1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
39 char stat_string[ETH_GSTRING_LEN];
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47 { "rx_packets", E1000_STAT(stats.gprc) },
48 { "tx_packets", E1000_STAT(stats.gptc) },
49 { "rx_bytes", E1000_STAT(stats.gorcl) },
50 { "tx_bytes", E1000_STAT(stats.gotcl) },
51 { "rx_broadcast", E1000_STAT(stats.bprc) },
52 { "tx_broadcast", E1000_STAT(stats.bptc) },
53 { "rx_multicast", E1000_STAT(stats.mprc) },
54 { "tx_multicast", E1000_STAT(stats.mptc) },
55 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58 { "multicast", E1000_STAT(stats.mprc) },
59 { "collisions", E1000_STAT(stats.colc) },
60 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65 { "rx_missed_errors", E1000_STAT(stats.mpc) },
66 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70 { "tx_window_errors", E1000_STAT(stats.latecol) },
71 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72 { "tx_deferred_ok", E1000_STAT(stats.dc) },
73 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76 { "tx_restart_queue", E1000_STAT(restart_queue) },
77 { "rx_long_length_errors", E1000_STAT(stats.roc) },
78 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89 { "rx_header_split", E1000_STAT(rx_hdr_split) },
90 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91 { "tx_smbus", E1000_STAT(stats.mgptc) },
92 { "rx_smbus", E1000_STAT(stats.mgprc) },
93 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94 { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95 { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
98 #define E1000_GLOBAL_STATS_LEN \
99 sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
100 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
101 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
102 "Register test (offline)", "Eeprom test (offline)",
103 "Interrupt test (offline)", "Loopback test (offline)",
104 "Link test (on/offline)"
106 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
108 static int e1000_get_settings(struct net_device *netdev,
109 struct ethtool_cmd *ecmd)
111 struct e1000_adapter *adapter = netdev_priv(netdev);
112 struct e1000_hw *hw = &adapter->hw;
114 if (hw->media_type == e1000_media_type_copper) {
116 ecmd->supported = (SUPPORTED_10baseT_Half |
117 SUPPORTED_10baseT_Full |
118 SUPPORTED_100baseT_Half |
119 SUPPORTED_100baseT_Full |
120 SUPPORTED_1000baseT_Full |
123 if (hw->phy.type == e1000_phy_ife)
124 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125 ecmd->advertising = ADVERTISED_TP;
127 if (hw->mac.autoneg == 1) {
128 ecmd->advertising |= ADVERTISED_Autoneg;
129 /* the e1000 autoneg seems to match ethtool nicely */
130 ecmd->advertising |= hw->phy.autoneg_advertised;
133 ecmd->port = PORT_TP;
134 ecmd->phy_address = hw->phy.addr;
135 ecmd->transceiver = XCVR_INTERNAL;
138 ecmd->supported = (SUPPORTED_1000baseT_Full |
142 ecmd->advertising = (ADVERTISED_1000baseT_Full |
146 ecmd->port = PORT_FIBRE;
147 ecmd->transceiver = XCVR_EXTERNAL;
150 if (er32(STATUS) & E1000_STATUS_LU) {
152 adapter->hw.mac.ops.get_link_up_info(hw, &adapter->link_speed,
153 &adapter->link_duplex);
154 ecmd->speed = adapter->link_speed;
156 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
157 * and HALF_DUPLEX != DUPLEX_HALF */
159 if (adapter->link_duplex == FULL_DUPLEX)
160 ecmd->duplex = DUPLEX_FULL;
162 ecmd->duplex = DUPLEX_HALF;
168 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
169 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
173 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
175 struct e1000_mac_info *mac = &adapter->hw.mac;
179 /* Fiber NICs only allow 1000 gbps Full duplex */
180 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
181 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
182 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
188 case SPEED_10 + DUPLEX_HALF:
189 mac->forced_speed_duplex = ADVERTISE_10_HALF;
191 case SPEED_10 + DUPLEX_FULL:
192 mac->forced_speed_duplex = ADVERTISE_10_FULL;
194 case SPEED_100 + DUPLEX_HALF:
195 mac->forced_speed_duplex = ADVERTISE_100_HALF;
197 case SPEED_100 + DUPLEX_FULL:
198 mac->forced_speed_duplex = ADVERTISE_100_FULL;
200 case SPEED_1000 + DUPLEX_FULL:
202 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
204 case SPEED_1000 + DUPLEX_HALF: /* not supported */
206 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
213 static int e1000_set_settings(struct net_device *netdev,
214 struct ethtool_cmd *ecmd)
216 struct e1000_adapter *adapter = netdev_priv(netdev);
217 struct e1000_hw *hw = &adapter->hw;
219 /* When SoL/IDER sessions are active, autoneg/speed/duplex
220 * cannot be changed */
221 if (e1000_check_reset_block(hw)) {
222 ndev_err(netdev, "Cannot change link "
223 "characteristics when SoL/IDER is active.\n");
227 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
230 if (ecmd->autoneg == AUTONEG_ENABLE) {
232 if (hw->media_type == e1000_media_type_fiber)
233 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
237 hw->phy.autoneg_advertised = ecmd->advertising |
240 ecmd->advertising = hw->phy.autoneg_advertised;
242 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
243 clear_bit(__E1000_RESETTING, &adapter->state);
250 if (netif_running(adapter->netdev)) {
251 e1000e_down(adapter);
254 e1000e_reset(adapter);
257 clear_bit(__E1000_RESETTING, &adapter->state);
261 static void e1000_get_pauseparam(struct net_device *netdev,
262 struct ethtool_pauseparam *pause)
264 struct e1000_adapter *adapter = netdev_priv(netdev);
265 struct e1000_hw *hw = &adapter->hw;
268 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
270 if (hw->mac.fc == e1000_fc_rx_pause) {
272 } else if (hw->mac.fc == e1000_fc_tx_pause) {
274 } else if (hw->mac.fc == e1000_fc_full) {
280 static int e1000_set_pauseparam(struct net_device *netdev,
281 struct ethtool_pauseparam *pause)
283 struct e1000_adapter *adapter = netdev_priv(netdev);
284 struct e1000_hw *hw = &adapter->hw;
287 adapter->fc_autoneg = pause->autoneg;
289 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
292 if (pause->rx_pause && pause->tx_pause)
293 hw->mac.fc = e1000_fc_full;
294 else if (pause->rx_pause && !pause->tx_pause)
295 hw->mac.fc = e1000_fc_rx_pause;
296 else if (!pause->rx_pause && pause->tx_pause)
297 hw->mac.fc = e1000_fc_tx_pause;
298 else if (!pause->rx_pause && !pause->tx_pause)
299 hw->mac.fc = e1000_fc_none;
301 hw->mac.original_fc = hw->mac.fc;
303 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
304 if (netif_running(adapter->netdev)) {
305 e1000e_down(adapter);
308 e1000e_reset(adapter);
311 retval = ((hw->media_type == e1000_media_type_fiber) ?
