0)
1637 i915_gem_object_move_to_flushing(obj);
1639 /* Take a reference on the object so it won't be
1640 * freed while the spinlock is held. The list
1641 * protection for this spinlock is safe when breaking
1642 * the lock like this since the next thing we do
1643 * is just get the head of the list again.
1645 drm_gem_object_reference(obj);
1646 i915_gem_object_move_to_inactive(obj);
1647 spin_unlock(&dev_priv->mm.active_list_lock);
1648 drm_gem_object_unreference(obj);
1649 spin_lock(&dev_priv->mm.active_list_lock);
1653 spin_unlock(&dev_priv->mm.active_list_lock);
1657 * Returns true if seq1 is later than seq2.
1660 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1662 return (int32_t)(seq1 - seq2) >= 0;
1666 i915_get_gem_seqno(struct drm_device *dev)
1668 drm_i915_private_t *dev_priv = dev->dev_private;
1670 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1674 * This function clears the request list as sequence numbers are passed.
1677 i915_gem_retire_requests(struct drm_device *dev)
1679 drm_i915_private_t *dev_priv = dev->dev_private;
1682 if (!dev_priv->hw_status_page)
1685 seqno = i915_get_gem_seqno(dev);
1687 while (!list_empty(&dev_priv->mm.request_list)) {
1688 struct drm_i915_gem_request *request;
1689 uint32_t retiring_seqno;
1691 request = list_first_entry(&dev_priv->mm.request_list,
1692 struct drm_i915_gem_request,
1694 retiring_seqno = request->seqno;
1696 if (i915_seqno_passed(seqno, retiring_seqno) ||
1697 dev_priv->mm.wedged) {
1698 i915_gem_retire_request(dev, request);
1700 list_del(&request->list);
1701 list_del(&request->client_list);
1709 i915_gem_retire_work_handler(struct work_struct *work)
1711 drm_i915_private_t *dev_priv;
1712 struct drm_device *dev;
1714 dev_priv = container_of(work, drm_i915_private_t,
1715 mm.retire_work.work);
1716 dev = dev_priv->dev;
1718 mutex_lock(&dev->struct_mutex);
1719 i915_gem_retire_requests(dev);
1720 if (!dev_priv->mm.suspended &&
1721 !list_empty(&dev_priv->mm.request_list))
1722 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1723 mutex_unlock(&dev->struct_mutex);
1727 * Waits for a sequence number to be signaled, and cleans up the
1728 * request and object lists appropriately for that event.
1731 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1733 drm_i915_private_t *dev_priv = dev->dev_private;
1739 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1741 ier = I915_READ(DEIER) | I915_READ(GTIER);
1743 ier = I915_READ(IER);
1745 DRM_ERROR("something (likely vbetool) disabled "
1746 "interrupts, re-enabling\n");
1747 i915_driver_irq_preinstall(dev);
1748 i915_driver_irq_postinstall(dev);
1751 dev_priv->mm.waiting_gem_seqno = seqno;
1752 i915_user_irq_get(dev);
1753 ret = wait_event_interruptible(dev_priv->irq_queue,
1754 i915_seqno_passed(i915_get_gem_seqno(dev),
1756 dev_priv->mm.wedged);
1757 i915_user_irq_put(dev);
1758 dev_priv->mm.waiting_gem_seqno = 0;
1760 if (dev_priv->mm.wedged)
1763 if (ret && ret != -ERESTARTSYS)
1764 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1765 __func__, ret, seqno, i915_get_gem_seqno(dev));
1767 /* Directly dispatch request retiring. While we have the work queue
1768 * to handle this, the waiter on a request often wants an associated
1769 * buffer to have made it to the inactive list, and we would need
1770 * a separate wait queue to handle that.
1773 i915_gem_retire_requests(dev);
1779 i915_gem_flush(struct drm_device *dev,
1780 uint32_t invalidate_domains,
1781 uint32_t flush_domains)
1783 drm_i915_private_t *dev_priv = dev->dev_private;
1788 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1789 invalidate_domains, flush_domains);
1792 if (flush_domains & I915_GEM_DOMAIN_CPU)
1793 drm_agp_chipset_flush(dev);
1795 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1797 * read/write caches:
1799 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1800 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1801 * also flushed at 2d versus 3d pipeline switches.
1805 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1806 * MI_READ_FLUSH is set, and is always flushed on 965.
1808 * I915_GEM_DOMAIN_COMMAND may not exist?
1810 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1811 * invalidated when MI_EXE_FLUSH is set.
1813 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1814 * invalidated with every MI_FLUSH.
1818 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1819 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1820 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1821 * are flushed at any MI_FLUSH.
1824 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1825 if ((invalidate_domains|flush_domains) &
1826 I915_GEM_DOMAIN_RENDER)
1827 cmd &= ~MI_NO_WRITE_FLUSH;
1828 if (!IS_I965G(dev)) {
1830 * On the 965, the sampler cache always gets flushed
1831 * and this bit is reserved.
1833 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1834 cmd |= MI_READ_FLUSH;
1836 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1837 cmd |= MI_EXE_FLUSH;
1840 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1844 OUT_RING(0); /* noop */
1850 * Ensures that all rendering to the object has completed and the object is
1851 * safe to unbind from the GTT or access from the CPU.
1854 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1856 struct drm_device *dev = obj->dev;
1857 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1860 /* This function only exists to support waiting for existing rendering,
1861 * not for emitting required flushes.
1863 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1865 /* If there is rendering queued on the buffer being evicted, wait for
1868 if (obj_priv->active) {
1870 DRM_INFO("%s: object %p wait for seqno %08x\n",
1871 __func__, obj, obj_priv->last_rendering_seqno);
1873 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1882 * Unbinds an object from the GTT aperture.
1885 i915_gem_object_unbind(struct drm_gem_object *obj)
1887 struct drm_device *dev = obj->dev;
1888 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1892 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1893 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1895 if (obj_priv->gtt_space == NULL)
1898 if (obj_priv->pin_count != 0) {
1899 DRM_ERROR("Attempting to unbind pinned buffer\n");
1903 /* Move the object to the CPU domain to ensure that
1904 * any possible CPU writes while it's not in the GTT
1905 * are flushed when we go to remap it. This will
1906 * also ensure that all pending GPU writes are finished
1909 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1911 if (ret != -ERESTARTSYS)
1912 DRM_ERROR("set_domain failed: %d\n", ret);
1916 if (obj_priv->agp_mem != NULL) {
1917 drm_unbind_agp(obj_priv->agp_mem);
1918 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1919 obj_priv->agp_mem = NULL;
1922 BUG_ON(obj_priv->active);
1924 /* blow away mappings if mapped through GTT */
1925 i915_gem_release_mmap(obj);
1927 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1928 i915_gem_clear_fence_reg(obj);
1930 i915_gem_object_put_pages(obj);
1932 if (obj_priv->gtt_space) {
1933 atomic_dec(&dev->gtt_count);
1934 atomic_sub(obj->size, &dev->gtt_memory);
1936 drm_mm_put_block(obj_priv->gtt_space);
1937 obj_priv->gtt_space = NULL;
1940 /* Remove ourselves from the LRU list if present. */
1941 if (!list_empty(&obj_priv->list))
1942 list_del_init(&obj_priv->list);
1948 i915_gem_evict_something(struct drm_device *dev)
1950 drm_i915_private_t *dev_priv = dev->dev_private;
1951 struct drm_gem_object *obj;
1952 struct drm_i915_gem_object *obj_priv;
1956 /* If there's an inactive buffer available now, grab it
1959 if (!list_empty(&dev_priv->mm.inactive_list)) {
1960 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1961 struct drm_i915_gem_object,
1963 obj = obj_priv->obj;
1964 BUG_ON(obj_priv->pin_count != 0);
1966 DRM_INFO("%s: evicting %p\n", __func__, obj);
1968 BUG_ON(obj_priv->active);
1970 /* Wait on the rendering and unbind the buffer. */
1971 ret = i915_gem_object_unbind(obj);
1975 /* If we didn't get anything, but the ring is still processing
1976 * things, wait for one of those things to finish and hopefully
1977 * leave us a buffer to evict.
1979 if (!list_empty(&dev_priv->mm.request_list)) {
1980 struct drm_i915_gem_request *request;
1982 request = list_first_entry(&dev_priv->mm.request_list,
1983 struct drm_i915_gem_request,
1986 ret = i915_wait_request(dev, request->seqno);
1990 /* if waiting caused an object to become inactive,
1991 * then loop around and wait for it. Otherwise, we
1992 * assume that waiting freed and unbound something,
1993 * so there should now be some space in the GTT
1995 if (!list_empty(&dev_priv->mm.inactive_list))
2000 /* If we didn't have anything on the request list but there
2001 * are buffers awaiting a flush, emit one and try again.
