2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/netdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/can.h>
25 #include <linux/can/dev.h>
26 #include <linux/can/netlink.h>
27 #include <net/rtnetlink.h>
29 #define MOD_DESC "CAN device driver interface"
31 MODULE_DESCRIPTION(MOD_DESC);
32 MODULE_LICENSE("GPL v2");
33 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
35 #ifdef CONFIG_CAN_CALC_BITTIMING
36 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
39 * Bit-timing calculation derived from:
41 * Code based on LinCAN sources and H8S2638 project
42 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
43 * Copyright 2005 Stanislav Marek
44 * email: pisa@cmp.felk.cvut.cz
46 * Calculates proper bit-timing parameters for a specified bit-rate
47 * and sample-point, which can then be used to set the bit-timing
48 * registers of the CAN controller. You can find more information
49 * in the header file linux/can/netlink.h.
51 static int can_update_spt(const struct can_bittiming_const *btc,
52 int sampl_pt, int tseg, int *tseg1, int *tseg2)
54 *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
55 if (*tseg2 < btc->tseg2_min)
56 *tseg2 = btc->tseg2_min;
57 if (*tseg2 > btc->tseg2_max)
58 *tseg2 = btc->tseg2_max;
59 *tseg1 = tseg - *tseg2;
60 if (*tseg1 > btc->tseg1_max) {
61 *tseg1 = btc->tseg1_max;
62 *tseg2 = tseg - *tseg1;
64 return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
67 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
69 struct can_priv *priv = netdev_priv(dev);
70 const struct can_bittiming_const *btc = priv->bittiming_const;
71 long rate, best_rate = 0;
72 long best_error = 1000000000, error = 0;
73 int best_tseg = 0, best_brp = 0, brp = 0;
74 int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
75 int spt_error = 1000, spt = 0, sampl_pt;
78 if (!priv->bittiming_const)
81 /* Use CIA recommended sample points */
82 if (bt->sample_point) {
83 sampl_pt = bt->sample_point;
85 if (bt->bitrate > 800000)
87 else if (bt->bitrate > 500000)
93 /* tseg even = round down, odd = round up */
94 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
95 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
96 tsegall = 1 + tseg / 2;
97 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
98 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
99 /* chose brp step which is possible in system */
100 brp = (brp / btc->brp_inc) * btc->brp_inc;
101 if ((brp < btc->brp_min) || (brp > btc->brp_max))
103 rate = priv->clock.freq / (brp * tsegall);
104 error = bt->bitrate - rate;
105 /* tseg brp biterror */
108 if (error > best_error)
112 spt = can_update_spt(btc, sampl_pt, tseg / 2,
114 error = sampl_pt - spt;
117 if (error > spt_error)
121 best_tseg = tseg / 2;
129 /* Error in one-tenth of a percent */
130 error = (best_error * 1000) / bt->bitrate;
131 if (error > CAN_CALC_MAX_ERROR) {
132 dev_err(dev->dev.parent,
133 "bitrate error %ld.%ld%% too high\n",
134 error / 10, error % 10);
137 dev_warn(dev->dev.parent, "bitrate error %ld.%ld%%\n",
138 error / 10, error % 10);
142 /* real sample point */
143 bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
146 v64 = (u64)best_brp * 1000000000UL;
147 do_div(v64, priv->clock.freq);
149 bt->prop_seg = tseg1 / 2;
150 bt->phase_seg1 = tseg1 - bt->prop_seg;
151 bt->phase_seg2 = tseg2;
155 bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
159 #else /* !CONFIG_CAN_CALC_BITTIMING */
160 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
162 dev_err(dev->dev.parent, "bit-timing calculation not available\n");
165 #endif /* CONFIG_CAN_CALC_BITTIMING */
168 * Checks the validity of the specified bit-timing parameters prop_seg,
169 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
170 * prescaler value brp. You can find more information in the header
171 * file linux/can/netlink.h.