312 hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
315 clear_bit(__E1000_RESETTING, &adapter->state);
319 static u32 e1000_get_rx_csum(struct net_device *netdev)
321 struct e1000_adapter *adapter = netdev_priv(netdev);
322 return (adapter->flags & FLAG_RX_CSUM_ENABLED);
325 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
327 struct e1000_adapter *adapter = netdev_priv(netdev);
330 adapter->flags |= FLAG_RX_CSUM_ENABLED;
332 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
334 if (netif_running(netdev))
335 e1000e_reinit_locked(adapter);
337 e1000e_reset(adapter);
341 static u32 e1000_get_tx_csum(struct net_device *netdev)
343 return ((netdev->features & NETIF_F_HW_CSUM) != 0);
346 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
349 netdev->features |= NETIF_F_HW_CSUM;
351 netdev->features &= ~NETIF_F_HW_CSUM;
356 static int e1000_set_tso(struct net_device *netdev, u32 data)
358 struct e1000_adapter *adapter = netdev_priv(netdev);
361 netdev->features |= NETIF_F_TSO;
362 netdev->features |= NETIF_F_TSO6;
364 netdev->features &= ~NETIF_F_TSO;
365 netdev->features &= ~NETIF_F_TSO6;
368 ndev_info(netdev, "TSO is %s\n",
369 data ? "Enabled" : "Disabled");
370 adapter->flags |= FLAG_TSO_FORCE;
374 static u32 e1000_get_msglevel(struct net_device *netdev)
376 struct e1000_adapter *adapter = netdev_priv(netdev);
377 return adapter->msg_enable;
380 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
382 struct e1000_adapter *adapter = netdev_priv(netdev);
383 adapter->msg_enable = data;
386 static int e1000_get_regs_len(struct net_device *netdev)
388 #define E1000_REGS_LEN 32 /* overestimate */
389 return E1000_REGS_LEN * sizeof(u32);
392 static void e1000_get_regs(struct net_device *netdev,
393 struct ethtool_regs *regs, void *p)
395 struct e1000_adapter *adapter = netdev_priv(netdev);
396 struct e1000_hw *hw = &adapter->hw;
401 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
403 pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
405 regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
407 regs_buff[0] = er32(CTRL);
408 regs_buff[1] = er32(STATUS);
410 regs_buff[2] = er32(RCTL);
411 regs_buff[3] = er32(RDLEN);
412 regs_buff[4] = er32(RDH);
413 regs_buff[5] = er32(RDT);
414 regs_buff[6] = er32(RDTR);
416 regs_buff[7] = er32(TCTL);
417 regs_buff[8] = er32(TDLEN);
418 regs_buff[9] = er32(TDH);
419 regs_buff[10] = er32(TDT);
420 regs_buff[11] = er32(TIDV);
422 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
423 if (hw->phy.type == e1000_phy_m88) {
424 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
425 regs_buff[13] = (u32)phy_data; /* cable length */
426 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
427 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
428 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
429 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
430 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
431 regs_buff[18] = regs_buff[13]; /* cable polarity */
432 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
433 regs_buff[20] = regs_buff[17]; /* polarity correction */
434 /* phy receive errors */
435 regs_buff[22] = adapter->phy_stats.receive_errors;
436 regs_buff[23] = regs_buff[13]; /* mdix mode */
438 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
439 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
440 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
441 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
444 static int e1000_get_eeprom_len(struct net_device *netdev)
446 struct e1000_adapter *adapter = netdev_priv(netdev);
447 return adapter->hw.nvm.word_size * 2;
450 static int e1000_get_eeprom(struct net_device *netdev,
451 struct ethtool_eeprom *eeprom, u8 *bytes)
453 struct e1000_adapter *adapter = netdev_priv(netdev);
454 struct e1000_hw *hw = &adapter->hw;
461 if (eeprom->len == 0)
464 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
466 first_word = eeprom->offset >> 1;
467 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
469 eeprom_buff = kmalloc(sizeof(u16) *
470 (last_word - first_word + 1), GFP_KERNEL);
474 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
475 ret_val = e1000_read_nvm(hw, first_word,
476 last_word - first_word + 1,
479 for (i = 0; i < last_word - first_word + 1; i++) {
480 ret_val = e1000_read_nvm(hw, first_word + i, 1,
487 /* Device's eeprom is always little-endian, word addressable */
488 for (i = 0; i < last_word - first_word + 1; i++)
489 le16_to_cpus(&eeprom_buff[i]);
491 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
497 static int e1000_set_eeprom(struct net_device *netdev,
498 struct ethtool_eeprom *eeprom, u8 *bytes)
500 struct e1000_adapter *adapter = netdev_priv(netdev);
501 struct e1000_hw *hw = &adapter->hw;
510 if (eeprom->len == 0)
513 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
516 max_len = hw->nvm.word_size * 2;
518 first_word = eeprom->offset >> 1;
519 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
520 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
524 ptr = (void *)eeprom_buff;
526 if (eeprom->offset & 1) {
527 /* need read/modify/write of first changed EEPROM word */
528 /* only the second byte of the word is being modified */
529 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