2002 * When we wait on it, those buffers waiting for that flush
2003 * will get moved to inactive.
2005 if (!list_empty(&dev_priv->mm.flushing_list)) {
2006 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2007 struct drm_i915_gem_object,
2009 obj = obj_priv->obj;
2014 i915_add_request(dev, NULL, obj->write_domain);
2020 DRM_ERROR("inactive empty %d request empty %d "
2021 "flushing empty %d\n",
2022 list_empty(&dev_priv->mm.inactive_list),
2023 list_empty(&dev_priv->mm.request_list),
2024 list_empty(&dev_priv->mm.flushing_list));
2025 /* If we didn't do any of the above, there's nothing to be done
2026 * and we just can't fit it in.
2034 i915_gem_evict_everything(struct drm_device *dev)
2039 ret = i915_gem_evict_something(dev);
2049 i915_gem_object_get_pages(struct drm_gem_object *obj)
2051 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2053 struct address_space *mapping;
2054 struct inode *inode;
2058 if (obj_priv->pages_refcount++ != 0)
2061 /* Get the list of pages out of our struct file. They'll be pinned
2062 * at this point until we release them.
2064 page_count = obj->size / PAGE_SIZE;
2065 BUG_ON(obj_priv->pages != NULL);
2066 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2067 if (obj_priv->pages == NULL) {
2068 DRM_ERROR("Faled to allocate page list\n");
2069 obj_priv->pages_refcount--;
2073 inode = obj->filp->f_path.dentry->d_inode;
2074 mapping = inode->i_mapping;
2075 for (i = 0; i < page_count; i++) {
2076 page = read_mapping_page(mapping, i, NULL);
2078 ret = PTR_ERR(page);
2079 DRM_ERROR("read_mapping_page failed: %d\n", ret);
2080 i915_gem_object_put_pages(obj);
2083 obj_priv->pages[i] = page;
2086 if (obj_priv->tiling_mode != I915_TILING_NONE)
2087 i915_gem_object_do_bit_17_swizzle(obj);
2092 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2094 struct drm_gem_object *obj = reg->obj;
2095 struct drm_device *dev = obj->dev;
2096 drm_i915_private_t *dev_priv = dev->dev_private;
2097 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2098 int regnum = obj_priv->fence_reg;
2101 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2103 val |= obj_priv->gtt_offset & 0xfffff000;
2104 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2105 if (obj_priv->tiling_mode == I915_TILING_Y)
2106 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2107 val |= I965_FENCE_REG_VALID;
2109 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2112 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2114 struct drm_gem_object *obj = reg->obj;
2115 struct drm_device *dev = obj->dev;
2116 drm_i915_private_t *dev_priv = dev->dev_private;
2117 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2118 int regnum = obj_priv->fence_reg;
2120 uint32_t fence_reg, val;
2123 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2124 (obj_priv->gtt_offset & (obj->size - 1))) {
2125 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2126 __func__, obj_priv->gtt_offset, obj->size);
2130 if (obj_priv->tiling_mode == I915_TILING_Y &&
2131 HAS_128_BYTE_Y_TILING(dev))
2136 /* Note: pitch better be a power of two tile widths */
2137 pitch_val = obj_priv->stride / tile_width;
2138 pitch_val = ffs(pitch_val) - 1;
2140 val = obj_priv->gtt_offset;
2141 if (obj_priv->tiling_mode == I915_TILING_Y)
2142 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2143 val |= I915_FENCE_SIZE_BITS(obj->size);
2144 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2145 val |= I830_FENCE_REG_VALID;
2148 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2150 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2151 I915_WRITE(fence_reg, val);
2154 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2156 struct drm_gem_object *obj = reg->obj;
2157 struct drm_device *dev = obj->dev;
2158 drm_i915_private_t *dev_priv = dev->dev_private;
2159 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2160 int regnum = obj_priv->fence_reg;
2163 uint32_t fence_size_bits;
2165 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2166 (obj_priv->gtt_offset & (obj->size - 1))) {
2167 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2168 __func__, obj_priv->gtt_offset);
2172 pitch_val = obj_priv->stride / 128;
2173 pitch_val = ffs(pitch_val) - 1;
2174 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2176 val = obj_priv->gtt_offset;
2177 if (obj_priv->tiling_mode == I915_TILING_Y)
2178 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2179 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2180 WARN_ON(fence_size_bits & ~0x00000f00);
2181 val |= fence_size_bits;
2182 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2183 val |= I830_FENCE_REG_VALID;
2185 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2189 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2190 * @obj: object to map through a fence reg
2192 * When mapping objects through the GTT, userspace wants to be able to write
2193 * to them without having to worry about swizzling if the object is tiled.
2195 * This function walks the fence regs looking for a free one for @obj,
2196 * stealing one if it can't find any.
2198 * It then sets up the reg based on the object's properties: address, pitch
2199 * and tiling format.
2202 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2204 struct drm_device *dev = obj->dev;
2205 struct drm_i915_private *dev_priv = dev->dev_private;
2206 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2207 struct drm_i915_fence_reg *reg = NULL;
2208 struct drm_i915_gem_object *old_obj_priv = NULL;
2211 switch (obj_priv->tiling_mode) {
2212 case I915_TILING_NONE:
2213 WARN(1, "allocating a fence for non-tiled object?\n");
2216 if (!obj_priv->stride)
2218 WARN((obj_priv->stride & (512 - 1)),
2219 "object 0x%08x is X tiled but has non-512B pitch\n",
2220 obj_priv->gtt_offset);
2223 if (!obj_priv->stride)
2225 WARN((obj_priv->stride & (128 - 1)),
2226 "object 0x%08x is Y tiled but has non-128B pitch\n",
2227 obj_priv->gtt_offset);
2231 /* First try to find a free reg */
2234 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2235 reg = &dev_priv->fence_regs[i];
2239 old_obj_priv = reg->obj->driver_private;
2240 if (!old_obj_priv->pin_count)
2244 /* None available, try to steal one or wait for a user to finish */
2245 if (i == dev_priv->num_fence_regs) {
2246 uint32_t seqno = dev_priv->mm.next_gem_seqno;
2251 for (i = dev_priv->fence_reg_start;
2252 i < dev_priv->num_fence_regs; i++) {
2253 uint32_t this_seqno;
2255 reg = &dev_priv->fence_regs[i];
2256 old_obj_priv = reg->obj->driver_private;
2258 if (old_obj_priv->pin_count)
2261 /* i915 uses fences for GPU access to tiled buffers */
2262 if (IS_I965G(dev) || !old_obj_priv->active)
2265 /* find the seqno of the first available fence */
2266 this_seqno = old_obj_priv->last_rendering_seqno;
2267 if (this_seqno != 0 &&
2268 reg->obj->write_domain == 0 &&
2269 i915_seqno_passed(seqno, this_seqno))
2274 * Now things get ugly... we have to wait for one of the
2275 * objects to finish before trying again.
2277 if (i == dev_priv->num_fence_regs) {
2278 if (seqno == dev_priv->mm.next_gem_seqno) {
2280 I915_GEM_GPU_DOMAINS,
2281 I915_GEM_GPU_DOMAINS);
2282 seqno = i915_add_request(dev, NULL,
2283 I915_GEM_GPU_DOMAINS);
2288 ret = i915_wait_request(dev, seqno);
2295 * Zap this virtual mapping so we can set up a fence again
2296 * for this object next time we need it.
2298 i915_gem_release_mmap(reg->obj);
2299 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2302 obj_priv->fence_reg = i;
2306 i965_write_fence_reg(reg);
2307 else if (IS_I9XX(dev))
2308 i915_write_fence_reg(reg);
2310 i830_write_fence_reg(reg);
2316 * i915_gem_clear_fence_reg - clear out fence register info
2317 * @obj: object to clear
2319 * Zeroes out the fence register itself and clears out the associated
2320 * data structures in dev_priv and obj_priv.
2323 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2325 struct drm_device *dev = obj->dev;
2326 drm_i915_private_t *dev_priv = dev->dev_private;
2327 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2330 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2334 if (obj_priv->fence_reg < 8)
2335 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2337 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2340 I915_WRITE(fence_reg, 0);
2343 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2344 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2348 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2349 * to the buffer to finish, and then resets the fence register.
