p54: Use SKB list handling helpers instead of by-hand code.
[linux-2.6] / drivers / macintosh / windfarm_pm91.c
1 /*
2  * Windfarm PowerMac thermal control. SMU based 1 CPU desktop control loops
3  *
4  * (c) Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
5  *                    <benh@kernel.crashing.org>
6  *
7  * Released under the term of the GNU GPL v2.
8  *
9  * The algorithm used is the PID control algorithm, used the same
10  * way the published Darwin code does, using the same values that
11  * are present in the Darwin 8.2 snapshot property lists (note however
12  * that none of the code has been re-used, it's a complete re-implementation
13  *
14  * The various control loops found in Darwin config file are:
15  *
16  * PowerMac9,1
17  * ===========
18  *
19  * Has 3 control loops: CPU fans is similar to PowerMac8,1 (though it doesn't
20  * try to play with other control loops fans). Drive bay is rather basic PID
21  * with one sensor and one fan. Slots area is a bit different as the Darwin
22  * driver is supposed to be capable of working in a special "AGP" mode which
23  * involves the presence of an AGP sensor and an AGP fan (possibly on the
24  * AGP card itself). I can't deal with that special mode as I don't have
25  * access to those additional sensor/fans for now (though ultimately, it would
26  * be possible to add sensor objects for them) so I'm only implementing the
27  * basic PCI slot control loop
28  */
29
30 #include <linux/types.h>
31 #include <linux/errno.h>
32 #include <linux/kernel.h>
33 #include <linux/delay.h>
34 #include <linux/slab.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/wait.h>
38 #include <linux/kmod.h>
39 #include <linux/device.h>
40 #include <linux/platform_device.h>
41 #include <asm/prom.h>
42 #include <asm/machdep.h>
43 #include <asm/io.h>
44 #include <asm/system.h>
45 #include <asm/sections.h>
46 #include <asm/smu.h>
47
48 #include "windfarm.h"
49 #include "windfarm_pid.h"
50
51 #define VERSION "0.4"
52
53 #undef DEBUG
54
55 #ifdef DEBUG
56 #define DBG(args...)    printk(args)
57 #else
58 #define DBG(args...)    do { } while(0)
59 #endif
60
61 /* define this to force CPU overtemp to 74 degree, useful for testing
62  * the overtemp code
63  */
64 #undef HACKED_OVERTEMP
65
66 /* Controls & sensors */
67 static struct wf_sensor *sensor_cpu_power;
68 static struct wf_sensor *sensor_cpu_temp;
69 static struct wf_sensor *sensor_hd_temp;
70 static struct wf_sensor *sensor_slots_power;
71 static struct wf_control *fan_cpu_main;
72 static struct wf_control *fan_cpu_second;
73 static struct wf_control *fan_cpu_third;
74 static struct wf_control *fan_hd;
75 static struct wf_control *fan_slots;
76 static struct wf_control *cpufreq_clamp;
77
78 /* Set to kick the control loop into life */
79 static int wf_smu_all_controls_ok, wf_smu_all_sensors_ok, wf_smu_started;
80
81 /* Failure handling.. could be nicer */
82 #define FAILURE_FAN             0x01
83 #define FAILURE_SENSOR          0x02
84 #define FAILURE_OVERTEMP        0x04
85
86 static unsigned int wf_smu_failure_state;
87 static int wf_smu_readjust, wf_smu_skipping;
88
89 /*
90  * ****** CPU Fans Control Loop ******
91  *
92  */
93
94
95 #define WF_SMU_CPU_FANS_INTERVAL        1
96 #define WF_SMU_CPU_FANS_MAX_HISTORY     16
97
98 /* State data used by the cpu fans control loop
99  */
100 struct wf_smu_cpu_fans_state {
101         int                     ticks;
102         s32                     cpu_setpoint;
103         struct wf_cpu_pid_state pid;
104 };
105
