Linux 2.6.31-rc6
[linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22
23 #include "trace.h"
24
25 /*
26  * The ring buffer header is special. We must manually up keep it.
27  */
28 int ring_buffer_print_entry_header(struct trace_seq *s)
29 {
30         int ret;
31
32         ret = trace_seq_printf(s, "# compressed entry header\n");
33         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
34         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
35         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
36         ret = trace_seq_printf(s, "\n");
37         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
38                                RINGBUF_TYPE_PADDING);
39         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40                                RINGBUF_TYPE_TIME_EXTEND);
41         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
42                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
43
44         return ret;
45 }
46
47 /*
48  * The ring buffer is made up of a list of pages. A separate list of pages is
49  * allocated for each CPU. A writer may only write to a buffer that is
50  * associated with the CPU it is currently executing on.  A reader may read
51  * from any per cpu buffer.
52  *
53  * The reader is special. For each per cpu buffer, the reader has its own
54  * reader page. When a reader has read the entire reader page, this reader
55  * page is swapped with another page in the ring buffer.
56  *
57  * Now, as long as the writer is off the reader page, the reader can do what
58  * ever it wants with that page. The writer will never write to that page
59  * again (as long as it is out of the ring buffer).
60  *
61  * Here's some silly ASCII art.
62  *
63  *   +------+
64  *   |reader|          RING BUFFER
65  *   |page  |
66  *   +------+        +---+   +---+   +---+
67  *                   |   |-->|   |-->|   |
68  *                   +---+   +---+   +---+
69  *                     ^               |
70  *                     |               |
71  *                     +---------------+
72  *
73  *
74  *   +------+
75  *   |reader|          RING BUFFER
76  *   |page  |------------------v
77  *   +------+        +---+   +---+   +---+
78  *                   |   |-->|   |-->|   |
79  *                   +---+   +---+   +---+
80  *                     ^               |
81  *                     |               |
82  *                     +---------------+
83  *
84  *
85  *   +------+
86  *   |reader|          RING BUFFER
87  *   |page  |------------------v
88  *   +------+        +---+   +---+   +---+
89  *      ^            |   |-->|   |-->|   |
90  *      |            +---+   +---+   +---+
91  *      |                              |
92  *      |                              |
93  *      +------------------------------+
94  *
95  *
96  *   +------+
97  *   |buffer|          RING BUFFER
98  *   |page  |------------------v
99  *   +------+        +---+   +---+   +---+
100  *      ^            |   |   |   |-->|   |
101  *      |   New      +---+   +---+   +---+
102  *      |  Reader------^               |
103  *      |   page                       |
104  *      +------------------------------+
105  *
106  *
107  * After we make this swap, the reader can hand this page off to the splice
108  * code and be done with it. It can even allocate a new page if it needs to
109  * and swap that into the ring buffer.
110  *
111  * We will be using cmpxchg soon to make all this lockless.
112  *
113  */
114
115 /*
116  * A fast way to enable or disable all ring buffers is to
117  * call tracing_on or tracing_off. Turning off the ring buffers
118  * prevents all ring buffers from being recorded to.
119  * Turning this switch on, makes it OK to write to the
120  * ring buffer, if the ring buffer is enabled itself.
121  *
122  * There's three layers that must be on in order to write
123  * to the ring buffer.
124  *
125  * 1) This global flag must be set.
126  * 2) The ring buffer must be enabled for recording.
127  * 3) The per cpu buffer must be enabled for recording.
128  *
129  * In case of an anomaly, this global flag has a bit set that
130  * will permantly disable all ring buffers.
131  */
132
133 /*
134  * Global flag to disable all recording to ring buffers
135  *  This has two bits: ON, DISABLED
136  *
137  *  ON   DISABLED
138  * ---- ----------
139  *   0      0        : ring buffers are off
140  *   1      0        : ring buffers are on
141  *   X      1        : ring buffers are permanently disabled
142  */
143
144 enum {
145         RB_BUFFERS_ON_BIT       = 0,
146         RB_BUFFERS_DISABLED_BIT = 1,
147 };
148
149 enum {
150         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
151         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
152 };
153
154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
155
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157
158 /**
159  * tracing_on - enable all tracing buffers
160  *
161  * This function enables all tracing buffers that may have been
162  * disabled with tracing_off.
163  */
164 void tracing_on(void)
165 {
166         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
167 }
168 EXPORT_SYMBOL_GPL(tracing_on);
169
170 /**
171  * tracing_off - turn off all tracing buffers
172  *
173  * This function stops all tracing buffers from recording data.
174  * It does not disable any overhead the tracers themselves may
175  * be causing. This function simply causes all recording to
176  * the ring buffers to fail.
177  */
178 void tracing_off(void)
179 {
180         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181 }
182 EXPORT_SYMBOL_GPL(tracing_off);
183
184 /**
185  * tracing_off_permanent - permanently disable ring buffers
186  *
187  * This function, once called, will disable all ring buffers
188  * permanently.
189  */
190 void tracing_off_permanent(void)
191 {
192         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
193 }
194
195 /**
196  * tracing_is_on - show state of ring buffers enabled
197  */
198 int tracing_is_on(void)
199 {
200         return ring_buffer_flags == RB_BUFFERS_ON;
201 }
202 EXPORT_SYMBOL_GPL(tracing_is_on);
203
204 #include "trace.h"
205
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT            4U
208 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
210
211 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
212 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
213
214 enum {
215         RB_LEN_TIME_EXTEND = 8,
216         RB_LEN_TIME_STAMP = 16,
217 };
218
219 static inline int rb_null_event(struct ring_buffer_event *event)
220 {
221         return event->type_len == RINGBUF_TYPE_PADDING
222                         && event->time_delta == 0;
223 }
224
225 static inline int rb_discarded_event(struct ring_buffer_event *event)
226 {
227         return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
228 }
229
230 static void rb_event_set_padding(struct ring_buffer_event *event)
231 {
232         event->type_len = RINGBUF_TYPE_PADDING;
233         event->time_delta = 0;
234 }
235
236 static unsigned
237 rb_event_data_length(struct ring_buffer_event *event)
238 {
239         unsigned length;
240
241         if (event->type_len)
242                 length = event->type_len * RB_ALIGNMENT;
243         else
244                 length = event->array[0];
245         return length + RB_EVNT_HDR_SIZE;
246 }
247
248 /* inline for ring buffer fast paths */
249 static unsigned
250 rb_event_length(struct ring_buffer_event *event)
251 {
252         switch (event->type_len) {
253         case RINGBUF_TYPE_PADDING:
254                 if (rb_null_event(event))
255                         /* undefined */
256                         return -1;
257                 return  event->array[0] + RB_EVNT_HDR_SIZE;
258
259         case RINGBUF_TYPE_TIME_EXTEND:
260                 return RB_LEN_TIME_EXTEND;
261
262         case RINGBUF_TYPE_TIME_STAMP:
263                 return RB_LEN_TIME_STAMP;
264
265         case RINGBUF_TYPE_DATA:
266                 return rb_event_data_length(event);
267         default:
268                 BUG();
269         }
270         /* not hit */
271         return 0;
272 }
273
274 /**
275  * ring_buffer_event_length - return the length of the event
276  * @event: the event to get the length of
277  */
278 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
279 {
280         unsigned length = rb_event_length(event);
281         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
282                 return length;
283         length -= RB_EVNT_HDR_SIZE;
284         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
285                 length -= sizeof(event->array[0]);
286         return length;
287 }
288 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
289
290 /* inline for ring buffer fast paths */
291 static void *
292 rb_event_data(struct ring_buffer_event *event)
293 {
294         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
295         /* If length is in len field, then array[0] has the data */
296         if (event->type_len)
297                 return (void *)&event->array[0];
298         /* Otherwise length is in array[0] and array[1] has the data */
299         return (void *)&event->array[1];
300 }
301
302 /**
303  * ring_buffer_event_data - return the data of the event
304  * @event: the event to get the data from
305  */
306 void *ring_buffer_event_data(struct ring_buffer_event *event)
307 {
308         return rb_event_data(event);
309 }
310 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
311
312 #define for_each_buffer_cpu(buffer, cpu)                \
313         for_each_cpu(cpu, buffer->cpumask)
314
315 #define TS_SHIFT        27
316 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
317 #define TS_DELTA_TEST   (~TS_MASK)
318
319 struct buffer_data_page {
320         u64              time_stamp;    /* page time stamp */
321         local_t          commit;        /* write committed index */
322         unsigned char    data[];        /* data of buffer page */
323 };
324
325 struct buffer_page {
326         struct list_head list;          /* list of buffer pages */
327         local_t          write;         /* index for next write */
328         unsigned         read;          /* index for next read */
329         local_t          entries;       /* entries on this page */
330         struct buffer_data_page *page;  /* Actual data page */
331 };
332
333 static void rb_init_page(struct buffer_data_page *bpage)
334 {
335         local_set(&bpage->commit, 0);
336 }
337
338 /**
339  * ring_buffer_page_len - the size of data on the page.
340  * @page: The page to read
341  *
342  * Returns the amount of data on the page, including buffer page header.
343  */
344 size_t ring_buffer_page_len(void *page)
345 {
346         return local_read(&((struct buffer_data_page *)page)->commit)
347                 + BUF_PAGE_HDR_SIZE;
348 }
349
350 /*
351  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
352  * this issue out.
353  */
354 static void free_buffer_page(struct buffer_page *bpage)
355 {
356         free_page((unsigned long)bpage->page);
357         kfree(bpage);
358 }
359
360 /*
361  * We need to fit the time_stamp delta into 27 bits.
362  */
363 static inline int test_time_stamp(u64 delta)
364 {
365         if (delta & TS_DELTA_TEST)
366                 return 1;
367         return 0;
368 }
369
370 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
371
372 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
373 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
374
375 /* Max number of timestamps that can fit on a page */
376 #define RB_TIMESTAMPS_PER_PAGE  (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
377
378 int ring_buffer_print_page_header(struct trace_seq *s)
379 {
380         struct buffer_data_page field;
381         int ret;
382
383         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
384                                "offset:0;\tsize:%u;\n",
385                                (unsigned int)sizeof(field.time_stamp));
386
387         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
388                                "offset:%u;\tsize:%u;\n",
389                                (unsigned int)offsetof(typeof(field), commit),
390                                (unsigned int)sizeof(field.commit));
391
392         ret = trace_seq_printf(s, "\tfield: char data;\t"
393                                "offset:%u;\tsize:%u;\n",
394                                (unsigned int)offsetof(typeof(field), data),
395                                (unsigned int)BUF_PAGE_SIZE);
396
397         return ret;
398 }
399
400 /*
401  * head_page == tail_page && head == tail then buffer is empty.
