Linux 2.6.31-rc6
[linux-2.6] / drivers / staging / sxg / sxg.c
1 /**************************************************************************
2  *
3  * Copyright (C) 2000-2008 Alacritech, Inc.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above
12  *    copyright notice, this list of conditions and the following
13  *    disclaimer in the documentation and/or other materials provided
14  *    with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY ALACRITECH, INC. ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL ALACRITECH, INC. OR
20  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * The views and conclusions contained in the software and documentation
30  * are those of the authors and should not be interpreted as representing
31  * official policies, either expressed or implied, of Alacritech, Inc.
32  *
33  * Parts developed by LinSysSoft Sahara team
34  *
35  **************************************************************************/
36
37 /*
38  * FILENAME: sxg.c
39  *
40  * The SXG driver for Alacritech's 10Gbe products.
41  *
42  * NOTE: This is the standard, non-accelerated version of Alacritech's
43  *       IS-NIC driver.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/string.h>
48 #include <linux/errno.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/firmware.h>
52 #include <linux/ioport.h>
53 #include <linux/slab.h>
54 #include <linux/interrupt.h>
55 #include <linux/timer.h>
56 #include <linux/pci.h>
57 #include <linux/spinlock.h>
58 #include <linux/init.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/ethtool.h>
62 #include <linux/skbuff.h>
63 #include <linux/delay.h>
64 #include <linux/types.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/mii.h>
67 #include <linux/ip.h>
68 #include <linux/in.h>
69 #include <linux/tcp.h>
70 #include <linux/ipv6.h>
71
72 #define SLIC_GET_STATS_ENABLED          0
73 #define LINUX_FREES_ADAPTER_RESOURCES   1
74 #define SXG_OFFLOAD_IP_CHECKSUM         0
75 #define SXG_POWER_MANAGEMENT_ENABLED    0
76 #define VPCI                            0
77 #define ATK_DEBUG                       1
78 #define SXG_UCODE_DEBUG         0
79
80
81 #include "sxg_os.h"
82 #include "sxghw.h"
83 #include "sxghif.h"
84 #include "sxg.h"
85 #include "sxgdbg.h"
86 #include "sxgphycode-1.2.h"
87
88 static int sxg_allocate_buffer_memory(struct adapter_t *adapter, u32 Size,
89                                       enum sxg_buffer_type BufferType);
90 static int sxg_allocate_rcvblock_complete(struct adapter_t *adapter,
91                                                 void *RcvBlock,
92                                                 dma_addr_t PhysicalAddress,
93                                                 u32 Length);
94 static void sxg_allocate_sgl_buffer_complete(struct adapter_t *adapter,
95                                              struct sxg_scatter_gather *SxgSgl,
96                                              dma_addr_t PhysicalAddress,
97                                              u32 Length);
98
99 static void sxg_mcast_init_crc32(void);
100 static int sxg_entry_open(struct net_device *dev);
101 static int sxg_second_open(struct net_device * dev);
102 static int sxg_entry_halt(struct net_device *dev);
103 static int sxg_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
104 static int sxg_send_packets(struct sk_buff *skb, struct net_device *dev);
105 static int sxg_transmit_packet(struct adapter_t *adapter, struct sk_buff *skb);
106 static int sxg_dumb_sgl(struct sxg_x64_sgl *pSgl,
107                                 struct sxg_scatter_gather *SxgSgl);
108
109 static void sxg_handle_interrupt(struct adapter_t *adapter, int *work_done,
110                                          int budget);
111 static void sxg_interrupt(struct adapter_t *adapter);
112 static int sxg_poll(struct napi_struct *napi, int budget);
113 static int sxg_process_isr(struct adapter_t *adapter, u32 MessageId);
114 static u32 sxg_process_event_queue(struct adapter_t *adapter, u32 RssId,
115                          int *sxg_napi_continue, int *work_done, int budget);
116 static void sxg_complete_slow_send(struct adapter_t *adapter);
117 static struct sk_buff *sxg_slow_receive(struct adapter_t *adapter,
118                                         struct sxg_event *Event);
119 static void sxg_process_rcv_error(struct adapter_t *adapter, u32 ErrorStatus);
120 static bool sxg_mac_filter(struct adapter_t *adapter,
121                            struct ether_header *EtherHdr, ushort length);
122 static struct net_device_stats *sxg_get_stats(struct net_device * dev);
123 void sxg_free_resources(struct adapter_t *adapter);
124 void sxg_free_rcvblocks(struct adapter_t *adapter);
125 void sxg_free_sgl_buffers(struct adapter_t *adapter);
126 void sxg_unmap_resources(struct adapter_t *adapter);
127 void sxg_free_mcast_addrs(struct adapter_t *adapter);
128 void sxg_collect_statistics(struct adapter_t *adapter);
129 static int sxg_register_interrupt(struct adapter_t *adapter);
130 static void sxg_remove_isr(struct adapter_t *adapter);
131 static irqreturn_t sxg_isr(int irq, void *dev_id);
132
133 static void sxg_watchdog(unsigned long data);
134 static void sxg_update_link_status (struct work_struct *work);
135
136 #define XXXTODO 0
137
138 #if XXXTODO
139 static int sxg_mac_set_address(struct net_device *dev, void *ptr);
140 #endif
141 static void sxg_mcast_set_list(struct net_device *dev);
142
143 static int sxg_adapter_set_hwaddr(struct adapter_t *adapter);
144
145 static int sxg_initialize_adapter(struct adapter_t *adapter);
146 static void sxg_stock_rcv_buffers(struct adapter_t *adapter);
147 static void sxg_complete_descriptor_blocks(struct adapter_t *adapter,
148                                            unsigned char Index);
149 int sxg_change_mtu (struct net_device *netdev, int new_mtu);
150 static int sxg_initialize_link(struct adapter_t *adapter);
151 static int sxg_phy_init(struct adapter_t *adapter);
152 static void sxg_link_event(struct adapter_t *adapter);
153 static enum SXG_LINK_STATE sxg_get_link_state(struct adapter_t *adapter);
154 static void sxg_link_state(struct adapter_t *adapter,
155                                 enum SXG_LINK_STATE LinkState);
156 static int sxg_write_mdio_reg(struct adapter_t *adapter,
157                               u32 DevAddr, u32 RegAddr, u32 Value);
158 static int sxg_read_mdio_reg(struct adapter_t *adapter,
159                              u32 DevAddr, u32 RegAddr, u32 *pValue);
160 static void sxg_set_mcast_addr(struct adapter_t *adapter);
161
162 static unsigned int sxg_first_init = 1;
163 static char *sxg_banner =
164     "Alacritech SLIC Technology(tm) Server and Storage \
165          10Gbe Accelerator (Non-Accelerated)\n";
166
167 static int sxg_debug = 1;
168 static int debug = -1;
169 static struct net_device *head_netdevice = NULL;
170
171 static struct sxgbase_driver sxg_global = {
172         .dynamic_intagg = 1,
173 };
174 static int intagg_delay = 100;
175 static u32 dynamic_intagg = 0;
176
177 char sxg_driver_name[] = "sxg_nic";
178 #define DRV_AUTHOR      "Alacritech, Inc. Engineering"
179 #define DRV_DESCRIPTION                                                 \
180         "Alacritech SLIC Techonology(tm) Non-Accelerated 10Gbe Driver"
181 #define DRV_COPYRIGHT                                                   \
182         "Copyright 2000-2008 Alacritech, Inc.  All rights reserved."
183
184 MODULE_AUTHOR(DRV_AUTHOR);
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_LICENSE("GPL");
187
188 module_param(dynamic_intagg, int, 0);
189 MODULE_PARM_DESC(dynamic_intagg, "Dynamic Interrupt Aggregation Setting");
190 module_param(intagg_delay, int, 0);
191 MODULE_PARM_DESC(intagg_delay, "uSec Interrupt Aggregation Delay");
192
193 static struct pci_device_id sxg_pci_tbl[] __devinitdata = {
194         {PCI_DEVICE(SXG_VENDOR_ID, SXG_DEVICE_ID)},
195         {0,}
196 };
197
198 MODULE_DEVICE_TABLE(pci, sxg_pci_tbl);
199
200 static inline void sxg_reg32_write(void __iomem *reg, u32 value, bool flush)
201 {
202         writel(value, reg);
203         if (flush)
204                 mb();
205 }
206
207 static inline void sxg_reg64_write(struct adapter_t *adapter, void __iomem *reg,
208                                    u64 value, u32 cpu)
209 {
210         u32 value_high = (u32) (value >> 32);
211         u32 value_low = (u32) (value & 0x00000000FFFFFFFF);
212         unsigned long flags;
213
214         spin_lock_irqsave(&adapter->Bit64RegLock, flags);
215         writel(value_high, (void __iomem *)(&adapter->UcodeRegs[cpu].Upper));
216         writel(value_low, reg);
217         spin_unlock_irqrestore(&adapter->Bit64RegLock, flags);
218 }
219
220 static void sxg_init_driver(void)
221 {
222         if (sxg_first_init) {
223                 DBG_ERROR("sxg: %s sxg_first_init set jiffies[%lx]\n",
224                           __func__, jiffies);
225                 sxg_first_init = 0;
226                 spin_lock_init(&sxg_global.driver_lock);
227         }
228 }
229
230 static void sxg_dbg_macaddrs(struct adapter_t *adapter)
231 {
232         DBG_ERROR("  (%s) curr %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
233                   adapter->netdev->name, adapter->currmacaddr[0],
234                   adapter->currmacaddr[1], adapter->currmacaddr[2],
235                   adapter->currmacaddr[3], adapter->currmacaddr[4],
236                   adapter->currmacaddr[5]);
237         DBG_ERROR("  (%s) mac  %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
238                   adapter->netdev->name, adapter->macaddr[0],
239                   adapter->macaddr[1], adapter->macaddr[2],
240                   adapter->macaddr[3], adapter->macaddr[4],
241                   adapter->macaddr[5]);
242         return;
243 }
244
245 /* SXG Globals */
246 static struct sxg_driver SxgDriver;
247
248 #ifdef  ATKDBG
249 static struct sxg_trace_buffer LSxgTraceBuffer;
250 #endif /* ATKDBG */
251 static struct sxg_trace_buffer *SxgTraceBuffer = NULL;
252
253 /*
254  * MSI Related API's
255  */
256 int sxg_register_intr(struct adapter_t *adapter);
257 int sxg_enable_msi_x(struct adapter_t *adapter);
258 int sxg_add_msi_isr(struct adapter_t *adapter);
259 void sxg_remove_msix_isr(struct adapter_t *adapter);
260 int sxg_set_interrupt_capability(struct adapter_t *adapter);
261
262 int sxg_set_interrupt_capability(struct adapter_t *adapter)
263 {
264         int ret;
265
266         ret = sxg_enable_msi_x(adapter);
267         if (ret != STATUS_SUCCESS) {
268                 adapter->msi_enabled = FALSE;
269                 DBG_ERROR("sxg_set_interrupt_capability MSI-X Disable\n");
270         } else {
271                 adapter->msi_enabled = TRUE;
272                 DBG_ERROR("sxg_set_interrupt_capability MSI-X Enable\n");
273         }
274         return ret;
275 }
276
277 int sxg_register_intr(struct adapter_t *adapter)
278 {
279         int ret = 0;
280
281         if (adapter->msi_enabled) {
282                 ret = sxg_add_msi_isr(adapter);
283         }
284         else {
285                 DBG_ERROR("MSI-X Enable Failed. Using Pin INT\n");
286                 ret = sxg_register_interrupt(adapter);
287                 if (ret != STATUS_SUCCESS) {
288                         DBG_ERROR("sxg_register_interrupt Failed\n");
289                 }
290         }
291         return ret;
292 }
293
294 int sxg_enable_msi_x(struct adapter_t *adapter)
295 {
296         int ret;
297
298         adapter->nr_msix_entries = 1;
299         adapter->msi_entries =  kmalloc(adapter->nr_msix_entries *
300                                         sizeof(struct msix_entry),GFP_KERNEL);
301         if (!adapter->msi_entries) {
302                 DBG_ERROR("%s:MSI Entries memory allocation Failed\n",__func__);
303                 return -ENOMEM;
304         }
305         memset(adapter->msi_entries, 0, adapter->nr_msix_entries *
306                 sizeof(struct msix_entry));
307
308         ret = pci_enable_msix(adapter->pcidev, adapter->msi_entries,
309                                 adapter->nr_msix_entries);
310         if (ret) {
311                 DBG_ERROR("Enabling MSI-X with %d vectors failed\n",
312                                 adapter->nr_msix_entries);
313                 /*Should try with less vector returned.*/
314                 kfree(adapter->msi_entries);
315                 return STATUS_FAILURE; /*MSI-X Enable failed.*/
316         }
317         return (STATUS_SUCCESS);
318 }
319
320 int sxg_add_msi_isr(struct adapter_t *adapter)
321 {
322         int ret,i;
323
324         if (!adapter->intrregistered) {
325                 spin_unlock_irqrestore(&sxg_global.driver_lock,
326                                         sxg_global.flags);
327                 for (i=0; i<adapter->nr_msix_entries; i++) {
328                         ret = request_irq (adapter->msi_entries[i].vector,
329                                         sxg_isr,
330                                         IRQF_SHARED,
331                                         adapter->netdev->name,
332                                         adapter->netdev);
333                         if (ret) {
334                                 spin_lock_irqsave(&sxg_global.driver_lock,
335                                                  sxg_global.flags);
336                                 DBG_ERROR("sxg: MSI-X request_irq (%s) "
337                                         "FAILED [%x]\n", adapter->netdev->name,
338                                          ret);
339                                 return (ret);
340                         }
341                 }
342         }
343         spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
344         adapter->msi_enabled = TRUE;
345         adapter->intrregistered = 1;
346         adapter->IntRegistered = TRUE;
347         return (STATUS_SUCCESS);
348 }
349
350 void sxg_remove_msix_isr(struct adapter_t *adapter)
351 {
352         int i,vector;
353         struct net_device *netdev = adapter->netdev;
354
355         for(i=0; i< adapter->nr_msix_entries;i++)
356         {
357                 vector = adapter->msi_entries[i].vector;
358                 DBG_ERROR("%s : Freeing IRQ vector#%d\n",__func__,vector);
359                 free_irq(vector,netdev);
360         }
361 }
362
363
364 static void sxg_remove_isr(struct adapter_t *adapter)
365 {
366         struct net_device *netdev = adapter->netdev;
367         if (adapter->msi_enabled)
368                 sxg_remove_msix_isr(adapter);
369         else
370                 free_irq(adapter->netdev->irq, netdev);
371 }
372
373 void sxg_reset_interrupt_capability(struct adapter_t *adapter)
374 {
375         if (adapter->msi_enabled) {
376                 pci_disable_msix(adapter->pcidev);
377                 kfree(adapter->msi_entries);
378                 adapter->msi_entries = NULL;
379         }
380         return;
381 }
382
383 /*
384  * sxg_download_microcode
385  *
386  * Download Microcode to Sahara adapter using the Linux
387  * Firmware module to get the ucode.sys file.
388  *
389  * Arguments -
390  *              adapter         - A pointer to our adapter structure
391  *              UcodeSel        - microcode file selection
392  *
393  * Return
394  *      int
395  */
396 static bool sxg_download_microcode(struct adapter_t *adapter,
397                                                 enum SXG_UCODE_SEL UcodeSel)
398 {
399         const struct firmware *fw;
400         const char *file = "";
401         struct sxg_hw_regs *HwRegs = adapter->HwRegs;
402         int ret;
403         int ucode_start;
404         u32 Section;
405         u32 ThisSectionSize;
406         u32 instruction = 0;
407         u32 BaseAddress, AddressOffset, Address;
408         /* u32 Failure; */
409         u32 ValueRead;
410         u32 i;
411         u32 index = 0;
412         u32 num_sections = 0;
413         u32 sectionSize[16];
414         u32 sectionStart[16];
415
416         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DnldUcod",
417                   adapter, 0, 0, 0);
418
419         /*
420          *  This routine is only implemented to download the microcode
421          *  for the Revision B Sahara chip.  Rev A and Diagnostic
422          *  microcode is not supported at this time.  If Rev A or
423          *  diagnostic ucode is required, this routine will obviously
424          *  need to change.  Also, eventually need to add support for
425          *  Rev B checked version of ucode.  That's easy enough once
426          *  the free version of Rev B works.
427          */
428         ASSERT(UcodeSel == SXG_UCODE_SYSTEM);
429         ASSERT(adapter->asictype == SAHARA_REV_B);
430 #if SXG_UCODE_DEBUG
431         file = "sxg/saharadbgdownloadB.sys";
432 #else
433         file = "sxg/saharadownloadB.sys";
434 #endif
435         ret = request_firmware(&fw, file, &adapter->pcidev->dev);
436         if (ret) {
437                 DBG_ERROR("%s SXG_NIC: Failed to load firmware %s\n", __func__,file);
438                 return ret;
439         }
440
441         /*
442          *  The microcode .sys file contains starts with a 4 byte word containing
443          *  the number of sections. That is followed by "num_sections" 4 byte
444          *  words containing each "section" size.  That is followed num_sections
445          *  4 byte words containing each section "start" address.
446          *
447          *  Following the above header, the .sys file contains num_sections,
448          *  where each section size is specified, newline delineatetd 12 byte
449          *  microcode instructions.
450          */
451         num_sections = *(u32 *)(fw->data + index);
452         index += 4;
453         ASSERT(num_sections <= 3);
454         for (i = 0; i < num_sections; i++) {
455                 sectionSize[i] = *(u32 *)(fw->data + index);
456                 index += 4;
457         }
458         for (i = 0; i < num_sections; i++) {
459                 sectionStart[i] = *(u32 *)(fw->data + index);
460                 index += 4;
461         }
462
463         /* First, reset the card */
464         WRITE_REG(HwRegs->Reset, 0xDEAD, FLUSH);
465         udelay(50);
466         HwRegs = adapter->HwRegs;
467
468         /*
469          * Download each section of the microcode as specified in
470          * sectionSize[index] to sectionStart[index] address.  As
471          * described above, the .sys file contains 12 byte word
472          * microcode instructions. The *download.sys file is generated
473          * using the objtosys.exe utility that was built for Sahara
474          * microcode.
475          */
476         /* See usage of this below when we read back for parity */
477         ucode_start = index;
478         instruction = *(u32 *)(fw->data + index);
479         index += 4;
480
481         for (Section = 0; Section < num_sections; Section++) {
482                 BaseAddress = sectionStart[Section];
483                 /* Size in instructions */
484                 ThisSectionSize = sectionSize[Section] / 12;
485                 for (AddressOffset = 0; AddressOffset < ThisSectionSize;
486                      AddressOffset++) {
487                         u32 first_instr = 0;  /* See comment below */
488
489                         Address = BaseAddress + AddressOffset;
490                         ASSERT((Address & ~MICROCODE_ADDRESS_MASK) == 0);
491                         /* Write instruction bits 31 - 0 (low) */
492                         first_instr = instruction;
493                         WRITE_REG(HwRegs->UcodeDataLow, instruction, FLUSH);
494                         instruction = *(u32 *)(fw->data + index);
495                         index += 4;  /* Advance to the "next" instruction */
496
497                         /* Write instruction bits 63-32 (middle) */
498                         WRITE_REG(HwRegs->UcodeDataMiddle, instruction, FLUSH);
499                         instruction = *(u32 *)(fw->data + index);
500                         index += 4;  /* Advance to the "next" instruction */
501
502                         /* Write instruction bits 95-64 (high) */
503                         WRITE_REG(HwRegs->UcodeDataHigh, instruction, FLUSH);
504                         instruction = *(u32 *)(fw->data + index);
505                         index += 4;  /* Advance to the "next" instruction */
506
507                         /* Write instruction address with the WRITE bit set */
508                         WRITE_REG(HwRegs->UcodeAddr,
509                                   (Address | MICROCODE_ADDRESS_WRITE), FLUSH);
510                         /*
511                          * Sahara bug in the ucode download logic - the write to DataLow
512                          * for the next instruction could get corrupted.  To avoid this,
513                          * write to DataLow again for this instruction (which may get
514                          * corrupted, but it doesn't matter), then increment the address
515                          * and write the data for the next instruction to DataLow.  That
516                          * write should succeed.
517                          */
518                         WRITE_REG(HwRegs->UcodeDataLow, first_instr, FLUSH);
519                 }
520         }
521         /*
522          * Now repeat the entire operation reading the instruction back and
523          * checking for parity errors
524          */
525         index = ucode_start;
526
527         for (Section = 0; Section < num_sections; Section++) {
528                 BaseAddress = sectionStart[Section];
529                 /* Size in instructions */
530                 ThisSectionSize = sectionSize[Section] / 12;
531                 for (AddressOffset = 0; AddressOffset < ThisSectionSize;
532                      AddressOffset++) {
533                         Address = BaseAddress + AddressOffset;
534                         /* Write the address with the READ bit set */
535                         WRITE_REG(HwRegs->UcodeAddr,
536                                   (Address | MICROCODE_ADDRESS_READ), FLUSH);
537                         /* Read it back and check parity bit. */
538                         READ_REG(HwRegs->UcodeAddr, ValueRead);
539                         if (ValueRead & MICROCODE_ADDRESS_PARITY) {
540                                 DBG_ERROR("sxg: %s PARITY ERROR\n",
541                                           __func__);
542
543                                 return FALSE;   /* Parity error */
544                         }
545                         ASSERT((ValueRead & MICROCODE_ADDRESS_MASK) == Address);
546                         /* Read the instruction back and compare */
547                         /* First instruction */
548                         instruction = *(u32 *)(fw->data + index);
549                         index += 4;
550                         READ_REG(HwRegs->UcodeDataLow, ValueRead);
551                         if (ValueRead != instruction) {
552                                 DBG_ERROR("sxg: %s MISCOMPARE LOW\n",
553                                           __func__);
554                                 return FALSE;   /* Miscompare */
555                         }
556                         instruction = *(u32 *)(fw->data + index);
557                         index += 4;
558                         READ_REG(HwRegs->UcodeDataMiddle, ValueRead);
559                         if (ValueRead != instruction) {
560                                 DBG_ERROR("sxg: %s MISCOMPARE MIDDLE\n",
561                                           __func__);
562                                 return FALSE;   /* Miscompare */
563                         }
564                         instruction = *(u32 *)(fw->data + index);
565                         index += 4;
566                         READ_REG(HwRegs->UcodeDataHigh, ValueRead);
567                         if (ValueRead != instruction) {
568                                 DBG_ERROR("sxg: %s MISCOMPARE HIGH\n",
569                                           __func__);
570                                 return FALSE;   /* Miscompare */
571                         }
572                 }
573         }
574
575         /* download finished */
576         release_firmware(fw);
577         /* Everything OK, Go. */
578         WRITE_REG(HwRegs->UcodeAddr, MICROCODE_ADDRESS_GO, FLUSH);
579
580         /*
581          * Poll the CardUp register to wait for microcode to initialize
582          * Give up after 10,000 attemps (500ms).