106 static struct wf_smu_cpu_fans_state *wf_smu_cpu_fans;
107
108
109
110 /*
111  * ****** Drive Fan Control Loop ******
112  *
113  */
114
115 struct wf_smu_drive_fans_state {
116         int                     ticks;
117         s32                     setpoint;
118         struct wf_pid_state     pid;
119 };
120
121 static struct wf_smu_drive_fans_state *wf_smu_drive_fans;
122
123 /*
124  * ****** Slots Fan Control Loop ******
125  *
126  */
127
128 struct wf_smu_slots_fans_state {
129         int                     ticks;
130         s32                     setpoint;
131         struct wf_pid_state     pid;
132 };
133
134 static struct wf_smu_slots_fans_state *wf_smu_slots_fans;
135
136 /*
137  * ***** Implementation *****
138  *
139  */
140
141
142 static void wf_smu_create_cpu_fans(void)
143 {
144         struct wf_cpu_pid_param pid_param;
145         const struct smu_sdbp_header *hdr;
146         struct smu_sdbp_cpupiddata *piddata;
147         struct smu_sdbp_fvt *fvt;
148         s32 tmax, tdelta, maxpow, powadj;
149
150         /* First, locate the PID params in SMU SBD */
151         hdr = smu_get_sdb_partition(SMU_SDB_CPUPIDDATA_ID, NULL);
152         if (hdr == 0) {
153                 printk(KERN_WARNING "windfarm: CPU PID fan config not found "
154                        "max fan speed\n");
155                 goto fail;
156         }
157         piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
158
159         /* Get the FVT params for operating point 0 (the only supported one
160          * for now) in order to get tmax
161          */
162         hdr = smu_get_sdb_partition(SMU_SDB_FVT_ID, NULL);
163         if (hdr) {
164                 fvt = (struct smu_sdbp_fvt *)&hdr[1];
165                 tmax = ((s32)fvt->maxtemp) << 16;
166         } else
167                 tmax = 0x5e0000; /* 94 degree default */
168
169         /* Alloc & initialize state */
170         wf_smu_cpu_fans = kmalloc(sizeof(struct wf_smu_cpu_fans_state),
171                                   GFP_KERNEL);
172         if (wf_smu_cpu_fans == NULL)
173                 goto fail;
174         wf_smu_cpu_fans->ticks = 1;
175
176         /* Fill PID params */
177         pid_param.interval = WF_SMU_CPU_FANS_INTERVAL;
178         pid_param.history_len = piddata->history_len;
179         if (pid_param.history_len > WF_CPU_PID_MAX_HISTORY) {
180                 printk(KERN_WARNING "windfarm: History size overflow on "
181                        "CPU control loop (%d)\n", piddata->history_len);
182                 pid_param.history_len = WF_CPU_PID_MAX_HISTORY;
183         }
184         pid_param.gd = piddata->gd;
185         pid_param.gp = piddata->gp;
186         pid_param.gr = piddata->gr / pid_param.history_len;
187
188         tdelta = ((s32)piddata->target_temp_delta) << 16;
189         maxpow = ((s32)piddata->max_power) << 16;
190         powadj = ((s32)piddata->power_adj) << 16;
191
192         pid_param.tmax = tmax;
193         pid_param.ttarget = tmax - tdelta;
194         pid_param.pmaxadj = maxpow - powadj;
195
196         pid_param.min = fan_cpu_main->ops->get_min(fan_cpu_main);
197         pid_param.max = fan_cpu_main->ops->get_max(fan_cpu_main);
198
199         wf_cpu_pid_init(&wf_smu_cpu_fans->pid, &pid_param);
200
201         DBG("wf: CPU Fan control initialized.\n");
202         DBG("    ttarged=%d.%03d, tmax=%d.%03d, min=%d RPM, max=%d RPM\n",
203             FIX32TOPRINT(pid_param.ttarget), FIX32TOPRINT(pid_param.tmax),
204             pid_param.min, pid_param.max);
205
206         return;