2350 * @obj: tiled object holding a fence register.
2352 * Zeroes out the fence register itself and clears out the associated
2353 * data structures in dev_priv and obj_priv.
2356 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2358 struct drm_device *dev = obj->dev;
2359 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2361 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2364 /* On the i915, GPU access to tiled buffers is via a fence,
2365 * therefore we must wait for any outstanding access to complete
2366 * before clearing the fence.
2368 if (!IS_I965G(dev)) {
2371 i915_gem_object_flush_gpu_write_domain(obj);
2372 i915_gem_object_flush_gtt_write_domain(obj);
2373 ret = i915_gem_object_wait_rendering(obj);
2378 i915_gem_clear_fence_reg (obj);
2384 * Finds free space in the GTT aperture and binds the object there.
2387 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2389 struct drm_device *dev = obj->dev;
2390 drm_i915_private_t *dev_priv = dev->dev_private;
2391 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2392 struct drm_mm_node *free_space;
2393 int page_count, ret;
2395 if (dev_priv->mm.suspended)
2398 alignment = i915_gem_get_gtt_alignment(obj);
2399 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2400 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2405 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2406 obj->size, alignment, 0);
2407 if (free_space != NULL) {
2408 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2410 if (obj_priv->gtt_space != NULL) {
2411 obj_priv->gtt_space->private = obj;
2412 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2415 if (obj_priv->gtt_space == NULL) {
2418 /* If the gtt is empty and we're still having trouble
2419 * fitting our object in, we're out of memory.
2422 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2424 spin_lock(&dev_priv->mm.active_list_lock);
2425 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2426 list_empty(&dev_priv->mm.flushing_list) &&
2427 list_empty(&dev_priv->mm.active_list));
2428 spin_unlock(&dev_priv->mm.active_list_lock);
2430 DRM_ERROR("GTT full, but LRU list empty\n");
2434 ret = i915_gem_evict_something(dev);
2436 if (ret != -ERESTARTSYS)
2437 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2444 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2445 obj->size, obj_priv->gtt_offset);
2447 ret = i915_gem_object_get_pages(obj);
2449 drm_mm_put_block(obj_priv->gtt_space);
2450 obj_priv->gtt_space = NULL;
2454 page_count = obj->size / PAGE_SIZE;
2455 /* Create an AGP memory structure pointing at our pages, and bind it
2458 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2461 obj_priv->gtt_offset,
2462 obj_priv->agp_type);
2463 if (obj_priv->agp_mem == NULL) {
2464 i915_gem_object_put_pages(obj);
2465 drm_mm_put_block(obj_priv->gtt_space);
2466 obj_priv->gtt_space = NULL;
2469 atomic_inc(&dev->gtt_count);
2470 atomic_add(obj->size, &dev->gtt_memory);
2472 /* Assert that the object is not currently in any GPU domain. As it
2473 * wasn't in the GTT, there shouldn't be any way it could have been in
2476 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2477 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2483 i915_gem_clflush_object(struct drm_gem_object *obj)
2485 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2487 /* If we don't have a page list set up, then we're not pinned
2488 * to GPU, and we can ignore the cache flush because it'll happen
2489 * again at bind time.
2491 if (obj_priv->pages == NULL)
2494 /* XXX: The 865 in particular appears to be weird in how it handles
2495 * cache flushing. We haven't figured it out, but the
2496 * clflush+agp_chipset_flush doesn't appear to successfully get the
2497 * data visible to the PGU, while wbinvd + agp_chipset_flush does.
2499 if (IS_I865G(obj->dev)) {
2504 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2507 /** Flushes any GPU write domain for the object if it's dirty. */
2509 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2511 struct drm_device *dev = obj->dev;
2514 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2517 /* Queue the GPU write cache flushing we need. */
2518 i915_gem_flush(dev, 0, obj->write_domain);
2519 seqno = i915_add_request(dev, NULL, obj->write_domain);
2520 obj->write_domain = 0;
2521 i915_gem_object_move_to_active(obj, seqno);
2524 /** Flushes the GTT write domain for the object if it's dirty. */
2526 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2528 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2531 /* No actual flushing is required for the GTT write domain. Writes
2532 * to it immediately go to main memory as far as we know, so there's
2533 * no chipset flush. It also doesn't land in render cache.
2535 obj->write_domain = 0;
2538 /** Flushes the CPU write domain for the object if it's dirty. */
2540 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2542 struct drm_device *dev = obj->dev;
2544 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2547 i915_gem_clflush_object(obj);
2548 drm_agp_chipset_flush(dev);
2549 obj->write_domain = 0;
2553 * Moves a single object to the GTT read, and possibly write domain.
2555 * This function returns when the move is complete, including waiting on
2559 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2561 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2564 /* Not valid to be called on unbound objects. */
2565 if (obj_priv->gtt_space == NULL)
2568 i915_gem_object_flush_gpu_write_domain(obj);
2569 /* Wait on any GPU rendering and flushing to occur. */
2570 ret = i915_gem_object_wait_rendering(obj);
2574 /* If we're writing through the GTT domain, then CPU and GPU caches
2575 * will need to be invalidated at next use.
2578 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2580 i915_gem_object_flush_cpu_write_domain(obj);
2582 /* It should now be out of any other write domains, and we can update
2583 * the domain values for our changes.
2585 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2586 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2588 obj->write_domain = I915_GEM_DOMAIN_GTT;
2589 obj_priv->dirty = 1;
2596 * Moves a single object to the CPU read, and possibly write domain.
2598 * This function returns when the move is complete, including waiting on
2602 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2606 i915_gem_object_flush_gpu_write_domain(obj);
2607 /* Wait on any GPU rendering and flushing to occur. */
2608 ret = i915_gem_object_wait_rendering(obj);
2612 i915_gem_object_flush_gtt_write_domain(obj);
2614 /* If we have a partially-valid cache of the object in the CPU,
2615 * finish invalidating it and free the per-page flags.
2617 i915_gem_object_set_to_full_cpu_read_domain(obj);
2619 /* Flush the CPU cache if it's still invalid. */
2620 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2621 i915_gem_clflush_object(obj);
2623 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2626 /* It should now be out of any other write domains, and we can update
2627 * the domain values for our changes.
2629 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2631 /* If we're writing through the CPU, then the GPU read domains will
2632 * need to be invalidated at next use.
2635 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2636 obj->write_domain = I915_GEM_DOMAIN_CPU;
2643 * Set the next domain for the specified object. This
2644 * may not actually perform the necessary flushing/invaliding though,
2645 * as that may want to be batched with other set_domain operations
2647 * This is (we hope) the only really tricky part of gem. The goal
2648 * is fairly simple -- track which caches hold bits of the object
2649 * and make sure they remain coherent. A few concrete examples may
2650 * help to explain how it works. For shorthand, we use the notation
2651 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2652 * a pair of read and write domain masks.
2654 * Case 1: the batch buffer
2660 * 5. Unmapped from GTT
2663 * Let's take these a step at a time
2666 * Pages allocated from the kernel may still have
2667 * cache contents, so we set them to (CPU, CPU) always.
2668 * 2. Written by CPU (using pwrite)
2669 * The pwrite function calls set_domain (CPU, CPU) and
2670 * this function does nothing (as nothing changes)
2672 * This function asserts that the object is not
2673 * currently in any GPU-based read or write domains
2675 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2676 * As write_domain is zero, this function adds in the
2677 * current read domains (CPU+COMMAND, 0).
2678 * flush_domains is set to CPU.
2679 * invalidate_domains is set to COMMAND
2680 * clflush is run to get data out of the CPU caches
2681 * then i915_dev_set_domain calls i915_gem_flush to
2682 * emit an MI_FLUSH and drm_agp_chipset_flush
2683 * 5. Unmapped from GTT
2684 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2685 * flush_domains and invalidate_domains end up both zero
2686 * so no flushing/invalidating happens
2690 * Case 2: The shared render buffer
2694 * 3. Read/written by GPU
2695 * 4. set_domain to (CPU,CPU)
2696 * 5. Read/written by CPU
2697 * 6. Read/written by GPU
2700 * Same as last example, (CPU, CPU)
2702 * Nothing changes (assertions find that it is not in the GPU)
2703 * 3. Read/written by GPU
2704 * execbuffer calls set_domain (RENDER, RENDER)
2705 * flush_domains gets CPU
2706 * invalidate_domains gets GPU
2708 * MI_FLUSH and drm_agp_chipset_flush
2709 * 4. set_domain (CPU, CPU)
2710 * flush_domains gets GPU
2711 * invalidate_domains gets CPU
2712 * wait_rendering (obj) to make sure all drawing is complete.