583          */
584         for (i = 0; i < 10000; i++) {
585                 udelay(50);
586                 READ_REG(adapter->UcodeRegs[0].CardUp, ValueRead);
587                 if (ValueRead == 0xCAFE) {
588                         break;
589                 }
590         }
591         if (i == 10000) {
592                 DBG_ERROR("sxg: %s TIMEOUT bringing up card - verify MICROCODE\n", __func__);
593
594                 return FALSE;   /* Timeout */
595         }
596         /*
597          * Now write the LoadSync register.  This is used to
598          * synchronize with the card so it can scribble on the memory
599          * that contained 0xCAFE from the "CardUp" step above
600          */
601         if (UcodeSel == SXG_UCODE_SYSTEM) {
602                 WRITE_REG(adapter->UcodeRegs[0].LoadSync, 0, FLUSH);
603         }
604
605         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDnldUcd",
606                   adapter, 0, 0, 0);
607         return (TRUE);
608 }
609
610 /*
611  * sxg_allocate_resources - Allocate memory and locks
612  *
613  * Arguments -
614  *      adapter - A pointer to our adapter structure
615  *
616  * Return - int
617  */
618 static int sxg_allocate_resources(struct adapter_t *adapter)
619 {
620         int status = STATUS_SUCCESS;
621         u32 RssIds, IsrCount;
622         /* struct sxg_xmt_ring  *XmtRing; */
623         /* struct sxg_rcv_ring  *RcvRing; */
624
625         DBG_ERROR("%s ENTER\n", __func__);
626
627         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocRes",
628                   adapter, 0, 0, 0);
629
630         /* Windows tells us how many CPUs it plans to use for */
631         /* RSS */
632         RssIds = SXG_RSS_CPU_COUNT(adapter);
633         IsrCount = adapter->msi_enabled ? RssIds : 1;
634
635         DBG_ERROR("%s Setup the spinlocks\n", __func__);
636
637         /* Allocate spinlocks and initialize listheads first. */
638         spin_lock_init(&adapter->RcvQLock);
639         spin_lock_init(&adapter->SglQLock);
640         spin_lock_init(&adapter->XmtZeroLock);
641         spin_lock_init(&adapter->Bit64RegLock);
642         spin_lock_init(&adapter->AdapterLock);
643         atomic_set(&adapter->pending_allocations, 0);
644
645         DBG_ERROR("%s Setup the lists\n", __func__);
646
647         InitializeListHead(&adapter->FreeRcvBuffers);
648         InitializeListHead(&adapter->FreeRcvBlocks);
649         InitializeListHead(&adapter->AllRcvBlocks);
650         InitializeListHead(&adapter->FreeSglBuffers);
651         InitializeListHead(&adapter->AllSglBuffers);
652
653         /*
654          * Mark these basic allocations done.  This flags essentially
655          * tells the SxgFreeResources routine that it can grab spinlocks
656          * and reference listheads.
657          */
658         adapter->BasicAllocations = TRUE;
659         /*
660          * Main allocation loop.  Start with the maximum supported by
661          * the microcode and back off if memory allocation
662          * fails.  If we hit a minimum, fail.
663          */
664
665         for (;;) {
666                 DBG_ERROR("%s Allocate XmtRings size[%x]\n", __func__,
667                           (unsigned int)(sizeof(struct sxg_xmt_ring) * 1));
668
669                 /*
670                  * Start with big items first - receive and transmit rings.
671                  * At the moment I'm going to keep the ring size fixed and
672                  * adjust the TCBs if we fail.  Later we might
673                  * consider reducing the ring size as well..
674                  */
675                 adapter->XmtRings = pci_alloc_consistent(adapter->pcidev,
676                                                  sizeof(struct sxg_xmt_ring) *
677                                                  1,
678                                                  &adapter->PXmtRings);
679                 DBG_ERROR("%s XmtRings[%p]\n", __func__, adapter->XmtRings);
680
681                 if (!adapter->XmtRings) {
682                         goto per_tcb_allocation_failed;
683                 }
684                 memset(adapter->XmtRings, 0, sizeof(struct sxg_xmt_ring) * 1);
685
686                 DBG_ERROR("%s Allocate RcvRings size[%x]\n", __func__,
687                           (unsigned int)(sizeof(struct sxg_rcv_ring) * 1));
688                 adapter->RcvRings =
689                     pci_alloc_consistent(adapter->pcidev,
690                                          sizeof(struct sxg_rcv_ring) * 1,
691                                          &adapter->PRcvRings);
692                 DBG_ERROR("%s RcvRings[%p]\n", __func__, adapter->RcvRings);
693                 if (!adapter->RcvRings) {
694                         goto per_tcb_allocation_failed;
695                 }
696                 memset(adapter->RcvRings, 0, sizeof(struct sxg_rcv_ring) * 1);
697                 adapter->ucode_stats = kzalloc(sizeof(struct sxg_ucode_stats), GFP_ATOMIC);
698                 adapter->pucode_stats = pci_map_single(adapter->pcidev,
699                                                 adapter->ucode_stats,
700                                                 sizeof(struct sxg_ucode_stats),
701                                                 PCI_DMA_FROMDEVICE);
702 //              memset(adapter->ucode_stats, 0, sizeof(struct sxg_ucode_stats));
703                 break;
704
705               per_tcb_allocation_failed:
706                 /* an allocation failed.  Free any successful allocations. */
707                 if (adapter->XmtRings) {
708                         pci_free_consistent(adapter->pcidev,
709                                             sizeof(struct sxg_xmt_ring) * 1,
710                                             adapter->XmtRings,
711                                             adapter->PXmtRings);
712                         adapter->XmtRings = NULL;
713                 }
714                 if (adapter->RcvRings) {
715                         pci_free_consistent(adapter->pcidev,
716                                             sizeof(struct sxg_rcv_ring) * 1,
717                                             adapter->RcvRings,
718                                             adapter->PRcvRings);
719                         adapter->RcvRings = NULL;
720                 }
721                 /* Loop around and try again.... */
722                 if (adapter->ucode_stats) {
723                         pci_unmap_single(adapter->pcidev,
724                                         sizeof(struct sxg_ucode_stats),
725                                         adapter->pucode_stats, PCI_DMA_FROMDEVICE);
726                         adapter->ucode_stats = NULL;
727                 }
728
729         }
730
731         DBG_ERROR("%s Initialize RCV ZERO and XMT ZERO rings\n", __func__);
732         /* Initialize rcv zero and xmt zero rings */
733         SXG_INITIALIZE_RING(adapter->RcvRingZeroInfo, SXG_RCV_RING_SIZE);
734         SXG_INITIALIZE_RING(adapter->XmtRingZeroInfo, SXG_XMT_RING_SIZE);
735
736         /* Sanity check receive data structure format */
737         /* ASSERT((adapter->ReceiveBufferSize == SXG_RCV_DATA_BUFFER_SIZE) ||
738                (adapter->ReceiveBufferSize == SXG_RCV_JUMBO_BUFFER_SIZE)); */
739         ASSERT(sizeof(struct sxg_rcv_descriptor_block) ==
740                SXG_RCV_DESCRIPTOR_BLOCK_SIZE);
741
742         DBG_ERROR("%s Allocate EventRings size[%x]\n", __func__,
743                   (unsigned int)(sizeof(struct sxg_event_ring) * RssIds));
744
745         /* Allocate event queues. */
746         adapter->EventRings = pci_alloc_consistent(adapter->pcidev,
747                                            sizeof(struct sxg_event_ring) *
748                                            RssIds,
749                                            &adapter->PEventRings);
750
751         if (!adapter->EventRings) {
752                 /* Caller will call SxgFreeAdapter to clean up above
753                  * allocations */
754                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF8",
755                           adapter, SXG_MAX_ENTRIES, 0, 0);
756                 status = STATUS_RESOURCES;
757                 goto per_tcb_allocation_failed;
758         }
759         memset(adapter->EventRings, 0, sizeof(struct sxg_event_ring) * RssIds);
760
761         DBG_ERROR("%s Allocate ISR size[%x]\n", __func__, IsrCount);
762         /* Allocate ISR */
763         adapter->Isr = pci_alloc_consistent(adapter->pcidev,
764                                             IsrCount, &adapter->PIsr);
765         if (!adapter->Isr) {
766                 /* Caller will call SxgFreeAdapter to clean up above
767                  * allocations */
768                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF9",
769                           adapter, SXG_MAX_ENTRIES, 0, 0);
770                 status = STATUS_RESOURCES;
771                 goto per_tcb_allocation_failed;
772         }
773         memset(adapter->Isr, 0, sizeof(u32) * IsrCount);
774
775         DBG_ERROR("%s Allocate shared XMT ring zero index location size[%x]\n",
776                   __func__, (unsigned int)sizeof(u32));
777
778         /* Allocate shared XMT ring zero index location */
779         adapter->XmtRingZeroIndex = pci_alloc_consistent(adapter->pcidev,
780                                                          sizeof(u32),
781                                                          &adapter->
782                                                          PXmtRingZeroIndex);
783         if (!adapter->XmtRingZeroIndex) {
784                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF10",
785                           adapter, SXG_MAX_ENTRIES, 0, 0);
786                 status = STATUS_RESOURCES;
787                 goto per_tcb_allocation_failed;
788         }
789         memset(adapter->XmtRingZeroIndex, 0, sizeof(u32));
790
791         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlcResS",
792                   adapter, SXG_MAX_ENTRIES, 0, 0);
793
794         return status;
795 }
796
797 /*
798  * sxg_config_pci -
799  *
800  * Set up PCI Configuration space
801  *
802  * Arguments -
803  *              pcidev                  - A pointer to our adapter structure
804  */
805 static void sxg_config_pci(struct pci_dev *pcidev)
806 {
807         u16 pci_command;
808         u16 new_command;
809
810         pci_read_config_word(pcidev, PCI_COMMAND, &pci_command);
811         DBG_ERROR("sxg: %s  PCI command[%4.4x]\n", __func__, pci_command);
812         /* Set the command register */
813         new_command = pci_command | (
814                                      /* Memory Space Enable */
815                                      PCI_COMMAND_MEMORY |
816                                      /* Bus master enable */
817                                      PCI_COMMAND_MASTER |
818                                      /* Memory write and invalidate */
819                                      PCI_COMMAND_INVALIDATE |
820                                      /* Parity error response */
821                                      PCI_COMMAND_PARITY |
822                                      /* System ERR */
823                                      PCI_COMMAND_SERR |
824                                      /* Fast back-to-back */
825                                      PCI_COMMAND_FAST_BACK);
826         if (pci_command != new_command) {
827                 DBG_ERROR("%s -- Updating PCI COMMAND register %4.4x->%4.4x.\n",
828                           __func__, pci_command, new_command);
829                 pci_write_config_word(pcidev, PCI_COMMAND, new_command);
830         }
831 }
832
833 /*
834  * sxg_read_config
835  *      @adapter : Pointer to the adapter structure for the card
836  * This function will read the configuration data from EEPROM/FLASH
837  */
838 static inline int sxg_read_config(struct adapter_t *adapter)
839 {
840         /* struct sxg_config    data; */
841         struct sxg_config       *config;
842         struct sw_cfg_data      *data;
843         dma_addr_t              p_addr;
844         unsigned long           status;
845         unsigned long           i;
846         config = pci_alloc_consistent(adapter->pcidev,
847                                         sizeof(struct sxg_config), &p_addr);
848
849         if(!config) {
850                 /*
851                  * We cant get even this much memory. Raise a hell
852                  * Get out of here
853                  */
854                 printk(KERN_ERR"%s : Could not allocate memory for reading \
855                                  EEPROM\n", __func__);
856                 return -ENOMEM;
857         }
858
859         data = &config->SwCfg;
860
861     /* Initialize (reflective memory) status register */
862         WRITE_REG(adapter->UcodeRegs[0].ConfigStat, SXG_CFG_TIMEOUT, TRUE);
863
864     /* Send request to fetch configuration data */
865         WRITE_REG64(adapter, adapter->UcodeRegs[0].Config, p_addr, 0);
866         for(i=0; i<1000; i++) {
867                 READ_REG(adapter->UcodeRegs[0].ConfigStat, status);
868                 if (status != SXG_CFG_TIMEOUT)
869                         break;
870                 mdelay(1);                      /* Do we really need this */
871         }
872
873         switch(status) {
874         /* Config read from EEPROM succeeded */
875         case SXG_CFG_LOAD_EEPROM:
876         /* Config read from Flash succeeded */
877         case SXG_CFG_LOAD_FLASH:
878                 /*
879                  * Copy the MAC address to adapter structure
880                  * TODO: We are not doing the remaining part : FRU, etc
881                  */
882                 memcpy(adapter->macaddr, data->MacAddr[0].MacAddr,
883                         sizeof(struct sxg_config_mac));
884                 break;
885         case SXG_CFG_TIMEOUT:
886         case SXG_CFG_LOAD_INVALID:
887         case SXG_CFG_LOAD_ERROR:
888         default:        /* Fix default handler later */
889                 printk(KERN_WARNING"%s  : We could not read the config \
890                         word. Status = %ld\n", __func__, status);
891                 break;
892         }
893         pci_free_consistent(adapter->pcidev, sizeof(struct sw_cfg_data), data,
894                                 p_addr);
895         if (adapter->netdev) {
896                 memcpy(adapter->netdev->dev_addr, adapter->currmacaddr, 6);
897                 memcpy(adapter->netdev->perm_addr, adapter->currmacaddr, 6);
898         }
899         sxg_dbg_macaddrs(adapter);
900
901         return status;
902 }
903
904 static const struct net_device_ops sxg_netdev_ops = {
905         .ndo_open               = sxg_entry_open,
906         .ndo_stop               = sxg_entry_halt,
907         .ndo_start_xmit         = sxg_send_packets,
908         .ndo_do_ioctl           = sxg_ioctl,
909         .ndo_change_mtu         = sxg_change_mtu,
910         .ndo_get_stats          = sxg_get_stats,
911         .ndo_set_multicast_list = sxg_mcast_set_list,
912         .ndo_validate_addr      = eth_validate_addr,
913 #if XXXTODO
914         .ndo_set_mac_address    = sxg_mac_set_address,
915 #else
916         .ndo_set_mac_address    = eth_mac_addr,
917 #endif
918 };
919
920 static int sxg_entry_probe(struct pci_dev *pcidev,
921                            const struct pci_device_id *pci_tbl_entry)
922 {
923         static int did_version = 0;
924         int err;
925         struct net_device *netdev;
926         struct adapter_t *adapter;
927         void __iomem *memmapped_ioaddr;
928         u32 status = 0;
929         ulong mmio_start = 0;
930         ulong mmio_len = 0;
931         unsigned char revision_id;
932
933         DBG_ERROR("sxg: %s 2.6 VERSION ENTER jiffies[%lx] cpu %d\n",
934                   __func__, jiffies, smp_processor_id());
935
936         /* Initialize trace buffer */
937 #ifdef ATKDBG
938         SxgTraceBuffer = &LSxgTraceBuffer;
939         SXG_TRACE_INIT(SxgTraceBuffer, TRACE_NOISY);
940 #endif
941
942         sxg_global.dynamic_intagg = dynamic_intagg;
943
944         err = pci_enable_device(pcidev);
945
946         DBG_ERROR("Call pci_enable_device(%p)  status[%x]\n", pcidev, err);
947         if (err) {
948                 return err;
949         }
950
951         if (sxg_debug > 0 && did_version++ == 0) {
952                 printk(KERN_INFO "%s\n", sxg_banner);
953                 printk(KERN_INFO "%s\n", SXG_DRV_VERSION);
954         }
955
956         pci_read_config_byte(pcidev, PCI_REVISION_ID, &revision_id);
957
958         if (!(err = pci_set_dma_mask(pcidev, DMA_BIT_MASK(64)))) {
959                 DBG_ERROR("pci_set_dma_mask(DMA_BIT_MASK(64)) successful\n");
960         } else {
961                 if ((err = pci_set_dma_mask(pcidev, DMA_BIT_MASK(32)))) {
962                         DBG_ERROR
963                             ("No usable DMA configuration, aborting  err[%x]\n",
964                              err);
965                         return err;
966                 }
967                 DBG_ERROR("pci_set_dma_mask(DMA_BIT_MASK(32)) successful\n");
968         }
969
970         DBG_ERROR("Call pci_request_regions\n");
971
972         err = pci_request_regions(pcidev, sxg_driver_name);
973         if (err) {
974                 DBG_ERROR("pci_request_regions FAILED err[%x]\n", err);
975                 return err;
976         }
977
978         DBG_ERROR("call pci_set_master\n");
979         pci_set_master(pcidev);
980
981         DBG_ERROR("call alloc_etherdev\n");
982         netdev = alloc_etherdev(sizeof(struct adapter_t));
983         if (!netdev) {
984                 err = -ENOMEM;
985                 goto err_out_exit_sxg_probe;
986         }
987         DBG_ERROR("alloc_etherdev for slic netdev[%p]\n", netdev);
988
989         SET_NETDEV_DEV(netdev, &pcidev->dev);
990
991         pci_set_drvdata(pcidev, netdev);
992         adapter = netdev_priv(netdev);
993         if (revision_id == 1) {
994                 adapter->asictype = SAHARA_REV_A;
995         } else if (revision_id == 2) {
996                 adapter->asictype = SAHARA_REV_B;
997         } else {
998                 ASSERT(0);
999                 DBG_ERROR("%s Unexpected revision ID %x\n", __func__, revision_id);
1000                 goto err_out_exit_sxg_probe;
1001         }
1002         adapter->netdev = netdev;
1003         adapter->pcidev = pcidev;
1004
1005         mmio_start = pci_resource_start(pcidev, 0);
1006         mmio_len = pci_resource_len(pcidev, 0);
1007
1008         DBG_ERROR("sxg: call ioremap(mmio_start[%lx], mmio_len[%lx])\n",
1009                   mmio_start, mmio_len);
1010
1011         memmapped_ioaddr = ioremap(mmio_start, mmio_len);
1012         DBG_ERROR("sxg: %s MEMMAPPED_IOADDR [%p]\n", __func__,
1013                   memmapped_ioaddr);
1014         if (!memmapped_ioaddr) {
1015                 DBG_ERROR("%s cannot remap MMIO region %lx @ %lx\n",
1016                           __func__, mmio_len, mmio_start);
1017                 goto err_out_free_mmio_region_0;
1018         }
1019
1020         DBG_ERROR("sxg: %s found Alacritech SXG PCI, MMIO at %p, start[%lx] \
1021               len[%lx], IRQ %d.\n", __func__, memmapped_ioaddr, mmio_start,
1022                                               mmio_len, pcidev->irq);
1023
1024         adapter->HwRegs = (void *)memmapped_ioaddr;
1025         adapter->base_addr = memmapped_ioaddr;
1026
1027         mmio_start = pci_resource_start(pcidev, 2);
1028         mmio_len = pci_resource_len(pcidev, 2);
1029
1030         DBG_ERROR("sxg: call ioremap(mmio_start[%lx], mmio_len[%lx])\n",
1031                   mmio_start, mmio_len);
1032
1033         memmapped_ioaddr = ioremap(mmio_start, mmio_len);
1034         DBG_ERROR("sxg: %s MEMMAPPED_IOADDR [%p]\n", __func__,
1035                   memmapped_ioaddr);
1036         if (!memmapped_ioaddr) {
1037                 DBG_ERROR("%s cannot remap MMIO region %lx @ %lx\n",
1038                           __func__, mmio_len, mmio_start);
1039                 goto err_out_free_mmio_region_2;
1040         }
1041
1042         DBG_ERROR("sxg: %s found Alacritech SXG PCI, MMIO at %p, "
1043                   "start[%lx] len[%lx], IRQ %d.\n", __func__,
1044                   memmapped_ioaddr, mmio_start, mmio_len, pcidev->irq);
1045
1046         adapter->UcodeRegs = (void *)memmapped_ioaddr;
1047
1048         adapter->State = SXG_STATE_INITIALIZING;
1049         /*
1050          * Maintain a list of all adapters anchored by
1051          * the global SxgDriver structure.
1052          */
1053         adapter->Next = SxgDriver.Adapters;
1054         SxgDriver.Adapters = adapter;
1055         adapter->AdapterID = ++SxgDriver.AdapterID;
1056
1057         /* Initialize CRC table used to determine multicast hash */
1058         sxg_mcast_init_crc32();
1059
1060         adapter->JumboEnabled = FALSE;
1061         adapter->RssEnabled = FALSE;
1062         if (adapter->JumboEnabled) {
1063                 adapter->FrameSize = JUMBOMAXFRAME;
1064                 adapter->ReceiveBufferSize = SXG_RCV_JUMBO_BUFFER_SIZE;
1065         } else {
1066                 adapter->FrameSize = ETHERMAXFRAME;
1067                 adapter->ReceiveBufferSize = SXG_RCV_DATA_BUFFER_SIZE;
1068         }
1069
1070         /*
1071          *    status = SXG_READ_EEPROM(adapter);
1072          *    if (!status) {
1073          *        goto sxg_init_bad;
1074          *    }
1075          */
1076
1077         DBG_ERROR("sxg: %s ENTER sxg_config_pci\n", __func__);
1078         sxg_config_pci(pcidev);
1079         DBG_ERROR("sxg: %s EXIT sxg_config_pci\n", __func__);
1080
1081         DBG_ERROR("sxg: %s ENTER sxg_init_driver\n", __func__);
1082         sxg_init_driver();
1083         DBG_ERROR("sxg: %s EXIT sxg_init_driver\n", __func__);
1084
1085         adapter->vendid = pci_tbl_entry->vendor;
1086         adapter->devid = pci_tbl_entry->device;
1087         adapter->subsysid = pci_tbl_entry->subdevice;
1088         adapter->slotnumber = ((pcidev->devfn >> 3) & 0x1F);
1089         adapter->functionnumber = (pcidev->devfn & 0x7);
1090         adapter->memorylength = pci_resource_len(pcidev, 0);
1091         adapter->irq = pcidev->irq;
1092         adapter->next_netdevice = head_netdevice;
1093         head_netdevice = netdev;
1094         adapter->port = 0;      /*adapter->functionnumber; */
1095
1096         /* Allocate memory and other resources */
1097         DBG_ERROR("sxg: %s ENTER sxg_allocate_resources\n", __func__);
1098         status = sxg_allocate_resources(adapter);
1099         DBG_ERROR("sxg: %s EXIT sxg_allocate_resources status %x\n",
1100                   __func__, status);
1101         if (status != STATUS_SUCCESS) {
1102                 goto err_out_unmap;
1103         }
1104
1105         DBG_ERROR("sxg: %s ENTER sxg_download_microcode\n", __func__);
1106         if (sxg_download_microcode(adapter, SXG_UCODE_SYSTEM)) {
1107                 DBG_ERROR("sxg: %s ENTER sxg_adapter_set_hwaddr\n",
1108                           __func__);
1109                 sxg_read_config(adapter);
1110                 status = sxg_adapter_set_hwaddr(adapter);
1111         } else {
1112                 adapter->state = ADAPT_FAIL;
1113                 adapter->linkstate = LINK_DOWN;
1114                 DBG_ERROR("sxg_download_microcode FAILED status[%x]\n", status);
1115         }
1116
1117         netdev->base_addr = (unsigned long)adapter->base_addr;
1118         netdev->irq = adapter->irq;
1119         netdev->netdev_ops = &sxg_netdev_ops;
1120         SET_ETHTOOL_OPS(netdev, &sxg_nic_ethtool_ops);
1121         netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1122         err = sxg_set_interrupt_capability(adapter);
1123         if (err != STATUS_SUCCESS)
1124                 DBG_ERROR("Cannot enable MSI-X capability\n");
1125
1126         strcpy(netdev->name, "eth%d");
1127         /*  strcpy(netdev->name, pci_name(pcidev)); */
1128         if ((err = register_netdev(netdev))) {
1129                 DBG_ERROR("Cannot register net device, aborting. %s\n",
1130                           netdev->name);
1131                 goto err_out_unmap;
1132         }
1133
1134         netif_napi_add(netdev, &adapter->napi,
1135                 sxg_poll, SXG_NETDEV_WEIGHT);
1136         netdev->watchdog_timeo = 2 * HZ;
1137         init_timer(&adapter->watchdog_timer);
1138         adapter->watchdog_timer.function = &sxg_watchdog;
1139         adapter->watchdog_timer.data = (unsigned long) adapter;
1140         INIT_WORK(&adapter->update_link_status, sxg_update_link_status);
1141
1142         DBG_ERROR
1143             ("sxg: %s addr 0x%lx, irq %d, MAC addr \
1144                 %02X:%02X:%02X:%02X:%02X:%02X\n",
1145              netdev->name, netdev->base_addr, pcidev->irq, netdev->dev_addr[0],
1146              netdev->dev_addr[1], netdev->dev_addr[2], netdev->dev_addr[3],
1147              netdev->dev_addr[4], netdev->dev_addr[5]);
1148
1149         /* sxg_init_bad: */
1150         ASSERT(status == FALSE);
1151         /* sxg_free_adapter(adapter); */
1152
1153         DBG_ERROR("sxg: %s EXIT status[%x] jiffies[%lx] cpu %d\n", __func__,
1154                   status, jiffies, smp_processor_id());
1155         return status;
1156
1157       err_out_unmap:
1158         sxg_free_resources(adapter);
1159
1160       err_out_free_mmio_region_2:
1161
1162         mmio_start = pci_resource_start(pcidev, 2);
1163         mmio_len = pci_resource_len(pcidev, 2);
1164         release_mem_region(mmio_start, mmio_len);
1165
1166       err_out_free_mmio_region_0:
1167
1168         mmio_start = pci_resource_start(pcidev, 0);
1169         mmio_len = pci_resource_len(pcidev, 0);
1170
1171         release_mem_region(mmio_start, mmio_len);
1172
1173       err_out_exit_sxg_probe:
1174
1175         DBG_ERROR("%s EXIT jiffies[%lx] cpu %d\n", __func__, jiffies,
1176                   smp_processor_id());
1177
1178         pci_disable_device(pcidev);
1179         DBG_ERROR("sxg: %s deallocate device\n", __func__);
1180         kfree(netdev);
1181         printk("Exit %s, Sxg driver loading failed..\n", __func__);
1182
1183         return -ENODEV;
1184 }
1185
1186 /*
1187  * LINE BASE Interrupt routines..