207
208  fail:
209         printk(KERN_WARNING "windfarm: CPU fan config not found\n"
210                "for this machine model, max fan speed\n");
211
212         if (cpufreq_clamp)
213                 wf_control_set_max(cpufreq_clamp);
214         if (fan_cpu_main)
215                 wf_control_set_max(fan_cpu_main);
216 }
217
218 static void wf_smu_cpu_fans_tick(struct wf_smu_cpu_fans_state *st)
219 {
220         s32 new_setpoint, temp, power;
221         int rc;
222
223         if (--st->ticks != 0) {
224                 if (wf_smu_readjust)
225                         goto readjust;
226                 return;
227         }
228         st->ticks = WF_SMU_CPU_FANS_INTERVAL;
229
230         rc = sensor_cpu_temp->ops->get_value(sensor_cpu_temp, &temp);
231         if (rc) {
232                 printk(KERN_WARNING "windfarm: CPU temp sensor error %d\n",
233                        rc);
234                 wf_smu_failure_state |= FAILURE_SENSOR;
235                 return;
236         }
237
238         rc = sensor_cpu_power->ops->get_value(sensor_cpu_power, &power);
239         if (rc) {
240                 printk(KERN_WARNING "windfarm: CPU power sensor error %d\n",
241                        rc);
242                 wf_smu_failure_state |= FAILURE_SENSOR;
243                 return;
244         }
245
246         DBG("wf_smu: CPU Fans tick ! CPU temp: %d.%03d, power: %d.%03d\n",
247             FIX32TOPRINT(temp), FIX32TOPRINT(power));
248
249 #ifdef HACKED_OVERTEMP
250         if (temp > 0x4a0000)
251                 wf_smu_failure_state |= FAILURE_OVERTEMP;
252 #else
253         if (temp > st->pid.param.tmax)
254                 wf_smu_failure_state |= FAILURE_OVERTEMP;
255 #endif
256         new_setpoint = wf_cpu_pid_run(&st->pid, power, temp);
257
258         DBG("wf_smu: new_setpoint: %d RPM\n", (int)new_setpoint);
259
260         if (st->cpu_setpoint == new_setpoint)
261                 return;
262         st->cpu_setpoint = new_setpoint;
263  readjust:
264         if (fan_cpu_main && wf_smu_failure_state == 0) {
265                 rc = fan_cpu_main->ops->set_value(fan_cpu_main,
266                                                   st->cpu_setpoint);
267                 if (rc) {
268                         printk(KERN_WARNING "windfarm: CPU main fan"
269                                " error %d\n", rc);
270                         wf_smu_failure_state |= FAILURE_FAN;
271                 }
272         }
273         if (fan_cpu_second && wf_smu_failure_state == 0) {
274                 rc = fan_cpu_second->ops->set_value(fan_cpu_second,
275                                                     st->cpu_setpoint);
276                 if (rc) {
277                         printk(KERN_WARNING "windfarm: CPU second fan"
278                                " error %d\n", rc);
279                         wf_smu_failure_state |= FAILURE_FAN;
280                 }
281         }
282         if (fan_cpu_third && wf_smu_failure_state == 0) {
283                 rc = fan_cpu_main->ops->set_value(fan_cpu_third,
284                                                   st->cpu_setpoint);
285                 if (rc) {
286                         printk(KERN_WARNING "windfarm: CPU third fan"
287                                " error %d\n", rc);
288                         wf_smu_failure_state |= FAILURE_FAN;
289                 }
290         }
291 }
292
293 static void wf_smu_create_drive_fans(void)
294 {
295         struct wf_pid_param param = {
296                 .interval       = 5,