173 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt)
175 struct can_priv *priv = netdev_priv(dev);
176 const struct can_bittiming_const *btc = priv->bittiming_const;
180 if (!priv->bittiming_const)
183 tseg1 = bt->prop_seg + bt->phase_seg1;
186 if (bt->sjw > btc->sjw_max ||
187 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
188 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
191 brp64 = (u64)priv->clock.freq * (u64)bt->tq;
192 if (btc->brp_inc > 1)
193 do_div(brp64, btc->brp_inc);
194 brp64 += 500000000UL - 1;
195 do_div(brp64, 1000000000UL); /* the practicable BRP */
196 if (btc->brp_inc > 1)
197 brp64 *= btc->brp_inc;
198 bt->brp = (u32)brp64;
200 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
203 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
204 bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
205 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
210 int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt)
212 struct can_priv *priv = netdev_priv(dev);
215 /* Check if the CAN device has bit-timing parameters */
216 if (priv->bittiming_const) {
218 /* Non-expert mode? Check if the bitrate has been pre-defined */
220 /* Determine bit-timing parameters */
221 err = can_calc_bittiming(dev, bt);
223 /* Check bit-timing params and calculate proper brp */
224 err = can_fixup_bittiming(dev, bt);
233 * Local echo of CAN messages
235 * CAN network devices *should* support a local echo functionality
236 * (see Documentation/networking/can.txt). To test the handling of CAN
237 * interfaces that do not support the local echo both driver types are
238 * implemented. In the case that the driver does not support the echo
239 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
240 * to perform the echo as a fallback solution.
242 static void can_flush_echo_skb(struct net_device *dev)
244 struct can_priv *priv = netdev_priv(dev);
245 struct net_device_stats *stats = &dev->stats;
248 for (i = 0; i < CAN_ECHO_SKB_MAX; i++) {
249 if (priv->echo_skb[i]) {
250 kfree_skb(priv->echo_skb[i]);
251 priv->echo_skb[i] = NULL;
253 stats->tx_aborted_errors++;
259 * Put the skb on the stack to be looped backed locally lateron
261 * The function is typically called in the start_xmit function
262 * of the device driver. The driver must protect access to
263 * priv->echo_skb, if necessary.
265 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, int idx)
267 struct can_priv *priv = netdev_priv(dev);
269 /* check flag whether this packet has to be looped back */
270 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) {
275 if (!priv->echo_skb[idx]) {
276 struct sock *srcsk = skb->sk;
278 if (atomic_read(&skb->users) != 1) {
279 struct sk_buff *old_skb = skb;
281 skb = skb_clone(old_skb, GFP_ATOMIC);
290 /* make settings for echo to reduce code in irq context */
291 skb->protocol = htons(ETH_P_CAN);
292 skb->pkt_type = PACKET_BROADCAST;
293 skb->ip_summed = CHECKSUM_UNNECESSARY;
296 /* save this skb for tx interrupt echo handling */
297 priv->echo_skb[idx] = skb;
299 /* locking problem with netif_stop_queue() ?? */
300 dev_err(dev->dev.parent, "%s: BUG! echo_skb is occupied!\n",
305 EXPORT_SYMBOL_GPL(can_put_echo_skb);
308 * Get the skb from the stack and loop it back locally
310 * The function is typically called when the TX done interrupt
311 * is handled in the device driver. The driver must protect
312 * access to priv->echo_skb, if necessary.
314 void can_get_echo_skb(struct net_device *dev, int idx)
316 struct can_priv *priv = netdev_priv(dev);
318 if ((dev->flags & IFF_ECHO) && priv->echo_skb[idx]) {
319 netif_rx(priv->echo_skb[idx]);
320 priv->echo_skb[idx] = NULL;
323 EXPORT_SYMBOL_GPL(can_get_echo_skb);
326 * CAN device restart for bus-off recovery
328 void can_restart(unsigned long data)
330 struct net_device *dev = (struct net_device *)data;
331 struct can_priv *priv = netdev_priv(dev);
332 struct net_device_stats *stats = &dev->stats;
334 struct can_frame *cf;
337 BUG_ON(netif_carrier_ok(dev));
340 * No synchronization needed because the device is bus-off and
341 * no messages can come in or go out.