532 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
533 /* need read/modify/write of last changed EEPROM word */
534 /* only the first byte of the word is being modified */
535 ret_val = e1000_read_nvm(hw, last_word, 1,
536 &eeprom_buff[last_word - first_word]);
538 /* Device's eeprom is always little-endian, word addressable */
539 for (i = 0; i < last_word - first_word + 1; i++)
540 le16_to_cpus(&eeprom_buff[i]);
542 memcpy(ptr, bytes, eeprom->len);
544 for (i = 0; i < last_word - first_word + 1; i++)
545 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
547 ret_val = e1000_write_nvm(hw, first_word,
548 last_word - first_word + 1, eeprom_buff);
550 /* Update the checksum over the first part of the EEPROM if needed
551 * and flush shadow RAM for 82573 controllers */
552 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
553 (hw->mac.type == e1000_82573)))
554 e1000e_update_nvm_checksum(hw);
560 static void e1000_get_drvinfo(struct net_device *netdev,
561 struct ethtool_drvinfo *drvinfo)
563 struct e1000_adapter *adapter = netdev_priv(netdev);
564 char firmware_version[32];
567 strncpy(drvinfo->driver, e1000e_driver_name, 32);
568 strncpy(drvinfo->version, e1000e_driver_version, 32);
570 /* EEPROM image version # is reported as firmware version # for
571 * PCI-E controllers */
572 e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
573 sprintf(firmware_version, "%d.%d-%d",
574 (eeprom_data & 0xF000) >> 12,
575 (eeprom_data & 0x0FF0) >> 4,
576 eeprom_data & 0x000F);
578 strncpy(drvinfo->fw_version, firmware_version, 32);
579 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
580 drvinfo->n_stats = E1000_STATS_LEN;
581 drvinfo->testinfo_len = E1000_TEST_LEN;
582 drvinfo->regdump_len = e1000_get_regs_len(netdev);
583 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
586 static void e1000_get_ringparam(struct net_device *netdev,
587 struct ethtool_ringparam *ring)
589 struct e1000_adapter *adapter = netdev_priv(netdev);
590 struct e1000_ring *tx_ring = adapter->tx_ring;
591 struct e1000_ring *rx_ring = adapter->rx_ring;
593 ring->rx_max_pending = E1000_MAX_RXD;
594 ring->tx_max_pending = E1000_MAX_TXD;
595 ring->rx_mini_max_pending = 0;
596 ring->rx_jumbo_max_pending = 0;
597 ring->rx_pending = rx_ring->count;
598 ring->tx_pending = tx_ring->count;
599 ring->rx_mini_pending = 0;
600 ring->rx_jumbo_pending = 0;
603 static int e1000_set_ringparam(struct net_device *netdev,
604 struct ethtool_ringparam *ring)
606 struct e1000_adapter *adapter = netdev_priv(netdev);
607 struct e1000_ring *tx_ring, *tx_old;
608 struct e1000_ring *rx_ring, *rx_old;
611 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
614 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
617 if (netif_running(adapter->netdev))
618 e1000e_down(adapter);
620 tx_old = adapter->tx_ring;
621 rx_old = adapter->rx_ring;
624 tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
628 rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
632 adapter->tx_ring = tx_ring;
633 adapter->rx_ring = rx_ring;
635 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
636 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
637 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
639 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
640 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
641 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
643 if (netif_running(adapter->netdev)) {
644 /* Try to get new resources before deleting old */
645 err = e1000e_setup_rx_resources(adapter);
648 err = e1000e_setup_tx_resources(adapter);
652 /* save the new, restore the old in order to free it,
653 * then restore the new back again */
654 adapter->rx_ring = rx_old;
655 adapter->tx_ring = tx_old;
656 e1000e_free_rx_resources(adapter);
657 e1000e_free_tx_resources(adapter);
660 adapter->rx_ring = rx_ring;
661 adapter->tx_ring = tx_ring;
662 err = e1000e_up(adapter);
667 clear_bit(__E1000_RESETTING, &adapter->state);
670 e1000e_free_rx_resources(adapter);
672 adapter->rx_ring = rx_old;
673 adapter->tx_ring = tx_old;
680 clear_bit(__E1000_RESETTING, &adapter->state);
684 #define REG_PATTERN_TEST(R, M, W) REG_PATTERN_TEST_ARRAY(R, 0, M, W)
685 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, writeable) \
689 u32 _test[] = {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
690 for (_pat = 0; _pat < ARRAY_SIZE(_test); _pat++) { \
691 E1000_WRITE_REG_ARRAY(hw, reg, offset, \
692 (_test[_pat] & writeable)); \
693 _value = E1000_READ_REG_ARRAY(hw, reg, offset); \
694 if (_value != (_test[_pat] & writeable & mask)) { \
695 ndev_err(netdev, "pattern test reg %04X " \
696 "failed: got 0x%08X expected 0x%08X\n", \
698 value, (_test[_pat] & writeable & mask)); \
705 #define REG_SET_AND_CHECK(R, M, W) \
708 __ew32(hw, R, W & M); \
709 _value = __er32(hw, R); \
710 if ((W & M) != (_value & M)) { \
711 ndev_err(netdev, "set/check reg %04X test failed: " \
712 "got 0x%08X expected 0x%08X\n", R, (_value & M), \
719 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
721 struct e1000_hw *hw = &adapter->hw;
722 struct e1000_mac_info *mac = &adapter->hw.mac;
723 struct net_device *netdev = adapter->netdev;
730 /* The status register is Read Only, so a write should fail.