1188  *
1189  * sxg_disable_interrupt
1190  *
1191  * DisableInterrupt Handler
1192  *
1193  * Arguments:
1194  *
1195  *   adapter:   Our adapter structure
1196  *
1197  * Return Value:
1198  *      None.
1199  */
1200 static void sxg_disable_interrupt(struct adapter_t *adapter)
1201 {
1202         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DisIntr",
1203                   adapter, adapter->InterruptsEnabled, 0, 0);
1204         /* For now, RSS is disabled with line based interrupts */
1205         ASSERT(adapter->RssEnabled == FALSE);
1206         /* Turn off interrupts by writing to the icr register. */
1207         WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_DISABLE), TRUE);
1208
1209         adapter->InterruptsEnabled = 0;
1210
1211         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDisIntr",
1212                   adapter, adapter->InterruptsEnabled, 0, 0);
1213 }
1214
1215 /*
1216  * sxg_enable_interrupt
1217  *
1218  * EnableInterrupt Handler
1219  *
1220  * Arguments:
1221  *
1222  *   adapter:   Our adapter structure
1223  *
1224  * Return Value:
1225  *      None.
1226  */
1227 static void sxg_enable_interrupt(struct adapter_t *adapter)
1228 {
1229         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "EnIntr",
1230                   adapter, adapter->InterruptsEnabled, 0, 0);
1231         /* For now, RSS is disabled with line based interrupts */
1232         ASSERT(adapter->RssEnabled == FALSE);
1233         /* Turn on interrupts by writing to the icr register. */
1234         WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_ENABLE), TRUE);
1235
1236         adapter->InterruptsEnabled = 1;
1237
1238         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XEnIntr",
1239                   adapter, 0, 0, 0);
1240 }
1241
1242 /*
1243  * sxg_isr - Process an line-based interrupt
1244  *
1245  * Arguments:
1246  *              Context         - Our adapter structure
1247  *              QueueDefault    - Output parameter to queue to default CPU
1248  *              TargetCpus      - Output bitmap to schedule DPC's
1249  *
1250  * Return Value: TRUE if our interrupt
1251  */
1252 static irqreturn_t sxg_isr(int irq, void *dev_id)
1253 {
1254         struct net_device *dev = (struct net_device *) dev_id;
1255         struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
1256
1257         if(adapter->state != ADAPT_UP)
1258                 return IRQ_NONE;
1259         adapter->Stats.NumInts++;
1260         if (adapter->Isr[0] == 0) {
1261                 /*
1262                  * The SLIC driver used to experience a number of spurious
1263                  * interrupts due to the delay associated with the masking of
1264                  * the interrupt (we'd bounce back in here).  If we see that
1265                  * again with Sahara,add a READ_REG of the Icr register after
1266                  * the WRITE_REG below.
1267                  */
1268                 adapter->Stats.FalseInts++;
1269                 return IRQ_NONE;
1270         }
1271         /*
1272          * Move the Isr contents and clear the value in
1273          * shared memory, and mask interrupts
1274          */
1275         /* ASSERT(adapter->IsrDpcsPending == 0); */
1276 #if XXXTODO                     /* RSS Stuff */
1277         /*
1278          * If RSS is enabled and the ISR specifies SXG_ISR_EVENT, then
1279          * schedule DPC's based on event queues.
1280          */
1281         if (adapter->RssEnabled && (adapter->IsrCopy[0] & SXG_ISR_EVENT)) {
1282                 for (i = 0;
1283                      i < adapter->RssSystemInfo->ProcessorInfo.RssCpuCount;
1284                      i++) {
1285                         struct sxg_event_ring *EventRing =
1286                                                 &adapter->EventRings[i];
1287                         struct sxg_event *Event =
1288                             &EventRing->Ring[adapter->NextEvent[i]];
1289                         unsigned char Cpu =
1290                             adapter->RssSystemInfo->RssIdToCpu[i];
1291                         if (Event->Status & EVENT_STATUS_VALID) {
1292                                 adapter->IsrDpcsPending++;
1293                                 CpuMask |= (1 << Cpu);
1294                         }
1295                 }
1296         }
1297         /*
1298          * Now, either schedule the CPUs specified by the CpuMask,
1299          * or queue default
1300          */
1301         if (CpuMask) {
1302                 *QueueDefault = FALSE;
1303         } else {
1304                 adapter->IsrDpcsPending = 1;
1305                 *QueueDefault = TRUE;
1306         }
1307         *TargetCpus = CpuMask;
1308 #endif
1309         sxg_interrupt(adapter);
1310
1311         return IRQ_HANDLED;
1312 }
1313
1314 static void sxg_interrupt(struct adapter_t *adapter)
1315 {
1316         WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_MASK), TRUE);
1317
1318         if (napi_schedule_prep(&adapter->napi)) {
1319                 __napi_schedule(&adapter->napi);
1320         }
1321 }
1322
1323 static void sxg_handle_interrupt(struct adapter_t *adapter, int *work_done,
1324                                          int budget)
1325 {
1326         /* unsigned char           RssId   = 0; */
1327         u32 NewIsr;
1328         int sxg_napi_continue = 1;
1329         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "HndlIntr",
1330                   adapter, adapter->IsrCopy[0], 0, 0);
1331         /* For now, RSS is disabled with line based interrupts */
1332         ASSERT(adapter->RssEnabled == FALSE);
1333
1334         adapter->IsrCopy[0] = adapter->Isr[0];
1335         adapter->Isr[0] = 0;
1336
1337         /* Always process the event queue. */
1338         while (sxg_napi_continue)
1339         {
1340                 sxg_process_event_queue(adapter,
1341                                 (adapter->RssEnabled ? /*RssId */ 0 : 0),
1342                                  &sxg_napi_continue, work_done, budget);
1343         }
1344
1345 #if XXXTODO                     /* RSS stuff */
1346         if (--adapter->IsrDpcsPending) {
1347                 /* We're done. */
1348                 ASSERT(adapter->RssEnabled);
1349                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DPCsPend",
1350                           adapter, 0, 0, 0);
1351                 return;
1352         }
1353 #endif
1354         /* Last (or only) DPC processes the ISR and clears the interrupt. */
1355         NewIsr = sxg_process_isr(adapter, 0);
1356         /* Reenable interrupts */
1357         adapter->IsrCopy[0] = 0;
1358         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "ClearIsr",
1359                   adapter, NewIsr, 0, 0);
1360
1361         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XHndlInt",
1362                   adapter, 0, 0, 0);
1363 }
1364 static int sxg_poll(struct napi_struct *napi, int budget)
1365 {
1366         struct adapter_t *adapter = container_of(napi, struct adapter_t, napi);
1367         int work_done = 0;
1368
1369         sxg_handle_interrupt(adapter, &work_done, budget);
1370
1371         if (work_done < budget) {
1372                 napi_complete(napi);
1373                 WRITE_REG(adapter->UcodeRegs[0].Isr, 0, TRUE);
1374         }
1375         return work_done;
1376 }
1377
1378 /*
1379  * sxg_process_isr - Process an interrupt.  Called from the line-based and
1380  *                      message based interrupt DPC routines
1381  *
1382  * Arguments:
1383  *              adapter                 - Our adapter structure
1384  *              Queue                   - The ISR that needs processing
1385  *
1386  * Return Value:
1387  *      None
1388  */
1389 static int sxg_process_isr(struct adapter_t *adapter, u32 MessageId)
1390 {
1391         u32 Isr = adapter->IsrCopy[MessageId];
1392         u32 NewIsr = 0;
1393
1394         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "ProcIsr",
1395                   adapter, Isr, 0, 0);
1396
1397         /* Error */
1398         if (Isr & SXG_ISR_ERR) {
1399                 if (Isr & SXG_ISR_PDQF) {
1400                         adapter->Stats.PdqFull++;
1401                         DBG_ERROR("%s: SXG_ISR_ERR  PDQF!!\n", __func__);
1402                 }
1403                 /* No host buffer */
1404                 if (Isr & SXG_ISR_RMISS) {
1405                         /*
1406                          * There is a bunch of code in the SLIC driver which
1407                          * attempts to process more receive events per DPC
1408                          * if we start to fall behind.  We'll probablyd
1409                          * need to do something similar here, but hold
1410                          * off for now.  I don't want to make the code more
1411                          * complicated than strictly needed.
1412                          */
1413                         adapter->stats.rx_missed_errors++;
1414                         if (adapter->stats.rx_missed_errors< 5) {
1415                                 DBG_ERROR("%s: SXG_ISR_ERR  RMISS!!\n",
1416                                           __func__);
1417                         }
1418                 }
1419                 /* Card crash */
1420                 if (Isr & SXG_ISR_DEAD) {
1421                         /*
1422                          * Set aside the crash info and set the adapter state
1423                          * to RESET
1424                          */
1425                         adapter->CrashCpu = (unsigned char)
1426                                 ((Isr & SXG_ISR_CPU) >> SXG_ISR_CPU_SHIFT);
1427                         adapter->CrashLocation = (ushort) (Isr & SXG_ISR_CRASH);
1428                         adapter->Dead = TRUE;
1429                         DBG_ERROR("%s: ISR_DEAD %x, CPU: %d\n", __func__,
1430                                   adapter->CrashLocation, adapter->CrashCpu);
1431                 }
1432                 /* Event ring full */
1433                 if (Isr & SXG_ISR_ERFULL) {
1434                         /*
1435                          * Same issue as RMISS, really.  This means the
1436                          * host is falling behind the card.  Need to increase
1437                          * event ring size, process more events per interrupt,
1438                          * and/or reduce/remove interrupt aggregation.
1439                          */
1440                         adapter->Stats.EventRingFull++;
1441                         DBG_ERROR("%s: SXG_ISR_ERR  EVENT RING FULL!!\n",
1442                                   __func__);
1443                 }
1444                 /* Transmit drop - no DRAM buffers or XMT error */
1445                 if (Isr & SXG_ISR_XDROP) {
1446                         DBG_ERROR("%s: SXG_ISR_ERR  XDROP!!\n", __func__);
1447                 }
1448         }
1449         /* Slowpath send completions */
1450         if (Isr & SXG_ISR_SPSEND) {
1451                 sxg_complete_slow_send(adapter);
1452         }
1453         /* Dump */
1454         if (Isr & SXG_ISR_UPC) {
1455                 /* Maybe change when debug is added.. */
1456 //              ASSERT(adapter->DumpCmdRunning);
1457                 adapter->DumpCmdRunning = FALSE;
1458         }
1459         /* Link event */
1460         if (Isr & SXG_ISR_LINK) {
1461                 if (adapter->state != ADAPT_DOWN) {
1462                         adapter->link_status_changed = 1;
1463                         schedule_work(&adapter->update_link_status);
1464                 }
1465         }
1466         /* Debug - breakpoint hit */
1467         if (Isr & SXG_ISR_BREAK) {
1468                 /*
1469                  * At the moment AGDB isn't written to support interactive
1470                  * debug sessions.  When it is, this interrupt will be used to
1471                  * signal AGDB that it has hit a breakpoint.  For now, ASSERT.
1472                  */
1473                 ASSERT(0);
1474         }
1475         /* Heartbeat response */
1476         if (Isr & SXG_ISR_PING) {
1477                 adapter->PingOutstanding = FALSE;
1478         }
1479         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XProcIsr",
1480                   adapter, Isr, NewIsr, 0);
1481
1482         return (NewIsr);
1483 }
1484
1485 /*
1486  * sxg_rcv_checksum - Set the checksum for received packet
1487  *
1488  * Arguements:
1489  *              @adapter - Adapter structure on which packet is received
1490  *              @skb - Packet which is receieved
1491  *              @Event - Event read from hardware
1492  */
1493
1494 void sxg_rcv_checksum(struct adapter_t *adapter, struct sk_buff *skb,
1495                          struct sxg_event *Event)
1496 {
1497         skb->ip_summed = CHECKSUM_NONE;
1498         if (likely(adapter->flags & SXG_RCV_IP_CSUM_ENABLED)) {
1499                 if (likely(adapter->flags & SXG_RCV_TCP_CSUM_ENABLED)
1500                         && (Event->Status & EVENT_STATUS_TCPIP)) {
1501                         if(!(Event->Status & EVENT_STATUS_TCPBAD))
1502                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1503                 if(!(Event->Status & EVENT_STATUS_IPBAD))
1504                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1505                 } else if(Event->Status & EVENT_STATUS_IPONLY) {
1506                         if(!(Event->Status & EVENT_STATUS_IPBAD))
1507                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1508                 }
1509         }
1510 }
1511
1512 /*
1513  * sxg_process_event_queue - Process our event queue
1514  *
1515  * Arguments:
1516  *              - adapter       - Adapter structure
1517  *              - RssId         - The event queue requiring processing
1518  *
1519  * Return Value:
1520  *      None.
1521  */
1522 static u32 sxg_process_event_queue(struct adapter_t *adapter, u32 RssId,
1523                          int *sxg_napi_continue, int *work_done, int budget)
1524 {
1525         struct sxg_event_ring *EventRing = &adapter->EventRings[RssId];
1526         struct sxg_event *Event = &EventRing->Ring[adapter->NextEvent[RssId]];
1527         u32 EventsProcessed = 0, Batches = 0;
1528         struct sk_buff *skb;
1529 #ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
1530         struct sk_buff *prev_skb = NULL;
1531         struct sk_buff *IndicationList[SXG_RCV_ARRAYSIZE];
1532         u32 Index;
1533         struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
1534 #endif
1535         u32 ReturnStatus = 0;
1536         int sxg_rcv_data_buffers = SXG_RCV_DATA_BUFFERS;
1537
1538         ASSERT((adapter->State == SXG_STATE_RUNNING) ||
1539                (adapter->State == SXG_STATE_PAUSING) ||
1540                (adapter->State == SXG_STATE_PAUSED) ||
1541                (adapter->State == SXG_STATE_HALTING));
1542         /*
1543          * We may still have unprocessed events on the queue if
1544          * the card crashed.  Don't process them.
1545          */
1546         if (adapter->Dead) {
1547                 return (0);
1548         }
1549         /*
1550          *  In theory there should only be a single processor that
1551          * accesses this queue, and only at interrupt-DPC time.  So/
1552          * we shouldn't need a lock for any of this.
1553          */
1554         while (Event->Status & EVENT_STATUS_VALID) {
1555                 (*sxg_napi_continue) = 1;
1556                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "Event",
1557                           Event, Event->Code, Event->Status,
1558                           adapter->NextEvent);
1559                 switch (Event->Code) {
1560                 case EVENT_CODE_BUFFERS:
1561                         /* struct sxg_ring_info Head & Tail == unsigned char */
1562                         ASSERT(!(Event->CommandIndex & 0xFF00));
1563                         sxg_complete_descriptor_blocks(adapter,
1564                                                        Event->CommandIndex);
1565                         break;
1566                 case EVENT_CODE_SLOWRCV:
1567                         (*work_done)++;
1568                         --adapter->RcvBuffersOnCard;
1569                         if ((skb = sxg_slow_receive(adapter, Event))) {
1570                                 u32 rx_bytes;
1571 #ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
1572                                 /* Add it to our indication list */
1573                                 SXG_ADD_RCV_PACKET(adapter, skb, prev_skb,
1574                                                    IndicationList, num_skbs);
1575                                 /*
1576                                  * Linux, we just pass up each skb to the
1577                                  * protocol above at this point, there is no
1578                                  * capability of an indication list.
1579                                  */
1580 #else
1581                                 /* CHECK skb_pull(skb, INIC_RCVBUF_HEADSIZE); */
1582                                 /* (rcvbuf->length & IRHDDR_FLEN_MSK); */
1583                                 rx_bytes = Event->Length;
1584                                 adapter->stats.rx_packets++;
1585                                 adapter->stats.rx_bytes += rx_bytes;
1586                                 sxg_rcv_checksum(adapter, skb, Event);
1587                                 skb->dev = adapter->netdev;
1588                                 netif_receive_skb(skb);
1589 #endif
1590                         }
1591                         break;
1592                 default:
1593                         DBG_ERROR("%s: ERROR  Invalid EventCode %d\n",
1594                                   __func__, Event->Code);
1595                 /* ASSERT(0); */
1596                 }
1597                 /*
1598                  * See if we need to restock card receive buffers.
1599                  * There are two things to note here:
1600                  *  First - This test is not SMP safe.  The
1601                  *    adapter->BuffersOnCard field is protected via atomic
1602                  *    interlocked calls, but we do not protect it with respect
1603                  *    to these tests.  The only way to do that is with a lock,
1604                  *    and I don't want to grab a lock every time we adjust the
1605                  *    BuffersOnCard count.  Instead, we allow the buffer
1606                  *    replenishment to be off once in a while. The worst that
1607                  *    can happen is the card is given on more-or-less descriptor
1608                  *    block than the arbitrary value we've chosen. No big deal
1609                  *    In short DO NOT ADD A LOCK HERE, OR WHERE RcvBuffersOnCard
1610                  *    is adjusted.
1611                  *  Second - We expect this test to rarely
1612                  *    evaluate to true.  We attempt to refill descriptor blocks
1613                  *    as they are returned to us (sxg_complete_descriptor_blocks)
1614                  *    so The only time this should evaluate to true is when
1615                  *    sxg_complete_descriptor_blocks failed to allocate
1616                  *    receive buffers.
1617                  */
1618                 if (adapter->JumboEnabled)
1619                         sxg_rcv_data_buffers = SXG_JUMBO_RCV_DATA_BUFFERS;
1620
1621                 if (adapter->RcvBuffersOnCard < sxg_rcv_data_buffers) {
1622                         sxg_stock_rcv_buffers(adapter);
1623                 }
1624                 /*
1625                  * It's more efficient to just set this to zero.
1626                  * But clearing the top bit saves potential debug info...
1627                  */
1628                 Event->Status &= ~EVENT_STATUS_VALID;
1629                 /* Advance to the next event */
1630                 SXG_ADVANCE_INDEX(adapter->NextEvent[RssId], EVENT_RING_SIZE);
1631                 Event = &EventRing->Ring[adapter->NextEvent[RssId]];
1632                 EventsProcessed++;
1633                 if (EventsProcessed == EVENT_RING_BATCH) {
1634                         /* Release a batch of events back to the card */
1635                         WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
1636                                   EVENT_RING_BATCH, FALSE);
1637                         EventsProcessed = 0;
1638                         /*
1639                          * If we've processed our batch limit, break out of the
1640                          * loop and return SXG_ISR_EVENT to arrange for us to
1641                          * be called again
1642                          */
1643                         if (Batches++ == EVENT_BATCH_LIMIT) {
1644                                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer,
1645                                           TRACE_NOISY, "EvtLimit", Batches,
1646                                           adapter->NextEvent, 0, 0);
1647                                 ReturnStatus = SXG_ISR_EVENT;
1648                                 break;
1649                         }
1650                 }
1651                 if (*work_done >= budget) {
1652                         WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
1653                                   EventsProcessed, FALSE);
1654                         EventsProcessed = 0;
1655                         (*sxg_napi_continue) = 0;
1656                         break;
1657                 }
1658         }
1659         if (!(Event->Status & EVENT_STATUS_VALID))
1660                 (*sxg_napi_continue) = 0;
1661
1662 #ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
1663         /* Indicate any received dumb-nic frames */
1664         SXG_INDICATE_PACKETS(adapter, IndicationList, num_skbs);
1665 #endif
1666         /* Release events back to the card. */
1667         if (EventsProcessed) {
1668                 WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
1669                           EventsProcessed, FALSE);
1670         }
1671         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XPrcEvnt",
1672                   Batches, EventsProcessed, adapter->NextEvent, num_skbs);
1673
1674         return (ReturnStatus);
1675 }
1676
1677 /*
1678  * sxg_complete_slow_send - Complete slowpath or dumb-nic sends
1679  *
1680  * Arguments -
1681  *      adapter         - A pointer to our adapter structure
1682  * Return
1683  *      None
1684  */
1685 static void sxg_complete_slow_send(struct adapter_t *adapter)
1686 {
1687         struct sxg_xmt_ring *XmtRing = &adapter->XmtRings[0];
1688         struct sxg_ring_info *XmtRingInfo = &adapter->XmtRingZeroInfo;
1689         u32 *ContextType;
1690         struct sxg_cmd *XmtCmd;
1691         unsigned long flags = 0;
1692         unsigned long sgl_flags = 0;
1693         unsigned int processed_count = 0;
1694
1695         /*
1696          * NOTE - This lock is dropped and regrabbed in this loop.
1697          * This means two different processors can both be running/
1698          * through this loop. Be *very* careful.
