2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
36 * The polling frequency of this governor depends on the capability of
37 * the processor. Default polling frequency is 1000 times the transition
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
43 * All times here are in uS.
45 #define MIN_SAMPLING_RATE_RATIO (2)
47 static unsigned int min_sampling_rate;
49 #define LATENCY_MULTIPLIER (1000)
50 #define MIN_LATENCY_MULTIPLIER (100)
51 #define DEF_SAMPLING_DOWN_FACTOR (1)
52 #define MAX_SAMPLING_DOWN_FACTOR (10)
53 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
55 static void do_dbs_timer(struct work_struct *work);
57 struct cpu_dbs_info_s {
58 cputime64_t prev_cpu_idle;
59 cputime64_t prev_cpu_wall;
60 cputime64_t prev_cpu_nice;
61 struct cpufreq_policy *cur_policy;
62 struct delayed_work work;
63 unsigned int down_skip;
64 unsigned int requested_freq;
66 unsigned int enable:1;
68 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
70 static unsigned int dbs_enable; /* number of CPUs using this policy */
73 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
74 * lock and dbs_mutex. cpu_hotplug lock should always be held before
75 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
76 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
77 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
78 * is recursive for the same process. -Venki
79 * DEADLOCK ALERT! (2) : do_dbs_timer() must not take the dbs_mutex, because it
80 * would deadlock with cancel_delayed_work_sync(), which is needed for proper
81 * raceless workqueue teardown.
83 static DEFINE_MUTEX(dbs_mutex);
85 static struct workqueue_struct *kconservative_wq;
87 static struct dbs_tuners {
88 unsigned int sampling_rate;
89 unsigned int sampling_down_factor;
90 unsigned int up_threshold;
91 unsigned int down_threshold;
92 unsigned int ignore_nice;
93 unsigned int freq_step;
95 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
96 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
97 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
102 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
105 cputime64_t idle_time;
106 cputime64_t cur_wall_time;
107 cputime64_t busy_time;
109 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
110 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
111 kstat_cpu(cpu).cpustat.system);
113 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
114 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
115 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
116 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
118 idle_time = cputime64_sub(cur_wall_time, busy_time);
120 *wall = cur_wall_time;
125 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
127 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
129 if (idle_time == -1ULL)
130 return get_cpu_idle_time_jiffy(cpu, wall);
135 /* keep track of frequency transitions */
137 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
140 struct cpufreq_freqs *freq = data;
141 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
144 struct cpufreq_policy *policy;
146 if (!this_dbs_info->enable)
149 policy = this_dbs_info->cur_policy;
152 * we only care if our internally tracked freq moves outside
153 * the 'valid' ranges of freqency available to us otherwise
154 * we do not change it
156 if (this_dbs_info->requested_freq > policy->max
157 || this_dbs_info->requested_freq < policy->min)
158 this_dbs_info->requested_freq = freq->new;
163 static struct notifier_block dbs_cpufreq_notifier_block = {
164 .notifier_call = dbs_cpufreq_notifier
167 /************************** sysfs interface ************************/
168 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
170 printk_once(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
171 "sysfs file is deprecated - used by: %s\n", current->comm);
172 return sprintf(buf, "%u\n", -1U);
175 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
177 return sprintf(buf, "%u\n", min_sampling_rate);
180 #define define_one_ro(_name) \
181 static struct freq_attr _name = \
182 __ATTR(_name, 0444, show_##_name, NULL)
184 define_one_ro(sampling_rate_max);
185 define_one_ro(sampling_rate_min);
187 /* cpufreq_conservative Governor Tunables */
188 #define show_one(file_name, object) \
189 static ssize_t show_##file_name \
190 (struct cpufreq_policy *unused, char *buf) \
192 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
194 show_one(sampling_rate, sampling_rate);
195 show_one(sampling_down_factor, sampling_down_factor);
196 show_one(up_threshold, up_threshold);
197 show_one(down_threshold, down_threshold);
198 show_one(ignore_nice_load, ignore_nice);
199 show_one(freq_step, freq_step);
201 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
202 const char *buf, size_t count)
206 ret = sscanf(buf, "%u", &input);
208 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
211 mutex_lock(&dbs_mutex);
212 dbs_tuners_ins.sampling_down_factor = input;
213 mutex_unlock(&dbs_mutex);
218 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
219 const char *buf, size_t count)
223 ret = sscanf(buf, "%u", &input);
228 mutex_lock(&dbs_mutex);
229 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