402  */
403 struct ring_buffer_per_cpu {
404         int                             cpu;
405         struct ring_buffer              *buffer;
406         spinlock_t                      reader_lock; /* serialize readers */
407         raw_spinlock_t                  lock;
408         struct lock_class_key           lock_key;
409         struct list_head                pages;
410         struct buffer_page              *head_page;     /* read from head */
411         struct buffer_page              *tail_page;     /* write to tail */
412         struct buffer_page              *commit_page;   /* committed pages */
413         struct buffer_page              *reader_page;
414         unsigned long                   nmi_dropped;
415         unsigned long                   commit_overrun;
416         unsigned long                   overrun;
417         unsigned long                   read;
418         local_t                         entries;
419         local_t                         committing;
420         local_t                         commits;
421         u64                             write_stamp;
422         u64                             read_stamp;
423         atomic_t                        record_disabled;
424 };
425
426 struct ring_buffer {
427         unsigned                        pages;
428         unsigned                        flags;
429         int                             cpus;
430         atomic_t                        record_disabled;
431         cpumask_var_t                   cpumask;
432
433         struct lock_class_key           *reader_lock_key;
434
435         struct mutex                    mutex;
436
437         struct ring_buffer_per_cpu      **buffers;
438
439 #ifdef CONFIG_HOTPLUG_CPU
440         struct notifier_block           cpu_notify;
441 #endif
442         u64                             (*clock)(void);
443 };
444
445 struct ring_buffer_iter {
446         struct ring_buffer_per_cpu      *cpu_buffer;
447         unsigned long                   head;
448         struct buffer_page              *head_page;
449         u64                             read_stamp;
450 };
451
452 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
453 #define RB_WARN_ON(buffer, cond)                                \
454         ({                                                      \
455                 int _____ret = unlikely(cond);                  \
456                 if (_____ret) {                                 \
457                         atomic_inc(&buffer->record_disabled);   \
458                         WARN_ON(1);                             \
459                 }                                               \
460                 _____ret;                                       \
461         })
462
463 /* Up this if you want to test the TIME_EXTENTS and normalization */
464 #define DEBUG_SHIFT 0
465
466 static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
467 {
468         /* shift to debug/test normalization and TIME_EXTENTS */
469         return buffer->clock() << DEBUG_SHIFT;
470 }
471
472 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
473 {
474         u64 time;
475
476         preempt_disable_notrace();
477         time = rb_time_stamp(buffer, cpu);
478         preempt_enable_no_resched_notrace();
479
480         return time;
481 }
482 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
483
484 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
485                                       int cpu, u64 *ts)
486 {
487         /* Just stupid testing the normalize function and deltas */
488         *ts >>= DEBUG_SHIFT;
489 }
490 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
491
492 /**
493  * check_pages - integrity check of buffer pages
494  * @cpu_buffer: CPU buffer with pages to test
495  *
496  * As a safety measure we check to make sure the data pages have not
497  * been corrupted.
498  */
499 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
500 {
501         struct list_head *head = &cpu_buffer->pages;
502         struct buffer_page *bpage, *tmp;
503
504         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
505                 return -1;
506         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
507                 return -1;
508
509         list_for_each_entry_safe(bpage, tmp, head, list) {
510                 if (RB_WARN_ON(cpu_buffer,
511                                bpage->list.next->prev != &bpage->list))
512                         return -1;
513                 if (RB_WARN_ON(cpu_buffer,
514                                bpage->list.prev->next != &bpage->list))
515                         return -1;
516         }
517
518         return 0;
519 }
520
521 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
522                              unsigned nr_pages)
523 {
524         struct list_head *head = &cpu_buffer->pages;
525         struct buffer_page *bpage, *tmp;
526         unsigned long addr;
527         LIST_HEAD(pages);
528         unsigned i;
529
530         for (i = 0; i < nr_pages; i++) {
531                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
532                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
533                 if (!bpage)
534                         goto free_pages;
535                 list_add(&bpage->list, &pages);
536
537                 addr = __get_free_page(GFP_KERNEL);
538                 if (!addr)
539                         goto free_pages;
540                 bpage->page = (void *)addr;
541                 rb_init_page(bpage->page);
542         }
543
544         list_splice(&pages, head);
545
546         rb_check_pages(cpu_buffer);
547
548         return 0;
549
550  free_pages:
551         list_for_each_entry_safe(bpage, tmp, &pages, list) {
552                 list_del_init(&bpage->list);
553                 free_buffer_page(bpage);
554         }
555         return -ENOMEM;
556 }
557
558 static struct ring_buffer_per_cpu *
559 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
560 {
561         struct ring_buffer_per_cpu *cpu_buffer;
562         struct buffer_page *bpage;
563         unsigned long addr;
564         int ret;
565
566         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
567                                   GFP_KERNEL, cpu_to_node(cpu));
568         if (!cpu_buffer)
569                 return NULL;
570
571         cpu_buffer->cpu = cpu;
572         cpu_buffer->buffer = buffer;
573         spin_lock_init(&cpu_buffer->reader_lock);
574         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
575         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
576         INIT_LIST_HEAD(&cpu_buffer->pages);
577
578         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
579                             GFP_KERNEL, cpu_to_node(cpu));
580         if (!bpage)
581                 goto fail_free_buffer;
582
583         cpu_buffer->reader_page = bpage;
584         addr = __get_free_page(GFP_KERNEL);
585         if (!addr)
586                 goto fail_free_reader;
587         bpage->page = (void *)addr;
588         rb_init_page(bpage->page);
589
590         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
591
592         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
593         if (ret < 0)
594                 goto fail_free_reader;
595
596         cpu_buffer->head_page
597                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
598         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
599
600         return cpu_buffer;
601
602  fail_free_reader:
603         free_buffer_page(cpu_buffer->reader_page);
604
605  fail_free_buffer:
606         kfree(cpu_buffer);
607         return NULL;
608 }
609
610 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
611 {
612         struct list_head *head = &cpu_buffer->pages;
613         struct buffer_page *bpage, *tmp;
614
615         free_buffer_page(cpu_buffer->reader_page);
616
617         list_for_each_entry_safe(bpage, tmp, head, list) {
618                 list_del_init(&bpage->list);
619                 free_buffer_page(bpage);
620         }
621         kfree(cpu_buffer);
622 }
623
624 #ifdef CONFIG_HOTPLUG_CPU
625 static int rb_cpu_notify(struct notifier_block *self,
626                          unsigned long action, void *hcpu);
627 #endif
628
629 /**
630  * ring_buffer_alloc - allocate a new ring_buffer
631  * @size: the size in bytes per cpu that is needed.
632  * @flags: attributes to set for the ring buffer.
633  *
634  * Currently the only flag that is available is the RB_FL_OVERWRITE
635  * flag. This flag means that the buffer will overwrite old data
636  * when the buffer wraps. If this flag is not set, the buffer will
637  * drop data when the tail hits the head.
638  */
639 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
640                                         struct lock_class_key *key)
641 {
642         struct ring_buffer *buffer;
643         int bsize;
644         int cpu;
645
646         /* keep it in its own cache line */
647         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
648                          GFP_KERNEL);
649         if (!buffer)
650                 return NULL;
651
652         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
653                 goto fail_free_buffer;
654
655         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
656         buffer->flags = flags;
657         buffer->clock = trace_clock_local;
658         buffer->reader_lock_key = key;
659
660         /* need at least two pages */
661         if (buffer->pages < 2)
662                 buffer->pages = 2;
663
664         /*
665          * In case of non-hotplug cpu, if the ring-buffer is allocated
666          * in early initcall, it will not be notified of secondary cpus.
667          * In that off case, we need to allocate for all possible cpus.
668          */
669 #ifdef CONFIG_HOTPLUG_CPU
670         get_online_cpus();
671         cpumask_copy(buffer->cpumask, cpu_online_mask);
672 #else
673         cpumask_copy(buffer->cpumask, cpu_possible_mask);
674 #endif
675         buffer->cpus = nr_cpu_ids;
676
677         bsize = sizeof(void *) * nr_cpu_ids;
678         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
679                                   GFP_KERNEL);
680         if (!buffer->buffers)
681                 goto fail_free_cpumask;
682
683         for_each_buffer_cpu(buffer, cpu) {
684                 buffer->buffers[cpu] =
685                         rb_allocate_cpu_buffer(buffer, cpu);
686                 if (!buffer->buffers[cpu])
687                         goto fail_free_buffers;
688         }
689
690 #ifdef CONFIG_HOTPLUG_CPU
691         buffer->cpu_notify.notifier_call = rb_cpu_notify;
692         buffer->cpu_notify.priority = 0;
693         register_cpu_notifier(&buffer->cpu_notify);
694 #endif
695
696         put_online_cpus();
697         mutex_init(&buffer->mutex);
698
699         return buffer;
700
701  fail_free_buffers:
702         for_each_buffer_cpu(buffer, cpu) {
703                 if (buffer->buffers[cpu])
704                         rb_free_cpu_buffer(buffer->buffers[cpu]);
705         }
706         kfree(buffer->buffers);
707
708  fail_free_cpumask:
709         free_cpumask_var(buffer->cpumask);
710         put_online_cpus();
711
712  fail_free_buffer:
713         kfree(buffer);
714         return NULL;
715 }
716 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
717
718 /**
719  * ring_buffer_free - free a ring buffer.
720  * @buffer: the buffer to free.
721  */
722 void
723 ring_buffer_free(struct ring_buffer *buffer)
724 {
725         int cpu;
726
727         get_online_cpus();
728
729 #ifdef CONFIG_HOTPLUG_CPU
730         unregister_cpu_notifier(&buffer->cpu_notify);
731 #endif
732
733         for_each_buffer_cpu(buffer, cpu)
734                 rb_free_cpu_buffer(buffer->buffers[cpu]);
735
736         put_online_cpus();
737
738         kfree(buffer->buffers);
739         free_cpumask_var(buffer->cpumask);
740
741         kfree(buffer);
742 }
743 EXPORT_SYMBOL_GPL(ring_buffer_free);
744
745 void ring_buffer_set_clock(struct ring_buffer *buffer,
746                            u64 (*clock)(void))
747 {
748         buffer->clock = clock;
749 }
750
751 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
752
753 static void
754 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
755 {
756         struct buffer_page *bpage;
757         struct list_head *p;
758         unsigned i;
759
760         atomic_inc(&cpu_buffer->record_disabled);
761         synchronize_sched();
762
763         for (i = 0; i < nr_pages; i++) {
764                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
765                         return;
766                 p = cpu_buffer->pages.next;
767                 bpage = list_entry(p, struct buffer_page, list);
768                 list_del_init(&bpage->list);
769                 free_buffer_page(bpage);
770         }
771         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
772                 return;
773
774         rb_reset_cpu(cpu_buffer);
775
776         rb_check_pages(cpu_buffer);
777
778         atomic_dec(&cpu_buffer->record_disabled);
779
780 }
781
782 static void
783 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
784                 struct list_head *pages, unsigned nr_pages)
785 {
786         struct buffer_page *bpage;
787         struct list_head *p;
788         unsigned i;
789
790         atomic_inc(&cpu_buffer->record_disabled);
791         synchronize_sched();
792
793         for (i = 0; i < nr_pages; i++) {
794                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
795                         return;
796                 p = pages->next;
797                 bpage = list_entry(p, struct buffer_page, list);
798                 list_del_init(&bpage->list);
799                 list_add_tail(&bpage->list, &cpu_buffer->pages);
800         }
801         rb_reset_cpu(cpu_buffer);
802
803         rb_check_pages(cpu_buffer);
804
805         atomic_dec(&cpu_buffer->record_disabled);
806 }
807
808 /**
809  * ring_buffer_resize - resize the ring buffer
810  * @buffer: the buffer to resize.
811  * @size: the new size.
812  *
813  * The tracer is responsible for making sure that the buffer is
814  * not being used while changing the size.
815  * Note: We may be able to change the above requirement by using
816  *  RCU synchronizations.
817  *
818  * Minimum size is 2 * BUF_PAGE_SIZE.
819  *
820  * Returns -1 on failure.