1699          */
1700         spin_lock_irqsave(&adapter->XmtZeroLock, flags);
1701
1702         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnds",
1703                   adapter, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
1704
1705         while ((XmtRingInfo->Tail != *adapter->XmtRingZeroIndex)
1706                 && processed_count++ < SXG_COMPLETE_SLOW_SEND_LIMIT)  {
1707                 /*
1708                  * Locate the current Cmd (ring descriptor entry), and
1709                  * associated SGL, and advance the tail
1710                  */
1711                 SXG_RETURN_CMD(XmtRing, XmtRingInfo, XmtCmd, ContextType);
1712                 ASSERT(ContextType);
1713                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnd",
1714                           XmtRingInfo->Head, XmtRingInfo->Tail, XmtCmd, 0);
1715                 /* Clear the SGL field. */
1716                 XmtCmd->Sgl = 0;
1717
1718                 switch (*ContextType) {
1719                 case SXG_SGL_DUMB:
1720                         {
1721                                 struct sk_buff *skb;
1722                                 struct sxg_scatter_gather *SxgSgl =
1723                                         (struct sxg_scatter_gather *)ContextType;
1724                                 dma64_addr_t FirstSgeAddress;
1725                                 u32 FirstSgeLength;
1726
1727                                 /* Dumb-nic send.  Command context is the dumb-nic SGL */
1728                                 skb = (struct sk_buff *)ContextType;
1729                                 skb = SxgSgl->DumbPacket;
1730                                 FirstSgeAddress = XmtCmd->Buffer.FirstSgeAddress;
1731                                 FirstSgeLength = XmtCmd->Buffer.FirstSgeLength;
1732                                 /* Complete the send */
1733                                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer,
1734                                           TRACE_IMPORTANT, "DmSndCmp", skb, 0,
1735                                           0, 0);
1736                                 ASSERT(adapter->Stats.XmtQLen);
1737                                 /*
1738                                  * Now drop the lock and complete the send
1739                                  * back to Microsoft.  We need to drop the lock
1740                                  * because Microsoft can come back with a
1741                                  * chimney send, which results in a double trip
1742                                  * in SxgTcpOuput
1743                                  */
1744                                 spin_unlock_irqrestore(
1745                                         &adapter->XmtZeroLock, flags);
1746
1747                                 SxgSgl->DumbPacket = NULL;
1748                                 SXG_COMPLETE_DUMB_SEND(adapter, skb,
1749                                                         FirstSgeAddress,
1750                                                         FirstSgeLength);
1751                                 SXG_FREE_SGL_BUFFER(adapter, SxgSgl, NULL);
1752                                 /* and reacquire.. */
1753                                 spin_lock_irqsave(&adapter->XmtZeroLock, flags);
1754                         }
1755                         break;
1756                 default:
1757                         ASSERT(0);
1758                 }
1759         }
1760         spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
1761         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnd",
1762                   adapter, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
1763 }
1764
1765 /*
1766  * sxg_slow_receive
1767  *
1768  * Arguments -
1769  *      adapter         - A pointer to our adapter structure
1770  *      Event           - Receive event
1771  *
1772  * Return - skb
1773  */
1774 static struct sk_buff *sxg_slow_receive(struct adapter_t *adapter,
1775                                                 struct sxg_event *Event)
1776 {
1777         u32 BufferSize = adapter->ReceiveBufferSize;
1778         struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
1779         struct sk_buff *Packet;
1780         static int read_counter = 0;
1781
1782         RcvDataBufferHdr = (struct sxg_rcv_data_buffer_hdr *) Event->HostHandle;
1783         if(read_counter++ & 0x100)
1784         {
1785                 sxg_collect_statistics(adapter);
1786                 read_counter = 0;
1787         }
1788         ASSERT(RcvDataBufferHdr);
1789         ASSERT(RcvDataBufferHdr->State == SXG_BUFFER_ONCARD);
1790         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "SlowRcv", Event,
1791                   RcvDataBufferHdr, RcvDataBufferHdr->State,
1792                   /*RcvDataBufferHdr->VirtualAddress*/ 0);
1793         /* Drop rcv frames in non-running state */
1794         switch (adapter->State) {
1795         case SXG_STATE_RUNNING:
1796                 break;
1797         case SXG_STATE_PAUSING:
1798         case SXG_STATE_PAUSED:
1799         case SXG_STATE_HALTING:
1800                 goto drop;
1801         default:
1802                 ASSERT(0);
1803                 goto drop;
1804         }
1805
1806         /*
1807          * memcpy(SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
1808          *              RcvDataBufferHdr->VirtualAddress, Event->Length);
1809          */
1810
1811         /* Change buffer state to UPSTREAM */
1812         RcvDataBufferHdr->State = SXG_BUFFER_UPSTREAM;
1813         if (Event->Status & EVENT_STATUS_RCVERR) {
1814                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "RcvError",
1815                           Event, Event->Status, Event->HostHandle, 0);
1816                 sxg_process_rcv_error(adapter, *(u32 *)
1817                                       SXG_RECEIVE_DATA_LOCATION
1818                                       (RcvDataBufferHdr));
1819                 goto drop;
1820         }
1821 #if XXXTODO                     /* VLAN stuff */
1822         /* If there's a VLAN tag, extract it and validate it */
1823         if (((struct ether_header *)
1824                 (SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr)))->EtherType
1825                                                         == ETHERTYPE_VLAN) {
1826                 if (SxgExtractVlanHeader(adapter, RcvDataBufferHdr, Event) !=
1827                     STATUS_SUCCESS) {
1828                         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY,
1829                                   "BadVlan", Event,
1830                                   SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
1831                                   Event->Length, 0);
1832                         goto drop;
1833                 }
1834         }
1835 #endif
1836         /* Dumb-nic frame.  See if it passes our mac filter and update stats */
1837
1838         if (!sxg_mac_filter(adapter,
1839             (struct ether_header *)(SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr)),
1840             Event->Length)) {
1841                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "RcvFiltr",
1842                             Event, SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
1843                             Event->Length, 0);
1844           goto drop;
1845         }
1846
1847         Packet = RcvDataBufferHdr->SxgDumbRcvPacket;
1848         SXG_ADJUST_RCV_PACKET(Packet, RcvDataBufferHdr, Event);
1849         Packet->protocol = eth_type_trans(Packet, adapter->netdev);
1850
1851         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "DumbRcv",
1852                   RcvDataBufferHdr, Packet, Event->Length, 0);
1853         /* Lastly adjust the receive packet length. */
1854         RcvDataBufferHdr->SxgDumbRcvPacket = NULL;
1855         RcvDataBufferHdr->PhysicalAddress = (dma_addr_t)NULL;
1856         SXG_ALLOCATE_RCV_PACKET(adapter, RcvDataBufferHdr, BufferSize);
1857         if (RcvDataBufferHdr->skb)
1858         {
1859                 spin_lock(&adapter->RcvQLock);
1860                 SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
1861                 // adapter->RcvBuffersOnCard ++;
1862                 spin_unlock(&adapter->RcvQLock);
1863         }
1864         return (Packet);
1865
1866       drop:
1867         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DropRcv",
1868                   RcvDataBufferHdr, Event->Length, 0, 0);
1869         adapter->stats.rx_dropped++;
1870 //      adapter->Stats.RcvDiscards++;
1871         spin_lock(&adapter->RcvQLock);
1872         SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
1873         spin_unlock(&adapter->RcvQLock);
1874         return (NULL);
1875 }
1876
1877 /*
1878  * sxg_process_rcv_error - process receive error and update
1879  * stats
1880  *
1881  * Arguments:
1882  *              adapter         - Adapter structure
1883  *              ErrorStatus     - 4-byte receive error status
1884  *
1885  * Return Value         : None
1886  */
1887 static void sxg_process_rcv_error(struct adapter_t *adapter, u32 ErrorStatus)
1888 {
1889         u32 Error;
1890
1891         adapter->stats.rx_errors++;
1892
1893         if (ErrorStatus & SXG_RCV_STATUS_TRANSPORT_ERROR) {
1894                 Error = ErrorStatus & SXG_RCV_STATUS_TRANSPORT_MASK;
1895                 switch (Error) {
1896                 case SXG_RCV_STATUS_TRANSPORT_CSUM:
1897                         adapter->Stats.TransportCsum++;
1898                         break;
1899                 case SXG_RCV_STATUS_TRANSPORT_UFLOW:
1900                         adapter->Stats.TransportUflow++;
1901                         break;
1902                 case SXG_RCV_STATUS_TRANSPORT_HDRLEN:
1903                         adapter->Stats.TransportHdrLen++;
1904                         break;
1905                 }
1906         }
1907         if (ErrorStatus & SXG_RCV_STATUS_NETWORK_ERROR) {
1908                 Error = ErrorStatus & SXG_RCV_STATUS_NETWORK_MASK;
1909                 switch (Error) {
1910                 case SXG_RCV_STATUS_NETWORK_CSUM:
1911                         adapter->Stats.NetworkCsum++;
1912                         break;
1913                 case SXG_RCV_STATUS_NETWORK_UFLOW:
1914                         adapter->Stats.NetworkUflow++;
1915                         break;
1916                 case SXG_RCV_STATUS_NETWORK_HDRLEN:
1917                         adapter->Stats.NetworkHdrLen++;
1918                         break;
1919                 }
1920         }
1921         if (ErrorStatus & SXG_RCV_STATUS_PARITY) {
1922                 adapter->Stats.Parity++;
1923         }
1924         if (ErrorStatus & SXG_RCV_STATUS_LINK_ERROR) {
1925                 Error = ErrorStatus & SXG_RCV_STATUS_LINK_MASK;
1926                 switch (Error) {
1927                 case SXG_RCV_STATUS_LINK_PARITY:
1928                         adapter->Stats.LinkParity++;
1929                         break;
1930                 case SXG_RCV_STATUS_LINK_EARLY:
1931                         adapter->Stats.LinkEarly++;
1932                         break;
1933                 case SXG_RCV_STATUS_LINK_BUFOFLOW:
1934                         adapter->Stats.LinkBufOflow++;
1935                         break;
1936                 case SXG_RCV_STATUS_LINK_CODE:
1937                         adapter->Stats.LinkCode++;
1938                         break;
1939                 case SXG_RCV_STATUS_LINK_DRIBBLE:
1940                         adapter->Stats.LinkDribble++;
1941                         break;
1942                 case SXG_RCV_STATUS_LINK_CRC:
1943                         adapter->Stats.LinkCrc++;
1944                         break;
1945                 case SXG_RCV_STATUS_LINK_OFLOW:
1946                         adapter->Stats.LinkOflow++;
1947                         break;
1948                 case SXG_RCV_STATUS_LINK_UFLOW:
1949                         adapter->Stats.LinkUflow++;
1950                         break;
1951                 }
1952         }
1953 }
1954
1955 /*
1956  * sxg_mac_filter
1957  *
1958  * Arguments:
1959  *              adapter         - Adapter structure
1960  *              pether          - Ethernet header
1961  *              length          - Frame length
1962  *
1963  * Return Value : TRUE if the frame is to be allowed
1964  */
1965 static bool sxg_mac_filter(struct adapter_t *adapter,
1966                 struct ether_header *EtherHdr, ushort length)
1967 {
1968         bool EqualAddr;
1969         struct net_device *dev = adapter->netdev;
1970
1971         if (SXG_MULTICAST_PACKET(EtherHdr)) {
1972                 if (SXG_BROADCAST_PACKET(EtherHdr)) {
1973                         /* broadcast */
1974                         if (adapter->MacFilter & MAC_BCAST) {
1975                                 adapter->Stats.DumbRcvBcastPkts++;
1976                                 adapter->Stats.DumbRcvBcastBytes += length;
1977                                 return (TRUE);
1978                         }
1979                 } else {
1980                         /* multicast */
1981                         if (adapter->MacFilter & MAC_ALLMCAST) {
1982                                 adapter->Stats.DumbRcvMcastPkts++;
1983                                 adapter->Stats.DumbRcvMcastBytes += length;
1984                                 return (TRUE);
1985                         }
1986                         if (adapter->MacFilter & MAC_MCAST) {
1987                                 struct dev_mc_list *mclist = dev->mc_list;
1988                                 while (mclist) {
1989                                         ETHER_EQ_ADDR(mclist->da_addr,
1990                                                       EtherHdr->ether_dhost,
1991                                                       EqualAddr);
1992                                         if (EqualAddr) {
1993                                                 adapter->Stats.
1994                                                     DumbRcvMcastPkts++;
1995                                                 adapter->Stats.
1996                                                     DumbRcvMcastBytes += length;
1997                                                 return (TRUE);
1998                                         }
1999                                         mclist = mclist->next;
2000                                 }
2001                         }
2002                 }
2003         } else if (adapter->MacFilter & MAC_DIRECTED) {
2004                 /*
2005                  * Not broadcast or multicast.  Must be directed at us or
2006                  * the card is in promiscuous mode.  Either way, consider it
2007                  * ours if MAC_DIRECTED is set
2008                  */
2009                 adapter->Stats.DumbRcvUcastPkts++;
2010                 adapter->Stats.DumbRcvUcastBytes += length;
2011                 return (TRUE);
2012         }
2013         if (adapter->MacFilter & MAC_PROMISC) {
2014                 /* Whatever it is, keep it. */
2015                 return (TRUE);
2016         }
2017         return (FALSE);
2018 }
2019
2020 static int sxg_register_interrupt(struct adapter_t *adapter)
2021 {
2022         if (!adapter->intrregistered) {
2023                 int retval;
2024
2025                 DBG_ERROR
2026                     ("sxg: %s AllocAdaptRsrcs adapter[%p] dev->irq[%x] %x\n",
2027                      __func__, adapter, adapter->netdev->irq, NR_IRQS);
2028
2029                 spin_unlock_irqrestore(&sxg_global.driver_lock,
2030                                        sxg_global.flags);
2031
2032                 retval = request_irq(adapter->netdev->irq,
2033                                      &sxg_isr,
2034                                      IRQF_SHARED,
2035                                      adapter->netdev->name, adapter->netdev);
2036
2037                 spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
2038
2039                 if (retval) {
2040                         DBG_ERROR("sxg: request_irq (%s) FAILED [%x]\n",
2041                                   adapter->netdev->name, retval);
2042                         return (retval);
2043                 }
2044                 adapter->intrregistered = 1;
2045                 adapter->IntRegistered = TRUE;
2046                 /* Disable RSS with line-based interrupts */
2047                 adapter->RssEnabled = FALSE;
2048                 DBG_ERROR("sxg: %s AllocAdaptRsrcs adapter[%p] dev->irq[%x]\n",
2049                           __func__, adapter, adapter->netdev->irq);
2050         }
2051         return (STATUS_SUCCESS);
2052 }
2053
2054 static void sxg_deregister_interrupt(struct adapter_t *adapter)
2055 {
2056         DBG_ERROR("sxg: %s ENTER adapter[%p]\n", __func__, adapter);
2057 #if XXXTODO
2058         slic_init_cleanup(adapter);
2059 #endif
2060         memset(&adapter->stats, 0, sizeof(struct net_device_stats));
2061         adapter->error_interrupts = 0;
2062         adapter->rcv_interrupts = 0;
2063         adapter->xmit_interrupts = 0;
2064         adapter->linkevent_interrupts = 0;
2065         adapter->upr_interrupts = 0;
2066         adapter->num_isrs = 0;
2067         adapter->xmit_completes = 0;
2068         adapter->rcv_broadcasts = 0;
2069         adapter->rcv_multicasts = 0;
2070         adapter->rcv_unicasts = 0;
2071         DBG_ERROR("sxg: %s EXIT\n", __func__);
2072 }
2073
2074 /*
2075  *  sxg_if_init
2076  *
2077  *  Perform initialization of our slic interface.
2078  *
2079  */
2080 static int sxg_if_init(struct adapter_t *adapter)
2081 {
2082         struct net_device *dev = adapter->netdev;
2083         int status = 0;
2084
2085         DBG_ERROR("sxg: %s (%s) ENTER states[%d:%d] flags[%x]\n",
2086                   __func__, adapter->netdev->name,
2087                   adapter->state,
2088                   adapter->linkstate, dev->flags);
2089
2090         /* adapter should be down at this point */
2091         if (adapter->state != ADAPT_DOWN) {
2092                 DBG_ERROR("sxg_if_init adapter->state != ADAPT_DOWN\n");
2093                 return (-EIO);
2094         }
2095         ASSERT(adapter->linkstate == LINK_DOWN);
2096
2097         adapter->devflags_prev = dev->flags;
2098         adapter->MacFilter = MAC_DIRECTED;
2099         if (dev->flags) {
2100                 DBG_ERROR("sxg: %s (%s) Set MAC options: ", __func__,
2101                           adapter->netdev->name);
2102                 if (dev->flags & IFF_BROADCAST) {
2103                         adapter->MacFilter |= MAC_BCAST;
2104                         DBG_ERROR("BCAST ");
2105                 }
2106                 if (dev->flags & IFF_PROMISC) {
2107                         adapter->MacFilter |= MAC_PROMISC;
2108                         DBG_ERROR("PROMISC ");
2109                 }
2110                 if (dev->flags & IFF_ALLMULTI) {
2111                         adapter->MacFilter |= MAC_ALLMCAST;
2112                         DBG_ERROR("ALL_MCAST ");
2113                 }
2114                 if (dev->flags & IFF_MULTICAST) {
2115                         adapter->MacFilter |= MAC_MCAST;
2116                         DBG_ERROR("MCAST ");
2117                 }
2118                 DBG_ERROR("\n");
2119         }
2120         status = sxg_register_intr(adapter);
2121         if (status != STATUS_SUCCESS) {
2122                 DBG_ERROR("sxg_if_init: sxg_register_intr FAILED %x\n",
2123                           status);
2124                 sxg_deregister_interrupt(adapter);
2125                 return (status);
2126         }
2127
2128         adapter->state = ADAPT_UP;
2129
2130         /*    clear any pending events, then enable interrupts */
2131         DBG_ERROR("sxg: %s ENABLE interrupts(slic)\n", __func__);
2132
2133         return (STATUS_SUCCESS);
2134 }
2135
2136 void sxg_set_interrupt_aggregation(struct adapter_t *adapter)
2137 {
2138         /*
2139          * Top bit disables aggregation on xmt (SXG_AGG_XMT_DISABLE).
2140          * Make sure Max is less than 0x8000.
2141          */
2142         adapter->max_aggregation = SXG_MAX_AGG_DEFAULT;
2143         adapter->min_aggregation = SXG_MIN_AGG_DEFAULT;
2144         WRITE_REG(adapter->UcodeRegs[0].Aggregation,
2145                 ((adapter->max_aggregation << SXG_MAX_AGG_SHIFT) |
2146                         adapter->min_aggregation),
2147                         TRUE);
2148 }
2149
2150 static int sxg_entry_open(struct net_device *dev)
2151 {
2152         struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
2153         int status;
2154         static int turn;
2155         int sxg_initial_rcv_data_buffers = SXG_INITIAL_RCV_DATA_BUFFERS;
2156         int i;
2157
2158         if (adapter->JumboEnabled == TRUE) {
2159                 sxg_initial_rcv_data_buffers =
2160                                         SXG_INITIAL_JUMBO_RCV_DATA_BUFFERS;
2161                 SXG_INITIALIZE_RING(adapter->RcvRingZeroInfo,
2162                                         SXG_JUMBO_RCV_RING_SIZE);
2163         }
2164
2165         /*
2166         * Allocate receive data buffers.  We allocate a block of buffers and
2167         * a corresponding descriptor block at once.  See sxghw.h:SXG_RCV_BLOCK
2168         */
2169
2170         for (i = 0; i < sxg_initial_rcv_data_buffers;
2171                         i += SXG_RCV_DESCRIPTORS_PER_BLOCK)
2172         {
2173                 status = sxg_allocate_buffer_memory(adapter,
2174                 SXG_RCV_BLOCK_SIZE(SXG_RCV_DATA_HDR_SIZE),
2175                                         SXG_BUFFER_TYPE_RCV);
2176                 if (status != STATUS_SUCCESS)
2177                         return status;
2178         }
2179         /*
2180          * NBL resource allocation can fail in the 'AllocateComplete' routine,
2181          * which doesn't return status.  Make sure we got the number of buffers
2182          * we requested
2183          */
2184
2185         if (adapter->FreeRcvBufferCount < sxg_initial_rcv_data_buffers) {
2186                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF6",
2187                         adapter, adapter->FreeRcvBufferCount, SXG_MAX_ENTRIES,
2188                         0);
2189                 return (STATUS_RESOURCES);
2190         }
2191         /*
2192          * The microcode expects it to be downloaded on every open.