2713 * This will include an MI_FLUSH to get the data from GPU
2715 * clflush (obj) to invalidate the CPU cache
2716 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2717 * 5. Read/written by CPU
2718 * cache lines are loaded and dirtied
2719 * 6. Read written by GPU
2720 * Same as last GPU access
2722 * Case 3: The constant buffer
2727 * 4. Updated (written) by CPU again
2736 * flush_domains = CPU
2737 * invalidate_domains = RENDER
2740 * drm_agp_chipset_flush
2741 * 4. Updated (written) by CPU again
2743 * flush_domains = 0 (no previous write domain)
2744 * invalidate_domains = 0 (no new read domains)
2747 * flush_domains = CPU
2748 * invalidate_domains = RENDER
2751 * drm_agp_chipset_flush
2754 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2756 struct drm_device *dev = obj->dev;
2757 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2758 uint32_t invalidate_domains = 0;
2759 uint32_t flush_domains = 0;
2761 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2762 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2765 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2767 obj->read_domains, obj->pending_read_domains,
2768 obj->write_domain, obj->pending_write_domain);
2771 * If the object isn't moving to a new write domain,
2772 * let the object stay in multiple read domains
2774 if (obj->pending_write_domain == 0)
2775 obj->pending_read_domains |= obj->read_domains;
2777 obj_priv->dirty = 1;
2780 * Flush the current write domain if
2781 * the new read domains don't match. Invalidate
2782 * any read domains which differ from the old
2785 if (obj->write_domain &&
2786 obj->write_domain != obj->pending_read_domains) {
2787 flush_domains |= obj->write_domain;
2788 invalidate_domains |=
2789 obj->pending_read_domains & ~obj->write_domain;
2792 * Invalidate any read caches which may have
2793 * stale data. That is, any new read domains.
2795 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2796 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2798 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2799 __func__, flush_domains, invalidate_domains);
2801 i915_gem_clflush_object(obj);
2804 /* The actual obj->write_domain will be updated with
2805 * pending_write_domain after we emit the accumulated flush for all
2806 * of our domain changes in execbuffers (which clears objects'
2807 * write_domains). So if we have a current write domain that we
2808 * aren't changing, set pending_write_domain to that.
2810 if (flush_domains == 0 && obj->pending_write_domain == 0)
2811 obj->pending_write_domain = obj->write_domain;
2812 obj->read_domains = obj->pending_read_domains;
2814 dev->invalidate_domains |= invalidate_domains;
2815 dev->flush_domains |= flush_domains;
2817 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2819 obj->read_domains, obj->write_domain,
2820 dev->invalidate_domains, dev->flush_domains);
2825 * Moves the object from a partially CPU read to a full one.
2827 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2828 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2831 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2833 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2835 if (!obj_priv->page_cpu_valid)
2838 /* If we're partially in the CPU read domain, finish moving it in.
2840 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2843 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2844 if (obj_priv->page_cpu_valid[i])
2846 drm_clflush_pages(obj_priv->pages + i, 1);
2850 /* Free the page_cpu_valid mappings which are now stale, whether
2851 * or not we've got I915_GEM_DOMAIN_CPU.
2853 kfree(obj_priv->page_cpu_valid);
2854 obj_priv->page_cpu_valid = NULL;
2858 * Set the CPU read domain on a range of the object.
2860 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2861 * not entirely valid. The page_cpu_valid member of the object flags which
2862 * pages have been flushed, and will be respected by
2863 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2864 * of the whole object.
2866 * This function returns when the move is complete, including waiting on
2870 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2871 uint64_t offset, uint64_t size)
2873 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2876 if (offset == 0 && size == obj->size)
2877 return i915_gem_object_set_to_cpu_domain(obj, 0);
2879 i915_gem_object_flush_gpu_write_domain(obj);
2880 /* Wait on any GPU rendering and flushing to occur. */
2881 ret = i915_gem_object_wait_rendering(obj);
2884 i915_gem_object_flush_gtt_write_domain(obj);
2886 /* If we're already fully in the CPU read domain, we're done. */
2887 if (obj_priv->page_cpu_valid == NULL &&
2888 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2891 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2892 * newly adding I915_GEM_DOMAIN_CPU
2894 if (obj_priv->page_cpu_valid == NULL) {
2895 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
2897 if (obj_priv->page_cpu_valid == NULL)
2899 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2900 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2902 /* Flush the cache on any pages that are still invalid from the CPU's
2905 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2907 if (obj_priv->page_cpu_valid[i])
2910 drm_clflush_pages(obj_priv->pages + i, 1);
2912 obj_priv->page_cpu_valid[i] = 1;
2915 /* It should now be out of any other write domains, and we can update
2916 * the domain values for our changes.
2918 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2920 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2926 * Pin an object to the GTT and evaluate the relocations landing in it.
2929 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2930 struct drm_file *file_priv,
2931 struct drm_i915_gem_exec_object *entry,
2932 struct drm_i915_gem_relocation_entry *relocs)
2934 struct drm_device *dev = obj->dev;
2935 drm_i915_private_t *dev_priv = dev->dev_private;
2936 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2938 void __iomem *reloc_page;
2940 /* Choose the GTT offset for our buffer and put it there. */
2941 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2945 entry->offset = obj_priv->gtt_offset;
2947 /* Apply the relocations, using the GTT aperture to avoid cache
2948 * flushing requirements.
2950 for (i = 0; i < entry->relocation_count; i++) {
2951 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2952 struct drm_gem_object *target_obj;
2953 struct drm_i915_gem_object *target_obj_priv;
2954 uint32_t reloc_val, reloc_offset;
2955 uint32_t __iomem *reloc_entry;
2957 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2958 reloc->target_handle);
2959 if (target_obj == NULL) {
2960 i915_gem_object_unpin(obj);
2963 target_obj_priv = target_obj->driver_private;
2965 /* The target buffer should have appeared before us in the
2966 * exec_object list, so it should have a GTT space bound by now.
2968 if (target_obj_priv->gtt_space == NULL) {
2969 DRM_ERROR("No GTT space found for object %d\n",
2970 reloc->target_handle);
2971 drm_gem_object_unreference(target_obj);
2972 i915_gem_object_unpin(obj);
2976 if (reloc->offset > obj->size - 4) {
2977 DRM_ERROR("Relocation beyond object bounds: "
2978 "obj %p target %d offset %d size %d.\n",
2979 obj, reloc->target_handle,
2980 (int) reloc->offset, (int) obj->size);
2981 drm_gem_object_unreference(target_obj);
2982 i915_gem_object_unpin(obj);
2985 if (reloc->offset & 3) {
2986 DRM_ERROR("Relocation not 4-byte aligned: "
2987 "obj %p target %d offset %d.\n",
2988 obj, reloc->target_handle,
2989 (int) reloc->offset);
2990 drm_gem_object_unreference(target_obj);
2991 i915_gem_object_unpin(obj);
2995 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
2996 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
2997 DRM_ERROR("reloc with read/write CPU domains: "
2998 "obj %p target %d offset %d "
2999 "read %08x write %08x",
3000 obj, reloc->target_handle,
3001 (int) reloc->offset,
3002 reloc->read_domains,
3003 reloc->write_domain);
3004 drm_gem_object_unreference(target_obj);
3005 i915_gem_object_unpin(obj);
3009 if (reloc->write_domain && target_obj->pending_write_domain &&
3010 reloc->write_domain != target_obj->pending_write_domain) {
3011 DRM_ERROR("Write domain conflict: "
3012 "obj %p target %d offset %d "
3013 "new %08x old %08x\n",
3014 obj, reloc->target_handle,
3015 (int) reloc->offset,
3016 reloc->write_domain,
3017 target_obj->pending_write_domain);
3018 drm_gem_object_unreference(target_obj);
3019 i915_gem_object_unpin(obj);
3024 DRM_INFO("%s: obj %p offset %08x target %d "
3025 "read %08x write %08x gtt %08x "
3026 "presumed %08x delta %08x\n",
3029 (int) reloc->offset,
3030 (int) reloc->target_handle,
3031 (int) reloc->read_domains,
3032 (int) reloc->write_domain,
3033 (int) target_obj_priv->gtt_offset,
3034 (int) reloc->presumed_offset,
3038 target_obj->pending_read_domains |= reloc->read_domains;
3039 target_obj->pending_write_domain |= reloc->write_domain;
3041 /* If the relocation already has the right value in it, no
3042 * more work needs to be done.