297                 .history_len    = 2,
298                 .gd             = 0x01e00000,
299                 .gp             = 0x00500000,
300                 .gr             = 0x00000000,
301                 .itarget        = 0x00200000,
302         };
303
304         /* Alloc & initialize state */
305         wf_smu_drive_fans = kmalloc(sizeof(struct wf_smu_drive_fans_state),
306                                         GFP_KERNEL);
307         if (wf_smu_drive_fans == NULL) {
308                 printk(KERN_WARNING "windfarm: Memory allocation error"
309                        " max fan speed\n");
310                 goto fail;
311         }
312         wf_smu_drive_fans->ticks = 1;
313
314         /* Fill PID params */
315         param.additive = (fan_hd->type == WF_CONTROL_RPM_FAN);
316         param.min = fan_hd->ops->get_min(fan_hd);
317         param.max = fan_hd->ops->get_max(fan_hd);
318         wf_pid_init(&wf_smu_drive_fans->pid, &param);
319
320         DBG("wf: Drive Fan control initialized.\n");
321         DBG("    itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
322             FIX32TOPRINT(param.itarget), param.min, param.max);
323         return;
324
325  fail:
326         if (fan_hd)
327                 wf_control_set_max(fan_hd);
328 }
329
330 static void wf_smu_drive_fans_tick(struct wf_smu_drive_fans_state *st)
331 {
332         s32 new_setpoint, temp;
333         int rc;
334
335         if (--st->ticks != 0) {
336                 if (wf_smu_readjust)
337                         goto readjust;
338                 return;
339         }
340         st->ticks = st->pid.param.interval;
341
342         rc = sensor_hd_temp->ops->get_value(sensor_hd_temp, &temp);
343         if (rc) {
344                 printk(KERN_WARNING "windfarm: HD temp sensor error %d\n",
345                        rc);
346                 wf_smu_failure_state |= FAILURE_SENSOR;
347                 return;
348         }
349
350         DBG("wf_smu: Drive Fans tick ! HD temp: %d.%03d\n",
351             FIX32TOPRINT(temp));
352
353         if (temp > (st->pid.param.itarget + 0x50000))
354                 wf_smu_failure_state |= FAILURE_OVERTEMP;
355
356         new_setpoint = wf_pid_run(&st->pid, temp);
357
358         DBG("wf_smu: new_setpoint: %d\n", (int)new_setpoint);
359
360         if (st->setpoint == new_setpoint)
361                 return;
362         st->setpoint = new_setpoint;
363  readjust:
364         if (fan_hd && wf_smu_failure_state == 0) {
365                 rc = fan_hd->ops->set_value(fan_hd, st->setpoint);
366                 if (rc) {
367                         printk(KERN_WARNING "windfarm: HD fan error %d\n",
368                                rc);
369                         wf_smu_failure_state |= FAILURE_FAN;
370                 }
371         }
372 }
373
374 static void wf_smu_create_slots_fans(void)
375 {
376         struct wf_pid_param param = {
377                 .interval       = 1,
378                 .history_len    = 8,
379                 .gd             = 0x00000000,
380                 .gp             = 0x00000000,
381                 .gr             = 0x00020000,
382                 .itarget        = 0x00000000
383         };
384
385         /* Alloc & initialize state */
386         wf_smu_slots_fans = kmalloc(sizeof(struct wf_smu_slots_fans_state),
387                                         GFP_KERNEL);
388         if (wf_smu_slots_fans == NULL) {
389                 printk(KERN_WARNING "windfarm: Memory allocation error"