731 * Some bits that get toggled are ignored.
734 /* there are several bits on newer hardware that are r/w */
737 case e1000_80003es2lan:
750 before = er32(STATUS);
751 value = (er32(STATUS) & toggle);
752 ew32(STATUS, toggle);
753 after = er32(STATUS) & toggle;
754 if (value != after) {
755 ndev_err(netdev, "failed STATUS register test got: "
756 "0x%08X expected: 0x%08X\n", after, value);
760 /* restore previous status */
761 ew32(STATUS, before);
763 if ((mac->type != e1000_ich8lan) &&
764 (mac->type != e1000_ich9lan)) {
765 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
766 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
767 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
768 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
771 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
772 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
773 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
774 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
775 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
776 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
777 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
778 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
779 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
780 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
782 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
784 before = (((mac->type == e1000_ich8lan) ||
785 (mac->type == e1000_ich9lan)) ? 0x06C3B33E : 0x06DFB3FE);
786 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
787 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
789 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x01FFFFFF);
790 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFF000, 0xFFFFFFFF);
791 REG_PATTERN_TEST(E1000_TXCW, 0x0000FFFF, 0x0000FFFF);
792 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFF000, 0xFFFFFFFF);
794 for (i = 0; i < mac->mta_reg_count; i++)
795 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
801 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
808 /* Read and add up the contents of the EEPROM */
809 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
810 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
817 /* If Checksum is not Correct return error else test passed */
818 if ((checksum != (u16) NVM_SUM) && !(*data))
824 static irqreturn_t e1000_test_intr(int irq, void *data)
826 struct net_device *netdev = (struct net_device *) data;
827 struct e1000_adapter *adapter = netdev_priv(netdev);
828 struct e1000_hw *hw = &adapter->hw;
830 adapter->test_icr |= er32(ICR);
835 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
837 struct net_device *netdev = adapter->netdev;
838 struct e1000_hw *hw = &adapter->hw;
841 u32 irq = adapter->pdev->irq;
846 /* NOTE: we don't test MSI interrupts here, yet */
847 /* Hook up test interrupt handler just for this test */
848 if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
851 } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
852 netdev->name, netdev)) {
856 ndev_info(netdev, "testing %s interrupt\n",
857 (shared_int ? "shared" : "unshared"));
859 /* Disable all the interrupts */
860 ew32(IMC, 0xFFFFFFFF);
863 /* Test each interrupt */
864 for (i = 0; i < 10; i++) {
866 if (((adapter->hw.mac.type == e1000_ich8lan) ||
867 (adapter->hw.mac.type == e1000_ich9lan)) && i == 8)
870 /* Interrupt to test */
874 /* Disable the interrupt to be reported in
875 * the cause register and then force the same
876 * interrupt and see if one gets posted. If
877 * an interrupt was posted to the bus, the
880 adapter->test_icr = 0;
885 if (adapter->test_icr & mask) {
891 /* Enable the interrupt to be reported in
892 * the cause register and then force the same
893 * interrupt and see if one gets posted. If
894 * an interrupt was not posted to the bus, the
897 adapter->test_icr = 0;
902 if (!(adapter->test_icr & mask)) {
908 /* Disable the other interrupts to be reported in
909 * the cause register and then force the other
910 * interrupts and see if any get posted. If
911 * an interrupt was posted to the bus, the
914 adapter->test_icr = 0;
915 ew32(IMC, ~mask & 0x00007FFF);
916 ew32(ICS, ~mask & 0x00007FFF);
919 if (adapter->test_icr) {
926 /* Disable all the interrupts */
927 ew32(IMC, 0xFFFFFFFF);
930 /* Unhook test interrupt handler */
931 free_irq(irq, netdev);
936 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
938 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
939 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
940 struct pci_dev *pdev = adapter->pdev;
943 if (tx_ring->desc && tx_ring->buffer_info) {
944 for (i = 0; i < tx_ring->count; i++) {
945 if (tx_ring->buffer_info[i].dma)
946 pci_unmap_single(pdev,
947 tx_ring->buffer_info[i].dma,
948 tx_ring->buffer_info[i].length,
950 if (tx_ring->buffer_info[i].skb)
951 dev_kfree_skb(tx_ring->buffer_info[i].skb);
955 if (rx_ring->desc && rx_ring->buffer_info) {
956 for (i = 0; i < rx_ring->count; i++) {
957 if (rx_ring->buffer_info[i].dma)
958 pci_unmap_single(pdev,
959 rx_ring->buffer_info[i].dma,