821  */
822 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
823 {
824         struct ring_buffer_per_cpu *cpu_buffer;
825         unsigned nr_pages, rm_pages, new_pages;
826         struct buffer_page *bpage, *tmp;
827         unsigned long buffer_size;
828         unsigned long addr;
829         LIST_HEAD(pages);
830         int i, cpu;
831
832         /*
833          * Always succeed at resizing a non-existent buffer:
834          */
835         if (!buffer)
836                 return size;
837
838         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
839         size *= BUF_PAGE_SIZE;
840         buffer_size = buffer->pages * BUF_PAGE_SIZE;
841
842         /* we need a minimum of two pages */
843         if (size < BUF_PAGE_SIZE * 2)
844                 size = BUF_PAGE_SIZE * 2;
845
846         if (size == buffer_size)
847                 return size;
848
849         mutex_lock(&buffer->mutex);
850         get_online_cpus();
851
852         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
853
854         if (size < buffer_size) {
855
856                 /* easy case, just free pages */
857                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
858                         goto out_fail;
859
860                 rm_pages = buffer->pages - nr_pages;
861
862                 for_each_buffer_cpu(buffer, cpu) {
863                         cpu_buffer = buffer->buffers[cpu];
864                         rb_remove_pages(cpu_buffer, rm_pages);
865                 }
866                 goto out;
867         }
868
869         /*
870          * This is a bit more difficult. We only want to add pages
871          * when we can allocate enough for all CPUs. We do this
872          * by allocating all the pages and storing them on a local
873          * link list. If we succeed in our allocation, then we
874          * add these pages to the cpu_buffers. Otherwise we just free
875          * them all and return -ENOMEM;
876          */
877         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
878                 goto out_fail;
879
880         new_pages = nr_pages - buffer->pages;
881
882         for_each_buffer_cpu(buffer, cpu) {
883                 for (i = 0; i < new_pages; i++) {
884                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
885                                                   cache_line_size()),
886                                             GFP_KERNEL, cpu_to_node(cpu));
887                         if (!bpage)
888                                 goto free_pages;
889                         list_add(&bpage->list, &pages);
890                         addr = __get_free_page(GFP_KERNEL);
891                         if (!addr)
892                                 goto free_pages;
893                         bpage->page = (void *)addr;
894                         rb_init_page(bpage->page);
895                 }
896         }
897
898         for_each_buffer_cpu(buffer, cpu) {
899                 cpu_buffer = buffer->buffers[cpu];
900                 rb_insert_pages(cpu_buffer, &pages, new_pages);
901         }
902
903         if (RB_WARN_ON(buffer, !list_empty(&pages)))
904                 goto out_fail;
905
906  out:
907         buffer->pages = nr_pages;
908         put_online_cpus();
909         mutex_unlock(&buffer->mutex);
910
911         return size;
912
913  free_pages:
914         list_for_each_entry_safe(bpage, tmp, &pages, list) {
915                 list_del_init(&bpage->list);
916                 free_buffer_page(bpage);
917         }
918         put_online_cpus();
919         mutex_unlock(&buffer->mutex);
920         return -ENOMEM;
921
922         /*
923          * Something went totally wrong, and we are too paranoid
924          * to even clean up the mess.
925          */
926  out_fail:
927         put_online_cpus();
928         mutex_unlock(&buffer->mutex);
929         return -1;
930 }
931 EXPORT_SYMBOL_GPL(ring_buffer_resize);
932
933 static inline void *
934 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
935 {
936         return bpage->data + index;
937 }
938
939 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
940 {
941         return bpage->page->data + index;
942 }
943
944 static inline struct ring_buffer_event *
945 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
946 {
947         return __rb_page_index(cpu_buffer->reader_page,
948                                cpu_buffer->reader_page->read);
949 }
950
951 static inline struct ring_buffer_event *
952 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
953 {
954         return __rb_page_index(cpu_buffer->head_page,
955                                cpu_buffer->head_page->read);
956 }
957
958 static inline struct ring_buffer_event *
959 rb_iter_head_event(struct ring_buffer_iter *iter)
960 {
961         return __rb_page_index(iter->head_page, iter->head);
962 }
963
964 static inline unsigned rb_page_write(struct buffer_page *bpage)
965 {
966         return local_read(&bpage->write);
967 }
968
969 static inline unsigned rb_page_commit(struct buffer_page *bpage)
970 {
971         return local_read(&bpage->page->commit);
972 }
973
974 /* Size is determined by what has been commited */
975 static inline unsigned rb_page_size(struct buffer_page *bpage)
976 {
977         return rb_page_commit(bpage);
978 }
979
980 static inline unsigned
981 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
982 {
983         return rb_page_commit(cpu_buffer->commit_page);
984 }
985
986 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
987 {
988         return rb_page_commit(cpu_buffer->head_page);
989 }
990
991 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
992                                struct buffer_page **bpage)
993 {
994         struct list_head *p = (*bpage)->list.next;
995
996         if (p == &cpu_buffer->pages)
997                 p = p->next;
998
999         *bpage = list_entry(p, struct buffer_page, list);
1000 }
1001
1002 static inline unsigned
1003 rb_event_index(struct ring_buffer_event *event)
1004 {
1005         unsigned long addr = (unsigned long)event;
1006
1007         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1008 }
1009
1010 static inline int
1011 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1012                    struct ring_buffer_event *event)
1013 {
1014         unsigned long addr = (unsigned long)event;
1015         unsigned long index;
1016
1017         index = rb_event_index(event);
1018         addr &= PAGE_MASK;
1019
1020         return cpu_buffer->commit_page->page == (void *)addr &&
1021                 rb_commit_index(cpu_buffer) == index;
1022 }
1023
1024 static void
1025 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1026 {
1027         /*
1028          * We only race with interrupts and NMIs on this CPU.
1029          * If we own the commit event, then we can commit
1030          * all others that interrupted us, since the interruptions
1031          * are in stack format (they finish before they come
1032          * back to us). This allows us to do a simple loop to
1033          * assign the commit to the tail.
1034          */
1035  again:
1036         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1037                 cpu_buffer->commit_page->page->commit =
1038                         cpu_buffer->commit_page->write;
1039                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1040                 cpu_buffer->write_stamp =
1041                         cpu_buffer->commit_page->page->time_stamp;
1042                 /* add barrier to keep gcc from optimizing too much */
1043                 barrier();
1044         }
1045         while (rb_commit_index(cpu_buffer) !=
1046                rb_page_write(cpu_buffer->commit_page)) {
1047                 cpu_buffer->commit_page->page->commit =
1048                         cpu_buffer->commit_page->write;
1049                 barrier();
1050         }
1051
1052         /* again, keep gcc from optimizing */
1053         barrier();
1054
1055         /*
1056          * If an interrupt came in just after the first while loop
1057          * and pushed the tail page forward, we will be left with
1058          * a dangling commit that will never go forward.
1059          */
1060         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1061                 goto again;
1062 }
1063
1064 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1065 {
1066         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1067         cpu_buffer->reader_page->read = 0;
1068 }
1069
1070 static void rb_inc_iter(struct ring_buffer_iter *iter)
1071 {
1072         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1073
1074         /*
1075          * The iterator could be on the reader page (it starts there).
1076          * But the head could have moved, since the reader was
1077          * found. Check for this case and assign the iterator
1078          * to the head page instead of next.
1079          */
1080         if (iter->head_page == cpu_buffer->reader_page)
1081                 iter->head_page = cpu_buffer->head_page;
1082         else
1083                 rb_inc_page(cpu_buffer, &iter->head_page);
1084
1085         iter->read_stamp = iter->head_page->page->time_stamp;
1086         iter->head = 0;
1087 }
1088
1089 /**
1090  * ring_buffer_update_event - update event type and data
1091  * @event: the even to update
1092  * @type: the type of event
1093  * @length: the size of the event field in the ring buffer
1094  *
1095  * Update the type and data fields of the event. The length
1096  * is the actual size that is written to the ring buffer,
1097  * and with this, we can determine what to place into the
1098  * data field.
1099  */
1100 static void
1101 rb_update_event(struct ring_buffer_event *event,
1102                          unsigned type, unsigned length)
1103 {
1104         event->type_len = type;
1105
1106         switch (type) {
1107
1108         case RINGBUF_TYPE_PADDING:
1109         case RINGBUF_TYPE_TIME_EXTEND:
1110         case RINGBUF_TYPE_TIME_STAMP:
1111                 break;
1112
1113         case 0:
1114                 length -= RB_EVNT_HDR_SIZE;
1115                 if (length > RB_MAX_SMALL_DATA)
1116                         event->array[0] = length;
1117                 else
1118                         event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1119                 break;
1120         default:
1121                 BUG();
1122         }
1123 }
1124
1125 static unsigned rb_calculate_event_length(unsigned length)
1126 {
1127         struct ring_buffer_event event; /* Used only for sizeof array */
1128
1129         /* zero length can cause confusions */
1130         if (!length)
1131                 length = 1;
1132
1133         if (length > RB_MAX_SMALL_DATA)
1134                 length += sizeof(event.array[0]);
1135
1136         length += RB_EVNT_HDR_SIZE;
1137         length = ALIGN(length, RB_ALIGNMENT);
1138
1139         return length;
1140 }
1141
1142 static inline void
1143 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1144               struct buffer_page *tail_page,
1145               unsigned long tail, unsigned long length)
1146 {
1147         struct ring_buffer_event *event;
1148
1149         /*
1150          * Only the event that crossed the page boundary
1151          * must fill the old tail_page with padding.
1152          */
1153         if (tail >= BUF_PAGE_SIZE) {
1154                 local_sub(length, &tail_page->write);
1155                 return;
1156         }
1157
1158         event = __rb_page_index(tail_page, tail);
1159         kmemcheck_annotate_bitfield(event, bitfield);
1160
1161         /*
1162          * If this event is bigger than the minimum size, then
1163          * we need to be careful that we don't subtract the
1164          * write counter enough to allow another writer to slip
1165          * in on this page.
1166          * We put in a discarded commit instead, to make sure
1167          * that this space is not used again.
1168          *
1169          * If we are less than the minimum size, we don't need to
1170          * worry about it.
1171          */
1172         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1173                 /* No room for any events */
1174
1175                 /* Mark the rest of the page with padding */
1176                 rb_event_set_padding(event);
1177
1178                 /* Set the write back to the previous setting */
1179                 local_sub(length, &tail_page->write);
1180                 return;
1181         }
1182
1183         /* Put in a discarded event */
1184         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1185         event->type_len = RINGBUF_TYPE_PADDING;
1186         /* time delta must be non zero */
1187         event->time_delta = 1;
1188         /* Account for this as an entry */
1189         local_inc(&tail_page->entries);
1190         local_inc(&cpu_buffer->entries);
1191
1192         /* Set write to end of buffer */
1193         length = (tail + length) - BUF_PAGE_SIZE;
1194         local_sub(length, &tail_page->write);
1195 }
1196
1197 static struct ring_buffer_event *
1198 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1199              unsigned long length, unsigned long tail,
1200              struct buffer_page *commit_page,
1201              struct buffer_page *tail_page, u64 *ts)
1202 {
1203         struct buffer_page *next_page, *head_page, *reader_page;
1204         struct ring_buffer *buffer = cpu_buffer->buffer;
1205         bool lock_taken = false;
1206         unsigned long flags;
1207
1208         next_page = tail_page;
1209
1210         local_irq_save(flags);
1211         /*
1212          * Since the write to the buffer is still not
1213          * fully lockless, we must be careful with NMIs.
1214          * The locks in the writers are taken when a write
1215          * crosses to a new page. The locks protect against
1216          * races with the readers (this will soon be fixed
1217          * with a lockless solution).
1218          *
1219          * Because we can not protect against NMIs, and we
1220          * want to keep traces reentrant, we need to manage
1221          * what happens when we are in an NMI.
1222          *
1223          * NMIs can happen after we take the lock.
1224          * If we are in an NMI, only take the lock
1225          * if it is not already taken. Otherwise
1226          * simply fail.
1227          */
1228         if (unlikely(in_nmi())) {
1229                 if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1230                         cpu_buffer->nmi_dropped++;
1231                         goto out_reset;
1232                 }
1233         } else
1234                 __raw_spin_lock(&cpu_buffer->lock);
1235
1236         lock_taken = true;
1237
1238         rb_inc_page(cpu_buffer, &next_page);
1239
1240         head_page = cpu_buffer->head_page;
1241         reader_page = cpu_buffer->reader_page;
1242
1243         /* we grabbed the lock before incrementing */
1244         if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1245                 goto out_reset;
1246
1247         /*
1248          * If for some reason, we had an interrupt storm that made
1249          * it all the way around the buffer, bail, and warn
1250          * about it.