2193          */
2194         DBG_ERROR("sxg: %s ENTER sxg_download_microcode\n", __func__);
2195         if (sxg_download_microcode(adapter, SXG_UCODE_SYSTEM)) {
2196                 DBG_ERROR("sxg: %s ENTER sxg_adapter_set_hwaddr\n",
2197                                 __func__);
2198                 sxg_read_config(adapter);
2199         } else {
2200                 adapter->state = ADAPT_FAIL;
2201                 adapter->linkstate = LINK_DOWN;
2202                 DBG_ERROR("sxg_download_microcode FAILED status[%x]\n",
2203                                 status);
2204         }
2205         msleep(5);
2206
2207         if (turn) {
2208                 sxg_second_open(adapter->netdev);
2209
2210                 return STATUS_SUCCESS;
2211         }
2212
2213         turn++;
2214
2215         ASSERT(adapter);
2216         DBG_ERROR("sxg: %s adapter->activated[%d]\n", __func__,
2217                   adapter->activated);
2218         DBG_ERROR
2219             ("sxg: %s (%s): [jiffies[%lx] cpu %d] dev[%p] adapt[%p] port[%d]\n",
2220              __func__, adapter->netdev->name, jiffies, smp_processor_id(),
2221              adapter->netdev, adapter, adapter->port);
2222
2223         netif_stop_queue(adapter->netdev);
2224
2225         spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
2226         if (!adapter->activated) {
2227                 sxg_global.num_sxg_ports_active++;
2228                 adapter->activated = 1;
2229         }
2230         /* Initialize the adapter */
2231         DBG_ERROR("sxg: %s ENTER sxg_initialize_adapter\n", __func__);
2232         status = sxg_initialize_adapter(adapter);
2233         DBG_ERROR("sxg: %s EXIT sxg_initialize_adapter status[%x]\n",
2234                   __func__, status);
2235
2236         if (status == STATUS_SUCCESS) {
2237                 DBG_ERROR("sxg: %s ENTER sxg_if_init\n", __func__);
2238                 status = sxg_if_init(adapter);
2239                 DBG_ERROR("sxg: %s EXIT sxg_if_init status[%x]\n", __func__,
2240                           status);
2241         }
2242
2243         if (status != STATUS_SUCCESS) {
2244                 if (adapter->activated) {
2245                         sxg_global.num_sxg_ports_active--;
2246                         adapter->activated = 0;
2247                 }
2248                 spin_unlock_irqrestore(&sxg_global.driver_lock,
2249                                        sxg_global.flags);
2250                 return (status);
2251         }
2252         DBG_ERROR("sxg: %s ENABLE ALL INTERRUPTS\n", __func__);
2253         sxg_set_interrupt_aggregation(adapter);
2254         napi_enable(&adapter->napi);
2255
2256         /* Enable interrupts */
2257         SXG_ENABLE_ALL_INTERRUPTS(adapter);
2258
2259         DBG_ERROR("sxg: %s EXIT\n", __func__);
2260
2261         spin_unlock_irqrestore(&sxg_global.driver_lock, sxg_global.flags);
2262         mod_timer(&adapter->watchdog_timer, jiffies);
2263
2264         return STATUS_SUCCESS;
2265 }
2266
2267 int sxg_second_open(struct net_device * dev)
2268 {
2269         struct adapter_t *adapter = (struct adapter_t*) netdev_priv(dev);
2270         int status = 0;
2271
2272         spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
2273         netif_start_queue(adapter->netdev);
2274         adapter->state = ADAPT_UP;
2275         adapter->linkstate = LINK_UP;
2276
2277         status = sxg_initialize_adapter(adapter);
2278         sxg_set_interrupt_aggregation(adapter);
2279         napi_enable(&adapter->napi);
2280         /* Re-enable interrupts */
2281         SXG_ENABLE_ALL_INTERRUPTS(adapter);
2282
2283         sxg_register_intr(adapter);
2284         spin_unlock_irqrestore(&sxg_global.driver_lock, sxg_global.flags);
2285         mod_timer(&adapter->watchdog_timer, jiffies);
2286         return (STATUS_SUCCESS);
2287
2288 }
2289
2290 static void __devexit sxg_entry_remove(struct pci_dev *pcidev)
2291 {
2292         u32 mmio_start = 0;
2293         u32 mmio_len = 0;
2294
2295         struct net_device *dev = pci_get_drvdata(pcidev);
2296         struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
2297
2298         flush_scheduled_work();
2299
2300         /* Deallocate Resources */
2301         unregister_netdev(dev);
2302         sxg_reset_interrupt_capability(adapter);
2303         sxg_free_resources(adapter);
2304
2305         ASSERT(adapter);
2306
2307         mmio_start = pci_resource_start(pcidev, 0);
2308         mmio_len = pci_resource_len(pcidev, 0);
2309
2310         DBG_ERROR("sxg: %s rel_region(0) start[%x] len[%x]\n", __func__,
2311                   mmio_start, mmio_len);
2312         release_mem_region(mmio_start, mmio_len);
2313
2314         mmio_start = pci_resource_start(pcidev, 2);
2315         mmio_len = pci_resource_len(pcidev, 2);
2316
2317         DBG_ERROR("sxg: %s rel_region(2) start[%x] len[%x]\n", __func__,
2318                   mmio_start, mmio_len);
2319         release_mem_region(mmio_start, mmio_len);
2320
2321         pci_disable_device(pcidev);
2322
2323         DBG_ERROR("sxg: %s deallocate device\n", __func__);
2324         kfree(dev);
2325         DBG_ERROR("sxg: %s EXIT\n", __func__);
2326 }
2327
2328 static int sxg_entry_halt(struct net_device *dev)
2329 {
2330         struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
2331         struct sxg_hw_regs *HwRegs = adapter->HwRegs;
2332         int i;
2333         u32 RssIds, IsrCount;
2334         unsigned long flags;
2335
2336         RssIds = SXG_RSS_CPU_COUNT(adapter);
2337         IsrCount = adapter->msi_enabled ? RssIds : 1;
2338         /* Disable interrupts */
2339         spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
2340         SXG_DISABLE_ALL_INTERRUPTS(adapter);
2341         adapter->state = ADAPT_DOWN;
2342         adapter->linkstate = LINK_DOWN;
2343
2344         spin_unlock_irqrestore(&sxg_global.driver_lock, sxg_global.flags);
2345         sxg_deregister_interrupt(adapter);
2346         WRITE_REG(HwRegs->Reset, 0xDEAD, FLUSH);
2347         mdelay(5000);
2348
2349         del_timer_sync(&adapter->watchdog_timer);
2350         netif_stop_queue(dev);
2351         netif_carrier_off(dev);
2352
2353         napi_disable(&adapter->napi);
2354
2355         WRITE_REG(adapter->UcodeRegs[0].RcvCmd, 0, true);
2356         adapter->devflags_prev = 0;
2357         DBG_ERROR("sxg: %s (%s) set adapter[%p] state to ADAPT_DOWN(%d)\n",
2358                   __func__, dev->name, adapter, adapter->state);
2359
2360         spin_lock(&adapter->RcvQLock);
2361         /* Free all the blocks and the buffers, moved from remove() routine */
2362         if (!(IsListEmpty(&adapter->AllRcvBlocks))) {
2363                 sxg_free_rcvblocks(adapter);
2364         }
2365
2366
2367         InitializeListHead(&adapter->FreeRcvBuffers);
2368         InitializeListHead(&adapter->FreeRcvBlocks);
2369         InitializeListHead(&adapter->AllRcvBlocks);
2370         InitializeListHead(&adapter->FreeSglBuffers);
2371         InitializeListHead(&adapter->AllSglBuffers);
2372
2373         adapter->FreeRcvBufferCount = 0;
2374         adapter->FreeRcvBlockCount = 0;
2375         adapter->AllRcvBlockCount = 0;
2376         adapter->RcvBuffersOnCard = 0;
2377         adapter->PendingRcvCount = 0;
2378
2379         memset(adapter->RcvRings, 0, sizeof(struct sxg_rcv_ring) * 1);
2380         memset(adapter->EventRings, 0, sizeof(struct sxg_event_ring) * RssIds);
2381         memset(adapter->Isr, 0, sizeof(u32) * IsrCount);
2382         for (i = 0; i < SXG_MAX_RING_SIZE; i++)
2383                 adapter->RcvRingZeroInfo.Context[i] = NULL;
2384         SXG_INITIALIZE_RING(adapter->RcvRingZeroInfo, SXG_RCV_RING_SIZE);
2385         SXG_INITIALIZE_RING(adapter->XmtRingZeroInfo, SXG_XMT_RING_SIZE);
2386
2387         spin_unlock(&adapter->RcvQLock);
2388
2389         spin_lock_irqsave(&adapter->XmtZeroLock, flags);
2390         adapter->AllSglBufferCount = 0;
2391         adapter->FreeSglBufferCount = 0;
2392         adapter->PendingXmtCount = 0;
2393         memset(adapter->XmtRings, 0, sizeof(struct sxg_xmt_ring) * 1);
2394         memset(adapter->XmtRingZeroIndex, 0, sizeof(u32));
2395         spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
2396
2397         for (i = 0; i < SXG_MAX_RSS; i++) {
2398                 adapter->NextEvent[i] = 0;
2399         }
2400         atomic_set(&adapter->pending_allocations, 0);
2401         adapter->intrregistered = 0;
2402         sxg_remove_isr(adapter);
2403         DBG_ERROR("sxg: %s (%s) EXIT\n", __func__, dev->name);
2404         return (STATUS_SUCCESS);
2405 }
2406
2407 static int sxg_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2408 {
2409         ASSERT(rq);
2410 /*      DBG_ERROR("sxg: %s cmd[%x] rq[%p] dev[%p]\n", __func__, cmd, rq, dev);*/
2411         switch (cmd) {
2412         case SIOCSLICSETINTAGG:
2413                 {
2414                         /* struct adapter_t *adapter = (struct adapter_t *)
2415                          * netdev_priv(dev);
2416                          */
2417                         u32 data[7];
2418                         u32 intagg;
2419
2420                         if (copy_from_user(data, rq->ifr_data, 28)) {
2421                                 DBG_ERROR("copy_from_user FAILED  getting \
2422                                          initial params\n");
2423                                 return -EFAULT;
2424                         }
2425                         intagg = data[0];
2426                         printk(KERN_EMERG
2427                                "%s: set interrupt aggregation to %d\n",
2428                                __func__, intagg);
2429                         return 0;
2430                 }
2431
2432         default:
2433                 /* DBG_ERROR("sxg: %s UNSUPPORTED[%x]\n", __func__, cmd); */
2434                 return -EOPNOTSUPP;
2435         }
2436         return 0;
2437 }
2438
2439 #define NORMAL_ETHFRAME     0
2440
2441 /*
2442  * sxg_send_packets - Send a skb packet
2443  *
2444  * Arguments:
2445  *                      skb - The packet to send
2446  *                      dev - Our linux net device that refs our adapter
2447  *
2448  * Return:
2449  *              0   regardless of outcome    XXXTODO refer to e1000 driver
2450  */
2451 static int sxg_send_packets(struct sk_buff *skb, struct net_device *dev)
2452 {
2453         struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
2454         u32 status = STATUS_SUCCESS;
2455
2456         /*
2457          * DBG_ERROR("sxg: %s ENTER sxg_send_packets skb[%p]\n", __func__,
2458          *        skb);
2459          */
2460
2461         /* Check the adapter state */
2462         switch (adapter->State) {
2463         case SXG_STATE_INITIALIZING:
2464         case SXG_STATE_HALTED:
2465         case SXG_STATE_SHUTDOWN:
2466                 ASSERT(0);      /* unexpected */
2467                 /* fall through */
2468         case SXG_STATE_RESETTING:
2469         case SXG_STATE_SLEEP:
2470         case SXG_STATE_BOOTDIAG:
2471         case SXG_STATE_DIAG:
2472         case SXG_STATE_HALTING:
2473                 status = STATUS_FAILURE;
2474                 break;
2475         case SXG_STATE_RUNNING:
2476                 if (adapter->LinkState != SXG_LINK_UP) {
2477                         status = STATUS_FAILURE;
2478                 }
2479                 break;
2480         default:
2481                 ASSERT(0);
2482                 status = STATUS_FAILURE;
2483         }
2484         if (status != STATUS_SUCCESS) {
2485                 goto xmit_fail;
2486         }
2487         /* send a packet */
2488         status = sxg_transmit_packet(adapter, skb);
2489         if (status == STATUS_SUCCESS) {
2490                 goto xmit_done;
2491         }
2492
2493       xmit_fail:
2494         /* reject & complete all the packets if they cant be sent */
2495         if (status != STATUS_SUCCESS) {
2496 #if XXXTODO
2497         /* sxg_send_packets_fail(adapter, skb, status); */
2498 #else
2499                 SXG_DROP_DUMB_SEND(adapter, skb);
2500                 adapter->stats.tx_dropped++;
2501                 return NETDEV_TX_BUSY;
2502 #endif
2503         }
2504         DBG_ERROR("sxg: %s EXIT sxg_send_packets status[%x]\n", __func__,
2505                   status);
2506
2507       xmit_done:
2508         return NETDEV_TX_OK;
2509 }
2510
2511 /*
2512  * sxg_transmit_packet
2513  *
2514  * This function transmits a single packet.
2515  *
2516  * Arguments -
2517  *              adapter                 - Pointer to our adapter structure
2518  *      skb             - The packet to be sent
2519  *
2520  * Return - STATUS of send
2521  */
2522 static int sxg_transmit_packet(struct adapter_t *adapter, struct sk_buff *skb)
2523 {
2524         struct sxg_x64_sgl         *pSgl;
2525         struct sxg_scatter_gather  *SxgSgl;
2526         unsigned long sgl_flags;
2527         /* void *SglBuffer; */
2528         /* u32 SglBufferLength; */
2529
2530         /*
2531          * The vast majority of work is done in the shared
2532          * sxg_dumb_sgl routine.
2533          */
2534         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbSend",
2535                   adapter, skb, 0, 0);
2536
2537         /* Allocate a SGL buffer */
2538         SXG_GET_SGL_BUFFER(adapter, SxgSgl, 0);
2539         if (!SxgSgl) {
2540                 adapter->Stats.NoSglBuf++;
2541                 adapter->stats.tx_errors++;
2542                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "SndPktF1",
2543                           adapter, skb, 0, 0);
2544                 return (STATUS_RESOURCES);
2545         }
2546         ASSERT(SxgSgl->adapter == adapter);
2547         /*SglBuffer = SXG_SGL_BUFFER(SxgSgl);
2548         SglBufferLength = SXG_SGL_BUF_SIZE; */
2549         SxgSgl->VlanTag.VlanTci = 0;
2550         SxgSgl->VlanTag.VlanTpid = 0;
2551         SxgSgl->Type = SXG_SGL_DUMB;
2552         SxgSgl->DumbPacket = skb;
2553         pSgl = NULL;
2554
2555         /* Call the common sxg_dumb_sgl routine to complete the send. */
2556         return (sxg_dumb_sgl(pSgl, SxgSgl));
2557 }
2558
2559 /*
2560  * sxg_dumb_sgl
2561  *
2562  * Arguments:
2563  *              pSgl     -
2564  *              SxgSgl   - struct sxg_scatter_gather
2565  *
2566  * Return Value:
2567  *      Status of send operation.
2568  */
2569 static int sxg_dumb_sgl(struct sxg_x64_sgl *pSgl,
2570                                 struct sxg_scatter_gather *SxgSgl)
2571 {
2572         struct adapter_t *adapter = SxgSgl->adapter;
2573         struct sk_buff *skb = SxgSgl->DumbPacket;
2574         /* For now, all dumb-nic sends go on RSS queue zero */
2575         struct sxg_xmt_ring *XmtRing = &adapter->XmtRings[0];
2576         struct sxg_ring_info *XmtRingInfo = &adapter->XmtRingZeroInfo;
2577         struct sxg_cmd *XmtCmd = NULL;
2578         /* u32 Index = 0; */
2579         u32 DataLength = skb->len;
2580         /* unsigned int BufLen; */
2581         /* u32 SglOffset; */
2582         u64 phys_addr;
2583         unsigned long flags;
2584         unsigned long queue_id=0;
2585         int offload_cksum = 0;
2586
2587         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbSgl",
2588                   pSgl, SxgSgl, 0, 0);
2589
2590         /* Set aside a pointer to the sgl */
2591         SxgSgl->pSgl = pSgl;
2592
2593         /* Sanity check that our SGL format is as we expect. */
2594         ASSERT(sizeof(struct sxg_x64_sge) == sizeof(struct sxg_x64_sge));
2595         /* Shouldn't be a vlan tag on this frame */
2596         ASSERT(SxgSgl->VlanTag.VlanTci == 0);
2597         ASSERT(SxgSgl->VlanTag.VlanTpid == 0);
2598
2599         /*
2600          * From here below we work with the SGL placed in our
2601          * buffer.
2602          */
2603
2604         SxgSgl->Sgl.NumberOfElements = 1;
2605         /*
2606          * Set ucode Queue ID based on bottom bits of destination TCP port.
2607          * This Queue ID splits slowpath/dumb-nic packet processing across
2608          * multiple threads on the card to improve performance.  It is split
2609          * using the TCP port to avoid out-of-order packets that can result
2610          * from multithreaded processing.  We use the destination port because
2611          * we expect to be run on a server, so in nearly all cases the local
2612          * port is likely to be constant (well-known server port) and the
2613          * remote port is likely to be random.  The exception to this is iSCSI,
2614          * in which case we use the sport instead.  Note
2615          * that original attempt at XOR'ing source and dest port resulted in
2616          * poor balance on NTTTCP/iometer applications since they tend to
2617          * line up (even-even, odd-odd..).
2618          */
2619
2620         if (skb->protocol == htons(ETH_P_IP)) {
2621                 struct iphdr *ip;
2622
2623                 ip = ip_hdr(skb);
2624                 if (ip->protocol == IPPROTO_TCP)
2625                         offload_cksum = 1;
2626                 if (!offload_cksum || !tcp_hdr(skb))
2627                         queue_id = 0;
2628                 else if (offload_cksum && (DataLength >= sizeof(
2629                                                         struct tcphdr))){
2630                         queue_id = ((ntohs(tcp_hdr(skb)->dest) == ISCSI_PORT) ?
2631                                         (ntohs (tcp_hdr(skb)->source) &
2632                                                 SXG_LARGE_SEND_QUEUE_MASK):
2633                                                 (ntohs(tcp_hdr(skb)->dest) &
2634                                                 SXG_LARGE_SEND_QUEUE_MASK));
2635                 }
2636         } else if (skb->protocol == htons(ETH_P_IPV6)) {
2637                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2638                         offload_cksum = 1;
2639                 if (!offload_cksum || !tcp_hdr(skb))
2640                         queue_id = 0;
2641                 else if (offload_cksum && (DataLength>=sizeof(struct tcphdr))){
2642                         queue_id = ((ntohs(tcp_hdr(skb)->dest) == ISCSI_PORT) ?
2643                                         (ntohs (tcp_hdr(skb)->source) &
2644                                         SXG_LARGE_SEND_QUEUE_MASK):
2645                                         (ntohs(tcp_hdr(skb)->dest) &
2646                                         SXG_LARGE_SEND_QUEUE_MASK));
2647                 }
2648         }
2649
2650         /* Grab the spinlock and acquire a command */
2651         spin_lock_irqsave(&adapter->XmtZeroLock, flags);
2652         SXG_GET_CMD(XmtRing, XmtRingInfo, XmtCmd, SxgSgl);
2653         if (XmtCmd == NULL) {
2654                 /*
2655                  * Call sxg_complete_slow_send to see if we can
2656                  * free up any XmtRingZero entries and then try again
2657                  */
2658
2659                 spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
2660                 sxg_complete_slow_send(adapter);
2661                 spin_lock_irqsave(&adapter->XmtZeroLock, flags);
2662                 SXG_GET_CMD(XmtRing, XmtRingInfo, XmtCmd, SxgSgl);
2663                 if (XmtCmd == NULL) {
2664                         adapter->Stats.XmtZeroFull++;
2665                         goto abortcmd;
2666                 }
2667         }
2668         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbCmd",
2669                   XmtCmd, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
2670         memset(XmtCmd, '\0', sizeof(*XmtCmd));
2671         XmtCmd->SgEntries = 1;
2672         XmtCmd->Flags = 0;
2673         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2674                 /*
2675                  * We need to set the Checkum in IP  header to 0. This is
2676                  * required by hardware.
2677                  */
2678                 if (offload_cksum) {
2679                         ip_hdr(skb)->check = 0x0;
2680                         XmtCmd->CsumFlags.Flags |= SXG_SLOWCMD_CSUM_IP;
2681                         XmtCmd->CsumFlags.Flags |= SXG_SLOWCMD_CSUM_TCP;
2682                         /*
2683                          * Dont know if length will require a change in
2684                          * case of VLAN
2685                          */
2686                         XmtCmd->CsumFlags.MacLen = ETH_HLEN;
2687                         XmtCmd->CsumFlags.IpHl = skb_network_header_len(skb) >>
2688                                                         SXG_NW_HDR_LEN_SHIFT;
2689                 } else {
2690                         if (skb_checksum_help(skb)){
2691                                 printk(KERN_EMERG "Dropped UDP packet for"
2692                                         " incorrect checksum calculation\n");
2693                                 if (XmtCmd)
2694                                         SXG_ABORT_CMD(XmtRingInfo);
2695                                 spin_unlock_irqrestore(&adapter->XmtZeroLock,
2696                                                          flags);
2697                                 return STATUS_SUCCESS;
2698                         }
2699                 }
2700         }
2701
2702         /*
2703          * Fill in the command
2704          * Copy out the first SGE to the command and adjust for offset
2705          */
2706         phys_addr = pci_map_single(adapter->pcidev, skb->data, skb->len,
2707                            PCI_DMA_TODEVICE);
2708
2709         /*
2710          * SAHARA SGL WORKAROUND
2711          * See if the SGL straddles a 64k boundary.  If so, skip to
2712          * the start of the next 64k boundary and continue
2713          */
2714
2715         if ((adapter->asictype == SAHARA_REV_A) &&
2716                 (SXG_INVALID_SGL(phys_addr,skb->data_len)))
2717         {
2718                 spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
2719                 if (XmtCmd)
2720                         SXG_ABORT_CMD(XmtRingInfo);
2721                 /* Silently drop this packet */
2722                 printk(KERN_EMERG"Dropped a packet for 64k boundary problem\n");
2723                 return STATUS_SUCCESS;
2724         }
2725         XmtCmd->Buffer.FirstSgeAddress = phys_addr;
2726         XmtCmd->Buffer.FirstSgeLength = DataLength;
2727         XmtCmd->Buffer.SgeOffset = 0;
2728         XmtCmd->Buffer.TotalLength = DataLength;
2729
2730         /*
2731          * Advance transmit cmd descripter by 1.
2732          * NOTE - See comments in SxgTcpOutput where we write
2733          * to the XmtCmd register regarding CPU ID values and/or
2734          * multiple commands.
2735          * Top 16 bits specify queue_id.  See comments about queue_id above
2736          */
2737         /* Four queues at the moment */
2738         ASSERT((queue_id & ~SXG_LARGE_SEND_QUEUE_MASK) == 0);
2739         WRITE_REG(adapter->UcodeRegs[0].XmtCmd, ((queue_id << 16) | 1), TRUE);
2740         adapter->Stats.XmtQLen++;       /* Stats within lock */
2741         /* Update stats */
2742         adapter->stats.tx_packets++;
2743         adapter->stats.tx_bytes += DataLength;
2744 #if XXXTODO                     /* Stats stuff */
2745         if (SXG_MULTICAST_PACKET(EtherHdr)) {
2746                 if (SXG_BROADCAST_PACKET(EtherHdr)) {
2747                         adapter->Stats.DumbXmtBcastPkts++;
2748                         adapter->Stats.DumbXmtBcastBytes += DataLength;
2749                 } else {
2750                         adapter->Stats.DumbXmtMcastPkts++;
2751                         adapter->Stats.DumbXmtMcastBytes += DataLength;
2752                 }
2753         } else {
2754                 adapter->Stats.DumbXmtUcastPkts++;
2755                 adapter->Stats.DumbXmtUcastBytes += DataLength;
2756         }
2757 #endif
2758
2759         spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
2760         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDumSgl2",
2761                   XmtCmd, pSgl, SxgSgl, 0);
2762         return  STATUS_SUCCESS;
2763
2764       abortcmd:
2765         /*
2766          * NOTE - Only jump to this label AFTER grabbing the
2767          * XmtZeroLock, and DO NOT DROP IT between the
2768          * command allocation and the following abort.
2769          */
2770         if (XmtCmd) {
2771                 SXG_ABORT_CMD(XmtRingInfo);
2772         }
2773         spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
2774
2775 /*
2776  * failsgl:
2777  *      Jump to this label if failure occurs before the
2778  *      XmtZeroLock is grabbed
2779  */
2780         adapter->stats.tx_errors++;
2781         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "DumSGFal",
2782                   pSgl, SxgSgl, XmtRingInfo->Head, XmtRingInfo->Tail);
2783         /* SxgSgl->DumbPacket is the skb */
2784         // SXG_COMPLETE_DUMB_SEND(adapter, SxgSgl->DumbPacket);
2785
2786         return STATUS_FAILURE;
2787 }
2788
2789 /*
2790  * Link management functions
2791  *
2792  * sxg_initialize_link - Initialize the link stuff
2793  *
2794  * Arguments -
2795  *      adapter         - A pointer to our adapter structure
2796  *
2797  * Return
2798  *      status
2799  */
2800 static int sxg_initialize_link(struct adapter_t *adapter)
2801 {
2802         struct sxg_hw_regs *HwRegs = adapter->HwRegs;
2803         u32 Value;
2804         u32 ConfigData;
2805         u32 MaxFrame;
2806         u32 AxgMacReg1;
2807         int status;
2808
2809         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "InitLink",
2810                   adapter, 0, 0, 0);
2811
2812         /* Reset PHY and XGXS module */
2813         WRITE_REG(HwRegs->LinkStatus, LS_SERDES_POWER_DOWN, TRUE);
2814
2815         /* Reset transmit configuration register */
2816         WRITE_REG(HwRegs->XmtConfig, XMT_CONFIG_RESET, TRUE);
2817
2818         /* Reset receive configuration register */
2819         WRITE_REG(HwRegs->RcvConfig, RCV_CONFIG_RESET, TRUE);
2820
2821         /* Reset all MAC modules */
2822         WRITE_REG(HwRegs->MacConfig0, AXGMAC_CFG0_SUB_RESET, TRUE);
2823
2824         /*
2825          * Link address 0
2826          * XXXTODO - This assumes the MAC address (0a:0b:0c:0d:0e:0f)
2827          * is stored with the first nibble (0a) in the byte 0
2828          * of the Mac address.  Possibly reverse?