960 2048, PCI_DMA_FROMDEVICE);
961 if (rx_ring->buffer_info[i].skb)
962 dev_kfree_skb(rx_ring->buffer_info[i].skb);
967 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
969 tx_ring->desc = NULL;
972 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
974 rx_ring->desc = NULL;
977 kfree(tx_ring->buffer_info);
978 tx_ring->buffer_info = NULL;
979 kfree(rx_ring->buffer_info);
980 rx_ring->buffer_info = NULL;
983 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
985 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
986 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
987 struct pci_dev *pdev = adapter->pdev;
988 struct e1000_hw *hw = &adapter->hw;
994 /* Setup Tx descriptor ring and Tx buffers */
997 tx_ring->count = E1000_DEFAULT_TXD;
999 size = tx_ring->count * sizeof(struct e1000_buffer);
1000 tx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
1001 if (!tx_ring->buffer_info) {
1005 memset(tx_ring->buffer_info, 0, size);
1007 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1008 tx_ring->size = ALIGN(tx_ring->size, 4096);
1009 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1010 &tx_ring->dma, GFP_KERNEL);
1011 if (!tx_ring->desc) {
1015 memset(tx_ring->desc, 0, tx_ring->size);
1016 tx_ring->next_to_use = 0;
1017 tx_ring->next_to_clean = 0;
1020 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1021 ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1023 tx_ring->count * sizeof(struct e1000_tx_desc));
1027 E1000_TCTL_PSP | E1000_TCTL_EN |
1028 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1029 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1031 for (i = 0; i < tx_ring->count; i++) {
1032 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1033 struct sk_buff *skb;
1034 unsigned int skb_size = 1024;
1036 skb = alloc_skb(skb_size, GFP_KERNEL);
1041 skb_put(skb, skb_size);
1042 tx_ring->buffer_info[i].skb = skb;
1043 tx_ring->buffer_info[i].length = skb->len;
1044 tx_ring->buffer_info[i].dma =
1045 pci_map_single(pdev, skb->data, skb->len,
1047 if (pci_dma_mapping_error(tx_ring->buffer_info[i].dma)) {
1051 tx_desc->buffer_addr = cpu_to_le64(
1052 tx_ring->buffer_info[i].dma);
1053 tx_desc->lower.data = cpu_to_le32(skb->len);
1054 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1055 E1000_TXD_CMD_IFCS |
1057 tx_desc->upper.data = 0;
1060 /* Setup Rx descriptor ring and Rx buffers */
1062 if (!rx_ring->count)
1063 rx_ring->count = E1000_DEFAULT_RXD;
1065 size = rx_ring->count * sizeof(struct e1000_buffer);
1066 rx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
1067 if (!rx_ring->buffer_info) {
1071 memset(rx_ring->buffer_info, 0, size);
1073 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1074 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1075 &rx_ring->dma, GFP_KERNEL);
1076 if (!rx_ring->desc) {
1080 memset(rx_ring->desc, 0, rx_ring->size);
1081 rx_ring->next_to_use = 0;
1082 rx_ring->next_to_clean = 0;
1085 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1086 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1087 ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1088 ew32(RDLEN, rx_ring->size);
1091 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1092 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1093 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1096 for (i = 0; i < rx_ring->count; i++) {
1097 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1098 struct sk_buff *skb;
1100 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1105 skb_reserve(skb, NET_IP_ALIGN);
1106 rx_ring->buffer_info[i].skb = skb;
1107 rx_ring->buffer_info[i].dma =
1108 pci_map_single(pdev, skb->data, 2048,
1109 PCI_DMA_FROMDEVICE);
1110 if (pci_dma_mapping_error(rx_ring->buffer_info[i].dma)) {
1114 rx_desc->buffer_addr =
1115 cpu_to_le64(rx_ring->buffer_info[i].dma);
1116 memset(skb->data, 0x00, skb->len);
1122 e1000_free_desc_rings(adapter);
1126 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1128 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1129 e1e_wphy(&adapter->hw, 29, 0x001F);
1130 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1131 e1e_wphy(&adapter->hw, 29, 0x001A);
1132 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1135 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1137 struct e1000_hw *hw = &adapter->hw;
1141 adapter->hw.mac.autoneg = 0;
1143 if (adapter->hw.phy.type == e1000_phy_m88) {
1144 /* Auto-MDI/MDIX Off */
1145 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1146 /* reset to update Auto-MDI/MDIX */
1147 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1149 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1150 } else if (adapter->hw.phy.type == e1000_phy_gg82563)
1151 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1153 ctrl_reg = er32(CTRL);
1155 if (adapter->hw.phy.type == e1000_phy_ife) {
1156 /* force 100, set loopback */
1157 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1159 /* Now set up the MAC to the same speed/duplex as the PHY. */
