support for USB autosuspend in the asix driver
[linux-2.6] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 struct e1000_stats {
39         char stat_string[ETH_GSTRING_LEN];
40         int sizeof_stat;
41         int stat_offset;
42 };
43
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45                       offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47         { "rx_packets", E1000_STAT(stats.gprc) },
48         { "tx_packets", E1000_STAT(stats.gptc) },
49         { "rx_bytes", E1000_STAT(stats.gorcl) },
50         { "tx_bytes", E1000_STAT(stats.gotcl) },
51         { "rx_broadcast", E1000_STAT(stats.bprc) },
52         { "tx_broadcast", E1000_STAT(stats.bptc) },
53         { "rx_multicast", E1000_STAT(stats.mprc) },
54         { "tx_multicast", E1000_STAT(stats.mptc) },
55         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58         { "multicast", E1000_STAT(stats.mprc) },
59         { "collisions", E1000_STAT(stats.colc) },
60         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65         { "rx_missed_errors", E1000_STAT(stats.mpc) },
66         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70         { "tx_window_errors", E1000_STAT(stats.latecol) },
71         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72         { "tx_deferred_ok", E1000_STAT(stats.dc) },
73         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76         { "tx_restart_queue", E1000_STAT(restart_queue) },
77         { "rx_long_length_errors", E1000_STAT(stats.roc) },
78         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
87         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89         { "rx_header_split", E1000_STAT(rx_hdr_split) },
90         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91         { "tx_smbus", E1000_STAT(stats.mgptc) },
92         { "rx_smbus", E1000_STAT(stats.mgprc) },
93         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
96 };
97
98 #define E1000_GLOBAL_STATS_LEN  \
99         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
100 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
101 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
102         "Register test  (offline)", "Eeprom test    (offline)",
103         "Interrupt test (offline)", "Loopback test  (offline)",
104         "Link test   (on/offline)"
105 };
106 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
107
108 static int e1000_get_settings(struct net_device *netdev,
109                               struct ethtool_cmd *ecmd)
110 {
111         struct e1000_adapter *adapter = netdev_priv(netdev);
112         struct e1000_hw *hw = &adapter->hw;
113
114         if (hw->media_type == e1000_media_type_copper) {
115
116                 ecmd->supported = (SUPPORTED_10baseT_Half |
117                                    SUPPORTED_10baseT_Full |
118                                    SUPPORTED_100baseT_Half |
119                                    SUPPORTED_100baseT_Full |
120                                    SUPPORTED_1000baseT_Full |
121                                    SUPPORTED_Autoneg |
122                                    SUPPORTED_TP);
123                 if (hw->phy.type == e1000_phy_ife)
124                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125                 ecmd->advertising = ADVERTISED_TP;
126
127                 if (hw->mac.autoneg == 1) {
128                         ecmd->advertising |= ADVERTISED_Autoneg;
129                         /* the e1000 autoneg seems to match ethtool nicely */
130                         ecmd->advertising |= hw->phy.autoneg_advertised;
131                 }
132
133                 ecmd->port = PORT_TP;
134                 ecmd->phy_address = hw->phy.addr;
135                 ecmd->transceiver = XCVR_INTERNAL;
136
137         } else {
138                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
139                                      SUPPORTED_FIBRE |
140                                      SUPPORTED_Autoneg);
141
142                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143                                      ADVERTISED_FIBRE |
144                                      ADVERTISED_Autoneg);
145
146                 ecmd->port = PORT_FIBRE;
147                 ecmd->transceiver = XCVR_EXTERNAL;
148         }
149
150         if (er32(STATUS) & E1000_STATUS_LU) {
151
152                 adapter->hw.mac.ops.get_link_up_info(hw, &adapter->link_speed,
153                                                   &adapter->link_duplex);
154                 ecmd->speed = adapter->link_speed;
155
156                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
157                  *        and HALF_DUPLEX != DUPLEX_HALF */
158
159                 if (adapter->link_duplex == FULL_DUPLEX)
160                         ecmd->duplex = DUPLEX_FULL;
161                 else
162                         ecmd->duplex = DUPLEX_HALF;
163         } else {
164                 ecmd->speed = -1;
165                 ecmd->duplex = -1;
166         }
167
168         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
169                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170         return 0;
171 }
172
173 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
174 {
175         struct e1000_mac_info *mac = &adapter->hw.mac;
176
177         mac->autoneg = 0;
178
179         /* Fiber NICs only allow 1000 gbps Full duplex */