2829          */
2830         Value = *(u32 *) adapter->macaddr;
2831         WRITE_REG(HwRegs->LinkAddress0Low, Value, TRUE);
2832         /* also write the MAC address to the MAC.  Endian is reversed. */
2833         WRITE_REG(HwRegs->MacAddressLow, ntohl(Value), TRUE);
2834         Value = (*(u16 *) & adapter->macaddr[4] & 0x0000FFFF);
2835         WRITE_REG(HwRegs->LinkAddress0High, Value | LINK_ADDRESS_ENABLE, TRUE);
2836         /* endian swap for the MAC (put high bytes in bits [31:16], swapped) */
2837         Value = ntohl(Value);
2838         WRITE_REG(HwRegs->MacAddressHigh, Value, TRUE);
2839         /* Link address 1 */
2840         WRITE_REG(HwRegs->LinkAddress1Low, 0, TRUE);
2841         WRITE_REG(HwRegs->LinkAddress1High, 0, TRUE);
2842         /* Link address 2 */
2843         WRITE_REG(HwRegs->LinkAddress2Low, 0, TRUE);
2844         WRITE_REG(HwRegs->LinkAddress2High, 0, TRUE);
2845         /* Link address 3 */
2846         WRITE_REG(HwRegs->LinkAddress3Low, 0, TRUE);
2847         WRITE_REG(HwRegs->LinkAddress3High, 0, TRUE);
2848
2849         /* Enable MAC modules */
2850         WRITE_REG(HwRegs->MacConfig0, 0, TRUE);
2851
2852         /* Configure MAC */
2853         AxgMacReg1 = (  /* Enable XMT */
2854                         AXGMAC_CFG1_XMT_EN |
2855                         /* Enable receive */
2856                         AXGMAC_CFG1_RCV_EN |
2857                         /* short frame detection */
2858                         AXGMAC_CFG1_SHORT_ASSERT |
2859                         /* Verify frame length */
2860                         AXGMAC_CFG1_CHECK_LEN |
2861                         /* Generate FCS */
2862                         AXGMAC_CFG1_GEN_FCS |
2863                         /* Pad frames to 64 bytes */
2864                         AXGMAC_CFG1_PAD_64);
2865
2866         if (adapter->XmtFcEnabled) {
2867                 AxgMacReg1 |=  AXGMAC_CFG1_XMT_PAUSE;  /* Allow sending of pause */
2868         }
2869         if (adapter->RcvFcEnabled) {
2870                 AxgMacReg1 |=  AXGMAC_CFG1_RCV_PAUSE;  /* Enable detection of pause */
2871         }
2872
2873         WRITE_REG(HwRegs->MacConfig1, AxgMacReg1, TRUE);
2874
2875         /* Set AXGMAC max frame length if jumbo.  Not needed for standard MTU */
2876         if (adapter->JumboEnabled) {
2877                 WRITE_REG(HwRegs->MacMaxFrameLen, AXGMAC_MAXFRAME_JUMBO, TRUE);
2878         }
2879         /*
2880          * AMIIM Configuration Register -
2881          * The value placed in the AXGMAC_AMIIM_CFG_HALF_CLOCK portion
2882          * (bottom bits) of this register is used to determine the MDC frequency
2883          * as specified in the A-XGMAC Design Document. This value must not be
2884          * zero.  The following value (62 or 0x3E) is based on our MAC transmit
2885          * clock frequency (MTCLK) of 312.5 MHz. Given a maximum MDIO clock
2886          * frequency of 2.5 MHz (see the PHY spec), we get:
2887          *      312.5/(2*(X+1)) < 2.5  ==> X = 62.
2888          * This value happens to be the default value for this register, so we
2889          * really don't have to do this.
2890          */
2891         if (adapter->asictype == SAHARA_REV_B) {
2892                 WRITE_REG(HwRegs->MacAmiimConfig, 0x0000001F, TRUE);
2893         } else {
2894                 WRITE_REG(HwRegs->MacAmiimConfig, 0x0000003E, TRUE);
2895         }
2896
2897         /* Power up and enable PHY and XAUI/XGXS/Serdes logic */
2898         WRITE_REG(HwRegs->LinkStatus,
2899                    (LS_PHY_CLR_RESET |
2900                     LS_XGXS_ENABLE |
2901                     LS_XGXS_CTL |
2902                     LS_PHY_CLK_EN |
2903                     LS_ATTN_ALARM),
2904                     TRUE);
2905         DBG_ERROR("After Power Up and enable PHY in sxg_initialize_link\n");
2906
2907         /*
2908          * Per information given by Aeluros, wait 100 ms after removing reset.
2909          * It's not enough to wait for the self-clearing reset bit in reg 0 to
2910          * clear.
2911          */
2912         mdelay(100);
2913
2914         /* Verify the PHY has come up by checking that the Reset bit has
2915          * cleared.
2916          */
2917         status = sxg_read_mdio_reg(adapter,
2918                                 MIIM_DEV_PHY_PMA, /* PHY PMA/PMD module */
2919                                 PHY_PMA_CONTROL1, /* PMA/PMD control register */
2920                                 &Value);
2921         DBG_ERROR("After sxg_read_mdio_reg Value[%x] fail=%x\n", Value,
2922                                          (Value & PMA_CONTROL1_RESET));
2923         if (status != STATUS_SUCCESS)
2924                 return (STATUS_FAILURE);
2925         if (Value & PMA_CONTROL1_RESET) /* reset complete if bit is 0 */
2926                 return (STATUS_FAILURE);
2927
2928         /* The SERDES should be initialized by now - confirm */
2929         READ_REG(HwRegs->LinkStatus, Value);
2930         if (Value & LS_SERDES_DOWN)     /* verify SERDES is initialized */
2931                 return (STATUS_FAILURE);
2932
2933         /* The XAUI link should also be up - confirm */
2934         if (!(Value & LS_XAUI_LINK_UP)) /* verify XAUI link is up */
2935                 return (STATUS_FAILURE);
2936
2937         /* Initialize the PHY */
2938         status = sxg_phy_init(adapter);
2939         if (status != STATUS_SUCCESS)
2940                 return (STATUS_FAILURE);
2941
2942         /* Enable the Link Alarm */
2943
2944         /* MIIM_DEV_PHY_PMA             - PHY PMA/PMD module
2945          * LASI_CONTROL                 - LASI control register
2946          * LASI_CTL_LS_ALARM_ENABLE     - enable link alarm bit
2947          */
2948         status = sxg_write_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
2949                                     LASI_CONTROL,
2950                                     LASI_CTL_LS_ALARM_ENABLE);
2951         if (status != STATUS_SUCCESS)
2952                 return (STATUS_FAILURE);
2953
2954         /* XXXTODO - temporary - verify bit is set */
2955
2956         /* MIIM_DEV_PHY_PMA             - PHY PMA/PMD module
2957          * LASI_CONTROL                 - LASI control register
2958          */
2959         status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
2960                                    LASI_CONTROL,
2961                                    &Value);
2962
2963         if (status != STATUS_SUCCESS)
2964                 return (STATUS_FAILURE);
2965         if (!(Value & LASI_CTL_LS_ALARM_ENABLE)) {
2966                 DBG_ERROR("Error!  LASI Control Alarm Enable bit not set!\n");
2967         }
2968         /* Enable receive */
2969         MaxFrame = adapter->JumboEnabled ? JUMBOMAXFRAME : ETHERMAXFRAME;
2970         ConfigData = (RCV_CONFIG_ENABLE |
2971                       RCV_CONFIG_ENPARSE |
2972                       RCV_CONFIG_RCVBAD |
2973                       RCV_CONFIG_RCVPAUSE |
2974                       RCV_CONFIG_TZIPV6 |
2975                       RCV_CONFIG_TZIPV4 |
2976                       RCV_CONFIG_HASH_16 |
2977                       RCV_CONFIG_SOCKET | RCV_CONFIG_BUFSIZE(MaxFrame));
2978
2979         if (adapter->asictype == SAHARA_REV_B) {
2980                 ConfigData |= (RCV_CONFIG_HIPRICTL  |
2981                                 RCV_CONFIG_NEWSTATUSFMT);
2982         }
2983         WRITE_REG(HwRegs->RcvConfig, ConfigData, TRUE);
2984
2985         WRITE_REG(HwRegs->XmtConfig, XMT_CONFIG_ENABLE, TRUE);
2986
2987         /* Mark the link as down.  We'll get a link event when it comes up. */
2988         sxg_link_state(adapter, SXG_LINK_DOWN);
2989
2990         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XInitLnk",
2991                   adapter, 0, 0, 0);
2992         return (STATUS_SUCCESS);
2993 }
2994
2995 /*
2996  * sxg_phy_init - Initialize the PHY
2997  *
2998  * Arguments -
2999  *      adapter         - A pointer to our adapter structure
3000  *
3001  * Return
3002  *      status
3003  */
3004 static int sxg_phy_init(struct adapter_t *adapter)
3005 {
3006         u32 Value;
3007         struct phy_ucode *p;
3008         int status;
3009
3010         DBG_ERROR("ENTER %s\n", __func__);
3011
3012         /* MIIM_DEV_PHY_PMA - PHY PMA/PMD module
3013          * 0xC205 - PHY ID register (?)
3014          * &Value - XXXTODO - add def
3015          */
3016         status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
3017                                    0xC205,
3018                                    &Value);
3019         if (status != STATUS_SUCCESS)
3020                 return (STATUS_FAILURE);
3021
3022         if (Value == 0x0012) {
3023                 /* 0x0012 == AEL2005C PHY(?) - XXXTODO - add def */
3024                 DBG_ERROR("AEL2005C PHY detected.  Downloading PHY \
3025                                  microcode.\n");
3026
3027                 /* Initialize AEL2005C PHY and download PHY microcode */
3028                 for (p = PhyUcode; p->Addr != 0xFFFF; p++) {
3029                         if (p->Addr == 0) {
3030                                 /* if address == 0, data == sleep time in ms */
3031                                 mdelay(p->Data);
3032                         } else {
3033                         /* write the given data to the specified address */
3034                                 status = sxg_write_mdio_reg(adapter,
3035                                                         MIIM_DEV_PHY_PMA,
3036                                                         /* PHY address */
3037                                                             p->Addr,
3038                                                         /* PHY data */
3039                                                             p->Data);
3040                                 if (status != STATUS_SUCCESS)
3041                                         return (STATUS_FAILURE);
3042                         }
3043                 }
3044         }
3045         DBG_ERROR("EXIT %s\n", __func__);
3046
3047         return (STATUS_SUCCESS);
3048 }
3049
3050 /*
3051  * sxg_link_event - Process a link event notification from the card
3052  *
3053  * Arguments -
3054  *      adapter         - A pointer to our adapter structure
3055  *
3056  * Return
3057  *      None
3058  */
3059 static void sxg_link_event(struct adapter_t *adapter)
3060 {
3061         struct sxg_hw_regs *HwRegs = adapter->HwRegs;
3062         struct net_device *netdev = adapter->netdev;
3063         enum SXG_LINK_STATE LinkState;
3064         int status;
3065         u32 Value;
3066
3067         if (adapter->state == ADAPT_DOWN)
3068                 return;
3069         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "LinkEvnt",
3070                   adapter, 0, 0, 0);
3071         DBG_ERROR("ENTER %s\n", __func__);
3072
3073         /* Check the Link Status register.  We should have a Link Alarm. */
3074         READ_REG(HwRegs->LinkStatus, Value);
3075         if (Value & LS_LINK_ALARM) {
3076                 /*
3077                  * We got a Link Status alarm.  First, pause to let the
3078                  * link state settle (it can bounce a number of times)
3079                  */
3080                 mdelay(10);
3081
3082                 /* Now clear the alarm by reading the LASI status register. */
3083                 /* MIIM_DEV_PHY_PMA - PHY PMA/PMD module */
3084                 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
3085                                         /* LASI status register */
3086                                            LASI_STATUS,
3087                                            &Value);
3088                 if (status != STATUS_SUCCESS) {
3089                         DBG_ERROR("Error reading LASI Status MDIO register!\n");
3090                         sxg_link_state(adapter, SXG_LINK_DOWN);
3091                 /* ASSERT(0); */
3092                 }
3093                 /*
3094                  * We used to assert that the LASI_LS_ALARM bit was set, as
3095                  * it should be.  But there appears to be cases during
3096                  * initialization (when the PHY is reset and re-initialized)
3097                  * when we get a link alarm, but the status bit is 0 when we
3098                  * read it.  Rather than trying to assure this never happens
3099                  * (and nver being certain), just ignore it.
3100
3101                  * ASSERT(Value & LASI_STATUS_LS_ALARM);
3102                  */
3103
3104                 /* Now get and set the link state */
3105                 LinkState = sxg_get_link_state(adapter);
3106                 sxg_link_state(adapter, LinkState);
3107                 DBG_ERROR("SXG: Link Alarm occurred.  Link is %s\n",
3108                           ((LinkState == SXG_LINK_UP) ? "UP" : "DOWN"));
3109                 if (LinkState == SXG_LINK_UP) {
3110                         netif_carrier_on(netdev);
3111                         netif_tx_start_all_queues(netdev);
3112                 } else {
3113                         netif_tx_stop_all_queues(netdev);
3114                         netif_carrier_off(netdev);
3115                 }
3116         } else {
3117                 /*
3118                  * XXXTODO - Assuming Link Attention is only being generated
3119                  * for the Link Alarm pin (and not for a XAUI Link Status change)
3120                  * , then it's impossible to get here.  Yet we've gotten here
3121                  * twice (under extreme conditions - bouncing the link up and
3122                  * down many times a second). Needs further investigation.
3123                  */
3124                 DBG_ERROR("SXG: sxg_link_event: Can't get here!\n");
3125                 DBG_ERROR("SXG: Link Status == 0x%08X.\n", Value);
3126                 /* ASSERT(0); */
3127         }
3128         DBG_ERROR("EXIT %s\n", __func__);
3129
3130 }
3131
3132 /*
3133  * sxg_get_link_state - Determine if the link is up or down
3134  *
3135  * Arguments -
3136  *      adapter         - A pointer to our adapter structure
3137  *
3138  * Return
3139  *      Link State
3140  */
3141 static enum SXG_LINK_STATE sxg_get_link_state(struct adapter_t *adapter)
3142 {
3143         int status;
3144         u32 Value;
3145
3146         DBG_ERROR("ENTER %s\n", __func__);
3147
3148         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "GetLink",
3149                   adapter, 0, 0, 0);
3150
3151         /*
3152          * Per the Xenpak spec (and the IEEE 10Gb spec?), the link is up if
3153          * the following 3 bits (from 3 different MDIO registers) are all true.
3154          */
3155
3156         /* MIIM_DEV_PHY_PMA -  PHY PMA/PMD module */
3157         status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
3158                                 /* PMA/PMD Receive Signal Detect register */
3159                                    PHY_PMA_RCV_DET,
3160                                    &Value);
3161         if (status != STATUS_SUCCESS)
3162                 goto bad;
3163
3164         /* If PMA/PMD receive signal detect is 0, then the link is down */
3165         if (!(Value & PMA_RCV_DETECT))
3166                 return (SXG_LINK_DOWN);
3167
3168         /* MIIM_DEV_PHY_PCS - PHY PCS module */
3169         status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PCS,
3170                                 /* PCS 10GBASE-R Status 1 register */
3171                                    PHY_PCS_10G_STATUS1,
3172                                    &Value);
3173         if (status != STATUS_SUCCESS)
3174                 goto bad;
3175
3176         /* If PCS is not locked to receive blocks, then the link is down */
3177         if (!(Value & PCS_10B_BLOCK_LOCK))
3178                 return (SXG_LINK_DOWN);
3179
3180         status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_XS,/* PHY XS module */
3181                                 /* XS Lane Status register */
3182                                    PHY_XS_LANE_STATUS,
3183                                    &Value);
3184         if (status != STATUS_SUCCESS)
3185                 goto bad;
3186
3187         /* If XS transmit lanes are not aligned, then the link is down */
3188         if (!(Value & XS_LANE_ALIGN))
3189                 return (SXG_LINK_DOWN);
3190
3191         /* All 3 bits are true, so the link is up */
3192         DBG_ERROR("EXIT %s\n", __func__);
3193
3194         return (SXG_LINK_UP);
3195
3196       bad:
3197         /* An error occurred reading an MDIO register. This shouldn't happen. */
3198         DBG_ERROR("Error reading an MDIO register!\n");
3199         ASSERT(0);
3200         return (SXG_LINK_DOWN);
3201 }
3202
3203 static void sxg_indicate_link_state(struct adapter_t *adapter,
3204                                     enum SXG_LINK_STATE LinkState)
3205 {
3206         if (adapter->LinkState == SXG_LINK_UP) {
3207                 DBG_ERROR("%s: LINK now UP, call netif_start_queue\n",
3208                           __func__);
3209                 netif_start_queue(adapter->netdev);
3210         } else {
3211                 DBG_ERROR("%s: LINK now DOWN, call netif_stop_queue\n",
3212                           __func__);
3213                 netif_stop_queue(adapter->netdev);
3214         }
3215 }
3216
3217 /*
3218  * sxg_change_mtu - Change the Maximum Transfer Unit
3219  *  * @returns 0 on success, negative on failure
3220  */
3221 int sxg_change_mtu (struct net_device *netdev, int new_mtu)
3222 {
3223         struct adapter_t *adapter = (struct adapter_t *) netdev_priv(netdev);
3224
3225         if (!((new_mtu == SXG_DEFAULT_MTU) || (new_mtu == SXG_JUMBO_MTU)))
3226                 return -EINVAL;
3227
3228         if(new_mtu == netdev->mtu)
3229                 return 0;
3230
3231         netdev->mtu = new_mtu;
3232
3233         if (new_mtu == SXG_JUMBO_MTU) {
3234                 adapter->JumboEnabled = TRUE;
3235                 adapter->FrameSize = JUMBOMAXFRAME;
3236                 adapter->ReceiveBufferSize = SXG_RCV_JUMBO_BUFFER_SIZE;
3237         } else {
3238                 adapter->JumboEnabled = FALSE;
3239                 adapter->FrameSize = ETHERMAXFRAME;
3240                 adapter->ReceiveBufferSize = SXG_RCV_DATA_BUFFER_SIZE;
3241         }
3242
3243         sxg_entry_halt(netdev);
3244         sxg_entry_open(netdev);
3245         return 0;
3246 }
3247
3248 /*
3249  * sxg_link_state - Set the link state and if necessary, indicate.
3250  *      This routine the central point of processing for all link state changes.
3251  *      Nothing else in the driver should alter the link state or perform
3252  *      link state indications
3253  *
3254  * Arguments -
3255  *      adapter         - A pointer to our adapter structure
3256  *      LinkState       - The link state
3257  *
3258  * Return
3259  *      None
3260  */
3261 static void sxg_link_state(struct adapter_t *adapter,
3262                                 enum SXG_LINK_STATE LinkState)
3263 {
3264         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "LnkINDCT",
3265                   adapter, LinkState, adapter->LinkState, adapter->State);
3266
3267         DBG_ERROR("ENTER %s\n", __func__);
3268
3269         /*
3270          * Hold the adapter lock during this routine.  Maybe move
3271          * the lock to the caller.
3272          */
3273         /* IMP TODO : Check if we can survive without taking this lock */
3274 //      spin_lock(&adapter->AdapterLock);
3275         if (LinkState == adapter->LinkState) {
3276                 /* Nothing changed.. */
3277 //              spin_unlock(&adapter->AdapterLock);
3278                 DBG_ERROR("EXIT #0 %s. Link status = %d\n",
3279                                          __func__, LinkState);
3280                 return;
3281         }
3282         /* Save the adapter state */
3283         adapter->LinkState = LinkState;
3284
3285         /* Drop the lock and indicate link state */
3286 //      spin_unlock(&adapter->AdapterLock);
3287         DBG_ERROR("EXIT #1 %s\n", __func__);
3288
3289         sxg_indicate_link_state(adapter, LinkState);
3290 }
3291
3292 /*
3293  * sxg_write_mdio_reg - Write to a register on the MDIO bus
3294  *
3295  * Arguments -
3296  *      adapter         - A pointer to our adapter structure
3297  *  DevAddr     - MDIO device number being addressed
3298  *  RegAddr     - register address for the specified MDIO device
3299  *  Value               - value to write to the MDIO register
3300  *
3301  * Return
3302  *      status
3303  */
3304 static int sxg_write_mdio_reg(struct adapter_t *adapter,
3305                               u32 DevAddr, u32 RegAddr, u32 Value)
3306 {
3307         struct sxg_hw_regs *HwRegs = adapter->HwRegs;
3308         /* Address operation (written to MIIM field reg) */
3309         u32 AddrOp;
3310         /* Write operation (written to MIIM field reg) */
3311         u32 WriteOp;
3312         u32 Cmd;/* Command (written to MIIM command reg) */
3313         u32 ValueRead;
3314         u32 Timeout;
3315
3316         /* DBG_ERROR("ENTER %s\n", __func__); */
3317
3318         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "WrtMDIO",
3319                   adapter, 0, 0, 0);
3320
3321         /* Ensure values don't exceed field width */
3322         DevAddr &= 0x001F;      /* 5-bit field */
3323         RegAddr &= 0xFFFF;      /* 16-bit field */
3324         Value &= 0xFFFF;        /* 16-bit field */
3325
3326         /* Set MIIM field register bits for an MIIM address operation */
3327         AddrOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
3328             (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
3329             (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
3330             (MIIM_OP_ADDR << AXGMAC_AMIIM_FIELD_OP_SHIFT) | RegAddr;
3331
3332         /* Set MIIM field register bits for an MIIM write operation */
3333         WriteOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
3334             (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
3335             (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
3336             (MIIM_OP_WRITE << AXGMAC_AMIIM_FIELD_OP_SHIFT) | Value;
3337
3338         /* Set MIIM command register bits to execute an MIIM command */
3339         Cmd = AXGMAC_AMIIM_CMD_START | AXGMAC_AMIIM_CMD_10G_OPERATION;
3340
3341         /* Reset the command register command bit (in case it's not 0) */
3342         WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
3343
3344         /* MIIM write to set the address of the specified MDIO register */
3345         WRITE_REG(HwRegs->MacAmiimField, AddrOp, TRUE);
3346
3347         /* Write to MIIM Command Register to execute to address operation */
3348         WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
3349
3350         /* Poll AMIIM Indicator register to wait for completion */
3351         Timeout = SXG_LINK_TIMEOUT;
3352         do {
3353                 udelay(100);    /* Timeout in 100us units */
3354                 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
3355                 if (--Timeout == 0) {
3356                         return (STATUS_FAILURE);
3357                 }
3358         } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
3359
3360         /* Reset the command register command bit */
3361         WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
3362
3363         /* MIIM write to set up an MDIO write operation */
3364         WRITE_REG(HwRegs->MacAmiimField, WriteOp, TRUE);
3365
3366         /* Write to MIIM Command Register to execute the write operation */
3367         WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
3368
3369         /* Poll AMIIM Indicator register to wait for completion */
3370         Timeout = SXG_LINK_TIMEOUT;
3371         do {
3372                 udelay(100);    /* Timeout in 100us units */
3373                 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
3374                 if (--Timeout == 0) {
3375                         return (STATUS_FAILURE);
3376                 }
3377         } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
3378
3379         /* DBG_ERROR("EXIT %s\n", __func__); */
3380
3381         return (STATUS_SUCCESS);
3382 }
3383
3384 /*
3385  * sxg_read_mdio_reg - Read a register on the MDIO bus
3386  *
3387  * Arguments -
3388  *      adapter         - A pointer to our adapter structure
3389  *  DevAddr     - MDIO device number being addressed
3390  *  RegAddr     - register address for the specified MDIO device
3391  *  pValue      - pointer to where to put data read from the MDIO register
3392  *
3393  * Return
3394  *      status
3395  */
3396 static int sxg_read_mdio_reg(struct adapter_t *adapter,
3397                              u32 DevAddr, u32 RegAddr, u32 *pValue)
3398 {
3399         struct sxg_hw_regs *HwRegs = adapter->HwRegs;
3400         u32 AddrOp;     /* Address operation (written to MIIM field reg) */
3401         u32 ReadOp;     /* Read operation (written to MIIM field reg) */
3402         u32 Cmd;        /* Command (written to MIIM command reg) */
3403         u32 ValueRead;
3404         u32 Timeout;
3405
3406         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "WrtMDIO",
3407                   adapter, 0, 0, 0);
3408         DBG_ERROR("ENTER %s\n", __func__);
3409
3410         /* Ensure values don't exceed field width */
3411         DevAddr &= 0x001F;      /* 5-bit field */
3412         RegAddr &= 0xFFFF;      /* 16-bit field */
3413
3414         /* Set MIIM field register bits for an MIIM address operation */
3415         AddrOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
3416             (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
3417             (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
3418             (MIIM_OP_ADDR << AXGMAC_AMIIM_FIELD_OP_SHIFT) | RegAddr;
3419
3420         /* Set MIIM field register bits for an MIIM read operation */
3421         ReadOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
3422             (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
3423             (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
3424             (MIIM_OP_READ << AXGMAC_AMIIM_FIELD_OP_SHIFT);
3425
3426         /* Set MIIM command register bits to execute an MIIM command */
3427         Cmd = AXGMAC_AMIIM_CMD_START | AXGMAC_AMIIM_CMD_10G_OPERATION;
3428
3429         /* Reset the command register command bit (in case it's not 0) */
3430         WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
3431
3432         /* MIIM write to set the address of the specified MDIO register */
3433         WRITE_REG(HwRegs->MacAmiimField, AddrOp, TRUE);
3434
3435         /* Write to MIIM Command Register to execute to address operation */
3436         WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
3437
3438         /* Poll AMIIM Indicator register to wait for completion */
3439         Timeout = SXG_LINK_TIMEOUT;
3440         do {
3441                 udelay(100);    /* Timeout in 100us units */
3442                 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
3443                 if (--Timeout == 0) {
3444             DBG_ERROR("EXIT %s with STATUS_FAILURE 1\n", __func__);
3445
3446                         return (STATUS_FAILURE);
3447                 }
3448         } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
3449
3450         /* Reset the command register command bit */
3451         WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
3452
3453         /* MIIM write to set up an MDIO register read operation */
3454         WRITE_REG(HwRegs->MacAmiimField, ReadOp, TRUE);
3455
3456         /* Write to MIIM Command Register to execute the read operation */
3457         WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
3458
3459         /* Poll AMIIM Indicator register to wait for completion */
3460         Timeout = SXG_LINK_TIMEOUT;
3461         do {
3462                 udelay(100);    /* Timeout in 100us units */
3463                 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
3464                 if (--Timeout == 0) {
3465             DBG_ERROR("EXIT %s with STATUS_FAILURE 2\n", __func__);
3466
3467                         return (STATUS_FAILURE);
3468                 }
3469         } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
3470
3471         /* Read the MDIO register data back from the field register */
3472         READ_REG(HwRegs->MacAmiimField, *pValue);
3473         *pValue &= 0xFFFF;      /* data is in the lower 16 bits */
3474
3475         DBG_ERROR("EXIT %s\n", __func__);
3476
3477         return (STATUS_SUCCESS);
3478 }
3479
3480 /*
3481  * Functions to obtain the CRC corresponding to the destination mac address.