1160 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1161 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1162 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1163 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1164 E1000_CTRL_FD); /* Force Duplex to FULL */
1166 /* force 1000, set loopback */
1167 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1169 /* Now set up the MAC to the same speed/duplex as the PHY. */
1170 ctrl_reg = er32(CTRL);
1171 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1172 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1173 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1174 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1175 E1000_CTRL_FD); /* Force Duplex to FULL */
1178 if (adapter->hw.media_type == e1000_media_type_copper &&
1179 adapter->hw.phy.type == e1000_phy_m88) {
1180 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1182 /* Set the ILOS bit on the fiber Nic if half duplex link is
1184 stat_reg = er32(STATUS);
1185 if ((stat_reg & E1000_STATUS_FD) == 0)
1186 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1189 ew32(CTRL, ctrl_reg);
1191 /* Disable the receiver on the PHY so when a cable is plugged in, the
1192 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1194 if (adapter->hw.phy.type == e1000_phy_m88)
1195 e1000_phy_disable_receiver(adapter);
1202 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1204 struct e1000_hw *hw = &adapter->hw;
1205 u32 ctrl = er32(CTRL);
1208 /* special requirements for 82571/82572 fiber adapters */
1210 /* jump through hoops to make sure link is up because serdes
1211 * link is hardwired up */
1212 ctrl |= E1000_CTRL_SLU;
1215 /* disable autoneg */
1220 link = (er32(STATUS) & E1000_STATUS_LU);
1223 /* set invert loss of signal */
1225 ctrl |= E1000_CTRL_ILOS;
1229 /* special write to serdes control register to enable SerDes analog
1231 #define E1000_SERDES_LB_ON 0x410
1232 ew32(SCTL, E1000_SERDES_LB_ON);
1238 /* only call this for fiber/serdes connections to es2lan */
1239 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1241 struct e1000_hw *hw = &adapter->hw;
1242 u32 ctrlext = er32(CTRL_EXT);
1243 u32 ctrl = er32(CTRL);
1245 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1246 on mac_type 80003es2lan) */
1247 adapter->tx_fifo_head = ctrlext;
1249 /* clear the serdes mode bits, putting the device into mac loopback */
1250 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1251 ew32(CTRL_EXT, ctrlext);
1253 /* force speed to 1000/FD, link up */
1254 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1255 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1256 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1259 /* set mac loopback */
1261 ctrl |= E1000_RCTL_LBM_MAC;
1264 /* set testing mode parameters (no need to reset later) */
1265 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1266 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1268 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1273 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1275 struct e1000_hw *hw = &adapter->hw;
1278 if (hw->media_type == e1000_media_type_fiber ||
1279 hw->media_type == e1000_media_type_internal_serdes) {
1280 switch (hw->mac.type) {
1281 case e1000_80003es2lan:
1282 return e1000_set_es2lan_mac_loopback(adapter);
1286 return e1000_set_82571_fiber_loopback(adapter);
1290 rctl |= E1000_RCTL_LBM_TCVR;
1294 } else if (hw->media_type == e1000_media_type_copper) {
1295 return e1000_integrated_phy_loopback(adapter);
1301 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1303 struct e1000_hw *hw = &adapter->hw;
1308 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1311 switch (hw->mac.type) {
1312 case e1000_80003es2lan:
1313 if (hw->media_type == e1000_media_type_fiber ||
1314 hw->media_type == e1000_media_type_internal_serdes) {
1315 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1317 adapter->tx_fifo_head);
1318 adapter->tx_fifo_head = 0;
1323 if (hw->media_type == e1000_media_type_fiber ||
1324 hw->media_type == e1000_media_type_internal_serdes) {
1325 #define E1000_SERDES_LB_OFF 0x400
1326 ew32(SCTL, E1000_SERDES_LB_OFF);
1332 hw->mac.autoneg = 1;
1333 if (hw->phy.type == e1000_phy_gg82563)
1334 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1335 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1336 if (phy_reg & MII_CR_LOOPBACK) {
1337 phy_reg &= ~MII_CR_LOOPBACK;
1338 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1339 e1000e_commit_phy(hw);
1345 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1346 unsigned int frame_size)
1348 memset(skb->data, 0xFF, frame_size);
1350 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1351 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1352 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1355 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1356 unsigned int frame_size)
1359 if (*(skb->data + 3) == 0xFF)
1360 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1361 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1366 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1368 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1369 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1370 struct pci_dev *pdev = adapter->pdev;