180         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
181                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
182                 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
183                          "configuration\n");
184                 return -EINVAL;
185         }
186
187         switch (spddplx) {
188         case SPEED_10 + DUPLEX_HALF:
189                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
190                 break;
191         case SPEED_10 + DUPLEX_FULL:
192                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
193                 break;
194         case SPEED_100 + DUPLEX_HALF:
195                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
196                 break;
197         case SPEED_100 + DUPLEX_FULL:
198                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
199                 break;
200         case SPEED_1000 + DUPLEX_FULL:
201                 mac->autoneg = 1;
202                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
203                 break;
204         case SPEED_1000 + DUPLEX_HALF: /* not supported */
205         default:
206                 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
207                          "configuration\n");
208                 return -EINVAL;
209         }
210         return 0;
211 }
212
213 static int e1000_set_settings(struct net_device *netdev,
214                               struct ethtool_cmd *ecmd)
215 {
216         struct e1000_adapter *adapter = netdev_priv(netdev);
217         struct e1000_hw *hw = &adapter->hw;
218
219         /* When SoL/IDER sessions are active, autoneg/speed/duplex
220          * cannot be changed */
221         if (e1000_check_reset_block(hw)) {
222                 ndev_err(netdev, "Cannot change link "
223                          "characteristics when SoL/IDER is active.\n");
224                 return -EINVAL;
225         }
226
227         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
228                 msleep(1);
229
230         if (ecmd->autoneg == AUTONEG_ENABLE) {
231                 hw->mac.autoneg = 1;
232                 if (hw->media_type == e1000_media_type_fiber)
233                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
234                                                      ADVERTISED_FIBRE |
235                                                      ADVERTISED_Autoneg;
236                 else
237                         hw->phy.autoneg_advertised = ecmd->advertising |
238                                                      ADVERTISED_TP |
239                                                      ADVERTISED_Autoneg;
240                 ecmd->advertising = hw->phy.autoneg_advertised;
241         } else {
242                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
243                         clear_bit(__E1000_RESETTING, &adapter->state);
244                         return -EINVAL;
245                 }
246         }
247
248         /* reset the link */
249
250         if (netif_running(adapter->netdev)) {
251                 e1000e_down(adapter);
252                 e1000e_up(adapter);
253         } else {
254                 e1000e_reset(adapter);
255         }
256
257         clear_bit(__E1000_RESETTING, &adapter->state);
258         return 0;
259 }
260
261 static void e1000_get_pauseparam(struct net_device *netdev,
262                                  struct ethtool_pauseparam *pause)
263 {
264         struct e1000_adapter *adapter = netdev_priv(netdev);
265         struct e1000_hw *hw = &adapter->hw;
266
267         pause->autoneg =
268                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
269
270         if (hw->mac.fc == e1000_fc_rx_pause) {
271                 pause->rx_pause = 1;
272         } else if (hw->mac.fc == e1000_fc_tx_pause) {
273                 pause->tx_pause = 1;
274         } else if (hw->mac.fc == e1000_fc_full) {
275                 pause->rx_pause = 1;
276                 pause->tx_pause = 1;
277         }
278 }
279
280 static int e1000_set_pauseparam(struct net_device *netdev,
281                                 struct ethtool_pauseparam *pause)
282 {
283         struct e1000_adapter *adapter = netdev_priv(netdev);
284         struct e1000_hw *hw = &adapter->hw;
285         int retval = 0;
286
287         adapter->fc_autoneg = pause->autoneg;
288
289         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
290                 msleep(1);
291
292         if (pause->rx_pause && pause->tx_pause)
293                 hw->mac.fc = e1000_fc_full;
294         else if (pause->rx_pause && !pause->tx_pause)
295                 hw->mac.fc = e1000_fc_rx_pause;
296         else if (!pause->rx_pause && pause->tx_pause)
297                 hw->mac.fc = e1000_fc_tx_pause;
298         else if (!pause->rx_pause && !pause->tx_pause)
299                 hw->mac.fc = e1000_fc_none;
300
301         hw->mac.original_fc = hw->mac.fc;
302
303         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
304                 if (netif_running(adapter->netdev)) {
305                         e1000e_down(adapter);
306                         e1000e_up(adapter);
307                 } else {
308                         e1000e_reset(adapter);
309                 }
310         } else {
311                 retval = ((hw->media_type == e1000_media_type_fiber) ?