343 can_flush_echo_skb(dev);
345 /* send restart message upstream */
346 skb = dev_alloc_skb(sizeof(struct can_frame));
352 skb->protocol = htons(ETH_P_CAN);
353 cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
354 memset(cf, 0, sizeof(struct can_frame));
355 cf->can_id = CAN_ERR_FLAG | CAN_ERR_RESTARTED;
356 cf->can_dlc = CAN_ERR_DLC;
360 dev->last_rx = jiffies;
362 stats->rx_bytes += cf->can_dlc;
365 dev_dbg(dev->dev.parent, "restarted\n");
366 priv->can_stats.restarts++;
368 /* Now restart the device */
369 err = priv->do_set_mode(dev, CAN_MODE_START);
371 netif_carrier_on(dev);
373 dev_err(dev->dev.parent, "Error %d during restart", err);
376 int can_restart_now(struct net_device *dev)
378 struct can_priv *priv = netdev_priv(dev);
381 * A manual restart is only permitted if automatic restart is
382 * disabled and the device is in the bus-off state
384 if (priv->restart_ms)
386 if (priv->state != CAN_STATE_BUS_OFF)
389 /* Runs as soon as possible in the timer context */
390 mod_timer(&priv->restart_timer, jiffies);
398 * This functions should be called when the device goes bus-off to
399 * tell the netif layer that no more packets can be sent or received.
400 * If enabled, a timer is started to trigger bus-off recovery.
402 void can_bus_off(struct net_device *dev)
404 struct can_priv *priv = netdev_priv(dev);
406 dev_dbg(dev->dev.parent, "bus-off\n");
408 netif_carrier_off(dev);
409 priv->can_stats.bus_off++;
411 if (priv->restart_ms)
412 mod_timer(&priv->restart_timer,
413 jiffies + (priv->restart_ms * HZ) / 1000);
415 EXPORT_SYMBOL_GPL(can_bus_off);
417 static void can_setup(struct net_device *dev)
419 dev->type = ARPHRD_CAN;
420 dev->mtu = sizeof(struct can_frame);
421 dev->hard_header_len = 0;
423 dev->tx_queue_len = 10;
425 /* New-style flags. */
426 dev->flags = IFF_NOARP;
427 dev->features = NETIF_F_NO_CSUM;
431 * Allocate and setup space for the CAN network device
433 struct net_device *alloc_candev(int sizeof_priv)
435 struct net_device *dev;
436 struct can_priv *priv;
438 dev = alloc_netdev(sizeof_priv, "can%d", can_setup);
442 priv = netdev_priv(dev);
444 priv->state = CAN_STATE_STOPPED;
446 init_timer(&priv->restart_timer);
450 EXPORT_SYMBOL_GPL(alloc_candev);
453 * Free space of the CAN network device
455 void free_candev(struct net_device *dev)
459 EXPORT_SYMBOL_GPL(free_candev);
462 * Common open function when the device gets opened.
464 * This function should be called in the open function of the device
467 int open_candev(struct net_device *dev)
469 struct can_priv *priv = netdev_priv(dev);
471 if (!priv->bittiming.tq && !priv->bittiming.bitrate) {
472 dev_err(dev->dev.parent, "bit-timing not yet defined\n");
476 /* Switch carrier on if device was stopped while in bus-off state */
477 if (!netif_carrier_ok(dev))
478 netif_carrier_on(dev);
480 setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
484 EXPORT_SYMBOL_GPL(open_candev);
487 * Common close function for cleanup before the device gets closed.