230 mutex_unlock(&dbs_mutex);
235 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
236 const char *buf, size_t count)
240 ret = sscanf(buf, "%u", &input);
242 mutex_lock(&dbs_mutex);
243 if (ret != 1 || input > 100 ||
244 input <= dbs_tuners_ins.down_threshold) {
245 mutex_unlock(&dbs_mutex);
249 dbs_tuners_ins.up_threshold = input;
250 mutex_unlock(&dbs_mutex);
255 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
256 const char *buf, size_t count)
260 ret = sscanf(buf, "%u", &input);
262 mutex_lock(&dbs_mutex);
263 /* cannot be lower than 11 otherwise freq will not fall */
264 if (ret != 1 || input < 11 || input > 100 ||
265 input >= dbs_tuners_ins.up_threshold) {
266 mutex_unlock(&dbs_mutex);
270 dbs_tuners_ins.down_threshold = input;
271 mutex_unlock(&dbs_mutex);
276 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
277 const char *buf, size_t count)
284 ret = sscanf(buf, "%u", &input);
291 mutex_lock(&dbs_mutex);
292 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
293 mutex_unlock(&dbs_mutex);
296 dbs_tuners_ins.ignore_nice = input;
298 /* we need to re-evaluate prev_cpu_idle */
299 for_each_online_cpu(j) {
300 struct cpu_dbs_info_s *dbs_info;
301 dbs_info = &per_cpu(cpu_dbs_info, j);
302 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
303 &dbs_info->prev_cpu_wall);
304 if (dbs_tuners_ins.ignore_nice)
305 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
307 mutex_unlock(&dbs_mutex);
312 static ssize_t store_freq_step(struct cpufreq_policy *policy,
313 const char *buf, size_t count)
317 ret = sscanf(buf, "%u", &input);
325 /* no need to test here if freq_step is zero as the user might actually
326 * want this, they would be crazy though :) */
327 mutex_lock(&dbs_mutex);
328 dbs_tuners_ins.freq_step = input;
329 mutex_unlock(&dbs_mutex);
334 #define define_one_rw(_name) \
335 static struct freq_attr _name = \
336 __ATTR(_name, 0644, show_##_name, store_##_name)
338 define_one_rw(sampling_rate);
339 define_one_rw(sampling_down_factor);
340 define_one_rw(up_threshold);
341 define_one_rw(down_threshold);
342 define_one_rw(ignore_nice_load);
343 define_one_rw(freq_step);
345 static struct attribute *dbs_attributes[] = {
346 &sampling_rate_max.attr,
347 &sampling_rate_min.attr,
349 &sampling_down_factor.attr,
351 &down_threshold.attr,
352 &ignore_nice_load.attr,
357 static struct attribute_group dbs_attr_group = {
358 .attrs = dbs_attributes,
359 .name = "conservative",
362 /************************** sysfs end ************************/
364 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
366 unsigned int load = 0;
367 unsigned int freq_target;
369 struct cpufreq_policy *policy;
372 policy = this_dbs_info->cur_policy;
375 * Every sampling_rate, we check, if current idle time is less
376 * than 20% (default), then we try to increase frequency
377 * Every sampling_rate*sampling_down_factor, we check, if current
378 * idle time is more than 80%, then we try to decrease frequency
380 * Any frequency increase takes it to the maximum frequency.
381 * Frequency reduction happens at minimum steps of
382 * 5% (default) of maximum frequency
385 /* Get Absolute Load */
386 for_each_cpu(j, policy->cpus) {
387 struct cpu_dbs_info_s *j_dbs_info;
388 cputime64_t cur_wall_time, cur_idle_time;
389 unsigned int idle_time, wall_time;
391 j_dbs_info = &per_cpu(cpu_dbs_info, j);
393 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
395 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
396 j_dbs_info->prev_cpu_wall);
397 j_dbs_info->prev_cpu_wall = cur_wall_time;
399 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
400 j_dbs_info->prev_cpu_idle);
401 j_dbs_info->prev_cpu_idle = cur_idle_time;
403 if (dbs_tuners_ins.ignore_nice) {
404 cputime64_t cur_nice;
405 unsigned long cur_nice_jiffies;
407 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
408 j_dbs_info->prev_cpu_nice);
410 * Assumption: nice time between sampling periods will
411 * be less than 2^32 jiffies for 32 bit sys
413 cur_nice_jiffies = (unsigned long)
414 cputime64_to_jiffies64(cur_nice);
416 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
417 idle_time += jiffies_to_usecs(cur_nice_jiffies);
420 if (unlikely(!wall_time || wall_time < idle_time))
423 load = 100 * (wall_time - idle_time) / wall_time;
427 * break out if we 'cannot' reduce the speed as the user might
428 * want freq_step to be zero
430 if (dbs_tuners_ins.freq_step == 0)
433 /* Check for frequency increase */
434 if (load > dbs_tuners_ins.up_threshold) {
435 this_dbs_info->down_skip = 0;
437 /* if we are already at full speed then break out early */
438 if (this_dbs_info->requested_freq == policy->max)
441 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
443 /* max freq cannot be less than 100. But who knows.... */
444 if (unlikely(freq_target == 0))
447 this_dbs_info->requested_freq += freq_target;
448 if (this_dbs_info->requested_freq > policy->max)
449 this_dbs_info->requested_freq = policy->max;
451 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
457 * The optimal frequency is the frequency that is the lowest that
458 * can support the current CPU usage without triggering the up
459 * policy. To be safe, we focus 10 points under the threshold.