3044 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3045 drm_gem_object_unreference(target_obj);
3049 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3051 drm_gem_object_unreference(target_obj);
3052 i915_gem_object_unpin(obj);
3056 /* Map the page containing the relocation we're going to
3059 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3060 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3063 reloc_entry = (uint32_t __iomem *)(reloc_page +
3064 (reloc_offset & (PAGE_SIZE - 1)));
3065 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3068 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3069 obj, (unsigned int) reloc->offset,
3070 readl(reloc_entry), reloc_val);
3072 writel(reloc_val, reloc_entry);
3073 io_mapping_unmap_atomic(reloc_page);
3075 /* The updated presumed offset for this entry will be
3076 * copied back out to the user.
3078 reloc->presumed_offset = target_obj_priv->gtt_offset;
3080 drm_gem_object_unreference(target_obj);
3085 i915_gem_dump_object(obj, 128, __func__, ~0);
3090 /** Dispatch a batchbuffer to the ring
3093 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3094 struct drm_i915_gem_execbuffer *exec,
3095 struct drm_clip_rect *cliprects,
3096 uint64_t exec_offset)
3098 drm_i915_private_t *dev_priv = dev->dev_private;
3099 int nbox = exec->num_cliprects;
3101 uint32_t exec_start, exec_len;
3104 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3105 exec_len = (uint32_t) exec->batch_len;
3107 count = nbox ? nbox : 1;
3109 for (i = 0; i < count; i++) {
3111 int ret = i915_emit_box(dev, cliprects, i,
3112 exec->DR1, exec->DR4);
3117 if (IS_I830(dev) || IS_845G(dev)) {
3119 OUT_RING(MI_BATCH_BUFFER);
3120 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3121 OUT_RING(exec_start + exec_len - 4);
3126 if (IS_I965G(dev)) {
3127 OUT_RING(MI_BATCH_BUFFER_START |
3129 MI_BATCH_NON_SECURE_I965);
3130 OUT_RING(exec_start);
3132 OUT_RING(MI_BATCH_BUFFER_START |
3134 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3140 /* XXX breadcrumb */
3144 /* Throttle our rendering by waiting until the ring has completed our requests
3145 * emitted over 20 msec ago.
3147 * Note that if we were to use the current jiffies each time around the loop,
3148 * we wouldn't escape the function with any frames outstanding if the time to
3149 * render a frame was over 20ms.
3151 * This should get us reasonable parallelism between CPU and GPU but also
3152 * relatively low latency when blocking on a particular request to finish.
3155 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3157 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3159 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3161 mutex_lock(&dev->struct_mutex);
3162 while (!list_empty(&i915_file_priv->mm.request_list)) {
3163 struct drm_i915_gem_request *request;
3165 request = list_first_entry(&i915_file_priv->mm.request_list,
3166 struct drm_i915_gem_request,
3169 if (time_after_eq(request->emitted_jiffies, recent_enough))
3172 ret = i915_wait_request(dev, request->seqno);
3176 mutex_unlock(&dev->struct_mutex);
3182 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3183 uint32_t buffer_count,
3184 struct drm_i915_gem_relocation_entry **relocs)
3186 uint32_t reloc_count = 0, reloc_index = 0, i;
3190 for (i = 0; i < buffer_count; i++) {
3191 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3193 reloc_count += exec_list[i].relocation_count;
3196 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3197 if (*relocs == NULL)
3200 for (i = 0; i < buffer_count; i++) {
3201 struct drm_i915_gem_relocation_entry __user *user_relocs;
3203 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3205 ret = copy_from_user(&(*relocs)[reloc_index],
3207 exec_list[i].relocation_count *
3210 drm_free_large(*relocs);
3215 reloc_index += exec_list[i].relocation_count;
3222 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3223 uint32_t buffer_count,
3224 struct drm_i915_gem_relocation_entry *relocs)
3226 uint32_t reloc_count = 0, i;
3229 for (i = 0; i < buffer_count; i++) {
3230 struct drm_i915_gem_relocation_entry __user *user_relocs;
3233 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3235 unwritten = copy_to_user(user_relocs,
3236 &relocs[reloc_count],
3237 exec_list[i].relocation_count *
3245 reloc_count += exec_list[i].relocation_count;
3249 drm_free_large(relocs);
3255 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3256 uint64_t exec_offset)
3258 uint32_t exec_start, exec_len;
3260 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3261 exec_len = (uint32_t) exec->batch_len;
3263 if ((exec_start | exec_len) & 0x7)
3273 i915_gem_execbuffer(struct drm_device *dev, void *data,
3274 struct drm_file *file_priv)
3276 drm_i915_private_t *dev_priv = dev->dev_private;
3277 struct drm_i915_gem_execbuffer *args = data;
3278 struct drm_i915_gem_exec_object *exec_list = NULL;
3279 struct drm_gem_object **object_list = NULL;
3280 struct drm_gem_object *batch_obj;
3281 struct drm_i915_gem_object *obj_priv;
3282 struct drm_clip_rect *cliprects = NULL;
3283 struct drm_i915_gem_relocation_entry *relocs;
3284 int ret, ret2, i, pinned = 0;
3285 uint64_t exec_offset;
3286 uint32_t seqno, flush_domains, reloc_index;
3290 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3291 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3294 if (args->buffer_count < 1) {
3295 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3298 /* Copy in the exec list from userland */
3299 exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3300 object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3301 if (exec_list == NULL || object_list == NULL) {
3302 DRM_ERROR("Failed to allocate exec or object list "
3304 args->buffer_count);
3308 ret = copy_from_user(exec_list,
3309 (struct drm_i915_relocation_entry __user *)
3310 (uintptr_t) args->buffers_ptr,
3311 sizeof(*exec_list) * args->buffer_count);
3313 DRM_ERROR("copy %d exec entries failed %d\n",
3314 args->buffer_count, ret);
3318 if (args->num_cliprects != 0) {
3319 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3321 if (cliprects == NULL)
3324 ret = copy_from_user(cliprects,
3325 (struct drm_clip_rect __user *)
3326 (uintptr_t) args->cliprects_ptr,
3327 sizeof(*cliprects) * args->num_cliprects);
3329 DRM_ERROR("copy %d cliprects failed: %d\n",
3330 args->num_cliprects, ret);
3335 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3340 mutex_lock(&dev->struct_mutex);
3342 i915_verify_inactive(dev, __FILE__, __LINE__);
3344 if (dev_priv->mm.wedged) {
3345 DRM_ERROR("Execbuf while wedged\n");
3346 mutex_unlock(&dev->struct_mutex);
3351 if (dev_priv->mm.suspended) {
3352 DRM_ERROR("Execbuf while VT-switched.\n");
3353 mutex_unlock(&dev->struct_mutex);
3358 /* Look up object handles */
3359 for (i = 0; i < args->buffer_count; i++) {
3360 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3361 exec_list[i].handle);
3362 if (object_list[i] == NULL) {
3363 DRM_ERROR("Invalid object handle %d at index %d\n",
3364 exec_list[i].handle, i);
3369 obj_priv = object_list[i]->driver_private;
3370 if (obj_priv->in_execbuffer) {
3371 DRM_ERROR("Object %p appears more than once in object list\n",
3376 obj_priv->in_execbuffer = true;
3379 /* Pin and relocate */
3380 for (pin_tries = 0; ; pin_tries++) {
3384 for (i = 0; i < args->buffer_count; i++) {
3385 object_list[i]->pending_read_domains = 0;
3386 object_list[i]->pending_write_domain = 0;
3387 ret = i915_gem_object_pin_and_relocate(object_list[i],
3390 &relocs[reloc_index]);
3394 reloc_index += exec_list[i].relocation_count;
3400 /* error other than GTT full, or we've already tried again */
3401 if (ret != -ENOSPC || pin_tries >= 1) {
3402 if (ret != -ERESTARTSYS)
3403 DRM_ERROR("Failed to pin buffers %d\n", ret);
3407 /* unpin all of our buffers */
3408 for (i = 0; i < pinned; i++)
3409 i915_gem_object_unpin(object_list[i]);
3412 /* evict everyone we can from the aperture */
3413 ret = i915_gem_evict_everything(dev);
3418 /* Set the pending read domains for the batch buffer to COMMAND */
3419 batch_obj = object_list[args->buffer_count-1];
3420 if (batch_obj->pending_write_domain) {
3421 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3425 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3427 /* Sanity check the batch buffer, prior to moving objects */
3428 exec_offset = exec_list[args->buffer_count - 1].offset;
3429 ret = i915_gem_check_execbuffer (args, exec_offset);
3431 DRM_ERROR("execbuf with invalid offset/length\n");
3435 i915_verify_inactive(dev, __FILE__, __LINE__);
3437 /* Zero the global flush/invalidate flags. These
3438 * will be modified as new domains are computed
3441 dev->invalidate_domains = 0;
3442 dev->flush_domains = 0;
3444 for (i = 0; i < args->buffer_count; i++) {
3445 struct drm_gem_object *obj = object_list[i];
3447 /* Compute new gpu domains and update invalidate/flush */
3448 i915_gem_object_set_to_gpu_domain(obj);
3451 i915_verify_inactive(dev, __FILE__, __LINE__);
3453 if (dev->invalidate_domains | dev->flush_domains) {
3455 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3457 dev->invalidate_domains,
3458 dev->flush_domains);
3461 dev->invalidate_domains,
3462 dev->flush_domains);
3463 if (dev->flush_domains)
3464 (void)i915_add_request(dev, file_priv,
3465 dev->flush_domains);
3468 for (i = 0; i < args->buffer_count; i++) {
3469 struct drm_gem_object *obj = object_list[i];
3471 obj->write_domain = obj->pending_write_domain;
3474 i915_verify_inactive(dev, __FILE__, __LINE__);
3477 for (i = 0; i < args->buffer_count; i++) {
3478 i915_gem_object_check_coherency(object_list[i],
3479 exec_list[i].handle);
3484 i915_gem_dump_object(batch_obj,
3490 /* Exec the batchbuffer */
3491 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3493 DRM_ERROR("dispatch failed %d\n", ret);
3498 * Ensure that the commands in the batch buffer are
3499 * finished before the interrupt fires
3501 flush_domains = i915_retire_commands(dev);
3503 i915_verify_inactive(dev, __FILE__, __LINE__);
3506 * Get a seqno representing the execution of the current buffer,
3507 * which we can wait on. We would like to mitigate these interrupts,
3508 * likely by only creating seqnos occasionally (so that we have
3509 * *some* interrupts representing completion of buffers that we can
3510 * wait on when trying to clear up gtt space).