1251          */
1252         if (unlikely(next_page == commit_page)) {
1253                 cpu_buffer->commit_overrun++;
1254                 goto out_reset;
1255         }
1256
1257         if (next_page == head_page) {
1258                 if (!(buffer->flags & RB_FL_OVERWRITE))
1259                         goto out_reset;
1260
1261                 /* tail_page has not moved yet? */
1262                 if (tail_page == cpu_buffer->tail_page) {
1263                         /* count overflows */
1264                         cpu_buffer->overrun +=
1265                                 local_read(&head_page->entries);
1266
1267                         rb_inc_page(cpu_buffer, &head_page);
1268                         cpu_buffer->head_page = head_page;
1269                         cpu_buffer->head_page->read = 0;
1270                 }
1271         }
1272
1273         /*
1274          * If the tail page is still the same as what we think
1275          * it is, then it is up to us to update the tail
1276          * pointer.
1277          */
1278         if (tail_page == cpu_buffer->tail_page) {
1279                 local_set(&next_page->write, 0);
1280                 local_set(&next_page->entries, 0);
1281                 local_set(&next_page->page->commit, 0);
1282                 cpu_buffer->tail_page = next_page;
1283
1284                 /* reread the time stamp */
1285                 *ts = rb_time_stamp(buffer, cpu_buffer->cpu);
1286                 cpu_buffer->tail_page->page->time_stamp = *ts;
1287         }
1288
1289         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1290
1291         __raw_spin_unlock(&cpu_buffer->lock);
1292         local_irq_restore(flags);
1293
1294         /* fail and let the caller try again */
1295         return ERR_PTR(-EAGAIN);
1296
1297  out_reset:
1298         /* reset write */
1299         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1300
1301         if (likely(lock_taken))
1302                 __raw_spin_unlock(&cpu_buffer->lock);
1303         local_irq_restore(flags);
1304         return NULL;
1305 }
1306
1307 static struct ring_buffer_event *
1308 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1309                   unsigned type, unsigned long length, u64 *ts)
1310 {
1311         struct buffer_page *tail_page, *commit_page;
1312         struct ring_buffer_event *event;
1313         unsigned long tail, write;
1314
1315         commit_page = cpu_buffer->commit_page;
1316         /* we just need to protect against interrupts */
1317         barrier();
1318         tail_page = cpu_buffer->tail_page;
1319         write = local_add_return(length, &tail_page->write);
1320         tail = write - length;
1321
1322         /* See if we shot pass the end of this buffer page */
1323         if (write > BUF_PAGE_SIZE)
1324                 return rb_move_tail(cpu_buffer, length, tail,
1325                                     commit_page, tail_page, ts);
1326
1327         /* We reserved something on the buffer */
1328
1329         event = __rb_page_index(tail_page, tail);
1330         kmemcheck_annotate_bitfield(event, bitfield);
1331         rb_update_event(event, type, length);
1332
1333         /* The passed in type is zero for DATA */
1334         if (likely(!type))
1335                 local_inc(&tail_page->entries);
1336
1337         /*
1338          * If this is the first commit on the page, then update
1339          * its timestamp.
1340          */
1341         if (!tail)
1342                 tail_page->page->time_stamp = *ts;
1343
1344         return event;
1345 }
1346
1347 static inline int
1348 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1349                   struct ring_buffer_event *event)
1350 {
1351         unsigned long new_index, old_index;
1352         struct buffer_page *bpage;
1353         unsigned long index;
1354         unsigned long addr;
1355
1356         new_index = rb_event_index(event);
1357         old_index = new_index + rb_event_length(event);
1358         addr = (unsigned long)event;
1359         addr &= PAGE_MASK;
1360
1361         bpage = cpu_buffer->tail_page;
1362
1363         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1364                 /*
1365                  * This is on the tail page. It is possible that
1366                  * a write could come in and move the tail page
1367                  * and write to the next page. That is fine
1368                  * because we just shorten what is on this page.
1369                  */
1370                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1371                 if (index == old_index)
1372                         return 1;
1373         }
1374
1375         /* could not discard */
1376         return 0;
1377 }
1378
1379 static int
1380 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1381                   u64 *ts, u64 *delta)
1382 {
1383         struct ring_buffer_event *event;
1384         static int once;
1385         int ret;
1386
1387         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1388                 printk(KERN_WARNING "Delta way too big! %llu"
1389                        " ts=%llu write stamp = %llu\n",
1390                        (unsigned long long)*delta,
1391                        (unsigned long long)*ts,
1392                        (unsigned long long)cpu_buffer->write_stamp);
1393                 WARN_ON(1);
1394         }
1395
1396         /*
1397          * The delta is too big, we to add a
1398          * new timestamp.
1399          */
1400         event = __rb_reserve_next(cpu_buffer,
1401                                   RINGBUF_TYPE_TIME_EXTEND,
1402                                   RB_LEN_TIME_EXTEND,
1403                                   ts);
1404         if (!event)
1405                 return -EBUSY;
1406
1407         if (PTR_ERR(event) == -EAGAIN)
1408                 return -EAGAIN;
1409
1410         /* Only a commited time event can update the write stamp */
1411         if (rb_event_is_commit(cpu_buffer, event)) {
1412                 /*
1413                  * If this is the first on the page, then it was
1414                  * updated with the page itself. Try to discard it
1415                  * and if we can't just make it zero.
1416                  */
1417                 if (rb_event_index(event)) {
1418                         event->time_delta = *delta & TS_MASK;
1419                         event->array[0] = *delta >> TS_SHIFT;
1420                 } else {
1421                         /* try to discard, since we do not need this */
1422                         if (!rb_try_to_discard(cpu_buffer, event)) {
1423                                 /* nope, just zero it */
1424                                 event->time_delta = 0;
1425                                 event->array[0] = 0;
1426                         }
1427                 }
1428                 cpu_buffer->write_stamp = *ts;
1429                 /* let the caller know this was the commit */
1430                 ret = 1;
1431         } else {
1432                 /* Try to discard the event */
1433                 if (!rb_try_to_discard(cpu_buffer, event)) {
1434                         /* Darn, this is just wasted space */
1435                         event->time_delta = 0;
1436                         event->array[0] = 0;
1437                 }
1438                 ret = 0;
1439         }
1440
1441         *delta = 0;
1442
1443         return ret;
1444 }
1445
1446 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
1447 {
1448         local_inc(&cpu_buffer->committing);
1449         local_inc(&cpu_buffer->commits);
1450 }
1451
1452 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
1453 {
1454         unsigned long commits;
1455
1456         if (RB_WARN_ON(cpu_buffer,
1457                        !local_read(&cpu_buffer->committing)))
1458                 return;
1459
1460  again:
1461         commits = local_read(&cpu_buffer->commits);
1462         /* synchronize with interrupts */
1463         barrier();
1464         if (local_read(&cpu_buffer->committing) == 1)
1465                 rb_set_commit_to_write(cpu_buffer);
1466
1467         local_dec(&cpu_buffer->committing);
1468
1469         /* synchronize with interrupts */
1470         barrier();
1471
1472         /*
1473          * Need to account for interrupts coming in between the
1474          * updating of the commit page and the clearing of the
1475          * committing counter.
1476          */
1477         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
1478             !local_read(&cpu_buffer->committing)) {
1479                 local_inc(&cpu_buffer->committing);
1480                 goto again;
1481         }
1482 }
1483
1484 static struct ring_buffer_event *
1485 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1486                       unsigned long length)
1487 {
1488         struct ring_buffer_event *event;
1489         u64 ts, delta = 0;
1490         int commit = 0;
1491         int nr_loops = 0;
1492
1493         rb_start_commit(cpu_buffer);
1494
1495         length = rb_calculate_event_length(length);
1496  again:
1497         /*
1498          * We allow for interrupts to reenter here and do a trace.
1499          * If one does, it will cause this original code to loop
1500          * back here. Even with heavy interrupts happening, this
1501          * should only happen a few times in a row. If this happens
1502          * 1000 times in a row, there must be either an interrupt
1503          * storm or we have something buggy.
1504          * Bail!
1505          */
1506         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1507                 goto out_fail;
1508
1509         ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1510
1511         /*
1512          * Only the first commit can update the timestamp.
1513          * Yes there is a race here. If an interrupt comes in
1514          * just after the conditional and it traces too, then it
1515          * will also check the deltas. More than one timestamp may
1516          * also be made. But only the entry that did the actual
1517          * commit will be something other than zero.
1518          */
1519         if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
1520                    rb_page_write(cpu_buffer->tail_page) ==
1521                    rb_commit_index(cpu_buffer))) {
1522                 u64 diff;
1523
1524                 diff = ts - cpu_buffer->write_stamp;
1525
1526                 /* make sure this diff is calculated here */
1527                 barrier();
1528
1529                 /* Did the write stamp get updated already? */
1530                 if (unlikely(ts < cpu_buffer->write_stamp))
1531                         goto get_event;
1532
1533                 delta = diff;
1534                 if (unlikely(test_time_stamp(delta))) {
1535
1536                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1537                         if (commit == -EBUSY)
1538                                 goto out_fail;
1539
1540                         if (commit == -EAGAIN)
1541                                 goto again;
1542
1543                         RB_WARN_ON(cpu_buffer, commit < 0);
1544                 }
1545         }
1546
1547  get_event:
1548         event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
1549         if (unlikely(PTR_ERR(event) == -EAGAIN))
1550                 goto again;
1551
1552         if (!event)
1553                 goto out_fail;
1554
1555         if (!rb_event_is_commit(cpu_buffer, event))
1556                 delta = 0;
1557
1558         event->time_delta = delta;
1559
1560         return event;
1561
1562  out_fail:
1563         rb_end_commit(cpu_buffer);
1564         return NULL;
1565 }
1566
1567 #ifdef CONFIG_TRACING
1568
1569 #define TRACE_RECURSIVE_DEPTH 16
1570
1571 static int trace_recursive_lock(void)
1572 {
1573         current->trace_recursion++;
1574
1575         if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1576                 return 0;
1577
1578         /* Disable all tracing before we do anything else */
1579         tracing_off_permanent();
1580
1581         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
1582                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1583                     current->trace_recursion,
1584                     hardirq_count() >> HARDIRQ_SHIFT,
1585                     softirq_count() >> SOFTIRQ_SHIFT,
1586                     in_nmi());
1587
1588         WARN_ON_ONCE(1);
1589         return -1;
1590 }
1591
1592 static void trace_recursive_unlock(void)
1593 {
1594         WARN_ON_ONCE(!current->trace_recursion);
1595
1596         current->trace_recursion--;
1597 }
1598
1599 #else
1600
1601 #define trace_recursive_lock()          (0)
1602 #define trace_recursive_unlock()        do { } while (0)
1603
1604 #endif
1605
1606 static DEFINE_PER_CPU(int, rb_need_resched);
1607
1608 /**
1609  * ring_buffer_lock_reserve - reserve a part of the buffer
1610  * @buffer: the ring buffer to reserve from
1611  * @length: the length of the data to reserve (excluding event header)
1612  *
1613  * Returns a reseverd event on the ring buffer to copy directly to.
1614  * The user of this interface will need to get the body to write into
1615  * and can use the ring_buffer_event_data() interface.
1616  *
1617  * The length is the length of the data needed, not the event length
1618  * which also includes the event header.
1619  *
1620  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1621  * If NULL is returned, then nothing has been allocated or locked.