3482  * This is a standard ethernet CRC in that it is a 32-bit, reflected CRC using
3483  * the polynomial:
3484  *   x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5
3485  *    + x^4 + x^2 + x^1.
3486  *
3487  * After the CRC for the 6 bytes is generated (but before the value is
3488  * complemented), we must then transpose the value and return bits 30-23.
3489  */
3490 static u32 sxg_crc_table[256];/* Table of CRC's for all possible byte values */
3491 static u32 sxg_crc_init;        /* Is table initialized */
3492
3493 /* Contruct the CRC32 table */
3494 static void sxg_mcast_init_crc32(void)
3495 {
3496         u32 c;                  /*  CRC shit reg */
3497         u32 e = 0;              /*  Poly X-or pattern */
3498         int i;                  /*  counter */
3499         int k;                  /*  byte being shifted into crc  */
3500
3501         static int p[] = { 0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26 };
3502
3503         for (i = 0; i < sizeof(p) / sizeof(int); i++) {
3504                 e |= 1L << (31 - p[i]);
3505         }
3506
3507         for (i = 1; i < 256; i++) {
3508                 c = i;
3509                 for (k = 8; k; k--) {
3510                         c = c & 1 ? (c >> 1) ^ e : c >> 1;
3511                 }
3512                 sxg_crc_table[i] = c;
3513         }
3514 }
3515
3516 /*
3517  *  Return the MAC hast as described above.
3518  */
3519 static unsigned char sxg_mcast_get_mac_hash(char *macaddr)
3520 {
3521         u32 crc;
3522         char *p;
3523         int i;
3524         unsigned char machash = 0;
3525
3526         if (!sxg_crc_init) {
3527                 sxg_mcast_init_crc32();
3528                 sxg_crc_init = 1;
3529         }
3530
3531         crc = 0xFFFFFFFF;       /* Preload shift register, per crc-32 spec */
3532         for (i = 0, p = macaddr; i < 6; ++p, ++i) {
3533                 crc = (crc >> 8) ^ sxg_crc_table[(crc ^ *p) & 0xFF];
3534         }
3535
3536         /* Return bits 1-8, transposed */
3537         for (i = 1; i < 9; i++) {
3538                 machash |= (((crc >> i) & 1) << (8 - i));
3539         }
3540
3541         return (machash);
3542 }
3543
3544 static void sxg_mcast_set_mask(struct adapter_t *adapter)
3545 {
3546         struct sxg_ucode_regs *sxg_regs = adapter->UcodeRegs;
3547
3548         DBG_ERROR("%s ENTER (%s) MacFilter[%x] mask[%llx]\n", __func__,
3549                   adapter->netdev->name, (unsigned int)adapter->MacFilter,
3550                   adapter->MulticastMask);
3551
3552         if (adapter->MacFilter & (MAC_ALLMCAST | MAC_PROMISC)) {
3553                 /*
3554                  * Turn on all multicast addresses. We have to do this for
3555                  * promiscuous mode as well as ALLMCAST mode.  It saves the
3556                  * Microcode from having keep state about the MAC configuration
3557                  */
3558                 /* DBG_ERROR("sxg: %s MacFilter = MAC_ALLMCAST | MAC_PROMISC\n \
3559                  *                              SLUT MODE!!!\n",__func__);
3560                  */
3561                 WRITE_REG(sxg_regs->McastLow, 0xFFFFFFFF, FLUSH);
3562                 WRITE_REG(sxg_regs->McastHigh, 0xFFFFFFFF, FLUSH);
3563                 /* DBG_ERROR("%s (%s) WRITE to slic_regs slic_mcastlow&high \
3564                  * 0xFFFFFFFF\n",__func__, adapter->netdev->name);
3565                  */
3566
3567         } else {
3568                 /*
3569                  * Commit our multicast mast to the SLIC by writing to the
3570                  * multicast address mask registers
3571                  */
3572                 DBG_ERROR("%s (%s) WRITE mcastlow[%lx] mcasthigh[%lx]\n",
3573                           __func__, adapter->netdev->name,
3574                           ((ulong) (adapter->MulticastMask & 0xFFFFFFFF)),
3575                           ((ulong)
3576                            ((adapter->MulticastMask >> 32) & 0xFFFFFFFF)));
3577
3578                 WRITE_REG(sxg_regs->McastLow,
3579                           (u32) (adapter->MulticastMask & 0xFFFFFFFF), FLUSH);
3580                 WRITE_REG(sxg_regs->McastHigh,
3581                           (u32) ((adapter->
3582                                   MulticastMask >> 32) & 0xFFFFFFFF), FLUSH);
3583         }
3584 }
3585
3586 static void sxg_mcast_set_bit(struct adapter_t *adapter, char *address)
3587 {
3588         unsigned char crcpoly;
3589
3590         /* Get the CRC polynomial for the mac address */
3591         crcpoly = sxg_mcast_get_mac_hash(address);
3592
3593         /*
3594          * We only have space on the SLIC for 64 entries.  Lop
3595          * off the top two bits. (2^6 = 64)
3596          */
3597         crcpoly &= 0x3F;
3598
3599         /* OR in the new bit into our 64 bit mask. */
3600         adapter->MulticastMask |= (u64) 1 << crcpoly;
3601 }
3602
3603 /*
3604  *   Function takes MAC addresses from dev_mc_list and generates the Mask
3605  */
3606
3607 static void sxg_set_mcast_addr(struct adapter_t *adapter)
3608 {
3609         struct dev_mc_list *mclist;
3610         struct net_device *dev = adapter->netdev;
3611         int i;
3612
3613         if (adapter->MacFilter & (MAC_ALLMCAST | MAC_MCAST)) {
3614                for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
3615                              i++, mclist = mclist->next) {
3616                         sxg_mcast_set_bit(adapter,mclist->da_addr);
3617                 }
3618         }
3619         sxg_mcast_set_mask(adapter);
3620 }
3621
3622 static void sxg_mcast_set_list(struct net_device *dev)
3623 {
3624         struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
3625
3626         ASSERT(adapter);
3627         if (dev->flags & IFF_PROMISC)
3628                 adapter->MacFilter |= MAC_PROMISC;
3629         if (dev->flags & IFF_MULTICAST)
3630                 adapter->MacFilter |= MAC_MCAST;
3631         if (dev->flags & IFF_ALLMULTI)
3632                 adapter->MacFilter |= MAC_ALLMCAST;
3633
3634         //XXX handle other flags as well
3635         sxg_set_mcast_addr(adapter);
3636 }
3637
3638 void sxg_free_sgl_buffers(struct adapter_t *adapter)
3639 {
3640         struct list_entry               *ple;
3641         struct sxg_scatter_gather       *Sgl;
3642
3643         while(!(IsListEmpty(&adapter->AllSglBuffers))) {
3644                 ple = RemoveHeadList(&adapter->AllSglBuffers);
3645                 Sgl = container_of(ple, struct sxg_scatter_gather, AllList);
3646                 kfree(Sgl);
3647                 adapter->AllSglBufferCount--;
3648         }
3649 }
3650
3651 void sxg_free_rcvblocks(struct adapter_t *adapter)
3652 {
3653         u32                             i;
3654         void                            *temp_RcvBlock;
3655         struct list_entry               *ple;
3656         struct sxg_rcv_block_hdr        *RcvBlockHdr;
3657         struct sxg_rcv_data_buffer_hdr  *RcvDataBufferHdr;
3658         ASSERT((adapter->state == SXG_STATE_INITIALIZING) ||
3659                     (adapter->state == SXG_STATE_HALTING));
3660         while(!(IsListEmpty(&adapter->AllRcvBlocks))) {
3661
3662                  ple = RemoveHeadList(&adapter->AllRcvBlocks);
3663                  RcvBlockHdr = container_of(ple, struct sxg_rcv_block_hdr, AllList);
3664
3665                 if(RcvBlockHdr->VirtualAddress) {
3666                         temp_RcvBlock = RcvBlockHdr->VirtualAddress;
3667
3668                         for(i=0; i< SXG_RCV_DESCRIPTORS_PER_BLOCK;
3669                              i++, temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
3670                                 RcvDataBufferHdr =
3671                                         (struct sxg_rcv_data_buffer_hdr *)temp_RcvBlock;
3672                                 SXG_FREE_RCV_PACKET(RcvDataBufferHdr);
3673                         }
3674                 }
3675
3676                 pci_free_consistent(adapter->pcidev,
3677                                          SXG_RCV_BLOCK_SIZE(SXG_RCV_DATA_HDR_SIZE),
3678                                          RcvBlockHdr->VirtualAddress,
3679                                          RcvBlockHdr->PhysicalAddress);
3680                 adapter->AllRcvBlockCount--;
3681         }
3682         ASSERT(adapter->AllRcvBlockCount == 0);
3683         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFrRBlk",
3684                         adapter, 0, 0, 0);
3685 }
3686 void sxg_free_mcast_addrs(struct adapter_t *adapter)
3687 {
3688         struct sxg_multicast_address    *address;
3689         while(adapter->MulticastAddrs) {
3690                 address = adapter->MulticastAddrs;
3691                 adapter->MulticastAddrs = address->Next;
3692                 kfree(address);
3693          }
3694
3695         adapter->MulticastMask= 0;
3696 }
3697
3698 void sxg_unmap_resources(struct adapter_t *adapter)
3699 {
3700         if(adapter->HwRegs) {
3701                 iounmap((void *)adapter->HwRegs);
3702          }
3703         if(adapter->UcodeRegs) {
3704                 iounmap((void *)adapter->UcodeRegs);
3705         }
3706
3707         ASSERT(adapter->AllRcvBlockCount == 0);
3708         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFrRBlk",
3709                            adapter, 0, 0, 0);
3710 }
3711
3712
3713
3714 /*
3715  * sxg_free_resources - Free everything allocated in SxgAllocateResources
3716  *
3717  * Arguments -
3718  *      adapter         - A pointer to our adapter structure
3719  *
3720  * Return
3721  *      none
3722  */
3723 void sxg_free_resources(struct adapter_t *adapter)
3724 {
3725         u32 RssIds, IsrCount;
3726         RssIds = SXG_RSS_CPU_COUNT(adapter);
3727         IsrCount = adapter->msi_enabled ? RssIds : 1;
3728
3729         if (adapter->BasicAllocations == FALSE) {
3730                 /*
3731                  * No allocations have been made, including spinlocks,
3732                  * or listhead initializations.  Return.
3733                  */
3734                 return;
3735         }
3736
3737         if (!(IsListEmpty(&adapter->AllRcvBlocks))) {
3738                 sxg_free_rcvblocks(adapter);
3739         }
3740         if (!(IsListEmpty(&adapter->AllSglBuffers))) {
3741                 sxg_free_sgl_buffers(adapter);
3742         }
3743
3744         if (adapter->XmtRingZeroIndex) {
3745                 pci_free_consistent(adapter->pcidev,
3746                                     sizeof(u32),
3747                                     adapter->XmtRingZeroIndex,
3748                                     adapter->PXmtRingZeroIndex);
3749         }
3750         if (adapter->Isr) {
3751                 pci_free_consistent(adapter->pcidev,
3752                                     sizeof(u32) * IsrCount,
3753                                     adapter->Isr, adapter->PIsr);
3754         }
3755
3756         if (adapter->EventRings) {
3757                 pci_free_consistent(adapter->pcidev,
3758                                     sizeof(struct sxg_event_ring) * RssIds,
3759                                     adapter->EventRings, adapter->PEventRings);
3760         }
3761         if (adapter->RcvRings) {
3762                 pci_free_consistent(adapter->pcidev,
3763                                    sizeof(struct sxg_rcv_ring) * 1,
3764                                    adapter->RcvRings,
3765                                    adapter->PRcvRings);
3766                 adapter->RcvRings = NULL;
3767         }
3768
3769         if(adapter->XmtRings) {
3770                 pci_free_consistent(adapter->pcidev,
3771                                             sizeof(struct sxg_xmt_ring) * 1,
3772                                             adapter->XmtRings,
3773                                             adapter->PXmtRings);
3774                         adapter->XmtRings = NULL;
3775         }
3776
3777         if (adapter->ucode_stats) {
3778                 pci_unmap_single(adapter->pcidev,
3779                                 sizeof(struct sxg_ucode_stats),
3780                                  adapter->pucode_stats, PCI_DMA_FROMDEVICE);
3781                 adapter->ucode_stats = NULL;
3782         }
3783
3784
3785         /* Unmap register spaces */
3786         sxg_unmap_resources(adapter);
3787
3788         sxg_free_mcast_addrs(adapter);
3789
3790         adapter->BasicAllocations = FALSE;
3791
3792 }
3793
3794 /*
3795  * sxg_allocate_complete -
3796  *
3797  * This routine is called when a memory allocation has completed.
3798  *
3799  * Arguments -
3800  *      struct adapter_t *      - Our adapter structure
3801  *      VirtualAddress  - Memory virtual address
3802  *      PhysicalAddress - Memory physical address
3803  *      Length          - Length of memory allocated (or 0)
3804  *      Context         - The type of buffer allocated
3805  *
3806  * Return
3807  *      None.
3808  */
3809 static int sxg_allocate_complete(struct adapter_t *adapter,
3810                                   void *VirtualAddress,
3811                                   dma_addr_t PhysicalAddress,
3812                                   u32 Length, enum sxg_buffer_type Context)
3813 {
3814         int status = 0;
3815         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocCmp",
3816                   adapter, VirtualAddress, Length, Context);
3817         ASSERT(atomic_read(&adapter->pending_allocations));
3818         atomic_dec(&adapter->pending_allocations);
3819
3820         switch (Context) {
3821
3822         case SXG_BUFFER_TYPE_RCV:
3823                 status = sxg_allocate_rcvblock_complete(adapter,
3824                                                VirtualAddress,
3825                                                PhysicalAddress, Length);
3826                 break;
3827         case SXG_BUFFER_TYPE_SGL:
3828                 sxg_allocate_sgl_buffer_complete(adapter, (struct sxg_scatter_gather *)
3829                                                  VirtualAddress,
3830                                                  PhysicalAddress, Length);
3831                 break;
3832         }
3833         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlocCmp",
3834                   adapter, VirtualAddress, Length, Context);
3835
3836         return status;
3837 }
3838
3839 /*
3840  * sxg_allocate_buffer_memory - Shared memory allocation routine used for
3841  *              synchronous and asynchronous buffer allocations
3842  *
3843  * Arguments -
3844  *      adapter         - A pointer to our adapter structure
3845  *      Size            - block size to allocate
3846  *      BufferType      - Type of buffer to allocate
3847  *
3848  * Return
3849  *      int
3850  */
3851 static int sxg_allocate_buffer_memory(struct adapter_t *adapter,
3852                                       u32 Size, enum sxg_buffer_type BufferType)
3853 {
3854         int status;
3855         void *Buffer;
3856         dma_addr_t pBuffer;
3857
3858         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocMem",
3859                   adapter, Size, BufferType, 0);
3860         /*
3861          * Grab the adapter lock and check the state. If we're in anything other
3862          * than INITIALIZING or RUNNING state, fail.  This is to prevent
3863          * allocations in an improper driver state
3864          */
3865
3866         atomic_inc(&adapter->pending_allocations);
3867
3868         if(BufferType != SXG_BUFFER_TYPE_SGL)
3869                 Buffer = pci_alloc_consistent(adapter->pcidev, Size, &pBuffer);
3870         else {
3871                 Buffer = kzalloc(Size, GFP_ATOMIC);
3872                 pBuffer = (dma_addr_t)NULL;
3873         }
3874         if (Buffer == NULL) {
3875                 /*
3876                  * Decrement the AllocationsPending count while holding
3877                  * the lock.  Pause processing relies on this
3878                  */
3879                 atomic_dec(&adapter->pending_allocations);
3880                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlcMemF1",
3881                           adapter, Size, BufferType, 0);
3882                 return (STATUS_RESOURCES);
3883         }
3884         status = sxg_allocate_complete(adapter, Buffer, pBuffer, Size, BufferType);
3885
3886         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlocMem",
3887                   adapter, Size, BufferType, status);
3888         return status;
3889 }
3890
3891 /*
3892  * sxg_allocate_rcvblock_complete - Complete a receive descriptor
3893  *                                      block allocation
3894  *
3895  * Arguments -
3896  *      adapter                         - A pointer to our adapter structure
3897  *      RcvBlock                        - receive block virtual address
3898  *      PhysicalAddress         - Physical address
3899  *      Length                          - Memory length
3900  *
3901  * Return
3902  */
3903 static int sxg_allocate_rcvblock_complete(struct adapter_t *adapter,
3904                                            void *RcvBlock,
3905                                            dma_addr_t PhysicalAddress,
3906                                            u32 Length)
3907 {
3908         u32 i;
3909         u32 BufferSize = adapter->ReceiveBufferSize;
3910         u64 Paddr;
3911         void *temp_RcvBlock;
3912         struct sxg_rcv_block_hdr *RcvBlockHdr;
3913         struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
3914         struct sxg_rcv_descriptor_block *RcvDescriptorBlock;
3915         struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr;
3916
3917         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlRcvBlk",
3918                   adapter, RcvBlock, Length, 0);
3919         if (RcvBlock == NULL) {
3920                 goto fail;
3921         }
3922         memset(RcvBlock, 0, Length);
3923         ASSERT((BufferSize == SXG_RCV_DATA_BUFFER_SIZE) ||
3924                (BufferSize == SXG_RCV_JUMBO_BUFFER_SIZE));
3925         ASSERT(Length == SXG_RCV_BLOCK_SIZE(SXG_RCV_DATA_HDR_SIZE));
3926         /*
3927          * First, initialize the contained pool of receive data buffers.