489 * This function should be called in the close function of the device
492 void close_candev(struct net_device *dev)
494 struct can_priv *priv = netdev_priv(dev);
496 if (del_timer_sync(&priv->restart_timer))
498 can_flush_echo_skb(dev);
500 EXPORT_SYMBOL_GPL(close_candev);
503 * CAN netlink interface
505 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
506 [IFLA_CAN_STATE] = { .type = NLA_U32 },
507 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
508 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
509 [IFLA_CAN_RESTART] = { .type = NLA_U32 },
510 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
511 [IFLA_CAN_BITTIMING_CONST]
512 = { .len = sizeof(struct can_bittiming_const) },
513 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
516 static int can_changelink(struct net_device *dev,
517 struct nlattr *tb[], struct nlattr *data[])
519 struct can_priv *priv = netdev_priv(dev);
522 /* We need synchronization with dev->stop() */
525 if (data[IFLA_CAN_CTRLMODE]) {
526 struct can_ctrlmode *cm;
528 /* Do not allow changing controller mode while running */
529 if (dev->flags & IFF_UP)
531 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
532 priv->ctrlmode &= ~cm->mask;
533 priv->ctrlmode |= cm->flags;
536 if (data[IFLA_CAN_BITTIMING]) {
537 struct can_bittiming bt;
539 /* Do not allow changing bittiming while running */
540 if (dev->flags & IFF_UP)
542 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
543 if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq))
545 err = can_get_bittiming(dev, &bt);
548 memcpy(&priv->bittiming, &bt, sizeof(bt));
550 if (priv->do_set_bittiming) {
551 /* Finally, set the bit-timing registers */
552 err = priv->do_set_bittiming(dev);
558 if (data[IFLA_CAN_RESTART_MS]) {
559 /* Do not allow changing restart delay while running */
560 if (dev->flags & IFF_UP)
562 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
565 if (data[IFLA_CAN_RESTART]) {
566 /* Do not allow a restart while not running */
567 if (!(dev->flags & IFF_UP))
569 err = can_restart_now(dev);
577 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
579 struct can_priv *priv = netdev_priv(dev);
580 struct can_ctrlmode cm = {.flags = priv->ctrlmode};
581 enum can_state state = priv->state;
583 if (priv->do_get_state)
584 priv->do_get_state(dev, &state);
585 NLA_PUT_U32(skb, IFLA_CAN_STATE, state);
586 NLA_PUT(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm);
587 NLA_PUT_U32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms);
588 NLA_PUT(skb, IFLA_CAN_BITTIMING,
589 sizeof(priv->bittiming), &priv->bittiming);
590 NLA_PUT(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock);
591 if (priv->bittiming_const)
592 NLA_PUT(skb, IFLA_CAN_BITTIMING_CONST,
593 sizeof(*priv->bittiming_const), priv->bittiming_const);
601 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
603 struct can_priv *priv = netdev_priv(dev);
605 NLA_PUT(skb, IFLA_INFO_XSTATS,
606 sizeof(priv->can_stats), &priv->can_stats);
614 static struct rtnl_link_ops can_link_ops __read_mostly = {
616 .maxtype = IFLA_CAN_MAX,
617 .policy = can_policy,
619 .changelink = can_changelink,
620 .fill_info = can_fill_info,
621 .fill_xstats = can_fill_xstats,
625 * Register the CAN network device
627 int register_candev(struct net_device *dev)
629 dev->rtnl_link_ops = &can_link_ops;
630 return register_netdev(dev);
632 EXPORT_SYMBOL_GPL(register_candev);
635 * Unregister the CAN network device
637 void unregister_candev(struct net_device *dev)
639 unregister_netdev(dev);
641 EXPORT_SYMBOL_GPL(unregister_candev);
643 static __init int can_dev_init(void)
647 err = rtnl_link_register(&can_link_ops);
649 printk(KERN_INFO MOD_DESC "\n");
653 module_init(can_dev_init);
655 static __exit void can_dev_exit(void)
657 rtnl_link_unregister(&can_link_ops);
659 module_exit(can_dev_exit);
661 MODULE_ALIAS_RTNL_LINK("can");