1622  */
1623 struct ring_buffer_event *
1624 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1625 {
1626         struct ring_buffer_per_cpu *cpu_buffer;
1627         struct ring_buffer_event *event;
1628         int cpu, resched;
1629
1630         if (ring_buffer_flags != RB_BUFFERS_ON)
1631                 return NULL;
1632
1633         if (atomic_read(&buffer->record_disabled))
1634                 return NULL;
1635
1636         /* If we are tracing schedule, we don't want to recurse */
1637         resched = ftrace_preempt_disable();
1638
1639         if (trace_recursive_lock())
1640                 goto out_nocheck;
1641
1642         cpu = raw_smp_processor_id();
1643
1644         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1645                 goto out;
1646
1647         cpu_buffer = buffer->buffers[cpu];
1648
1649         if (atomic_read(&cpu_buffer->record_disabled))
1650                 goto out;
1651
1652         if (length > BUF_MAX_DATA_SIZE)
1653                 goto out;
1654
1655         event = rb_reserve_next_event(cpu_buffer, length);
1656         if (!event)
1657                 goto out;
1658
1659         /*
1660          * Need to store resched state on this cpu.
1661          * Only the first needs to.
1662          */
1663
1664         if (preempt_count() == 1)
1665                 per_cpu(rb_need_resched, cpu) = resched;
1666
1667         return event;
1668
1669  out:
1670         trace_recursive_unlock();
1671
1672  out_nocheck:
1673         ftrace_preempt_enable(resched);
1674         return NULL;
1675 }
1676 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1677
1678 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1679                       struct ring_buffer_event *event)
1680 {
1681         local_inc(&cpu_buffer->entries);
1682
1683         /*
1684          * The event first in the commit queue updates the
1685          * time stamp.
1686          */
1687         if (rb_event_is_commit(cpu_buffer, event))
1688                 cpu_buffer->write_stamp += event->time_delta;
1689
1690         rb_end_commit(cpu_buffer);
1691 }
1692
1693 /**
1694  * ring_buffer_unlock_commit - commit a reserved
1695  * @buffer: The buffer to commit to
1696  * @event: The event pointer to commit.
1697  *
1698  * This commits the data to the ring buffer, and releases any locks held.
1699  *
1700  * Must be paired with ring_buffer_lock_reserve.
1701  */
1702 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1703                               struct ring_buffer_event *event)
1704 {
1705         struct ring_buffer_per_cpu *cpu_buffer;
1706         int cpu = raw_smp_processor_id();
1707
1708         cpu_buffer = buffer->buffers[cpu];
1709
1710         rb_commit(cpu_buffer, event);
1711
1712         trace_recursive_unlock();
1713
1714         /*
1715          * Only the last preempt count needs to restore preemption.
1716          */
1717         if (preempt_count() == 1)
1718                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1719         else
1720                 preempt_enable_no_resched_notrace();
1721
1722         return 0;
1723 }
1724 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1725
1726 static inline void rb_event_discard(struct ring_buffer_event *event)
1727 {
1728         /* array[0] holds the actual length for the discarded event */
1729         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1730         event->type_len = RINGBUF_TYPE_PADDING;
1731         /* time delta must be non zero */
1732         if (!event->time_delta)
1733                 event->time_delta = 1;
1734 }
1735
1736 /**
1737  * ring_buffer_event_discard - discard any event in the ring buffer
1738  * @event: the event to discard
1739  *
1740  * Sometimes a event that is in the ring buffer needs to be ignored.
1741  * This function lets the user discard an event in the ring buffer
1742  * and then that event will not be read later.
1743  *
1744  * Note, it is up to the user to be careful with this, and protect
1745  * against races. If the user discards an event that has been consumed
1746  * it is possible that it could corrupt the ring buffer.
1747  */
1748 void ring_buffer_event_discard(struct ring_buffer_event *event)
1749 {
1750         rb_event_discard(event);
1751 }
1752 EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1753
1754 /**
1755  * ring_buffer_commit_discard - discard an event that has not been committed
1756  * @buffer: the ring buffer
1757  * @event: non committed event to discard
1758  *
1759  * This is similar to ring_buffer_event_discard but must only be
1760  * performed on an event that has not been committed yet. The difference
1761  * is that this will also try to free the event from the ring buffer
1762  * if another event has not been added behind it.
1763  *
1764  * If another event has been added behind it, it will set the event
1765  * up as discarded, and perform the commit.
1766  *
1767  * If this function is called, do not call ring_buffer_unlock_commit on
1768  * the event.
1769  */
1770 void ring_buffer_discard_commit(struct ring_buffer *buffer,
1771                                 struct ring_buffer_event *event)
1772 {
1773         struct ring_buffer_per_cpu *cpu_buffer;
1774         int cpu;
1775
1776         /* The event is discarded regardless */
1777         rb_event_discard(event);
1778
1779         cpu = smp_processor_id();
1780         cpu_buffer = buffer->buffers[cpu];
1781
1782         /*
1783          * This must only be called if the event has not been
1784          * committed yet. Thus we can assume that preemption
1785          * is still disabled.
1786          */
1787         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
1788
1789         if (rb_try_to_discard(cpu_buffer, event))
1790                 goto out;
1791
1792         /*
1793          * The commit is still visible by the reader, so we
1794          * must increment entries.
1795          */
1796         local_inc(&cpu_buffer->entries);
1797  out:
1798         rb_end_commit(cpu_buffer);
1799
1800         trace_recursive_unlock();
1801
1802         /*
1803          * Only the last preempt count needs to restore preemption.
1804          */
1805         if (preempt_count() == 1)
1806                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1807         else
1808                 preempt_enable_no_resched_notrace();
1809
1810 }
1811 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1812
1813 /**
1814  * ring_buffer_write - write data to the buffer without reserving
1815  * @buffer: The ring buffer to write to.
1816  * @length: The length of the data being written (excluding the event header)
1817  * @data: The data to write to the buffer.
1818  *
1819  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1820  * one function. If you already have the data to write to the buffer, it
1821  * may be easier to simply call this function.
1822  *
1823  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1824  * and not the length of the event which would hold the header.
1825  */
1826 int ring_buffer_write(struct ring_buffer *buffer,
1827                         unsigned long length,
1828                         void *data)
1829 {
1830         struct ring_buffer_per_cpu *cpu_buffer;
1831         struct ring_buffer_event *event;
1832         void *body;
1833         int ret = -EBUSY;
1834         int cpu, resched;
1835
1836         if (ring_buffer_flags != RB_BUFFERS_ON)
1837                 return -EBUSY;
1838
1839         if (atomic_read(&buffer->record_disabled))
1840                 return -EBUSY;
1841
1842         resched = ftrace_preempt_disable();
1843
1844         cpu = raw_smp_processor_id();
1845
1846         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1847                 goto out;
1848
1849         cpu_buffer = buffer->buffers[cpu];
1850
1851         if (atomic_read(&cpu_buffer->record_disabled))
1852                 goto out;
1853
1854         if (length > BUF_MAX_DATA_SIZE)
1855                 goto out;
1856
1857         event = rb_reserve_next_event(cpu_buffer, length);
1858         if (!event)
1859                 goto out;
1860
1861         body = rb_event_data(event);
1862
1863         memcpy(body, data, length);
1864
1865         rb_commit(cpu_buffer, event);
1866
1867         ret = 0;
1868  out:
1869         ftrace_preempt_enable(resched);
1870
1871         return ret;
1872 }
1873 EXPORT_SYMBOL_GPL(ring_buffer_write);
1874
1875 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1876 {
1877         struct buffer_page *reader = cpu_buffer->reader_page;
1878         struct buffer_page *head = cpu_buffer->head_page;
1879         struct buffer_page *commit = cpu_buffer->commit_page;
1880
1881         return reader->read == rb_page_commit(reader) &&
1882                 (commit == reader ||
1883                  (commit == head &&
1884                   head->read == rb_page_commit(commit)));
1885 }
1886
1887 /**
1888  * ring_buffer_record_disable - stop all writes into the buffer
1889  * @buffer: The ring buffer to stop writes to.
1890  *
1891  * This prevents all writes to the buffer. Any attempt to write
1892  * to the buffer after this will fail and return NULL.
1893  *
1894  * The caller should call synchronize_sched() after this.
1895  */
1896 void ring_buffer_record_disable(struct ring_buffer *buffer)
1897 {
1898         atomic_inc(&buffer->record_disabled);
1899 }
1900 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1901
1902 /**
1903  * ring_buffer_record_enable - enable writes to the buffer
1904  * @buffer: The ring buffer to enable writes
1905  *
1906  * Note, multiple disables will need the same number of enables
1907  * to truely enable the writing (much like preempt_disable).
1908  */
1909 void ring_buffer_record_enable(struct ring_buffer *buffer)
1910 {
1911         atomic_dec(&buffer->record_disabled);
1912 }
1913 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1914
1915 /**
1916  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1917  * @buffer: The ring buffer to stop writes to.
1918  * @cpu: The CPU buffer to stop
1919  *
1920  * This prevents all writes to the buffer. Any attempt to write
1921  * to the buffer after this will fail and return NULL.
1922  *
1923  * The caller should call synchronize_sched() after this.
1924  */
1925 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1926 {
1927         struct ring_buffer_per_cpu *cpu_buffer;
1928
1929         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1930                 return;
1931
1932         cpu_buffer = buffer->buffers[cpu];
1933         atomic_inc(&cpu_buffer->record_disabled);
1934 }
1935 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1936
1937 /**
1938  * ring_buffer_record_enable_cpu - enable writes to the buffer
1939  * @buffer: The ring buffer to enable writes
1940  * @cpu: The CPU to enable.
1941  *
1942  * Note, multiple disables will need the same number of enables
1943  * to truely enable the writing (much like preempt_disable).
1944  */
1945 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1946 {
1947         struct ring_buffer_per_cpu *cpu_buffer;
1948
1949         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1950                 return;
1951
1952         cpu_buffer = buffer->buffers[cpu];
1953         atomic_dec(&cpu_buffer->record_disabled);
1954 }
1955 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1956
1957 /**
1958  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1959  * @buffer: The ring buffer
1960  * @cpu: The per CPU buffer to get the entries from.
1961  */
1962 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1963 {
1964         struct ring_buffer_per_cpu *cpu_buffer;
1965         unsigned long ret;
1966
1967         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1968                 return 0;
1969
1970         cpu_buffer = buffer->buffers[cpu];
1971         ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1972                 - cpu_buffer->read;
1973
1974         return ret;
1975 }
1976 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1977
1978 /**
1979  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1980  * @buffer: The ring buffer
1981  * @cpu: The per CPU buffer to get the number of overruns from
1982  */
1983 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1984 {
1985         struct ring_buffer_per_cpu *cpu_buffer;
1986         unsigned long ret;
1987
1988         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1989                 return 0;
1990
1991         cpu_buffer = buffer->buffers[cpu];
1992         ret = cpu_buffer->overrun;
1993
1994         return ret;
1995 }
1996 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1997
1998 /**
1999  * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
2000  * @buffer: The ring buffer
2001  * @cpu: The per CPU buffer to get the number of overruns from
2002  */
2003 unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
2004 {
2005         struct ring_buffer_per_cpu *cpu_buffer;
2006         unsigned long ret;
2007
2008         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2009                 return 0;
2010
2011         cpu_buffer = buffer->buffers[cpu];
2012         ret = cpu_buffer->nmi_dropped;
2013
2014         return ret;
2015 }
2016 EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
2017
2018 /**
2019  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2020  * @buffer: The ring buffer
2021  * @cpu: The per CPU buffer to get the number of overruns from
2022  */
2023 unsigned long
2024 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2025 {
2026         struct ring_buffer_per_cpu *cpu_buffer;
2027         unsigned long ret;
2028
2029         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2030                 return 0;
2031
2032         cpu_buffer = buffer->buffers[cpu];
2033         ret = cpu_buffer->commit_overrun;
2034
2035         return ret;
2036 }
2037 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2038
2039 /**
2040  * ring_buffer_entries - get the number of entries in a buffer
2041  * @buffer: The ring buffer
2042  *
2043  * Returns the total number of entries in the ring buffer
2044  * (all CPU entries)
2045  */
2046 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2047 {
2048         struct ring_buffer_per_cpu *cpu_buffer;
2049         unsigned long entries = 0;
2050         int cpu;
2051
2052         /* if you care about this being correct, lock the buffer */
2053         for_each_buffer_cpu(buffer, cpu) {
2054                 cpu_buffer = buffer->buffers[cpu];
2055                 entries += (local_read(&cpu_buffer->entries) -
2056                             cpu_buffer->overrun) - cpu_buffer->read;
2057         }
2058
2059         return entries;
2060 }
2061 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2062
2063 /**
2064  * ring_buffer_overrun_cpu - get the number of overruns in buffer
2065  * @buffer: The ring buffer
2066  *
2067  * Returns the total number of overruns in the ring buffer
2068  * (all CPU entries)
2069  */
2070 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2071 {
2072         struct ring_buffer_per_cpu *cpu_buffer;
2073         unsigned long overruns = 0;
2074         int cpu;
2075
2076         /* if you care about this being correct, lock the buffer */
2077         for_each_buffer_cpu(buffer, cpu) {
2078                 cpu_buffer = buffer->buffers[cpu];
2079                 overruns += cpu_buffer->overrun;
2080         }
2081
2082         return overruns;
2083 }
2084 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2085
2086 static void rb_iter_reset(struct ring_buffer_iter *iter)
2087 {
2088         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2089
2090         /* Iterator usage is expected to have record disabled */
2091         if (list_empty(&cpu_buffer->reader_page->list)) {
2092                 iter->head_page = cpu_buffer->head_page;
2093                 iter->head = cpu_buffer->head_page->read;
2094         } else {
2095                 iter->head_page = cpu_buffer->reader_page;
2096                 iter->head = cpu_buffer->reader_page->read;
2097         }
2098         if (iter->head)
2099                 iter->read_stamp = cpu_buffer->read_stamp;
2100         else
2101                 iter->read_stamp = iter->head_page->page->time_stamp;
2102 }
2103
2104 /**
2105  * ring_buffer_iter_reset - reset an iterator
2106  * @iter: The iterator to reset
2107  *
2108  * Resets the iterator, so that it will start from the beginning
2109  * again.