1371 struct e1000_hw *hw = &adapter->hw;
1378 ew32(RDT, rx_ring->count - 1);
1380 /* Calculate the loop count based on the largest descriptor ring
1381 * The idea is to wrap the largest ring a number of times using 64
1382 * send/receive pairs during each loop
1385 if (rx_ring->count <= tx_ring->count)
1386 lc = ((tx_ring->count / 64) * 2) + 1;
1388 lc = ((rx_ring->count / 64) * 2) + 1;
1392 for (j = 0; j <= lc; j++) { /* loop count loop */
1393 for (i = 0; i < 64; i++) { /* send the packets */
1394 e1000_create_lbtest_frame(
1395 tx_ring->buffer_info[i].skb, 1024);
1396 pci_dma_sync_single_for_device(pdev,
1397 tx_ring->buffer_info[k].dma,
1398 tx_ring->buffer_info[k].length,
1401 if (k == tx_ring->count)
1406 time = jiffies; /* set the start time for the receive */
1408 do { /* receive the sent packets */
1409 pci_dma_sync_single_for_cpu(pdev,
1410 rx_ring->buffer_info[l].dma, 2048,
1411 PCI_DMA_FROMDEVICE);
1413 ret_val = e1000_check_lbtest_frame(
1414 rx_ring->buffer_info[l].skb, 1024);
1418 if (l == rx_ring->count)
1420 /* time + 20 msecs (200 msecs on 2.4) is more than
1421 * enough time to complete the receives, if it's
1422 * exceeded, break and error off
1424 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1425 if (good_cnt != 64) {
1426 ret_val = 13; /* ret_val is the same as mis-compare */
1429 if (jiffies >= (time + 2)) {
1430 ret_val = 14; /* error code for time out error */
1433 } /* end loop count loop */
1437 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1439 /* PHY loopback cannot be performed if SoL/IDER
1440 * sessions are active */
1441 if (e1000_check_reset_block(&adapter->hw)) {
1442 ndev_err(adapter->netdev, "Cannot do PHY loopback test "
1443 "when SoL/IDER is active.\n");
1448 *data = e1000_setup_desc_rings(adapter);
1452 *data = e1000_setup_loopback_test(adapter);
1456 *data = e1000_run_loopback_test(adapter);
1457 e1000_loopback_cleanup(adapter);
1460 e1000_free_desc_rings(adapter);
1465 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1467 struct e1000_hw *hw = &adapter->hw;
1470 if (hw->media_type == e1000_media_type_internal_serdes) {
1472 hw->mac.serdes_has_link = 0;
1474 /* On some blade server designs, link establishment
1475 * could take as long as 2-3 minutes */
1477 hw->mac.ops.check_for_link(hw);
1478 if (hw->mac.serdes_has_link)
1481 } while (i++ < 3750);
1485 hw->mac.ops.check_for_link(hw);
1486 if (hw->mac.autoneg)
1489 if (!(er32(STATUS) &
1496 static int e1000_diag_test_count(struct net_device *netdev)
1498 return E1000_TEST_LEN;
1501 static void e1000_diag_test(struct net_device *netdev,
1502 struct ethtool_test *eth_test, u64 *data)
1504 struct e1000_adapter *adapter = netdev_priv(netdev);
1505 u16 autoneg_advertised;
1506 u8 forced_speed_duplex;
1508 bool if_running = netif_running(netdev);
1510 set_bit(__E1000_TESTING, &adapter->state);
1511 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1514 /* save speed, duplex, autoneg settings */
1515 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1516 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1517 autoneg = adapter->hw.mac.autoneg;
1519 ndev_info(netdev, "offline testing starting\n");
1521 /* Link test performed before hardware reset so autoneg doesn't
1522 * interfere with test result */
1523 if (e1000_link_test(adapter, &data[4]))
1524 eth_test->flags |= ETH_TEST_FL_FAILED;
1527 /* indicate we're in test mode */
1530 e1000e_reset(adapter);
1532 if (e1000_reg_test(adapter, &data[0]))
1533 eth_test->flags |= ETH_TEST_FL_FAILED;
1535 e1000e_reset(adapter);
1536 if (e1000_eeprom_test(adapter, &data[1]))
1537 eth_test->flags |= ETH_TEST_FL_FAILED;
1539 e1000e_reset(adapter);
1540 if (e1000_intr_test(adapter, &data[2]))
1541 eth_test->flags |= ETH_TEST_FL_FAILED;
1543 e1000e_reset(adapter);
1544 /* make sure the phy is powered up */
1545 e1000e_power_up_phy(adapter);
1546 if (e1000_loopback_test(adapter, &data[3]))
1547 eth_test->flags |= ETH_TEST_FL_FAILED;
1549 /* restore speed, duplex, autoneg settings */
1550 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1551 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1552 adapter->hw.mac.autoneg = autoneg;
1554 /* force this routine to wait until autoneg complete/timeout */
1555 adapter->hw.phy.wait_for_link = 1;
1556 e1000e_reset(adapter);
1557 adapter->hw.phy.wait_for_link = 0;
1559 clear_bit(__E1000_TESTING, &adapter->state);
1563 ndev_info(netdev, "online testing starting\n");
1565 if (e1000_link_test(adapter, &data[4]))
1566 eth_test->flags |= ETH_TEST_FL_FAILED;
1568 /* Online tests aren't run; pass by default */
1574 clear_bit(__E1000_TESTING, &adapter->state);
1576 msleep_interruptible(4 * 1000);
1579 static void e1000_get_wol(struct net_device *netdev,
1580 struct ethtool_wolinfo *wol)
1582 struct e1000_adapter *adapter = netdev_priv(netdev);
1587 if (!(adapter->flags & FLAG_HAS_WOL))
1590 wol->supported = WAKE_UCAST | WAKE_MCAST |
1591 WAKE_BCAST | WAKE_MAGIC;
1593 /* apply any specific unsupported masks here */