3928          * This initialization requires NBL/NB/MDL allocations, if any of them
3929          * fail, free the block and return without queueing the shared memory
3930          */
3931         //RcvDataBuffer = RcvBlock;
3932         temp_RcvBlock = RcvBlock;
3933         for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
3934                  i++, temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
3935                 RcvDataBufferHdr = (struct sxg_rcv_data_buffer_hdr *)
3936                                         temp_RcvBlock;
3937                 /* For FREE macro assertion */
3938                 RcvDataBufferHdr->State = SXG_BUFFER_UPSTREAM;
3939                 SXG_ALLOCATE_RCV_PACKET(adapter, RcvDataBufferHdr, BufferSize);
3940                 if (RcvDataBufferHdr->SxgDumbRcvPacket == NULL)
3941                         goto fail;
3942
3943         }
3944
3945         /*
3946          * Place this entire block of memory on the AllRcvBlocks queue so it
3947          * can be free later
3948          */
3949
3950         RcvBlockHdr = (struct sxg_rcv_block_hdr *) ((unsigned char *)RcvBlock +
3951                         SXG_RCV_BLOCK_HDR_OFFSET(SXG_RCV_DATA_HDR_SIZE));
3952         RcvBlockHdr->VirtualAddress = RcvBlock;
3953         RcvBlockHdr->PhysicalAddress = PhysicalAddress;
3954         spin_lock(&adapter->RcvQLock);
3955         adapter->AllRcvBlockCount++;
3956         InsertTailList(&adapter->AllRcvBlocks, &RcvBlockHdr->AllList);
3957         spin_unlock(&adapter->RcvQLock);
3958
3959         /* Now free the contained receive data buffers that we
3960          * initialized above */
3961         temp_RcvBlock = RcvBlock;
3962         for (i = 0, Paddr = PhysicalAddress;
3963              i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
3964              i++, Paddr += SXG_RCV_DATA_HDR_SIZE,
3965              temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
3966                 RcvDataBufferHdr =
3967                         (struct sxg_rcv_data_buffer_hdr *)temp_RcvBlock;
3968                 spin_lock(&adapter->RcvQLock);
3969                 SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
3970                 spin_unlock(&adapter->RcvQLock);
3971         }
3972
3973         /* Locate the descriptor block and put it on a separate free queue */
3974         RcvDescriptorBlock =
3975             (struct sxg_rcv_descriptor_block *) ((unsigned char *)RcvBlock +
3976                                          SXG_RCV_DESCRIPTOR_BLOCK_OFFSET
3977                                          (SXG_RCV_DATA_HDR_SIZE));
3978         RcvDescriptorBlockHdr =
3979             (struct sxg_rcv_descriptor_block_hdr *) ((unsigned char *)RcvBlock +
3980                                              SXG_RCV_DESCRIPTOR_BLOCK_HDR_OFFSET
3981                                              (SXG_RCV_DATA_HDR_SIZE));
3982         RcvDescriptorBlockHdr->VirtualAddress = RcvDescriptorBlock;
3983         RcvDescriptorBlockHdr->PhysicalAddress = Paddr;
3984         spin_lock(&adapter->RcvQLock);
3985         SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter, RcvDescriptorBlockHdr);
3986         spin_unlock(&adapter->RcvQLock);
3987         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlRBlk",
3988                   adapter, RcvBlock, Length, 0);
3989         return STATUS_SUCCESS;
3990 fail:
3991         /* Free any allocated resources */
3992         if (RcvBlock) {
3993                 temp_RcvBlock = RcvBlock;
3994                 for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
3995                      i++, temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
3996                         RcvDataBufferHdr =
3997                             (struct sxg_rcv_data_buffer_hdr *)temp_RcvBlock;
3998                         SXG_FREE_RCV_PACKET(RcvDataBufferHdr);
3999                 }
4000                 pci_free_consistent(adapter->pcidev,
4001                                     Length, RcvBlock, PhysicalAddress);
4002         }
4003         DBG_ERROR("%s: OUT OF RESOURCES\n", __func__);
4004         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "RcvAFail",
4005                   adapter, adapter->FreeRcvBufferCount,
4006                   adapter->FreeRcvBlockCount, adapter->AllRcvBlockCount);
4007         adapter->Stats.NoMem++;
4008         /* As allocation failed, free all previously allocated blocks..*/
4009         //sxg_free_rcvblocks(adapter);
4010
4011         return STATUS_RESOURCES;
4012 }
4013
4014 /*
4015  * sxg_allocate_sgl_buffer_complete - Complete a SGL buffer allocation
4016  *
4017  * Arguments -
4018  *      adapter                         - A pointer to our adapter structure
4019  *      SxgSgl                          - struct sxg_scatter_gather buffer
4020  *      PhysicalAddress         - Physical address
4021  *      Length                          - Memory length
4022  *
4023  * Return
4024  */
4025 static void sxg_allocate_sgl_buffer_complete(struct adapter_t *adapter,
4026                                              struct sxg_scatter_gather *SxgSgl,
4027                                              dma_addr_t PhysicalAddress,
4028                                              u32 Length)
4029 {
4030         unsigned long sgl_flags;
4031         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlSglCmp",
4032                   adapter, SxgSgl, Length, 0);
4033         spin_lock_irqsave(&adapter->SglQLock, sgl_flags);
4034         adapter->AllSglBufferCount++;
4035         /* PhysicalAddress; */
4036         SxgSgl->PhysicalAddress = PhysicalAddress;
4037         /* Initialize backpointer once */
4038         SxgSgl->adapter = adapter;
4039         InsertTailList(&adapter->AllSglBuffers, &SxgSgl->AllList);
4040         spin_unlock_irqrestore(&adapter->SglQLock, sgl_flags);
4041         SxgSgl->State = SXG_BUFFER_BUSY;
4042         SXG_FREE_SGL_BUFFER(adapter, SxgSgl, NULL);
4043         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlSgl",
4044                   adapter, SxgSgl, Length, 0);
4045 }
4046
4047
4048 static int sxg_adapter_set_hwaddr(struct adapter_t *adapter)
4049 {
4050         /*
4051          *  DBG_ERROR ("%s ENTER card->config_set[%x] port[%d] physport[%d] \
4052          *  funct#[%d]\n", __func__, card->config_set,
4053          *  adapter->port, adapter->physport, adapter->functionnumber);
4054          *
4055          *  sxg_dbg_macaddrs(adapter);
4056          */
4057         /* DBG_ERROR ("%s AFTER copying from config.macinfo into currmacaddr\n",
4058          *                      __func__);
4059          */
4060
4061         /* sxg_dbg_macaddrs(adapter); */
4062
4063         struct net_device * dev = adapter->netdev;
4064         if(!dev)
4065         {
4066                 printk("sxg: Dev is Null\n");
4067         }
4068
4069         DBG_ERROR("%s ENTER (%s)\n", __func__, adapter->netdev->name);
4070
4071         if (netif_running(dev)) {
4072                 return -EBUSY;
4073         }
4074         if (!adapter) {
4075                 return -EBUSY;
4076         }
4077
4078         if (!(adapter->currmacaddr[0] ||
4079               adapter->currmacaddr[1] ||
4080               adapter->currmacaddr[2] ||
4081               adapter->currmacaddr[3] ||
4082               adapter->currmacaddr[4] || adapter->currmacaddr[5])) {
4083                 memcpy(adapter->currmacaddr, adapter->macaddr, 6);
4084         }
4085         if (adapter->netdev) {
4086                 memcpy(adapter->netdev->dev_addr, adapter->currmacaddr, 6);
4087                 memcpy(adapter->netdev->perm_addr, adapter->currmacaddr, 6);
4088         }
4089         /* DBG_ERROR ("%s EXIT port %d\n", __func__, adapter->port); */
4090         sxg_dbg_macaddrs(adapter);
4091
4092         return 0;
4093 }
4094
4095 #if XXXTODO
4096 static int sxg_mac_set_address(struct net_device *dev, void *ptr)
4097 {
4098         struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
4099         struct sockaddr *addr = ptr;
4100
4101         DBG_ERROR("%s ENTER (%s)\n", __func__, adapter->netdev->name);
4102
4103         if (netif_running(dev)) {
4104                 return -EBUSY;
4105         }
4106         if (!adapter) {
4107                 return -EBUSY;
4108         }
4109         DBG_ERROR("sxg: %s (%s) curr %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
4110                   __func__, adapter->netdev->name, adapter->currmacaddr[0],
4111                   adapter->currmacaddr[1], adapter->currmacaddr[2],
4112                   adapter->currmacaddr[3], adapter->currmacaddr[4],
4113                   adapter->currmacaddr[5]);
4114         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4115         memcpy(adapter->currmacaddr, addr->sa_data, dev->addr_len);
4116         DBG_ERROR("sxg: %s (%s) new %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
4117                   __func__, adapter->netdev->name, adapter->currmacaddr[0],
4118                   adapter->currmacaddr[1], adapter->currmacaddr[2],
4119                   adapter->currmacaddr[3], adapter->currmacaddr[4],
4120                   adapter->currmacaddr[5]);
4121
4122         sxg_config_set(adapter, TRUE);
4123         return 0;
4124 }
4125 #endif
4126
4127 /*
4128  * SXG DRIVER FUNCTIONS  (below)
4129  *
4130  * sxg_initialize_adapter - Initialize adapter
4131  *
4132  * Arguments -
4133  *      adapter         - A pointer to our adapter structure
4134  *
4135  * Return - int
4136  */
4137 static int sxg_initialize_adapter(struct adapter_t *adapter)
4138 {
4139         u32 RssIds, IsrCount;
4140         u32 i;
4141         int status;
4142         int sxg_rcv_ring_size = SXG_RCV_RING_SIZE;
4143
4144         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "InitAdpt",
4145                   adapter, 0, 0, 0);
4146
4147         RssIds = 1;             /*  XXXTODO  SXG_RSS_CPU_COUNT(adapter); */
4148         IsrCount = adapter->msi_enabled ? RssIds : 1;
4149
4150         /*
4151          * Sanity check SXG_UCODE_REGS structure definition to
4152          * make sure the length is correct
4153          */
4154         ASSERT(sizeof(struct sxg_ucode_regs) == SXG_REGISTER_SIZE_PER_CPU);
4155
4156         /* Disable interrupts */
4157         SXG_DISABLE_ALL_INTERRUPTS(adapter);
4158
4159         /* Set MTU */
4160         ASSERT((adapter->FrameSize == ETHERMAXFRAME) ||
4161                (adapter->FrameSize == JUMBOMAXFRAME));
4162         WRITE_REG(adapter->UcodeRegs[0].LinkMtu, adapter->FrameSize, TRUE);
4163
4164         /* Set event ring base address and size */
4165         WRITE_REG64(adapter,
4166                     adapter->UcodeRegs[0].EventBase, adapter->PEventRings, 0);
4167         WRITE_REG(adapter->UcodeRegs[0].EventSize, EVENT_RING_SIZE, TRUE);
4168
4169         /* Per-ISR initialization */
4170         for (i = 0; i < IsrCount; i++) {
4171                 u64 Addr;
4172                 /* Set interrupt status pointer */
4173                 Addr = adapter->PIsr + (i * sizeof(u32));
4174                 WRITE_REG64(adapter, adapter->UcodeRegs[i].Isp, Addr, i);
4175         }
4176
4177         /* XMT ring zero index */
4178         WRITE_REG64(adapter,
4179                     adapter->UcodeRegs[0].SPSendIndex,
4180                     adapter->PXmtRingZeroIndex, 0);
4181
4182         /* Per-RSS initialization */
4183         for (i = 0; i < RssIds; i++) {
4184                 /* Release all event ring entries to the Microcode */
4185                 WRITE_REG(adapter->UcodeRegs[i].EventRelease, EVENT_RING_SIZE,
4186                           TRUE);
4187         }
4188
4189         /* Transmit ring base and size */
4190         WRITE_REG64(adapter,
4191                     adapter->UcodeRegs[0].XmtBase, adapter->PXmtRings, 0);
4192         WRITE_REG(adapter->UcodeRegs[0].XmtSize, SXG_XMT_RING_SIZE, TRUE);
4193
4194         /* Receive ring base and size */
4195         WRITE_REG64(adapter,
4196                     adapter->UcodeRegs[0].RcvBase, adapter->PRcvRings, 0);
4197         if (adapter->JumboEnabled == TRUE)
4198                 sxg_rcv_ring_size = SXG_JUMBO_RCV_RING_SIZE;
4199         WRITE_REG(adapter->UcodeRegs[0].RcvSize, sxg_rcv_ring_size, TRUE);
4200
4201         /* Populate the card with receive buffers */
4202         sxg_stock_rcv_buffers(adapter);
4203
4204         /*
4205          * Initialize checksum offload capabilities.  At the moment we always
4206          * enable IP and TCP receive checksums on the card. Depending on the
4207          * checksum configuration specified by the user, we can choose to
4208          * report or ignore the checksum information provided by the card.
4209          */
4210         WRITE_REG(adapter->UcodeRegs[0].ReceiveChecksum,
4211                   SXG_RCV_TCP_CSUM_ENABLED | SXG_RCV_IP_CSUM_ENABLED, TRUE);
4212
4213         adapter->flags |= (SXG_RCV_TCP_CSUM_ENABLED | SXG_RCV_IP_CSUM_ENABLED );
4214
4215         /* Initialize the MAC, XAUI */
4216         DBG_ERROR("sxg: %s ENTER sxg_initialize_link\n", __func__);
4217         status = sxg_initialize_link(adapter);
4218         DBG_ERROR("sxg: %s EXIT sxg_initialize_link status[%x]\n", __func__,
4219                   status);
4220         if (status != STATUS_SUCCESS) {
4221                 return (status);
4222         }
4223         /*
4224          * Initialize Dead to FALSE.
4225          * SlicCheckForHang or SlicDumpThread will take it from here.
4226          */
4227         adapter->Dead = FALSE;
4228         adapter->PingOutstanding = FALSE;
4229         adapter->XmtFcEnabled = TRUE;
4230         adapter->RcvFcEnabled = TRUE;
4231
4232         adapter->State = SXG_STATE_RUNNING;
4233
4234         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XInit",
4235                   adapter, 0, 0, 0);
4236         return (STATUS_SUCCESS);
4237 }
4238
4239 /*
4240  * sxg_fill_descriptor_block - Populate a descriptor block and give it to
4241  * the card.  The caller should hold the RcvQLock
4242  *
4243  * Arguments -
4244  *      adapter         - A pointer to our adapter structure
4245  *  RcvDescriptorBlockHdr       - Descriptor block to fill
4246  *
4247  * Return
4248  *      status
4249  */
4250 static int sxg_fill_descriptor_block(struct adapter_t *adapter,
4251              struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr)
4252 {
4253         u32 i;
4254         struct sxg_ring_info *RcvRingInfo = &adapter->RcvRingZeroInfo;
4255         struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
4256         struct sxg_rcv_descriptor_block *RcvDescriptorBlock;
4257         struct sxg_cmd *RingDescriptorCmd;
4258         struct sxg_rcv_ring *RingZero = &adapter->RcvRings[0];
4259
4260         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "FilBlk",
4261                   adapter, adapter->RcvBuffersOnCard,
4262                   adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
4263
4264         ASSERT(RcvDescriptorBlockHdr);
4265
4266         /*
4267          * If we don't have the resources to fill the descriptor block,
4268          * return failure
4269          */
4270         if ((adapter->FreeRcvBufferCount < SXG_RCV_DESCRIPTORS_PER_BLOCK) ||
4271             SXG_RING_FULL(RcvRingInfo)) {
4272                 adapter->Stats.NoMem++;
4273                 return (STATUS_FAILURE);
4274         }
4275         /* Get a ring descriptor command */
4276         SXG_GET_CMD(RingZero,
4277                     RcvRingInfo, RingDescriptorCmd, RcvDescriptorBlockHdr);
4278         ASSERT(RingDescriptorCmd);
4279         RcvDescriptorBlockHdr->State = SXG_BUFFER_ONCARD;
4280         RcvDescriptorBlock = (struct sxg_rcv_descriptor_block *)
4281                                  RcvDescriptorBlockHdr->VirtualAddress;
4282
4283         /* Fill in the descriptor block */
4284         for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK; i++) {
4285                 SXG_GET_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
4286                 ASSERT(RcvDataBufferHdr);
4287 //              ASSERT(RcvDataBufferHdr->SxgDumbRcvPacket);
4288                 if (!RcvDataBufferHdr->SxgDumbRcvPacket) {
4289                         SXG_ALLOCATE_RCV_PACKET(adapter, RcvDataBufferHdr,
4290                                                 adapter->ReceiveBufferSize);
4291                         if(RcvDataBufferHdr->skb)
4292                                 RcvDataBufferHdr->SxgDumbRcvPacket =
4293                                                 RcvDataBufferHdr->skb;
4294                         else
4295                                 goto no_memory;
4296                 }
4297                 SXG_REINIATIALIZE_PACKET(RcvDataBufferHdr->SxgDumbRcvPacket);
4298                 RcvDataBufferHdr->State = SXG_BUFFER_ONCARD;
4299                 RcvDescriptorBlock->Descriptors[i].VirtualAddress =
4300                                             (void *)RcvDataBufferHdr;
4301
4302                 RcvDescriptorBlock->Descriptors[i].PhysicalAddress =
4303                     RcvDataBufferHdr->PhysicalAddress;
4304         }
4305         /* Add the descriptor block to receive descriptor ring 0 */
4306         RingDescriptorCmd->Sgl = RcvDescriptorBlockHdr->PhysicalAddress;
4307
4308         /*
4309          * RcvBuffersOnCard is not protected via the receive lock (see
4310          * sxg_process_event_queue) We don't want to grap a lock every time a
4311          * buffer is returned to us, so we use atomic interlocked functions
4312          * instead.
4313          */
4314         adapter->RcvBuffersOnCard += SXG_RCV_DESCRIPTORS_PER_BLOCK;
4315
4316         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DscBlk",
4317                   RcvDescriptorBlockHdr,
4318                   RingDescriptorCmd, RcvRingInfo->Head, RcvRingInfo->Tail);
4319
4320         WRITE_REG(adapter->UcodeRegs[0].RcvCmd, 1, true);
4321         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFilBlk",
4322                   adapter, adapter->RcvBuffersOnCard,
4323                   adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
4324         return (STATUS_SUCCESS);
4325 no_memory:
4326         for (; i >= 0 ; i--) {
4327                 if (RcvDescriptorBlock->Descriptors[i].VirtualAddress) {
4328                         RcvDataBufferHdr = (struct sxg_rcv_data_buffer_hdr *)
4329                                             RcvDescriptorBlock->Descriptors[i].
4330                                                                 VirtualAddress;
4331                         RcvDescriptorBlock->Descriptors[i].PhysicalAddress =
4332                                             (dma_addr_t)NULL;
4333                         RcvDescriptorBlock->Descriptors[i].VirtualAddress=NULL;
4334                 }
4335                 SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
4336         }
4337         RcvDescriptorBlockHdr->State = SXG_BUFFER_FREE;
4338         SXG_RETURN_CMD(RingZero, RcvRingInfo, RingDescriptorCmd,
4339                         RcvDescriptorBlockHdr);
4340
4341         return (-ENOMEM);
4342 }
4343
4344 /*
4345  * sxg_stock_rcv_buffers - Stock the card with receive buffers
4346  *
4347  * Arguments -
4348  *      adapter         - A pointer to our adapter structure
4349  *
4350  * Return
4351  *      None
4352  */
4353 static void sxg_stock_rcv_buffers(struct adapter_t *adapter)
4354 {
4355         struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr;
4356         int sxg_rcv_data_buffers = SXG_RCV_DATA_BUFFERS;
4357         int sxg_min_rcv_data_buffers = SXG_MIN_RCV_DATA_BUFFERS;
4358
4359         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "StockBuf",
4360                   adapter, adapter->RcvBuffersOnCard,
4361                   adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
4362         /*
4363          * First, see if we've got less than our minimum threshold of
4364          * receive buffers, there isn't an allocation in progress, and
4365          * we haven't exceeded our maximum.. get another block of buffers
4366          * None of this needs to be SMP safe.  It's round numbers.
4367          */
4368         if (adapter->JumboEnabled == TRUE)
4369                 sxg_min_rcv_data_buffers = SXG_MIN_JUMBO_RCV_DATA_BUFFERS;
4370         if ((adapter->FreeRcvBufferCount < sxg_min_rcv_data_buffers) &&
4371             (adapter->AllRcvBlockCount < SXG_MAX_RCV_BLOCKS) &&
4372             (atomic_read(&adapter->pending_allocations) == 0)) {
4373                 sxg_allocate_buffer_memory(adapter,
4374                                            SXG_RCV_BLOCK_SIZE
4375                                            (SXG_RCV_DATA_HDR_SIZE),
4376                                            SXG_BUFFER_TYPE_RCV);
4377         }
4378         /* Now grab the RcvQLock lock and proceed */
4379         spin_lock(&adapter->RcvQLock);
4380         if (adapter->JumboEnabled)
4381                 sxg_rcv_data_buffers = SXG_JUMBO_RCV_DATA_BUFFERS;
4382         while (adapter->RcvBuffersOnCard < sxg_rcv_data_buffers) {
4383                 struct list_entry *_ple;
4384
4385                 /* Get a descriptor block */
4386                 RcvDescriptorBlockHdr = NULL;
4387                 if (adapter->FreeRcvBlockCount) {
4388                         _ple = RemoveHeadList(&adapter->FreeRcvBlocks);
4389                         RcvDescriptorBlockHdr =
4390                             container_of(_ple, struct sxg_rcv_descriptor_block_hdr,
4391                                          FreeList);
4392                         adapter->FreeRcvBlockCount--;
4393                         RcvDescriptorBlockHdr->State = SXG_BUFFER_BUSY;
4394                 }
4395
4396                 if (RcvDescriptorBlockHdr == NULL) {
4397                         /* Bail out.. */
4398                         adapter->Stats.NoMem++;
4399                         break;
4400                 }
4401                 /* Fill in the descriptor block and give it to the card */
4402                 if (sxg_fill_descriptor_block(adapter, RcvDescriptorBlockHdr) ==
4403                     STATUS_FAILURE) {
4404                         /* Free the descriptor block */
4405                         SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter,
4406                                                       RcvDescriptorBlockHdr);
4407                         break;
4408                 }
4409         }
4410         spin_unlock(&adapter->RcvQLock);
4411         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFilBlks",
4412                   adapter, adapter->RcvBuffersOnCard,
4413                   adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
4414 }
4415
4416 /*
4417  * sxg_complete_descriptor_blocks - Return descriptor blocks that have been
4418  * completed by the microcode
4419  *
4420  * Arguments -
4421  *      adapter         - A pointer to our adapter structure
4422  *      Index           - Where the microcode is up to
4423  *
4424  * Return
4425  *      None
4426  */
4427 static void sxg_complete_descriptor_blocks(struct adapter_t *adapter,
4428                                            unsigned char Index)
4429 {
4430         struct sxg_rcv_ring *RingZero = &adapter->RcvRings[0];
4431         struct sxg_ring_info *RcvRingInfo = &adapter->RcvRingZeroInfo;
4432         struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr;
4433         struct sxg_cmd *RingDescriptorCmd;
4434
4435         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpRBlks",
4436                   adapter, Index, RcvRingInfo->Head, RcvRingInfo->Tail);
4437
4438         /* Now grab the RcvQLock lock and proceed */
4439         spin_lock(&adapter->RcvQLock);
4440         ASSERT(Index != RcvRingInfo->Tail);
4441         while (sxg_ring_get_forward_diff(RcvRingInfo, Index,
4442                                         RcvRingInfo->Tail) > 3) {
4443                 /*
4444                  * Locate the current Cmd (ring descriptor entry), and
4445                  * associated receive descriptor block, and advance
4446                  * the tail
4447                  */
4448                 SXG_RETURN_CMD(RingZero,
4449                                RcvRingInfo,
4450                                RingDescriptorCmd, RcvDescriptorBlockHdr);
4451                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpRBlk",
4452                           RcvRingInfo->Head, RcvRingInfo->Tail,
4453                           RingDescriptorCmd, RcvDescriptorBlockHdr);
4454
4455                 /* Clear the SGL field */
4456                 RingDescriptorCmd->Sgl = 0;
4457                 /*
4458                  * Attempt to refill it and hand it right back to the
4459                  * card.  If we fail to refill it, free the descriptor block
4460                  * header.  The card will be restocked later via the
4461                  * RcvBuffersOnCard test
4462                  */
4463                 if (sxg_fill_descriptor_block(adapter,
4464                          RcvDescriptorBlockHdr) == STATUS_FAILURE)
4465                         SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter,
4466                                                       RcvDescriptorBlockHdr);
4467         }
4468         spin_unlock(&adapter->RcvQLock);
4469         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XCRBlks",
4470                   adapter, Index, RcvRingInfo->Head, RcvRingInfo->Tail);
4471 }
4472
4473 /*
4474  * Read the statistics which the card has been maintaining.
4475  */
4476 void sxg_collect_statistics(struct adapter_t *adapter)
4477 {
4478         if(adapter->ucode_stats)
4479                 WRITE_REG64(adapter, adapter->UcodeRegs[0].GetUcodeStats,
4480                                 adapter->pucode_stats, 0);
4481         adapter->stats.rx_fifo_errors = adapter->ucode_stats->ERDrops;
4482         adapter->stats.rx_over_errors = adapter->ucode_stats->NBDrops;
4483         adapter->stats.tx_fifo_errors = adapter->ucode_stats->XDrops;
4484 }
4485
4486 static struct net_device_stats *sxg_get_stats(struct net_device * dev)
4487 {
4488         struct adapter_t *adapter = netdev_priv(dev);
4489
4490         sxg_collect_statistics(adapter);
4491         return (&adapter->stats);
4492 }
4493
4494 static void sxg_watchdog(unsigned long data)
4495 {
4496         struct adapter_t *adapter = (struct adapter_t *) data;
4497
4498         if (adapter->state != ADAPT_DOWN) {
4499                 sxg_link_event(adapter);
4500                 /* Reset the timer */
4501                 mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
4502         }
4503 }
4504
4505 static void sxg_update_link_status (struct work_struct *work)
4506 {
4507         struct adapter_t *adapter = (struct adapter_t *)container_of
4508                                 (work, struct adapter_t, update_link_status);
4509         if (likely(adapter->link_status_changed)) {
4510                 sxg_link_event(adapter);
4511                 adapter->link_status_changed = 0;
4512         }
4513 }
4514
4515 static struct pci_driver sxg_driver = {
4516         .name = sxg_driver_name,
4517         .id_table = sxg_pci_tbl,
4518         .probe = sxg_entry_probe,
4519         .remove = __devexit_p(sxg_entry_remove),
4520 #if SXG_POWER_MANAGEMENT_ENABLED
4521         .suspend = sxgpm_suspend,
4522         .resume = sxgpm_resume,
4523 #endif
4524         /* .shutdown   =     slic_shutdown,  MOOK_INVESTIGATE */
4525 };
4526
4527 static int __init sxg_module_init(void)
4528 {
4529         sxg_init_driver();
4530
4531         if (debug >= 0)
4532                 sxg_debug = debug;
4533
4534         return pci_register_driver(&sxg_driver);
4535 }
4536
4537 static void __exit sxg_module_cleanup(void)
4538 {
4539         pci_unregister_driver(&sxg_driver);
4540 }
4541
4542 module_init(sxg_module_init);
4543 module_exit(sxg_module_cleanup);