2110  */
2111 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2112 {
2113         struct ring_buffer_per_cpu *cpu_buffer;
2114         unsigned long flags;
2115
2116         if (!iter)
2117                 return;
2118
2119         cpu_buffer = iter->cpu_buffer;
2120
2121         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2122         rb_iter_reset(iter);
2123         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2124 }
2125 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2126
2127 /**
2128  * ring_buffer_iter_empty - check if an iterator has no more to read
2129  * @iter: The iterator to check
2130  */
2131 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2132 {
2133         struct ring_buffer_per_cpu *cpu_buffer;
2134
2135         cpu_buffer = iter->cpu_buffer;
2136
2137         return iter->head_page == cpu_buffer->commit_page &&
2138                 iter->head == rb_commit_index(cpu_buffer);
2139 }
2140 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2141
2142 static void
2143 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2144                      struct ring_buffer_event *event)
2145 {
2146         u64 delta;
2147
2148         switch (event->type_len) {
2149         case RINGBUF_TYPE_PADDING:
2150                 return;
2151
2152         case RINGBUF_TYPE_TIME_EXTEND:
2153                 delta = event->array[0];
2154                 delta <<= TS_SHIFT;
2155                 delta += event->time_delta;
2156                 cpu_buffer->read_stamp += delta;
2157                 return;
2158
2159         case RINGBUF_TYPE_TIME_STAMP:
2160                 /* FIXME: not implemented */
2161                 return;
2162
2163         case RINGBUF_TYPE_DATA:
2164                 cpu_buffer->read_stamp += event->time_delta;
2165                 return;
2166
2167         default:
2168                 BUG();
2169         }
2170         return;
2171 }
2172
2173 static void
2174 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2175                           struct ring_buffer_event *event)
2176 {
2177         u64 delta;
2178
2179         switch (event->type_len) {
2180         case RINGBUF_TYPE_PADDING:
2181                 return;
2182
2183         case RINGBUF_TYPE_TIME_EXTEND:
2184                 delta = event->array[0];
2185                 delta <<= TS_SHIFT;
2186                 delta += event->time_delta;
2187                 iter->read_stamp += delta;
2188                 return;
2189
2190         case RINGBUF_TYPE_TIME_STAMP:
2191                 /* FIXME: not implemented */
2192                 return;
2193
2194         case RINGBUF_TYPE_DATA:
2195                 iter->read_stamp += event->time_delta;
2196                 return;
2197
2198         default:
2199                 BUG();
2200         }
2201         return;
2202 }
2203
2204 static struct buffer_page *
2205 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2206 {
2207         struct buffer_page *reader = NULL;
2208         unsigned long flags;
2209         int nr_loops = 0;
2210
2211         local_irq_save(flags);
2212         __raw_spin_lock(&cpu_buffer->lock);
2213
2214  again:
2215         /*
2216          * This should normally only loop twice. But because the
2217          * start of the reader inserts an empty page, it causes
2218          * a case where we will loop three times. There should be no
2219          * reason to loop four times (that I know of).
2220          */
2221         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2222                 reader = NULL;
2223                 goto out;
2224         }
2225
2226         reader = cpu_buffer->reader_page;
2227
2228         /* If there's more to read, return this page */
2229         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2230                 goto out;
2231
2232         /* Never should we have an index greater than the size */
2233         if (RB_WARN_ON(cpu_buffer,
2234                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2235                 goto out;
2236
2237         /* check if we caught up to the tail */
2238         reader = NULL;
2239         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2240                 goto out;
2241
2242         /*
2243          * Splice the empty reader page into the list around the head.
2244          * Reset the reader page to size zero.
2245          */
2246
2247         reader = cpu_buffer->head_page;
2248         cpu_buffer->reader_page->list.next = reader->list.next;
2249         cpu_buffer->reader_page->list.prev = reader->list.prev;
2250
2251         local_set(&cpu_buffer->reader_page->write, 0);
2252         local_set(&cpu_buffer->reader_page->entries, 0);
2253         local_set(&cpu_buffer->reader_page->page->commit, 0);
2254
2255         /* Make the reader page now replace the head */
2256         reader->list.prev->next = &cpu_buffer->reader_page->list;
2257         reader->list.next->prev = &cpu_buffer->reader_page->list;
2258
2259         /*
2260          * If the tail is on the reader, then we must set the head
2261          * to the inserted page, otherwise we set it one before.
2262          */
2263         cpu_buffer->head_page = cpu_buffer->reader_page;
2264
2265         if (cpu_buffer->commit_page != reader)
2266                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2267
2268         /* Finally update the reader page to the new head */
2269         cpu_buffer->reader_page = reader;
2270         rb_reset_reader_page(cpu_buffer);
2271
2272         goto again;
2273
2274  out:
2275         __raw_spin_unlock(&cpu_buffer->lock);
2276         local_irq_restore(flags);
2277
2278         return reader;
2279 }
2280
2281 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2282 {
2283         struct ring_buffer_event *event;
2284         struct buffer_page *reader;
2285         unsigned length;
2286
2287         reader = rb_get_reader_page(cpu_buffer);
2288
2289         /* This function should not be called when buffer is empty */
2290         if (RB_WARN_ON(cpu_buffer, !reader))
2291                 return;
2292
2293         event = rb_reader_event(cpu_buffer);
2294
2295         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2296                         || rb_discarded_event(event))
2297                 cpu_buffer->read++;
2298
2299         rb_update_read_stamp(cpu_buffer, event);
2300
2301         length = rb_event_length(event);
2302         cpu_buffer->reader_page->read += length;
2303 }
2304
2305 static void rb_advance_iter(struct ring_buffer_iter *iter)
2306 {
2307         struct ring_buffer *buffer;
2308         struct ring_buffer_per_cpu *cpu_buffer;
2309         struct ring_buffer_event *event;
2310         unsigned length;
2311
2312         cpu_buffer = iter->cpu_buffer;
2313         buffer = cpu_buffer->buffer;
2314
2315         /*
2316          * Check if we are at the end of the buffer.
2317          */
2318         if (iter->head >= rb_page_size(iter->head_page)) {
2319                 /* discarded commits can make the page empty */
2320                 if (iter->head_page == cpu_buffer->commit_page)
2321                         return;
2322                 rb_inc_iter(iter);
2323                 return;
2324         }
2325
2326         event = rb_iter_head_event(iter);
2327
2328         length = rb_event_length(event);
2329
2330         /*
2331          * This should not be called to advance the header if we are
2332          * at the tail of the buffer.
2333          */
2334         if (RB_WARN_ON(cpu_buffer,
2335                        (iter->head_page == cpu_buffer->commit_page) &&
2336                        (iter->head + length > rb_commit_index(cpu_buffer))))
2337                 return;
2338
2339         rb_update_iter_read_stamp(iter, event);
2340
2341         iter->head += length;
2342
2343         /* check for end of page padding */
2344         if ((iter->head >= rb_page_size(iter->head_page)) &&
2345             (iter->head_page != cpu_buffer->commit_page))
2346                 rb_advance_iter(iter);
2347 }
2348
2349 static struct ring_buffer_event *
2350 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2351 {
2352         struct ring_buffer_per_cpu *cpu_buffer;
2353         struct ring_buffer_event *event;
2354         struct buffer_page *reader;
2355         int nr_loops = 0;
2356
2357         cpu_buffer = buffer->buffers[cpu];
2358
2359  again:
2360         /*
2361          * We repeat when a timestamp is encountered. It is possible
2362          * to get multiple timestamps from an interrupt entering just
2363          * as one timestamp is about to be written, or from discarded
2364          * commits. The most that we can have is the number on a single page.
2365          */
2366         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
2367                 return NULL;
2368
2369         reader = rb_get_reader_page(cpu_buffer);
2370         if (!reader)
2371                 return NULL;
2372
2373         event = rb_reader_event(cpu_buffer);
2374
2375         switch (event->type_len) {
2376         case RINGBUF_TYPE_PADDING:
2377                 if (rb_null_event(event))
2378                         RB_WARN_ON(cpu_buffer, 1);
2379                 /*
2380                  * Because the writer could be discarding every
2381                  * event it creates (which would probably be bad)
2382                  * if we were to go back to "again" then we may never
2383                  * catch up, and will trigger the warn on, or lock
2384                  * the box. Return the padding, and we will release
2385                  * the current locks, and try again.
2386                  */
2387                 return event;
2388
2389         case RINGBUF_TYPE_TIME_EXTEND:
2390                 /* Internal data, OK to advance */
2391                 rb_advance_reader(cpu_buffer);
2392                 goto again;
2393
2394         case RINGBUF_TYPE_TIME_STAMP:
2395                 /* FIXME: not implemented */
2396                 rb_advance_reader(cpu_buffer);
2397                 goto again;
2398
2399         case RINGBUF_TYPE_DATA:
2400                 if (ts) {
2401                         *ts = cpu_buffer->read_stamp + event->time_delta;
2402                         ring_buffer_normalize_time_stamp(buffer,
2403                                                          cpu_buffer->cpu, ts);
2404                 }
2405                 return event;
2406
2407         default:
2408                 BUG();
2409         }
2410
2411         return NULL;
2412 }
2413 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2414
2415 static struct ring_buffer_event *
2416 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2417 {
2418         struct ring_buffer *buffer;
2419         struct ring_buffer_per_cpu *cpu_buffer;
2420         struct ring_buffer_event *event;
2421         int nr_loops = 0;
2422
2423         if (ring_buffer_iter_empty(iter))
2424                 return NULL;
2425
2426         cpu_buffer = iter->cpu_buffer;
2427         buffer = cpu_buffer->buffer;
2428
2429  again:
2430         /*
2431          * We repeat when a timestamp is encountered.
2432          * We can get multiple timestamps by nested interrupts or also
2433          * if filtering is on (discarding commits). Since discarding
2434          * commits can be frequent we can get a lot of timestamps.