3512 seqno = i915_add_request(dev, file_priv, flush_domains);
3514 for (i = 0; i < args->buffer_count; i++) {
3515 struct drm_gem_object *obj = object_list[i];
3517 i915_gem_object_move_to_active(obj, seqno);
3519 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3523 i915_dump_lru(dev, __func__);
3526 i915_verify_inactive(dev, __FILE__, __LINE__);
3529 for (i = 0; i < pinned; i++)
3530 i915_gem_object_unpin(object_list[i]);
3532 for (i = 0; i < args->buffer_count; i++) {
3533 if (object_list[i]) {
3534 obj_priv = object_list[i]->driver_private;
3535 obj_priv->in_execbuffer = false;
3537 drm_gem_object_unreference(object_list[i]);
3540 mutex_unlock(&dev->struct_mutex);
3543 /* Copy the new buffer offsets back to the user's exec list. */
3544 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3545 (uintptr_t) args->buffers_ptr,
3547 sizeof(*exec_list) * args->buffer_count);
3550 DRM_ERROR("failed to copy %d exec entries "
3551 "back to user (%d)\n",
3552 args->buffer_count, ret);
3556 /* Copy the updated relocations out regardless of current error
3557 * state. Failure to update the relocs would mean that the next
3558 * time userland calls execbuf, it would do so with presumed offset
3559 * state that didn't match the actual object state.
3561 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3564 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3571 drm_free_large(object_list);
3572 drm_free_large(exec_list);
3579 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3581 struct drm_device *dev = obj->dev;
3582 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3585 i915_verify_inactive(dev, __FILE__, __LINE__);
3586 if (obj_priv->gtt_space == NULL) {
3587 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3589 if (ret != -EBUSY && ret != -ERESTARTSYS)
3590 DRM_ERROR("Failure to bind: %d\n", ret);
3595 * Pre-965 chips need a fence register set up in order to
3596 * properly handle tiled surfaces.
3598 if (!IS_I965G(dev) &&
3599 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3600 obj_priv->tiling_mode != I915_TILING_NONE) {
3601 ret = i915_gem_object_get_fence_reg(obj);
3603 if (ret != -EBUSY && ret != -ERESTARTSYS)
3604 DRM_ERROR("Failure to install fence: %d\n",
3609 obj_priv->pin_count++;
3611 /* If the object is not active and not pending a flush,
3612 * remove it from the inactive list
3614 if (obj_priv->pin_count == 1) {
3615 atomic_inc(&dev->pin_count);
3616 atomic_add(obj->size, &dev->pin_memory);
3617 if (!obj_priv->active &&
3618 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3619 !list_empty(&obj_priv->list))
3620 list_del_init(&obj_priv->list);
3622 i915_verify_inactive(dev, __FILE__, __LINE__);
3628 i915_gem_object_unpin(struct drm_gem_object *obj)
3630 struct drm_device *dev = obj->dev;
3631 drm_i915_private_t *dev_priv = dev->dev_private;
3632 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3634 i915_verify_inactive(dev, __FILE__, __LINE__);
3635 obj_priv->pin_count--;
3636 BUG_ON(obj_priv->pin_count < 0);
3637 BUG_ON(obj_priv->gtt_space == NULL);
3639 /* If the object is no longer pinned, and is
3640 * neither active nor being flushed, then stick it on
3643 if (obj_priv->pin_count == 0) {
3644 if (!obj_priv->active &&
3645 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3646 list_move_tail(&obj_priv->list,
3647 &dev_priv->mm.inactive_list);
3648 atomic_dec(&dev->pin_count);
3649 atomic_sub(obj->size, &dev->pin_memory);
3651 i915_verify_inactive(dev, __FILE__, __LINE__);
3655 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3656 struct drm_file *file_priv)
3658 struct drm_i915_gem_pin *args = data;
3659 struct drm_gem_object *obj;
3660 struct drm_i915_gem_object *obj_priv;
3663 mutex_lock(&dev->struct_mutex);
3665 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3667 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3669 mutex_unlock(&dev->struct_mutex);
3672 obj_priv = obj->driver_private;
3674 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3675 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3677 drm_gem_object_unreference(obj);
3678 mutex_unlock(&dev->struct_mutex);
3682 obj_priv->user_pin_count++;
3683 obj_priv->pin_filp = file_priv;
3684 if (obj_priv->user_pin_count == 1) {
3685 ret = i915_gem_object_pin(obj, args->alignment);
3687 drm_gem_object_unreference(obj);
3688 mutex_unlock(&dev->struct_mutex);
3693 /* XXX - flush the CPU caches for pinned objects
3694 * as the X server doesn't manage domains yet
3696 i915_gem_object_flush_cpu_write_domain(obj);
3697 args->offset = obj_priv->gtt_offset;
3698 drm_gem_object_unreference(obj);
3699 mutex_unlock(&dev->struct_mutex);
3705 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3706 struct drm_file *file_priv)
3708 struct drm_i915_gem_pin *args = data;
3709 struct drm_gem_object *obj;
3710 struct drm_i915_gem_object *obj_priv;
3712 mutex_lock(&dev->struct_mutex);
3714 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3716 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3718 mutex_unlock(&dev->struct_mutex);
3722 obj_priv = obj->driver_private;
3723 if (obj_priv->pin_filp != file_priv) {
3724 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3726 drm_gem_object_unreference(obj);
3727 mutex_unlock(&dev->struct_mutex);
3730 obj_priv->user_pin_count--;
3731 if (obj_priv->user_pin_count == 0) {
3732 obj_priv->pin_filp = NULL;
3733 i915_gem_object_unpin(obj);
3736 drm_gem_object_unreference(obj);
3737 mutex_unlock(&dev->struct_mutex);
3742 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3743 struct drm_file *file_priv)
3745 struct drm_i915_gem_busy *args = data;
3746 struct drm_gem_object *obj;
3747 struct drm_i915_gem_object *obj_priv;
3749 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3751 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3756 mutex_lock(&dev->struct_mutex);
3757 /* Update the active list for the hardware's current position.