312                           hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
313         }
314
315         clear_bit(__E1000_RESETTING, &adapter->state);
316         return retval;
317 }
318
319 static u32 e1000_get_rx_csum(struct net_device *netdev)
320 {
321         struct e1000_adapter *adapter = netdev_priv(netdev);
322         return (adapter->flags & FLAG_RX_CSUM_ENABLED);
323 }
324
325 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
326 {
327         struct e1000_adapter *adapter = netdev_priv(netdev);
328
329         if (data)
330                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
331         else
332                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
333
334         if (netif_running(netdev))
335                 e1000e_reinit_locked(adapter);
336         else
337                 e1000e_reset(adapter);
338         return 0;
339 }
340
341 static u32 e1000_get_tx_csum(struct net_device *netdev)
342 {
343         return ((netdev->features & NETIF_F_HW_CSUM) != 0);
344 }
345
346 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
347 {
348         if (data)
349                 netdev->features |= NETIF_F_HW_CSUM;
350         else
351                 netdev->features &= ~NETIF_F_HW_CSUM;
352
353         return 0;
354 }
355
356 static int e1000_set_tso(struct net_device *netdev, u32 data)
357 {
358         struct e1000_adapter *adapter = netdev_priv(netdev);
359
360         if (data) {
361                 netdev->features |= NETIF_F_TSO;
362                 netdev->features |= NETIF_F_TSO6;
363         } else {
364                 netdev->features &= ~NETIF_F_TSO;
365                 netdev->features &= ~NETIF_F_TSO6;
366         }
367
368         ndev_info(netdev, "TSO is %s\n",
369                   data ? "Enabled" : "Disabled");
370         adapter->flags |= FLAG_TSO_FORCE;
371         return 0;
372 }
373
374 static u32 e1000_get_msglevel(struct net_device *netdev)
375 {
376         struct e1000_adapter *adapter = netdev_priv(netdev);
377         return adapter->msg_enable;
378 }
379
380 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
381 {
382         struct e1000_adapter *adapter = netdev_priv(netdev);
383         adapter->msg_enable = data;
384 }
385
386 static int e1000_get_regs_len(struct net_device *netdev)
387 {
388 #define E1000_REGS_LEN 32 /* overestimate */
389         return E1000_REGS_LEN * sizeof(u32);
390 }
391
392 static void e1000_get_regs(struct net_device *netdev,
393                            struct ethtool_regs *regs, void *p)
394 {
395         struct e1000_adapter *adapter = netdev_priv(netdev);
396         struct e1000_hw *hw = &adapter->hw;
397         u32 *regs_buff = p;
398         u16 phy_data;
399         u8 revision_id;
400
401         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
402
403         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
404
405         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
406
407         regs_buff[0]  = er32(CTRL);
408         regs_buff[1]  = er32(STATUS);
409
410         regs_buff[2]  = er32(RCTL);
411         regs_buff[3]  = er32(RDLEN);
412         regs_buff[4]  = er32(RDH);
413         regs_buff[5]  = er32(RDT);
414         regs_buff[6]  = er32(RDTR);
415
416         regs_buff[7]  = er32(TCTL);
417         regs_buff[8]  = er32(TDLEN);
418         regs_buff[9]  = er32(TDH);
419         regs_buff[10] = er32(TDT);
420         regs_buff[11] = er32(TIDV);
421
422         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
423         if (hw->phy.type == e1000_phy_m88) {
424                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
425                 regs_buff[13] = (u32)phy_data; /* cable length */
426                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
427                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
428                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
429                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
430                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
431                 regs_buff[18] = regs_buff[13]; /* cable polarity */
432                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
433                 regs_buff[20] = regs_buff[17]; /* polarity correction */
434                 /* phy receive errors */
435                 regs_buff[22] = adapter->phy_stats.receive_errors;
436                 regs_buff[23] = regs_buff[13]; /* mdix mode */
437         }
438         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
439         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
440         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
441         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
442 }
443
444 static int e1000_get_eeprom_len(struct net_device *netdev)
445 {
446         struct e1000_adapter *adapter = netdev_priv(netdev);
447         return adapter->hw.nvm.word_size * 2;
448 }
449
450 static int e1000_get_eeprom(struct net_device *netdev,
451                             struct ethtool_eeprom *eeprom, u8 *bytes)
452 {
453         struct e1000_adapter *adapter = netdev_priv(netdev);
454         struct e1000_hw *hw = &adapter->hw;
455         u16 *eeprom_buff;
456         int first_word;
457         int last_word;
458         int ret_val = 0;
459         u16 i;
460
461         if (eeprom->len == 0)
462                 return -EINVAL;
463
464         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
465
466         first_word = eeprom->offset >> 1;
467         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
468
469         eeprom_buff = kmalloc(sizeof(u16) *
470                         (last_word - first_word + 1), GFP_KERNEL);
471         if (!eeprom_buff)
472                 return -ENOMEM;
473
474         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
475                 ret_val = e1000_read_nvm(hw, first_word,