2435          * But we limit them by not adding timestamps if they begin
2436          * at the start of a page.
2437          */
2438         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
2439                 return NULL;
2440
2441         if (rb_per_cpu_empty(cpu_buffer))
2442                 return NULL;
2443
2444         event = rb_iter_head_event(iter);
2445
2446         switch (event->type_len) {
2447         case RINGBUF_TYPE_PADDING:
2448                 if (rb_null_event(event)) {
2449                         rb_inc_iter(iter);
2450                         goto again;
2451                 }
2452                 rb_advance_iter(iter);
2453                 return event;
2454
2455         case RINGBUF_TYPE_TIME_EXTEND:
2456                 /* Internal data, OK to advance */
2457                 rb_advance_iter(iter);
2458                 goto again;
2459
2460         case RINGBUF_TYPE_TIME_STAMP:
2461                 /* FIXME: not implemented */
2462                 rb_advance_iter(iter);
2463                 goto again;
2464
2465         case RINGBUF_TYPE_DATA:
2466                 if (ts) {
2467                         *ts = iter->read_stamp + event->time_delta;
2468                         ring_buffer_normalize_time_stamp(buffer,
2469                                                          cpu_buffer->cpu, ts);
2470                 }
2471                 return event;
2472
2473         default:
2474                 BUG();
2475         }
2476
2477         return NULL;
2478 }
2479 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2480
2481 static inline int rb_ok_to_lock(void)
2482 {
2483         /*
2484          * If an NMI die dumps out the content of the ring buffer
2485          * do not grab locks. We also permanently disable the ring
2486          * buffer too. A one time deal is all you get from reading
2487          * the ring buffer from an NMI.
2488          */
2489         if (likely(!in_nmi()))
2490                 return 1;
2491
2492         tracing_off_permanent();
2493         return 0;
2494 }
2495
2496 /**
2497  * ring_buffer_peek - peek at the next event to be read
2498  * @buffer: The ring buffer to read
2499  * @cpu: The cpu to peak at
2500  * @ts: The timestamp counter of this event.
2501  *
2502  * This will return the event that will be read next, but does
2503  * not consume the data.
2504  */
2505 struct ring_buffer_event *
2506 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2507 {
2508         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2509         struct ring_buffer_event *event;
2510         unsigned long flags;
2511         int dolock;
2512
2513         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2514                 return NULL;
2515
2516         dolock = rb_ok_to_lock();
2517  again:
2518         local_irq_save(flags);
2519         if (dolock)
2520                 spin_lock(&cpu_buffer->reader_lock);
2521         event = rb_buffer_peek(buffer, cpu, ts);
2522         if (event && event->type_len == RINGBUF_TYPE_PADDING)
2523                 rb_advance_reader(cpu_buffer);
2524         if (dolock)
2525                 spin_unlock(&cpu_buffer->reader_lock);
2526         local_irq_restore(flags);
2527
2528         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2529                 cpu_relax();
2530                 goto again;
2531         }
2532
2533         return event;
2534 }
2535
2536 /**
2537  * ring_buffer_iter_peek - peek at the next event to be read
2538  * @iter: The ring buffer iterator
2539  * @ts: The timestamp counter of this event.
2540  *
2541  * This will return the event that will be read next, but does
2542  * not increment the iterator.
2543  */
2544 struct ring_buffer_event *
2545 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2546 {
2547         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2548         struct ring_buffer_event *event;
2549         unsigned long flags;
2550
2551  again:
2552         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2553         event = rb_iter_peek(iter, ts);
2554         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2555
2556         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2557                 cpu_relax();
2558                 goto again;
2559         }
2560
2561         return event;
2562 }
2563
2564 /**
2565  * ring_buffer_consume - return an event and consume it
2566  * @buffer: The ring buffer to get the next event from
2567  *
2568  * Returns the next event in the ring buffer, and that event is consumed.
2569  * Meaning, that sequential reads will keep returning a different event,
2570  * and eventually empty the ring buffer if the producer is slower.
2571  */
2572 struct ring_buffer_event *
2573 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2574 {
2575         struct ring_buffer_per_cpu *cpu_buffer;
2576         struct ring_buffer_event *event = NULL;
2577         unsigned long flags;
2578         int dolock;
2579
2580         dolock = rb_ok_to_lock();
2581
2582  again:
2583         /* might be called in atomic */
2584         preempt_disable();
2585
2586         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2587                 goto out;
2588
2589         cpu_buffer = buffer->buffers[cpu];
2590         local_irq_save(flags);
2591         if (dolock)
2592                 spin_lock(&cpu_buffer->reader_lock);
2593
2594         event = rb_buffer_peek(buffer, cpu, ts);
2595         if (event)
2596                 rb_advance_reader(cpu_buffer);
2597
2598         if (dolock)
2599                 spin_unlock(&cpu_buffer->reader_lock);
2600         local_irq_restore(flags);
2601
2602  out:
2603         preempt_enable();
2604
2605         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2606                 cpu_relax();
2607                 goto again;
2608         }
2609
2610         return event;
2611 }
2612 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2613
2614 /**
2615  * ring_buffer_read_start - start a non consuming read of the buffer
2616  * @buffer: The ring buffer to read from
2617  * @cpu: The cpu buffer to iterate over
2618  *
2619  * This starts up an iteration through the buffer. It also disables
2620  * the recording to the buffer until the reading is finished.
2621  * This prevents the reading from being corrupted. This is not
2622  * a consuming read, so a producer is not expected.
2623  *
2624  * Must be paired with ring_buffer_finish.
2625  */
2626 struct ring_buffer_iter *
2627 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2628 {
2629         struct ring_buffer_per_cpu *cpu_buffer;
2630         struct ring_buffer_iter *iter;
2631         unsigned long flags;
2632
2633         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2634                 return NULL;
2635
2636         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2637         if (!iter)
2638                 return NULL;
2639
2640         cpu_buffer = buffer->buffers[cpu];
2641
2642         iter->cpu_buffer = cpu_buffer;
2643
2644         atomic_inc(&cpu_buffer->record_disabled);
2645         synchronize_sched();
2646
2647         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2648         __raw_spin_lock(&cpu_buffer->lock);
2649         rb_iter_reset(iter);
2650         __raw_spin_unlock(&cpu_buffer->lock);
2651         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2652
2653         return iter;
2654 }
2655 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2656
2657 /**
2658  * ring_buffer_finish - finish reading the iterator of the buffer
2659  * @iter: The iterator retrieved by ring_buffer_start
2660  *
2661  * This re-enables the recording to the buffer, and frees the
2662  * iterator.
2663  */
2664 void
2665 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2666 {
2667         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2668
2669         atomic_dec(&cpu_buffer->record_disabled);
2670         kfree(iter);
2671 }
2672 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2673
2674 /**
2675  * ring_buffer_read - read the next item in the ring buffer by the iterator
2676  * @iter: The ring buffer iterator
2677  * @ts: The time stamp of the event read.
2678  *
2679  * This reads the next event in the ring buffer and increments the iterator.
2680  */
2681 struct ring_buffer_event *
2682 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2683 {
2684         struct ring_buffer_event *event;
2685         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2686         unsigned long flags;
2687
2688  again:
2689         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2690         event = rb_iter_peek(iter, ts);
2691         if (!event)
2692                 goto out;
2693
2694         rb_advance_iter(iter);
2695  out:
2696         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2697
2698         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2699                 cpu_relax();
2700                 goto again;
2701         }
2702
2703         return event;
2704 }
2705 EXPORT_SYMBOL_GPL(ring_buffer_read);
2706
2707 /**
2708  * ring_buffer_size - return the size of the ring buffer (in bytes)
2709  * @buffer: The ring buffer.
2710  */
2711 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2712 {
2713         return BUF_PAGE_SIZE * buffer->pages;
2714 }
2715 EXPORT_SYMBOL_GPL(ring_buffer_size);
2716
2717 static void
2718 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2719 {
2720         cpu_buffer->head_page
2721                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2722         local_set(&cpu_buffer->head_page->write, 0);
2723         local_set(&cpu_buffer->head_page->entries, 0);
2724         local_set(&cpu_buffer->head_page->page->commit, 0);
2725
2726         cpu_buffer->head_page->read = 0;
2727
2728         cpu_buffer->tail_page = cpu_buffer->head_page;
2729         cpu_buffer->commit_page = cpu_buffer->head_page;
2730
2731         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2732         local_set(&cpu_buffer->reader_page->write, 0);
2733         local_set(&cpu_buffer->reader_page->entries, 0);
2734         local_set(&cpu_buffer->reader_page->page->commit, 0);
2735         cpu_buffer->reader_page->read = 0;
2736
2737         cpu_buffer->nmi_dropped = 0;
2738         cpu_buffer->commit_overrun = 0;
2739         cpu_buffer->overrun = 0;
2740         cpu_buffer->read = 0;
2741         local_set(&cpu_buffer->entries, 0);
2742         local_set(&cpu_buffer->committing, 0);
2743         local_set(&cpu_buffer->commits, 0);
2744
2745         cpu_buffer->write_stamp = 0;
2746         cpu_buffer->read_stamp = 0;
2747 }
2748
2749 /**
2750  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2751  * @buffer: The ring buffer to reset a per cpu buffer of
2752  * @cpu: The CPU buffer to be reset
2753  */
2754 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2755 {
2756         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2757         unsigned long flags;
2758
2759         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2760                 return;
2761
2762         atomic_inc(&cpu_buffer->record_disabled);
2763
2764         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2765
2766         __raw_spin_lock(&cpu_buffer->lock);
2767
2768         rb_reset_cpu(cpu_buffer);
2769
2770         __raw_spin_unlock(&cpu_buffer->lock);
2771
2772         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2773
2774         atomic_dec(&cpu_buffer->record_disabled);
2775 }
2776 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2777
2778 /**
2779  * ring_buffer_reset - reset a ring buffer
2780  * @buffer: The ring buffer to reset all cpu buffers
2781  */
2782 void ring_buffer_reset(struct ring_buffer *buffer)
2783 {
2784         int cpu;
2785
2786         for_each_buffer_cpu(buffer, cpu)
2787                 ring_buffer_reset_cpu(buffer, cpu);
2788 }
2789 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2790
2791 /**
2792  * rind_buffer_empty - is the ring buffer empty?
2793  * @buffer: The ring buffer to test
2794  */
2795 int ring_buffer_empty(struct ring_buffer *buffer)
2796 {
2797         struct ring_buffer_per_cpu *cpu_buffer;
2798         unsigned long flags;
2799         int dolock;
2800         int cpu;
2801         int ret;
2802
2803         dolock = rb_ok_to_lock();
2804
2805         /* yes this is racy, but if you don't like the race, lock the buffer */
2806         for_each_buffer_cpu(buffer, cpu) {
2807                 cpu_buffer = buffer->buffers[cpu];
2808                 local_irq_save(flags);
2809                 if (dolock)
2810                         spin_lock(&cpu_buffer->reader_lock);
2811                 ret = rb_per_cpu_empty(cpu_buffer);
2812                 if (dolock)
2813                         spin_unlock(&cpu_buffer->reader_lock);
2814                 local_irq_restore(flags);
2815
2816                 if (!ret)
2817                         return 0;
2818         }
2819
2820         return 1;
2821 }
2822 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2823
2824 /**
2825  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2826  * @buffer: The ring buffer
2827  * @cpu: The CPU buffer to test
2828  */
2829 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2830 {
2831         struct ring_buffer_per_cpu *cpu_buffer;
2832         unsigned long flags;
2833         int dolock;
2834         int ret;
2835
2836         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2837                 return 1;
2838
2839         dolock = rb_ok_to_lock();
2840
2841         cpu_buffer = buffer->buffers[cpu];
2842         local_irq_save(flags);
2843         if (dolock)
2844                 spin_lock(&cpu_buffer->reader_lock);
2845         ret = rb_per_cpu_empty(cpu_buffer);
2846         if (dolock)
2847                 spin_unlock(&cpu_buffer->reader_lock);
2848         local_irq_restore(flags);
2849
2850         return ret;
2851 }
2852 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2853
2854 /**
2855  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2856  * @buffer_a: One buffer to swap with
2857  * @buffer_b: The other buffer to swap with
2858  *
2859  * This function is useful for tracers that want to take a "snapshot"
2860  * of a CPU buffer and has another back up buffer lying around.