3758 * Otherwise this only updates on a delayed timer or when irqs are
3759 * actually unmasked, and our working set ends up being larger than
3762 i915_gem_retire_requests(dev);
3764 obj_priv = obj->driver_private;
3765 /* Don't count being on the flushing list against the object being
3766 * done. Otherwise, a buffer left on the flushing list but not getting
3767 * flushed (because nobody's flushing that domain) won't ever return
3768 * unbusy and get reused by libdrm's bo cache. The other expected
3769 * consumer of this interface, OpenGL's occlusion queries, also specs
3770 * that the objects get unbusy "eventually" without any interference.
3772 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3774 drm_gem_object_unreference(obj);
3775 mutex_unlock(&dev->struct_mutex);
3780 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3781 struct drm_file *file_priv)
3783 return i915_gem_ring_throttle(dev, file_priv);
3786 int i915_gem_init_object(struct drm_gem_object *obj)
3788 struct drm_i915_gem_object *obj_priv;
3790 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
3791 if (obj_priv == NULL)
3795 * We've just allocated pages from the kernel,
3796 * so they've just been written by the CPU with
3797 * zeros. They'll need to be clflushed before we
3798 * use them with the GPU.
3800 obj->write_domain = I915_GEM_DOMAIN_CPU;
3801 obj->read_domains = I915_GEM_DOMAIN_CPU;
3803 obj_priv->agp_type = AGP_USER_MEMORY;
3805 obj->driver_private = obj_priv;
3806 obj_priv->obj = obj;
3807 obj_priv->fence_reg = I915_FENCE_REG_NONE;
3808 INIT_LIST_HEAD(&obj_priv->list);
3813 void i915_gem_free_object(struct drm_gem_object *obj)
3815 struct drm_device *dev = obj->dev;
3816 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3818 while (obj_priv->pin_count > 0)
3819 i915_gem_object_unpin(obj);
3821 if (obj_priv->phys_obj)
3822 i915_gem_detach_phys_object(dev, obj);
3824 i915_gem_object_unbind(obj);
3826 i915_gem_free_mmap_offset(obj);
3828 kfree(obj_priv->page_cpu_valid);
3829 kfree(obj_priv->bit_17);
3830 kfree(obj->driver_private);
3833 /** Unbinds all objects that are on the given buffer list. */
3835 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3837 struct drm_gem_object *obj;
3838 struct drm_i915_gem_object *obj_priv;
3841 while (!list_empty(head)) {
3842 obj_priv = list_first_entry(head,
3843 struct drm_i915_gem_object,
3845 obj = obj_priv->obj;
3847 if (obj_priv->pin_count != 0) {
3848 DRM_ERROR("Pinned object in unbind list\n");
3849 mutex_unlock(&dev->struct_mutex);
3853 ret = i915_gem_object_unbind(obj);
3855 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3857 mutex_unlock(&dev->struct_mutex);
3867 i915_gem_idle(struct drm_device *dev)
3869 drm_i915_private_t *dev_priv = dev->dev_private;
3870 uint32_t seqno, cur_seqno, last_seqno;
3873 mutex_lock(&dev->struct_mutex);
3875 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3876 mutex_unlock(&dev->struct_mutex);
3880 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3881 * We need to replace this with a semaphore, or something.
3883 dev_priv->mm.suspended = 1;
3885 /* Cancel the retire work handler, wait for it to finish if running
3887 mutex_unlock(&dev->struct_mutex);
3888 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3889 mutex_lock(&dev->struct_mutex);
3891 i915_kernel_lost_context(dev);
3893 /* Flush the GPU along with all non-CPU write domains
3895 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
3896 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
3899 mutex_unlock(&dev->struct_mutex);
3903 dev_priv->mm.waiting_gem_seqno = seqno;
3907 cur_seqno = i915_get_gem_seqno(dev);
3908 if (i915_seqno_passed(cur_seqno, seqno))
3910 if (last_seqno == cur_seqno) {
3911 if (stuck++ > 100) {
3912 DRM_ERROR("hardware wedged\n");
3913 dev_priv->mm.wedged = 1;
3914 DRM_WAKEUP(&dev_priv->irq_queue);
3919 last_seqno = cur_seqno;
3921 dev_priv->mm.waiting_gem_seqno = 0;
3923 i915_gem_retire_requests(dev);
3925 spin_lock(&dev_priv->mm.active_list_lock);
3926 if (!dev_priv->mm.wedged) {
3927 /* Active and flushing should now be empty as we've
3928 * waited for a sequence higher than any pending execbuffer
3930 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3931 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3932 /* Request should now be empty as we've also waited
3933 * for the last request in the list
3935 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3938 /* Empty the active and flushing lists to inactive. If there's
3939 * anything left at this point, it means that we're wedged and
3940 * nothing good's going to happen by leaving them there. So strip
3941 * the GPU domains and just stuff them onto inactive.
3943 while (!list_empty(&dev_priv->mm.active_list)) {
3944 struct drm_i915_gem_object *obj_priv;
3946 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3947 struct drm_i915_gem_object,
3949 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3950 i915_gem_object_move_to_inactive(obj_priv->obj);
3952 spin_unlock(&dev_priv->mm.active_list_lock);
3954 while (!list_empty(&dev_priv->mm.flushing_list)) {
3955 struct drm_i915_gem_object *obj_priv;
3957 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3958 struct drm_i915_gem_object,
3960 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3961 i915_gem_object_move_to_inactive(obj_priv->obj);
3965 /* Move all inactive buffers out of the GTT. */
3966 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3967 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3969 mutex_unlock(&dev->struct_mutex);
3973 i915_gem_cleanup_ringbuffer(dev);
3974 mutex_unlock(&dev->struct_mutex);
3980 i915_gem_init_hws(struct drm_device *dev)
3982 drm_i915_private_t *dev_priv = dev->dev_private;
3983 struct drm_gem_object *obj;
3984 struct drm_i915_gem_object *obj_priv;
3987 /* If we need a physical address for the status page, it's already
3988 * initialized at driver load time.
3990 if (!I915_NEED_GFX_HWS(dev))
3993 obj = drm_gem_object_alloc(dev, 4096);
3995 DRM_ERROR("Failed to allocate status page\n");
3998 obj_priv = obj->driver_private;
3999 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4001 ret = i915_gem_object_pin(obj, 4096);
4003 drm_gem_object_unreference(obj);
4007 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4009 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4010 if (dev_priv->hw_status_page == NULL) {
4011 DRM_ERROR("Failed to map status page.\n");
4012 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4013 i915_gem_object_unpin(obj);
4014 drm_gem_object_unreference(obj);
4017 dev_priv->hws_obj = obj;
4018 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4019 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4020 I915_READ(HWS_PGA); /* posting read */
4021 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4027 i915_gem_cleanup_hws(struct drm_device *dev)
4029 drm_i915_private_t *dev_priv = dev->dev_private;
4030 struct drm_gem_object *obj;
4031 struct drm_i915_gem_object *obj_priv;
4033 if (dev_priv->hws_obj == NULL)
4036 obj = dev_priv->hws_obj;
4037 obj_priv = obj->driver_private;
4039 kunmap(obj_priv->pages[0]);
4040 i915_gem_object_unpin(obj);
4041 drm_gem_object_unreference(obj);
4042 dev_priv->hws_obj = NULL;
4044 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4045 dev_priv->hw_status_page = NULL;
4047 /* Write high address into HWS_PGA when disabling. */
4048 I915_WRITE(HWS_PGA, 0x1ffff000);
4052 i915_gem_init_ringbuffer(struct drm_device *dev)
4054 drm_i915_private_t *dev_priv = dev->dev_private;
4055 struct drm_gem_object *obj;
4056 struct drm_i915_gem_object *obj_priv;
4057 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4061 ret = i915_gem_init_hws(dev);
4065 obj = drm_gem_object_alloc(dev, 128 * 1024);
4067 DRM_ERROR("Failed to allocate ringbuffer\n");
4068 i915_gem_cleanup_hws(dev);
4071 obj_priv = obj->driver_private;
4073 ret = i915_gem_object_pin(obj, 4096);
4075 drm_gem_object_unreference(obj);
4076 i915_gem_cleanup_hws(dev);
4080 /* Set up the kernel mapping for the ring. */
4081 ring->Size = obj->size;
4082 ring->tail_mask = obj->size - 1;
4084 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4085 ring->map.size = obj->size;
4087 ring->map.flags = 0;
4090 drm_core_ioremap_wc(&ring->map, dev);
4091 if (ring->map.handle == NULL) {
4092 DRM_ERROR("Failed to map ringbuffer.\n");
4093 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4094 i915_gem_object_unpin(obj);
4095 drm_gem_object_unreference(obj);