390                        " max fan speed\n");
391                 goto fail;
392         }
393         wf_smu_slots_fans->ticks = 1;
394
395         /* Fill PID params */
396         param.additive = (fan_slots->type == WF_CONTROL_RPM_FAN);
397         param.min = fan_slots->ops->get_min(fan_slots);
398         param.max = fan_slots->ops->get_max(fan_slots);
399         wf_pid_init(&wf_smu_slots_fans->pid, &param);
400
401         DBG("wf: Slots Fan control initialized.\n");
402         DBG("    itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
403             FIX32TOPRINT(param.itarget), param.min, param.max);
404         return;
405
406  fail:
407         if (fan_slots)
408                 wf_control_set_max(fan_slots);
409 }
410
411 static void wf_smu_slots_fans_tick(struct wf_smu_slots_fans_state *st)
412 {
413         s32 new_setpoint, power;
414         int rc;
415
416         if (--st->ticks != 0) {
417                 if (wf_smu_readjust)
418                         goto readjust;
419                 return;
420         }
421         st->ticks = st->pid.param.interval;
422
423         rc = sensor_slots_power->ops->get_value(sensor_slots_power, &power);
424         if (rc) {
425                 printk(KERN_WARNING "windfarm: Slots power sensor error %d\n",
426                        rc);
427                 wf_smu_failure_state |= FAILURE_SENSOR;
428                 return;
429         }
430
431         DBG("wf_smu: Slots Fans tick ! Slots power: %d.%03d\n",
432             FIX32TOPRINT(power));
433
434 #if 0 /* Check what makes a good overtemp condition */
435         if (power > (st->pid.param.itarget + 0x50000))
436                 wf_smu_failure_state |= FAILURE_OVERTEMP;
437 #endif
438
439         new_setpoint = wf_pid_run(&st->pid, power);
440
441         DBG("wf_smu: new_setpoint: %d\n", (int)new_setpoint);
442
443         if (st->setpoint == new_setpoint)
444                 return;
445         st->setpoint = new_setpoint;
446  readjust:
447         if (fan_slots && wf_smu_failure_state == 0) {
448                 rc = fan_slots->ops->set_value(fan_slots, st->setpoint);
449                 if (rc) {
450                         printk(KERN_WARNING "windfarm: Slots fan error %d\n",
451                                rc);
452                         wf_smu_failure_state |= FAILURE_FAN;
453                 }
454         }
455 }
456
457
458 /*
459  * ****** Setup / Init / Misc ... ******
460  *
461  */
462
463 static void wf_smu_tick(void)
464 {
465         unsigned int last_failure = wf_smu_failure_state;
466         unsigned int new_failure;
467
468         if (!wf_smu_started) {
469                 DBG("wf: creating control loops !\n");
470                 wf_smu_create_drive_fans();
471                 wf_smu_create_slots_fans();
472                 wf_smu_create_cpu_fans();
473                 wf_smu_started = 1;
474         }
475
476         /* Skipping ticks */
477         if (wf_smu_skipping && --wf_smu_skipping)
478                 return;
479
480         wf_smu_failure_state = 0;
481         if (wf_smu_drive_fans)
482                 wf_smu_drive_fans_tick(wf_smu_drive_fans);
483         if (wf_smu_slots_fans)
484                 wf_smu_slots_fans_tick(wf_smu_slots_fans);
485         if (wf_smu_cpu_fans)
486                 wf_smu_cpu_fans_tick(wf_smu_cpu_fans);
487
488         wf_smu_readjust = 0;
489         new_failure = wf_smu_failure_state & ~last_failure;
490
491         /* If entering failure mode, clamp cpufreq and ramp all
492          * fans to full speed.