2861  * it is expected that the tracer handles the cpu buffer not being
2862  * used at the moment.
2863  */
2864 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2865                          struct ring_buffer *buffer_b, int cpu)
2866 {
2867         struct ring_buffer_per_cpu *cpu_buffer_a;
2868         struct ring_buffer_per_cpu *cpu_buffer_b;
2869         int ret = -EINVAL;
2870
2871         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2872             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2873                 goto out;
2874
2875         /* At least make sure the two buffers are somewhat the same */
2876         if (buffer_a->pages != buffer_b->pages)
2877                 goto out;
2878
2879         ret = -EAGAIN;
2880
2881         if (ring_buffer_flags != RB_BUFFERS_ON)
2882                 goto out;
2883
2884         if (atomic_read(&buffer_a->record_disabled))
2885                 goto out;
2886
2887         if (atomic_read(&buffer_b->record_disabled))
2888                 goto out;
2889
2890         cpu_buffer_a = buffer_a->buffers[cpu];
2891         cpu_buffer_b = buffer_b->buffers[cpu];
2892
2893         if (atomic_read(&cpu_buffer_a->record_disabled))
2894                 goto out;
2895
2896         if (atomic_read(&cpu_buffer_b->record_disabled))
2897                 goto out;
2898
2899         /*
2900          * We can't do a synchronize_sched here because this
2901          * function can be called in atomic context.
2902          * Normally this will be called from the same CPU as cpu.
2903          * If not it's up to the caller to protect this.
2904          */
2905         atomic_inc(&cpu_buffer_a->record_disabled);
2906         atomic_inc(&cpu_buffer_b->record_disabled);
2907
2908         buffer_a->buffers[cpu] = cpu_buffer_b;
2909         buffer_b->buffers[cpu] = cpu_buffer_a;
2910
2911         cpu_buffer_b->buffer = buffer_a;
2912         cpu_buffer_a->buffer = buffer_b;
2913
2914         atomic_dec(&cpu_buffer_a->record_disabled);
2915         atomic_dec(&cpu_buffer_b->record_disabled);
2916
2917         ret = 0;
2918 out:
2919         return ret;
2920 }
2921 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2922
2923 /**
2924  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2925  * @buffer: the buffer to allocate for.
2926  *
2927  * This function is used in conjunction with ring_buffer_read_page.
2928  * When reading a full page from the ring buffer, these functions
2929  * can be used to speed up the process. The calling function should
2930  * allocate a few pages first with this function. Then when it
2931  * needs to get pages from the ring buffer, it passes the result
2932  * of this function into ring_buffer_read_page, which will swap
2933  * the page that was allocated, with the read page of the buffer.
2934  *
2935  * Returns:
2936  *  The page allocated, or NULL on error.
2937  */
2938 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2939 {
2940         struct buffer_data_page *bpage;
2941         unsigned long addr;
2942
2943         addr = __get_free_page(GFP_KERNEL);
2944         if (!addr)
2945                 return NULL;
2946
2947         bpage = (void *)addr;
2948
2949         rb_init_page(bpage);
2950
2951         return bpage;
2952 }
2953 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
2954
2955 /**
2956  * ring_buffer_free_read_page - free an allocated read page
2957  * @buffer: the buffer the page was allocate for
2958  * @data: the page to free
2959  *
2960  * Free a page allocated from ring_buffer_alloc_read_page.
2961  */
2962 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2963 {
2964         free_page((unsigned long)data);
2965 }
2966 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
2967
2968 /**
2969  * ring_buffer_read_page - extract a page from the ring buffer
2970  * @buffer: buffer to extract from
2971  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2972  * @len: amount to extract
2973  * @cpu: the cpu of the buffer to extract
2974  * @full: should the extraction only happen when the page is full.
2975  *
2976  * This function will pull out a page from the ring buffer and consume it.
2977  * @data_page must be the address of the variable that was returned
2978  * from ring_buffer_alloc_read_page. This is because the page might be used
2979  * to swap with a page in the ring buffer.
2980  *
2981  * for example:
2982  *      rpage = ring_buffer_alloc_read_page(buffer);
2983  *      if (!rpage)
2984  *              return error;
2985  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2986  *      if (ret >= 0)
2987  *              process_page(rpage, ret);
2988  *
2989  * When @full is set, the function will not return true unless
2990  * the writer is off the reader page.
2991  *
2992  * Note: it is up to the calling functions to handle sleeps and wakeups.
2993  *  The ring buffer can be used anywhere in the kernel and can not
2994  *  blindly call wake_up. The layer that uses the ring buffer must be
2995  *  responsible for that.
2996  *
2997  * Returns:
2998  *  >=0 if data has been transferred, returns the offset of consumed data.
2999  *  <0 if no data has been transferred.
3000  */
3001 int ring_buffer_read_page(struct ring_buffer *buffer,
3002                           void **data_page, size_t len, int cpu, int full)
3003 {
3004         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3005         struct ring_buffer_event *event;
3006         struct buffer_data_page *bpage;
3007         struct buffer_page *reader;
3008         unsigned long flags;
3009         unsigned int commit;
3010         unsigned int read;
3011         u64 save_timestamp;
3012         int ret = -1;
3013
3014         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3015                 goto out;
3016
3017         /*
3018          * If len is not big enough to hold the page header, then
3019          * we can not copy anything.
3020          */
3021         if (len <= BUF_PAGE_HDR_SIZE)
3022                 goto out;
3023
3024         len -= BUF_PAGE_HDR_SIZE;
3025
3026         if (!data_page)
3027                 goto out;
3028
3029         bpage = *data_page;
3030         if (!bpage)
3031                 goto out;
3032
3033         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3034
3035         reader = rb_get_reader_page(cpu_buffer);
3036         if (!reader)
3037                 goto out_unlock;
3038
3039         event = rb_reader_event(cpu_buffer);
3040
3041         read = reader->read;
3042         commit = rb_page_commit(reader);
3043
3044         /*
3045          * If this page has been partially read or
3046          * if len is not big enough to read the rest of the page or
3047          * a writer is still on the page, then
3048          * we must copy the data from the page to the buffer.
3049          * Otherwise, we can simply swap the page with the one passed in.
3050          */
3051         if (read || (len < (commit - read)) ||
3052             cpu_buffer->reader_page == cpu_buffer->commit_page) {
3053                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3054                 unsigned int rpos = read;
3055                 unsigned int pos = 0;
3056                 unsigned int size;
3057
3058                 if (full)
3059                         goto out_unlock;
3060
3061                 if (len > (commit - read))
3062                         len = (commit - read);
3063
3064                 size = rb_event_length(event);
3065
3066                 if (len < size)
3067                         goto out_unlock;
3068
3069                 /* save the current timestamp, since the user will need it */
3070                 save_timestamp = cpu_buffer->read_stamp;
3071
3072                 /* Need to copy one event at a time */
3073                 do {
3074                         memcpy(bpage->data + pos, rpage->data + rpos, size);
3075
3076                         len -= size;
3077
3078                         rb_advance_reader(cpu_buffer);
3079                         rpos = reader->read;
3080                         pos += size;
3081
3082                         event = rb_reader_event(cpu_buffer);
3083                         size = rb_event_length(event);
3084                 } while (len > size);
3085
3086                 /* update bpage */
3087                 local_set(&bpage->commit, pos);
3088                 bpage->time_stamp = save_timestamp;
3089
3090                 /* we copied everything to the beginning */
3091                 read = 0;
3092         } else {
3093                 /* update the entry counter */
3094                 cpu_buffer->read += local_read(&reader->entries);
3095
3096                 /* swap the pages */
3097                 rb_init_page(bpage);
3098                 bpage = reader->page;
3099                 reader->page = *data_page;
3100                 local_set(&reader->write, 0);
3101                 local_set(&reader->entries, 0);
3102                 reader->read = 0;
3103                 *data_page = bpage;
3104         }
3105         ret = read;
3106
3107  out_unlock:
3108         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3109
3110  out:
3111         return ret;
3112 }
3113 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3114
3115 #ifdef CONFIG_TRACING
3116 static ssize_t
3117 rb_simple_read(struct file *filp, char __user *ubuf,
3118                size_t cnt, loff_t *ppos)
3119 {
3120         unsigned long *p = filp->private_data;
3121         char buf[64];
3122         int r;
3123
3124         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3125                 r = sprintf(buf, "permanently disabled\n");
3126         else
3127                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3128
3129         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3130 }
3131
3132 static ssize_t
3133 rb_simple_write(struct file *filp, const char __user *ubuf,
3134                 size_t cnt, loff_t *ppos)
3135 {
3136         unsigned long *p = filp->private_data;
3137         char buf[64];
3138         unsigned long val;
3139         int ret;
3140
3141         if (cnt >= sizeof(buf))
3142                 return -EINVAL;
3143
3144         if (copy_from_user(&buf, ubuf, cnt))
3145                 return -EFAULT;
3146
3147         buf[cnt] = 0;
3148
3149         ret = strict_strtoul(buf, 10, &val);
3150         if (ret < 0)
3151                 return ret;
3152
3153         if (val)
3154                 set_bit(RB_BUFFERS_ON_BIT, p);
3155         else
3156                 clear_bit(RB_BUFFERS_ON_BIT, p);
3157
3158         (*ppos)++;
3159
3160         return cnt;
3161 }
3162
3163 static const struct file_operations rb_simple_fops = {
3164         .open           = tracing_open_generic,
3165         .read           = rb_simple_read,
3166         .write          = rb_simple_write,
3167 };
3168
3169
3170 static __init int rb_init_debugfs(void)
3171 {
3172         struct dentry *d_tracer;
3173
3174         d_tracer = tracing_init_dentry();
3175
3176         trace_create_file("tracing_on", 0644, d_tracer,
3177                             &ring_buffer_flags, &rb_simple_fops);
3178
3179         return 0;
3180 }
3181
3182 fs_initcall(rb_init_debugfs);
3183 #endif
3184
3185 #ifdef CONFIG_HOTPLUG_CPU
3186 static int rb_cpu_notify(struct notifier_block *self,
3187                          unsigned long action, void *hcpu)
3188 {
3189         struct ring_buffer *buffer =
3190                 container_of(self, struct ring_buffer, cpu_notify);
3191         long cpu = (long)hcpu;
3192
3193         switch (action) {
3194         case CPU_UP_PREPARE:
3195         case CPU_UP_PREPARE_FROZEN:
3196                 if (cpumask_test_cpu(cpu, buffer->cpumask))
3197                         return NOTIFY_OK;
3198
3199                 buffer->buffers[cpu] =
3200                         rb_allocate_cpu_buffer(buffer, cpu);
3201                 if (!buffer->buffers[cpu]) {
3202                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3203                              cpu);
3204                         return NOTIFY_OK;
3205                 }
3206                 smp_wmb();
3207                 cpumask_set_cpu(cpu, buffer->cpumask);
3208                 break;
3209         case CPU_DOWN_PREPARE:
3210         case CPU_DOWN_PREPARE_FROZEN:
3211                 /*
3212                  * Do nothing.
3213                  *  If we were to free the buffer, then the user would
3214                  *  lose any trace that was in the buffer.
3215                  */
3216                 break;
3217         default:
3218                 break;
3219         }
3220         return NOTIFY_OK;
3221 }
3222 #endif