4096 i915_gem_cleanup_hws(dev);
4099 ring->ring_obj = obj;
4100 ring->virtual_start = ring->map.handle;
4102 /* Stop the ring if it's running. */
4103 I915_WRITE(PRB0_CTL, 0);
4104 I915_WRITE(PRB0_TAIL, 0);
4105 I915_WRITE(PRB0_HEAD, 0);
4107 /* Initialize the ring. */
4108 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4109 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4111 /* G45 ring initialization fails to reset head to zero */
4113 DRM_ERROR("Ring head not reset to zero "
4114 "ctl %08x head %08x tail %08x start %08x\n",
4115 I915_READ(PRB0_CTL),
4116 I915_READ(PRB0_HEAD),
4117 I915_READ(PRB0_TAIL),
4118 I915_READ(PRB0_START));
4119 I915_WRITE(PRB0_HEAD, 0);
4121 DRM_ERROR("Ring head forced to zero "
4122 "ctl %08x head %08x tail %08x start %08x\n",
4123 I915_READ(PRB0_CTL),
4124 I915_READ(PRB0_HEAD),
4125 I915_READ(PRB0_TAIL),
4126 I915_READ(PRB0_START));
4129 I915_WRITE(PRB0_CTL,
4130 ((obj->size - 4096) & RING_NR_PAGES) |
4134 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4136 /* If the head is still not zero, the ring is dead */
4138 DRM_ERROR("Ring initialization failed "
4139 "ctl %08x head %08x tail %08x start %08x\n",
4140 I915_READ(PRB0_CTL),
4141 I915_READ(PRB0_HEAD),
4142 I915_READ(PRB0_TAIL),
4143 I915_READ(PRB0_START));
4147 /* Update our cache of the ring state */
4148 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4149 i915_kernel_lost_context(dev);
4151 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4152 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4153 ring->space = ring->head - (ring->tail + 8);
4154 if (ring->space < 0)
4155 ring->space += ring->Size;
4162 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4164 drm_i915_private_t *dev_priv = dev->dev_private;
4166 if (dev_priv->ring.ring_obj == NULL)
4169 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4171 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4172 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4173 dev_priv->ring.ring_obj = NULL;
4174 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4176 i915_gem_cleanup_hws(dev);
4180 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4181 struct drm_file *file_priv)
4183 drm_i915_private_t *dev_priv = dev->dev_private;
4186 if (drm_core_check_feature(dev, DRIVER_MODESET))
4189 if (dev_priv->mm.wedged) {
4190 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4191 dev_priv->mm.wedged = 0;
4194 mutex_lock(&dev->struct_mutex);
4195 dev_priv->mm.suspended = 0;
4197 ret = i915_gem_init_ringbuffer(dev);
4199 mutex_unlock(&dev->struct_mutex);
4203 spin_lock(&dev_priv->mm.active_list_lock);
4204 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4205 spin_unlock(&dev_priv->mm.active_list_lock);
4207 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4208 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4209 BUG_ON(!list_empty(&dev_priv->mm.request_list));
4210 mutex_unlock(&dev->struct_mutex);
4212 drm_irq_install(dev);
4218 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4219 struct drm_file *file_priv)
4223 if (drm_core_check_feature(dev, DRIVER_MODESET))
4226 ret = i915_gem_idle(dev);
4227 drm_irq_uninstall(dev);
4233 i915_gem_lastclose(struct drm_device *dev)
4237 if (drm_core_check_feature(dev, DRIVER_MODESET))
4240 ret = i915_gem_idle(dev);
4242 DRM_ERROR("failed to idle hardware: %d\n", ret);
4246 i915_gem_load(struct drm_device *dev)
4249 drm_i915_private_t *dev_priv = dev->dev_private;
4251 spin_lock_init(&dev_priv->mm.active_list_lock);
4252 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4253 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4254 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4255 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4256 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4257 i915_gem_retire_work_handler);
4258 dev_priv->mm.next_gem_seqno = 1;
4260 /* Old X drivers will take 0-2 for front, back, depth buffers */
4261 dev_priv->fence_reg_start = 3;
4263 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4264 dev_priv->num_fence_regs = 16;
4266 dev_priv->num_fence_regs = 8;
4268 /* Initialize fence registers to zero */
4269 if (IS_I965G(dev)) {
4270 for (i = 0; i < 16; i++)
4271 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4273 for (i = 0; i < 8; i++)
4274 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4275 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4276 for (i = 0; i < 8; i++)
4277 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4280 i915_gem_detect_bit_6_swizzle(dev);
4284 * Create a physically contiguous memory object for this object
4285 * e.g. for cursor + overlay regs
4287 int i915_gem_init_phys_object(struct drm_device *dev,
4290 drm_i915_private_t *dev_priv = dev->dev_private;
4291 struct drm_i915_gem_phys_object *phys_obj;
4294 if (dev_priv->mm.phys_objs[id - 1] || !size)
4297 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4303 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4304 if (!phys_obj->handle) {
4309 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4312 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4320 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4322 drm_i915_private_t *dev_priv = dev->dev_private;
4323 struct drm_i915_gem_phys_object *phys_obj;
4325 if (!dev_priv->mm.phys_objs[id - 1])
4328 phys_obj = dev_priv->mm.phys_objs[id - 1];
4329 if (phys_obj->cur_obj) {
4330 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4334 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4336 drm_pci_free(dev, phys_obj->handle);
4338 dev_priv->mm.phys_objs[id - 1] = NULL;
4341 void i915_gem_free_all_phys_object(struct drm_device *dev)
4345 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4346 i915_gem_free_phys_object(dev, i);
4349 void i915_gem_detach_phys_object(struct drm_device *dev,
4350 struct drm_gem_object *obj)
4352 struct drm_i915_gem_object *obj_priv;
4357 obj_priv = obj->driver_private;
4358 if (!obj_priv->phys_obj)
4361 ret = i915_gem_object_get_pages(obj);
4365 page_count = obj->size / PAGE_SIZE;
4367 for (i = 0; i < page_count; i++) {
4368 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4369 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4371 memcpy(dst, src, PAGE_SIZE);
4372 kunmap_atomic(dst, KM_USER0);
4374 drm_clflush_pages(obj_priv->pages, page_count);
4375 drm_agp_chipset_flush(dev);
4377 i915_gem_object_put_pages(obj);
4379 obj_priv->phys_obj->cur_obj = NULL;
4380 obj_priv->phys_obj = NULL;
4384 i915_gem_attach_phys_object(struct drm_device *dev,
4385 struct drm_gem_object *obj, int id)
4387 drm_i915_private_t *dev_priv = dev->dev_private;
4388 struct drm_i915_gem_object *obj_priv;
4393 if (id > I915_MAX_PHYS_OBJECT)
4396 obj_priv = obj->driver_private;
4398 if (obj_priv->phys_obj) {
4399 if (obj_priv->phys_obj->id == id)
4401 i915_gem_detach_phys_object(dev, obj);
4405 /* create a new object */
4406 if (!dev_priv->mm.phys_objs[id - 1]) {
4407 ret = i915_gem_init_phys_object(dev, id,
4410 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4415 /* bind to the object */
4416 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4417 obj_priv->phys_obj->cur_obj = obj;
4419 ret = i915_gem_object_get_pages(obj);
4421 DRM_ERROR("failed to get page list\n");
4425 page_count = obj->size / PAGE_SIZE;
4427 for (i = 0; i < page_count; i++) {
4428 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4429 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4431 memcpy(dst, src, PAGE_SIZE);
4432 kunmap_atomic(src, KM_USER0);
4435 i915_gem_object_put_pages(obj);
4443 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4444 struct drm_i915_gem_pwrite *args,
4445 struct drm_file *file_priv)
4447 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4450 char __user *user_data;
4452 user_data = (char __user *) (uintptr_t) args->data_ptr;
4453 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4455 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4456 ret = copy_from_user(obj_addr, user_data, args->size);
4460 drm_agp_chipset_flush(dev);
4464 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4466 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4468 /* Clean up our request list when the client is going away, so that
4469 * later retire_requests won't dereference our soon-to-be-gone
4472 mutex_lock(&dev->struct_mutex);
4473 while (!list_empty(&i915_file_priv->mm.request_list))
4474 list_del_init(i915_file_priv->mm.request_list.next);
4475 mutex_unlock(&dev->struct_mutex);