493          */
494         if (wf_smu_failure_state && !last_failure) {
495                 if (cpufreq_clamp)
496                         wf_control_set_max(cpufreq_clamp);
497                 if (fan_cpu_main)
498                         wf_control_set_max(fan_cpu_main);
499                 if (fan_cpu_second)
500                         wf_control_set_max(fan_cpu_second);
501                 if (fan_cpu_third)
502                         wf_control_set_max(fan_cpu_third);
503                 if (fan_hd)
504                         wf_control_set_max(fan_hd);
505                 if (fan_slots)
506                         wf_control_set_max(fan_slots);
507         }
508
509         /* If leaving failure mode, unclamp cpufreq and readjust
510          * all fans on next iteration
511          */
512         if (!wf_smu_failure_state && last_failure) {
513                 if (cpufreq_clamp)
514                         wf_control_set_min(cpufreq_clamp);
515                 wf_smu_readjust = 1;
516         }
517
518         /* Overtemp condition detected, notify and start skipping a couple
519          * ticks to let the temperature go down
520          */
521         if (new_failure & FAILURE_OVERTEMP) {
522                 wf_set_overtemp();
523                 wf_smu_skipping = 2;
524         }
525
526         /* We only clear the overtemp condition if overtemp is cleared
527          * _and_ no other failure is present. Since a sensor error will
528          * clear the overtemp condition (can't measure temperature) at
529          * the control loop levels, but we don't want to keep it clear
530          * here in this case
531          */
532         if (new_failure == 0 && last_failure & FAILURE_OVERTEMP)
533                 wf_clear_overtemp();
534 }
535
536
537 static void wf_smu_new_control(struct wf_control *ct)
538 {
539         if (wf_smu_all_controls_ok)
540                 return;
541
542         if (fan_cpu_main == NULL && !strcmp(ct->name, "cpu-rear-fan-0")) {
543                 if (wf_get_control(ct) == 0)
544                         fan_cpu_main = ct;
545         }
546
547         if (fan_cpu_second == NULL && !strcmp(ct->name, "cpu-rear-fan-1")) {
548                 if (wf_get_control(ct) == 0)
549                         fan_cpu_second = ct;
550         }
551
552         if (fan_cpu_third == NULL && !strcmp(ct->name, "cpu-front-fan-0")) {
553                 if (wf_get_control(ct) == 0)
554                         fan_cpu_third = ct;
555         }
556
557         if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
558                 if (wf_get_control(ct) == 0)
559                         cpufreq_clamp = ct;
560         }
561
562         if (fan_hd == NULL && !strcmp(ct->name, "drive-bay-fan")) {
563                 if (wf_get_control(ct) == 0)
564                         fan_hd = ct;
565         }
566
567         if (fan_slots == NULL && !strcmp(ct->name, "slots-fan")) {
568                 if (wf_get_control(ct) == 0)
569                         fan_slots = ct;
570         }
571
572         if (fan_cpu_main && (fan_cpu_second || fan_cpu_third) && fan_hd &&
573             fan_slots && cpufreq_clamp)
574                 wf_smu_all_controls_ok = 1;
575 }
576
577 static void wf_smu_new_sensor(struct wf_sensor *sr)
578 {
579         if (wf_smu_all_sensors_ok)
580                 return;
581
582         if (sensor_cpu_power == NULL && !strcmp(sr->name, "cpu-power")) {
583                 if (wf_get_sensor(sr) == 0)
584                         sensor_cpu_power = sr;
585         }
586
587         if (sensor_cpu_temp == NULL && !strcmp(sr->name, "cpu-temp")) {
588                 if (wf_get_sensor(sr) == 0)
589                         sensor_cpu_temp = sr;
590         }
591
592         if (sensor_hd_temp == NULL && !strcmp(sr->name, "hd-temp")) {
593                 if (wf_get_sensor(sr) == 0)
594                         sensor_hd_temp = sr;
595         }
596
597         if (sensor_slots_power == NULL && !strcmp(sr->name, "slots-power")) {
598                 if (wf_get_sensor(sr) == 0)
599                         sensor_slots_power = sr;
600         }
601
602         if (sensor_cpu_power && sensor_cpu_temp &&
603             sensor_hd_temp && sensor_slots_power)
604                 wf_smu_all_sensors_ok = 1;
605 }
606
607
608 static int wf_smu_notify(struct notifier_block *self,
609                                unsigned long event, void *data)