1594 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1595 wol->supported &= ~WAKE_UCAST;
1597 if (adapter->wol & E1000_WUFC_EX)
1598 ndev_err(netdev, "Interface does not support "
1599 "directed (unicast) frame wake-up packets\n");
1602 if (adapter->wol & E1000_WUFC_EX)
1603 wol->wolopts |= WAKE_UCAST;
1604 if (adapter->wol & E1000_WUFC_MC)
1605 wol->wolopts |= WAKE_MCAST;
1606 if (adapter->wol & E1000_WUFC_BC)
1607 wol->wolopts |= WAKE_BCAST;
1608 if (adapter->wol & E1000_WUFC_MAG)
1609 wol->wolopts |= WAKE_MAGIC;
1612 static int e1000_set_wol(struct net_device *netdev,
1613 struct ethtool_wolinfo *wol)
1615 struct e1000_adapter *adapter = netdev_priv(netdev);
1617 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1620 if (!(adapter->flags & FLAG_HAS_WOL))
1621 return wol->wolopts ? -EOPNOTSUPP : 0;
1623 /* these settings will always override what we currently have */
1626 if (wol->wolopts & WAKE_UCAST)
1627 adapter->wol |= E1000_WUFC_EX;
1628 if (wol->wolopts & WAKE_MCAST)
1629 adapter->wol |= E1000_WUFC_MC;
1630 if (wol->wolopts & WAKE_BCAST)
1631 adapter->wol |= E1000_WUFC_BC;
1632 if (wol->wolopts & WAKE_MAGIC)
1633 adapter->wol |= E1000_WUFC_MAG;
1638 /* toggle LED 4 times per second = 2 "blinks" per second */
1639 #define E1000_ID_INTERVAL (HZ/4)
1641 /* bit defines for adapter->led_status */
1642 #define E1000_LED_ON 0
1644 static void e1000_led_blink_callback(unsigned long data)
1646 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1648 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1649 adapter->hw.mac.ops.led_off(&adapter->hw);
1651 adapter->hw.mac.ops.led_on(&adapter->hw);
1653 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1656 static int e1000_phys_id(struct net_device *netdev, u32 data)
1658 struct e1000_adapter *adapter = netdev_priv(netdev);
1660 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1661 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1663 if (adapter->hw.phy.type == e1000_phy_ife) {
1664 if (!adapter->blink_timer.function) {
1665 init_timer(&adapter->blink_timer);
1666 adapter->blink_timer.function =
1667 e1000_led_blink_callback;
1668 adapter->blink_timer.data = (unsigned long) adapter;
1670 mod_timer(&adapter->blink_timer, jiffies);
1671 msleep_interruptible(data * 1000);
1672 del_timer_sync(&adapter->blink_timer);
1673 e1e_wphy(&adapter->hw,
1674 IFE_PHY_SPECIAL_CONTROL_LED, 0);
1676 e1000e_blink_led(&adapter->hw);
1677 msleep_interruptible(data * 1000);
1680 adapter->hw.mac.ops.led_off(&adapter->hw);
1681 clear_bit(E1000_LED_ON, &adapter->led_status);
1682 adapter->hw.mac.ops.cleanup_led(&adapter->hw);
1687 static int e1000_nway_reset(struct net_device *netdev)
1689 struct e1000_adapter *adapter = netdev_priv(netdev);
1690 if (netif_running(netdev))
1691 e1000e_reinit_locked(adapter);
1695 static int e1000_get_stats_count(struct net_device *netdev)
1697 return E1000_STATS_LEN;
1700 static void e1000_get_ethtool_stats(struct net_device *netdev,
1701 struct ethtool_stats *stats,
1704 struct e1000_adapter *adapter = netdev_priv(netdev);
1707 e1000e_update_stats(adapter);
1708 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1709 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1710 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1711 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1715 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1721 switch (stringset) {
1723 memcpy(data, *e1000_gstrings_test,
1724 E1000_TEST_LEN*ETH_GSTRING_LEN);
1727 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1728 memcpy(p, e1000_gstrings_stats[i].stat_string,
1730 p += ETH_GSTRING_LEN;
1736 static const struct ethtool_ops e1000_ethtool_ops = {
1737 .get_settings = e1000_get_settings,
1738 .set_settings = e1000_set_settings,
1739 .get_drvinfo = e1000_get_drvinfo,
1740 .get_regs_len = e1000_get_regs_len,
1741 .get_regs = e1000_get_regs,
1742 .get_wol = e1000_get_wol,
1743 .set_wol = e1000_set_wol,
1744 .get_msglevel = e1000_get_msglevel,
1745 .set_msglevel = e1000_set_msglevel,
1746 .nway_reset = e1000_nway_reset,
1747 .get_link = ethtool_op_get_link,
1748 .get_eeprom_len = e1000_get_eeprom_len,
1749 .get_eeprom = e1000_get_eeprom,
1750 .set_eeprom = e1000_set_eeprom,
1751 .get_ringparam = e1000_get_ringparam,
1752 .set_ringparam = e1000_set_ringparam,
1753 .get_pauseparam = e1000_get_pauseparam,
1754 .set_pauseparam = e1000_set_pauseparam,
1755 .get_rx_csum = e1000_get_rx_csum,
1756 .set_rx_csum = e1000_set_rx_csum,
1757 .get_tx_csum = e1000_get_tx_csum,
1758 .set_tx_csum = e1000_set_tx_csum,
1759 .get_sg = ethtool_op_get_sg,
1760 .set_sg = ethtool_op_set_sg,
1761 .get_tso = ethtool_op_get_tso,
1762 .set_tso = e1000_set_tso,
1763 .self_test_count = e1000_diag_test_count,
1764 .self_test = e1000_diag_test,
1765 .get_strings = e1000_get_strings,
1766 .phys_id = e1000_phys_id,
1767 .get_stats_count = e1000_get_stats_count,
1768 .get_ethtool_stats = e1000_get_ethtool_stats,
1771 void e1000e_set_ethtool_ops(struct net_device *netdev)
1773 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);