2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The IP fragmentation functionality.
8 * Version: $Id: ip_fragment.c,v 1.59 2002/01/12 07:54:56 davem Exp $
10 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
11 * Alan Cox <Alan.Cox@linux.org>
14 * Alan Cox : Split from ip.c , see ip_input.c for history.
15 * David S. Miller : Begin massive cleanup...
16 * Andi Kleen : Add sysctls.
17 * xxxx : Overlapfrag bug.
18 * Ultima : ip_expire() kernel panic.
19 * Bill Hawes : Frag accounting and evictor fixes.
20 * John McDonald : 0 length frag bug.
21 * Alexey Kuznetsov: SMP races, threading, cleanup.
22 * Patrick McHardy : LRU queue of frag heads for evictor.
25 #include <linux/compiler.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
29 #include <linux/jiffies.h>
30 #include <linux/skbuff.h>
31 #include <linux/list.h>
33 #include <linux/icmp.h>
34 #include <linux/netdevice.h>
35 #include <linux/jhash.h>
36 #include <linux/random.h>
40 #include <net/checksum.h>
41 #include <net/inetpeer.h>
42 #include <linux/tcp.h>
43 #include <linux/udp.h>
44 #include <linux/inet.h>
45 #include <linux/netfilter_ipv4.h>
47 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
48 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
49 * as well. Or notify me, at least. --ANK
52 /* Fragment cache limits. We will commit 256K at one time. Should we
53 * cross that limit we will prune down to 192K. This should cope with
54 * even the most extreme cases without allowing an attacker to measurably
55 * harm machine performance.
57 int sysctl_ipfrag_high_thresh __read_mostly = 256*1024;
58 int sysctl_ipfrag_low_thresh __read_mostly = 192*1024;
60 int sysctl_ipfrag_max_dist __read_mostly = 64;
62 /* Important NOTE! Fragment queue must be destroyed before MSL expires.
63 * RFC791 is wrong proposing to prolongate timer each fragment arrival by TTL.
65 int sysctl_ipfrag_time __read_mostly = IP_FRAG_TIME;
69 struct inet_skb_parm h;
73 #define FRAG_CB(skb) ((struct ipfrag_skb_cb*)((skb)->cb))
75 /* Describe an entry in the "incomplete datagrams" queue. */
77 struct hlist_node list;
78 struct list_head lru_list; /* lru list member */
89 struct sk_buff *fragments; /* linked list of received fragments */
90 int len; /* total length of original datagram */
94 struct timer_list timer; /* when will this queue expire? */
98 struct inet_peer *peer;
103 #define IPQ_HASHSZ 64
105 /* Per-bucket lock is easy to add now. */
106 static struct hlist_head ipq_hash[IPQ_HASHSZ];
107 static DEFINE_RWLOCK(ipfrag_lock);
108 static u32 ipfrag_hash_rnd;
109 static LIST_HEAD(ipq_lru_list);
110 int ip_frag_nqueues = 0;
112 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
113 struct net_device *dev);
115 static __inline__ void __ipq_unlink(struct ipq *qp)
117 hlist_del(&qp->list);
118 list_del(&qp->lru_list);
122 static __inline__ void ipq_unlink(struct ipq *ipq)
124 write_lock(&ipfrag_lock);
126 write_unlock(&ipfrag_lock);
129 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
131 return jhash_3words((__force u32)id << 16 | prot,
132 (__force u32)saddr, (__force u32)daddr,
133 ipfrag_hash_rnd) & (IPQ_HASHSZ - 1);
136 static struct timer_list ipfrag_secret_timer;
137 int sysctl_ipfrag_secret_interval __read_mostly = 10 * 60 * HZ;
139 static void ipfrag_secret_rebuild(unsigned long dummy)
141 unsigned long now = jiffies;
144 write_lock(&ipfrag_lock);
145 get_random_bytes(&ipfrag_hash_rnd, sizeof(u32));
146 for (i = 0; i < IPQ_HASHSZ; i++) {