610 {
611         switch(event) {
612         case WF_EVENT_NEW_CONTROL:
613                 DBG("wf: new control %s detected\n",
614                     ((struct wf_control *)data)->name);
615                 wf_smu_new_control(data);
616                 wf_smu_readjust = 1;
617                 break;
618         case WF_EVENT_NEW_SENSOR:
619                 DBG("wf: new sensor %s detected\n",
620                     ((struct wf_sensor *)data)->name);
621                 wf_smu_new_sensor(data);
622                 break;
623         case WF_EVENT_TICK:
624                 if (wf_smu_all_controls_ok && wf_smu_all_sensors_ok)
625                         wf_smu_tick();
626         }
627
628         return 0;
629 }
630
631 static struct notifier_block wf_smu_events = {
632         .notifier_call  = wf_smu_notify,
633 };
634
635 static int wf_init_pm(void)
636 {
637         printk(KERN_INFO "windfarm: Initializing for Desktop G5 model\n");
638
639         return 0;
640 }
641
642 static int wf_smu_probe(struct platform_device *ddev)
643 {
644         wf_register_client(&wf_smu_events);
645
646         return 0;
647 }
648
649 static int __devexit wf_smu_remove(struct platform_device *ddev)
650 {
651         wf_unregister_client(&wf_smu_events);
652
653         /* XXX We don't have yet a guarantee that our callback isn't
654          * in progress when returning from wf_unregister_client, so
655          * we add an arbitrary delay. I'll have to fix that in the core
656          */
657         msleep(1000);
658
659         /* Release all sensors */
660         /* One more crappy race: I don't think we have any guarantee here
661          * that the attribute callback won't race with the sensor beeing
662          * disposed of, and I'm not 100% certain what best way to deal
663          * with that except by adding locks all over... I'll do that
664          * eventually but heh, who ever rmmod this module anyway ?
665          */
666         if (sensor_cpu_power)
667                 wf_put_sensor(sensor_cpu_power);
668         if (sensor_cpu_temp)
669                 wf_put_sensor(sensor_cpu_temp);
670         if (sensor_hd_temp)
671                 wf_put_sensor(sensor_hd_temp);
672         if (sensor_slots_power)
673                 wf_put_sensor(sensor_slots_power);
674
675         /* Release all controls */
676         if (fan_cpu_main)
677                 wf_put_control(fan_cpu_main);
678         if (fan_cpu_second)
679                 wf_put_control(fan_cpu_second);
680         if (fan_cpu_third)
681                 wf_put_control(fan_cpu_third);
682         if (fan_hd)
683                 wf_put_control(fan_hd);
684         if (fan_slots)
685                 wf_put_control(fan_slots);
686         if (cpufreq_clamp)
687                 wf_put_control(cpufreq_clamp);
688
689         /* Destroy control loops state structures */
690         if (wf_smu_slots_fans)
691                 kfree(wf_smu_cpu_fans);
692         if (wf_smu_drive_fans)
693                 kfree(wf_smu_cpu_fans);
694         if (wf_smu_cpu_fans)
695                 kfree(wf_smu_cpu_fans);
696
697         return 0;
698 }
699
700 static struct platform_driver wf_smu_driver = {
701         .probe = wf_smu_probe,
702         .remove = __devexit_p(wf_smu_remove),
703         .driver = {
704                 .name = "windfarm",
705                 .owner  = THIS_MODULE,
706         },
707 };
708
709
710 static int __init wf_smu_init(void)
711 {
712         int rc = -ENODEV;
713
714         if (machine_is_compatible("PowerMac9,1"))
715                 rc = wf_init_pm();
716
717         if (rc == 0) {
718 #ifdef MODULE
719                 request_module("windfarm_smu_controls");
720                 request_module("windfarm_smu_sensors");
721                 request_module("windfarm_lm75_sensor");
722                 request_module("windfarm_cpufreq_clamp");
723
724 #endif /* MODULE */
725                 platform_driver_register(&wf_smu_driver);
726         }
727
728         return rc;
729 }
730
731 static void __exit wf_smu_exit(void)
732 {
733
734         platform_driver_unregister(&wf_smu_driver);
735 }
736
737
738 module_init(wf_smu_init);
739 module_exit(wf_smu_exit);
740
741 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
742 MODULE_DESCRIPTION("Thermal control logic for PowerMac9,1");
743 MODULE_LICENSE("GPL");
744
745 MODULE_ALIAS("platform:windfarm");