461 if (load < (dbs_tuners_ins.down_threshold - 10)) {
462 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
464 this_dbs_info->requested_freq -= freq_target;
465 if (this_dbs_info->requested_freq < policy->min)
466 this_dbs_info->requested_freq = policy->min;
469 * if we cannot reduce the frequency anymore, break out early
471 if (policy->cur == policy->min)
474 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
480 static void do_dbs_timer(struct work_struct *work)
482 struct cpu_dbs_info_s *dbs_info =
483 container_of(work, struct cpu_dbs_info_s, work.work);
484 unsigned int cpu = dbs_info->cpu;
486 /* We want all CPUs to do sampling nearly on same jiffy */
487 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
489 delay -= jiffies % delay;
491 if (lock_policy_rwsem_write(cpu) < 0)
494 if (!dbs_info->enable) {
495 unlock_policy_rwsem_write(cpu);
499 dbs_check_cpu(dbs_info);
501 queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
502 unlock_policy_rwsem_write(cpu);
505 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
507 /* We want all CPUs to do sampling nearly on same jiffy */
508 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
509 delay -= jiffies % delay;
511 dbs_info->enable = 1;
512 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
513 queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
517 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
519 dbs_info->enable = 0;
520 cancel_delayed_work_sync(&dbs_info->work);
523 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
526 unsigned int cpu = policy->cpu;
527 struct cpu_dbs_info_s *this_dbs_info;
531 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
534 case CPUFREQ_GOV_START:
535 if ((!cpu_online(cpu)) || (!policy->cur))
538 if (this_dbs_info->enable) /* Already enabled */
541 mutex_lock(&dbs_mutex);
543 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
545 mutex_unlock(&dbs_mutex);
549 for_each_cpu(j, policy->cpus) {
550 struct cpu_dbs_info_s *j_dbs_info;
551 j_dbs_info = &per_cpu(cpu_dbs_info, j);
552 j_dbs_info->cur_policy = policy;
554 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
555 &j_dbs_info->prev_cpu_wall);
556 if (dbs_tuners_ins.ignore_nice) {
557 j_dbs_info->prev_cpu_nice =
558 kstat_cpu(j).cpustat.nice;
561 this_dbs_info->down_skip = 0;
562 this_dbs_info->requested_freq = policy->cur;
566 * Start the timerschedule work, when this governor
567 * is used for first time
569 if (dbs_enable == 1) {
570 unsigned int latency;
571 /* policy latency is in nS. Convert it to uS first */
572 latency = policy->cpuinfo.transition_latency / 1000;
577 * conservative does not implement micro like ondemand
578 * governor, thus we are bound to jiffes/HZ
581 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
582 /* Bring kernel and HW constraints together */
583 min_sampling_rate = max(min_sampling_rate,
584 MIN_LATENCY_MULTIPLIER * latency);
585 dbs_tuners_ins.sampling_rate =
586 max(min_sampling_rate,
587 latency * LATENCY_MULTIPLIER);
589 cpufreq_register_notifier(
590 &dbs_cpufreq_notifier_block,
591 CPUFREQ_TRANSITION_NOTIFIER);
593 dbs_timer_init(this_dbs_info);
595 mutex_unlock(&dbs_mutex);
599 case CPUFREQ_GOV_STOP:
600 mutex_lock(&dbs_mutex);
601 dbs_timer_exit(this_dbs_info);
602 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
606 * Stop the timerschedule work, when this governor
607 * is used for first time
610 cpufreq_unregister_notifier(
611 &dbs_cpufreq_notifier_block,
612 CPUFREQ_TRANSITION_NOTIFIER);
614 mutex_unlock(&dbs_mutex);
618 case CPUFREQ_GOV_LIMITS:
619 mutex_lock(&dbs_mutex);
620 if (policy->max < this_dbs_info->cur_policy->cur)
621 __cpufreq_driver_target(
622 this_dbs_info->cur_policy,
623 policy->max, CPUFREQ_RELATION_H);
624 else if (policy->min > this_dbs_info->cur_policy->cur)
625 __cpufreq_driver_target(
626 this_dbs_info->cur_policy,
627 policy->min, CPUFREQ_RELATION_L);
628 mutex_unlock(&dbs_mutex);
635 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
638 struct cpufreq_governor cpufreq_gov_conservative = {
639 .name = "conservative",
640 .governor = cpufreq_governor_dbs,
641 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
642 .owner = THIS_MODULE,
645 static int __init cpufreq_gov_dbs_init(void)
649 kconservative_wq = create_workqueue("kconservative");
650 if (!kconservative_wq) {
651 printk(KERN_ERR "Creation of kconservative failed\n");
655 err = cpufreq_register_governor(&cpufreq_gov_conservative);
657 destroy_workqueue(kconservative_wq);
662 static void __exit cpufreq_gov_dbs_exit(void)
664 cpufreq_unregister_governor(&cpufreq_gov_conservative);
665 destroy_workqueue(kconservative_wq);
669 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
670 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
671 "Low Latency Frequency Transition capable processors "
672 "optimised for use in a battery environment");
673 MODULE_LICENSE("GPL");
675 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
676 fs_initcall(cpufreq_gov_dbs_init);
678 module_init(cpufreq_gov_dbs_init);
680 module_exit(cpufreq_gov_dbs_exit);