148 struct hlist_node *p, *n;
150 hlist_for_each_entry_safe(q, p, n, &ipq_hash[i], list) {
151 unsigned int hval = ipqhashfn(q->id, q->saddr,
152 q->daddr, q->protocol);
157 /* Relink to new hash chain. */
158 hlist_add_head(&q->list, &ipq_hash[hval]);
162 write_unlock(&ipfrag_lock);
164 mod_timer(&ipfrag_secret_timer, now + sysctl_ipfrag_secret_interval);
167 atomic_t ip_frag_mem = ATOMIC_INIT(0); /* Memory used for fragments */
169 /* Memory Tracking Functions. */
170 static __inline__ void frag_kfree_skb(struct sk_buff *skb, int *work)
173 *work -= skb->truesize;
174 atomic_sub(skb->truesize, &ip_frag_mem);
178 static __inline__ void frag_free_queue(struct ipq *qp, int *work)
181 *work -= sizeof(struct ipq);
182 atomic_sub(sizeof(struct ipq), &ip_frag_mem);
186 static __inline__ struct ipq *frag_alloc_queue(void)
188 struct ipq *qp = kmalloc(sizeof(struct ipq), GFP_ATOMIC);
192 atomic_add(sizeof(struct ipq), &ip_frag_mem);
197 /* Destruction primitives. */
199 /* Complete destruction of ipq. */
200 static void ip_frag_destroy(struct ipq *qp, int *work)
204 BUG_TRAP(qp->last_in&COMPLETE);
205 BUG_TRAP(del_timer(&qp->timer) == 0);
208 inet_putpeer(qp->peer);
210 /* Release all fragment data. */
213 struct sk_buff *xp = fp->next;
215 frag_kfree_skb(fp, work);
219 /* Finally, release the queue descriptor itself. */
220 frag_free_queue(qp, work);
223 static __inline__ void ipq_put(struct ipq *ipq, int *work)
225 if (atomic_dec_and_test(&ipq->refcnt))
226 ip_frag_destroy(ipq, work);
229 /* Kill ipq entry. It is not destroyed immediately,
230 * because caller (and someone more) holds reference count.
232 static void ipq_kill(struct ipq *ipq)
234 if (del_timer(&ipq->timer))
235 atomic_dec(&ipq->refcnt);
237 if (!(ipq->last_in & COMPLETE)) {
239 atomic_dec(&ipq->refcnt);
240 ipq->last_in |= COMPLETE;
244 /* Memory limiting on fragments. Evictor trashes the oldest
245 * fragment queue until we are back under the threshold.
247 static void ip_evictor(void)
250 struct list_head *tmp;
253 work = atomic_read(&ip_frag_mem) - sysctl_ipfrag_low_thresh;
258 read_lock(&ipfrag_lock);
259 if (list_empty(&ipq_lru_list)) {
260 read_unlock(&ipfrag_lock);
263 tmp = ipq_lru_list.next;
264 qp = list_entry(tmp, struct ipq, lru_list);
265 atomic_inc(&qp->refcnt);
266 read_unlock(&ipfrag_lock);
268 spin_lock(&qp->lock);
269 if (!(qp->last_in&COMPLETE))
271 spin_unlock(&qp->lock);
274 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
279 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
281 static void ip_expire(unsigned long arg)
283 struct ipq *qp = (struct ipq *) arg;
285 spin_lock(&qp->lock);
287 if (qp->last_in & COMPLETE)
292 IP_INC_STATS_BH(IPSTATS_MIB_REASMTIMEOUT);
293 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
295 if ((qp->last_in&FIRST_IN) && qp->fragments != NULL) {
296 struct sk_buff *head = qp->fragments;
297 /* Send an ICMP "Fragment Reassembly Timeout" message. */
298 if ((head->dev = dev_get_by_index(&init_net, qp->iif)) != NULL) {
299 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
304 spin_unlock(&qp->lock);
308 /* Creation primitives. */
310 static struct ipq *ip_frag_intern(struct ipq *qp_in)
314 struct hlist_node *n;
318 write_lock(&ipfrag_lock);
319 hash = ipqhashfn(qp_in->id, qp_in->saddr, qp_in->daddr,
322 /* With SMP race we have to recheck hash table, because
323 * such entry could be created on other cpu, while we
324 * promoted read lock to write lock.
326 hlist_for_each_entry(qp, n, &ipq_hash[hash], list) {
327 if (qp->id == qp_in->id &&
328 qp->saddr == qp_in->saddr &&
329 qp->daddr == qp_in->daddr &&
330 qp->protocol == qp_in->protocol &&
331 qp->user == qp_in->user) {
332 atomic_inc(&qp->refcnt);
333 write_unlock(&ipfrag_lock);
334 qp_in->last_in |= COMPLETE;
335 ipq_put(qp_in, NULL);
342 if (!mod_timer(&qp->timer, jiffies + sysctl_ipfrag_time))
343 atomic_inc(&qp->refcnt);
345 atomic_inc(&qp->refcnt);
346 hlist_add_head(&qp->list, &ipq_hash[hash]);
347 INIT_LIST_HEAD(&qp->lru_list);
348 list_add_tail(&qp->lru_list, &ipq_lru_list);
350 write_unlock(&ipfrag_lock);
354 /* Add an entry to the 'ipq' queue for a newly received IP datagram. */
355 static struct ipq *ip_frag_create(struct iphdr *iph, u32 user)
359 if ((qp = frag_alloc_queue()) == NULL)
362 qp->protocol = iph->protocol;
365 qp->saddr = iph->saddr;
366 qp->daddr = iph->daddr;
370 qp->fragments = NULL;
372 qp->peer = sysctl_ipfrag_max_dist ? inet_getpeer(iph->saddr, 1) : NULL;
374 /* Initialize a timer for this entry. */
375 init_timer(&qp->timer);
376 qp->timer.data = (unsigned long) qp; /* pointer to queue */
377 qp->timer.function = ip_expire; /* expire function */
378 spin_lock_init(&qp->lock);
379 atomic_set(&qp->refcnt, 1);
381 return ip_frag_intern(qp);
384 LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
388 /* Find the correct entry in the "incomplete datagrams" queue for
389 * this IP datagram, and create new one, if nothing is found.
391 static inline struct ipq *ip_find(struct iphdr *iph, u32 user)
394 __be32 saddr = iph->saddr;
395 __be32 daddr = iph->daddr;
396 __u8 protocol = iph->protocol;
399 struct hlist_node *n;
401 read_lock(&ipfrag_lock);
402 hash = ipqhashfn(id, saddr, daddr, protocol);
403 hlist_for_each_entry(qp, n, &ipq_hash[hash], list) {
405 qp->saddr == saddr &&
406 qp->daddr == daddr &&
407 qp->protocol == protocol &&
409 atomic_inc(&qp->refcnt);
410 read_unlock(&ipfrag_lock);
414 read_unlock(&ipfrag_lock);
416 return ip_frag_create(iph, user);
419 /* Is the fragment too far ahead to be part of ipq? */
420 static inline int ip_frag_too_far(struct ipq *qp)
422 struct inet_peer *peer = qp->peer;
423 unsigned int max = sysctl_ipfrag_max_dist;
424 unsigned int start, end;
432 end = atomic_inc_return(&peer->rid);
435 rc = qp->fragments && (end - start) > max;
438 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
444 static int ip_frag_reinit(struct ipq *qp)
448 if (!mod_timer(&qp->timer, jiffies + sysctl_ipfrag_time)) {
449 atomic_inc(&qp->refcnt);
455 struct sk_buff *xp = fp->next;
456 frag_kfree_skb(fp, NULL);
463 qp->fragments = NULL;
469 /* Add new segment to existing queue. */
470 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
472 struct sk_buff *prev, *next;
473 struct net_device *dev;
478 if (qp->last_in & COMPLETE)
481 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
482 unlikely(ip_frag_too_far(qp)) &&
483 unlikely(err = ip_frag_reinit(qp))) {
488 offset = ntohs(ip_hdr(skb)->frag_off);
489 flags = offset & ~IP_OFFSET;
491 offset <<= 3; /* offset is in 8-byte chunks */
492 ihl = ip_hdrlen(skb);
494 /* Determine the position of this fragment. */
495 end = offset + skb->len - ihl;
498 /* Is this the final fragment? */
499 if ((flags & IP_MF) == 0) {
500 /* If we already have some bits beyond end
501 * or have different end, the segment is corrrupted.
504 ((qp->last_in & LAST_IN) && end != qp->len))
506 qp->last_in |= LAST_IN;
511 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
512 skb->ip_summed = CHECKSUM_NONE;
515 /* Some bits beyond end -> corruption. */
516 if (qp->last_in & LAST_IN)
525 if (pskb_pull(skb, ihl) == NULL)
528 err = pskb_trim_rcsum(skb, end - offset);
532 /* Find out which fragments are in front and at the back of us
533 * in the chain of fragments so far. We must know where to put
534 * this fragment, right?
537 for (next = qp->fragments; next != NULL; next = next->next) {
538 if (FRAG_CB(next)->offset >= offset)
543 /* We found where to put this one. Check for overlap with
544 * preceding fragment, and, if needed, align things so that
545 * any overlaps are eliminated.
548 int i = (FRAG_CB(prev)->offset + prev->len) - offset;
556 if (!pskb_pull(skb, i))
558 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
559 skb->ip_summed = CHECKSUM_NONE;
565 while (next && FRAG_CB(next)->offset < end) {
566 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
569 /* Eat head of the next overlapped fragment
570 * and leave the loop. The next ones cannot overlap.
572 if (!pskb_pull(next, i))
574 FRAG_CB(next)->offset += i;
576 if (next->ip_summed != CHECKSUM_UNNECESSARY)
577 next->ip_summed = CHECKSUM_NONE;
580 struct sk_buff *free_it = next;
582 /* Old fragment is completely overridden with
590 qp->fragments = next;
592 qp->meat -= free_it->len;
593 frag_kfree_skb(free_it, NULL);
597 FRAG_CB(skb)->offset = offset;
599 /* Insert this fragment in the chain of fragments. */
608 qp->iif = dev->ifindex;
611 qp->stamp = skb->tstamp;
612 qp->meat += skb->len;
613 atomic_add(skb->truesize, &ip_frag_mem);
615 qp->last_in |= FIRST_IN;
617 if (qp->last_in == (FIRST_IN | LAST_IN) && qp->meat == qp->len)
618 return ip_frag_reasm(qp, prev, dev);
620 write_lock(&ipfrag_lock);
621 list_move_tail(&qp->lru_list, &ipq_lru_list);
622 write_unlock(&ipfrag_lock);
631 /* Build a new IP datagram from all its fragments. */
633 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
634 struct net_device *dev)
637 struct sk_buff *fp, *head = qp->fragments;
644 /* Make the one we just received the head. */
647 fp = skb_clone(head, GFP_ATOMIC);
652 fp->next = head->next;
655 skb_morph(head, qp->fragments);
656 head->next = qp->fragments->next;
658 kfree_skb(qp->fragments);
659 qp->fragments = head;
662 BUG_TRAP(head != NULL);
663 BUG_TRAP(FRAG_CB(head)->offset == 0);
665 /* Allocate a new buffer for the datagram. */
666 ihlen = ip_hdrlen(head);
667 len = ihlen + qp->len;
673 /* Head of list must not be cloned. */
675 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
678 /* If the first fragment is fragmented itself, we split
679 * it to two chunks: the first with data and paged part
680 * and the second, holding only fragments. */
681 if (skb_shinfo(head)->frag_list) {
682 struct sk_buff *clone;
685 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
687 clone->next = head->next;
689 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
690 skb_shinfo(head)->frag_list = NULL;
691 for (i=0; i<skb_shinfo(head)->nr_frags; i++)
692 plen += skb_shinfo(head)->frags[i].size;
693 clone->len = clone->data_len = head->data_len - plen;
694 head->data_len -= clone->len;
695 head->len -= clone->len;
697 clone->ip_summed = head->ip_summed;
698 atomic_add(clone->truesize, &ip_frag_mem);
701 skb_shinfo(head)->frag_list = head->next;
702 skb_push(head, head->data - skb_network_header(head));
703 atomic_sub(head->truesize, &ip_frag_mem);
705 for (fp=head->next; fp; fp = fp->next) {
706 head->data_len += fp->len;
707 head->len += fp->len;
708 if (head->ip_summed != fp->ip_summed)
709 head->ip_summed = CHECKSUM_NONE;
710 else if (head->ip_summed == CHECKSUM_COMPLETE)
711 head->csum = csum_add(head->csum, fp->csum);
712 head->truesize += fp->truesize;
713 atomic_sub(fp->truesize, &ip_frag_mem);
718 head->tstamp = qp->stamp;
722 iph->tot_len = htons(len);
723 IP_INC_STATS_BH(IPSTATS_MIB_REASMOKS);
724 qp->fragments = NULL;
728 LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
734 "Oversized IP packet from %d.%d.%d.%d.\n",
737 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
741 /* Process an incoming IP datagram fragment. */
742 int ip_defrag(struct sk_buff *skb, u32 user)
746 IP_INC_STATS_BH(IPSTATS_MIB_REASMREQDS);
748 /* Start by cleaning up the memory. */
749 if (atomic_read(&ip_frag_mem) > sysctl_ipfrag_high_thresh)
752 /* Lookup (or create) queue header */
753 if ((qp = ip_find(ip_hdr(skb), user)) != NULL) {
756 spin_lock(&qp->lock);
758 ret = ip_frag_queue(qp, skb);
760 spin_unlock(&qp->lock);
765 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
770 void __init ipfrag_init(void)
772 ipfrag_hash_rnd = (u32) ((num_physpages ^ (num_physpages>>7)) ^
773 (jiffies ^ (jiffies >> 6)));
775 init_timer(&ipfrag_secret_timer);
776 ipfrag_secret_timer.function = ipfrag_secret_rebuild;
777 ipfrag_secret_timer.expires = jiffies + sysctl_ipfrag_secret_interval;
778 add_timer(&ipfrag_secret_timer);
781 EXPORT_SYMBOL(ip_defrag);