476                                          last_word - first_word + 1,
477                                          eeprom_buff);
478         } else {
479                 for (i = 0; i < last_word - first_word + 1; i++) {
480                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
481                                                       &eeprom_buff[i]);
482                         if (ret_val)
483                                 break;
484                 }
485         }
486
487         /* Device's eeprom is always little-endian, word addressable */
488         for (i = 0; i < last_word - first_word + 1; i++)
489                 le16_to_cpus(&eeprom_buff[i]);
490
491         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
492         kfree(eeprom_buff);
493
494         return ret_val;
495 }
496
497 static int e1000_set_eeprom(struct net_device *netdev,
498                             struct ethtool_eeprom *eeprom, u8 *bytes)
499 {
500         struct e1000_adapter *adapter = netdev_priv(netdev);
501         struct e1000_hw *hw = &adapter->hw;
502         u16 *eeprom_buff;
503         void *ptr;
504         int max_len;
505         int first_word;
506         int last_word;
507         int ret_val = 0;
508         u16 i;
509
510         if (eeprom->len == 0)
511                 return -EOPNOTSUPP;
512
513         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
514                 return -EFAULT;
515
516         max_len = hw->nvm.word_size * 2;
517
518         first_word = eeprom->offset >> 1;
519         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
520         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
521         if (!eeprom_buff)
522                 return -ENOMEM;
523
524         ptr = (void *)eeprom_buff;
525
526         if (eeprom->offset & 1) {
527                 /* need read/modify/write of first changed EEPROM word */
528                 /* only the second byte of the word is being modified */
529                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
530                 ptr++;
531         }
532         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
533                 /* need read/modify/write of last changed EEPROM word */
534                 /* only the first byte of the word is being modified */
535                 ret_val = e1000_read_nvm(hw, last_word, 1,
536                                   &eeprom_buff[last_word - first_word]);
537
538         /* Device's eeprom is always little-endian, word addressable */
539         for (i = 0; i < last_word - first_word + 1; i++)
540                 le16_to_cpus(&eeprom_buff[i]);
541
542         memcpy(ptr, bytes, eeprom->len);
543
544         for (i = 0; i < last_word - first_word + 1; i++)
545                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
546
547         ret_val = e1000_write_nvm(hw, first_word,
548                                   last_word - first_word + 1, eeprom_buff);
549
550         /* Update the checksum over the first part of the EEPROM if needed
551          * and flush shadow RAM for 82573 controllers */
552         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
553                                (hw->mac.type == e1000_82573)))
554                 e1000e_update_nvm_checksum(hw);
555
556         kfree(eeprom_buff);
557         return ret_val;
558 }
559
560 static void e1000_get_drvinfo(struct net_device *netdev,
561                               struct ethtool_drvinfo *drvinfo)
562 {
563         struct e1000_adapter *adapter = netdev_priv(netdev);
564         char firmware_version[32];
565         u16 eeprom_data;
566
567         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
568         strncpy(drvinfo->version, e1000e_driver_version, 32);
569
570         /* EEPROM image version # is reported as firmware version # for
571          * PCI-E controllers */
572         e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
573         sprintf(firmware_version, "%d.%d-%d",
574                 (eeprom_data & 0xF000) >> 12,
575                 (eeprom_data & 0x0FF0) >> 4,
576                 eeprom_data & 0x000F);
577
578         strncpy(drvinfo->fw_version, firmware_version, 32);
579         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
580         drvinfo->n_stats = E1000_STATS_LEN;
581         drvinfo->testinfo_len = E1000_TEST_LEN;
582         drvinfo->regdump_len = e1000_get_regs_len(netdev);
583         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
584 }
585
586 static void e1000_get_ringparam(struct net_device *netdev,
587                                 struct ethtool_ringparam *ring)
588 {
589         struct e1000_adapter *adapter = netdev_priv(netdev);
590         struct e1000_ring *tx_ring = adapter->tx_ring;
591         struct e1000_ring *rx_ring = adapter->rx_ring;
592
593         ring->rx_max_pending = E1000_MAX_RXD;
594         ring->tx_max_pending = E1000_MAX_TXD;
595         ring->rx_mini_max_pending = 0;
596         ring->rx_jumbo_max_pending = 0;
597         ring->rx_pending = rx_ring->count;
598         ring->tx_pending = tx_ring->count;
599         ring->rx_mini_pending = 0;
600         ring->rx_jumbo_pending = 0;
601 }
602
603 static int e1000_set_ringparam(struct net_device *netdev,
604                                struct ethtool_ringparam *ring)
605 {
606         struct e1000_adapter *adapter = netdev_priv(netdev);
607         struct e1000_ring *tx_ring, *tx_old;
608         struct e1000_ring *rx_ring, *rx_old;
609         int err;
610
611         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
612                 return -EINVAL;
613
614         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
615                 msleep(1);
616
617         if (netif_running(adapter->netdev))
618                 e1000e_down(adapter);
619
620         tx_old = adapter->tx_ring;
621         rx_old = adapter->rx_ring;
622
623         err = -ENOMEM;
624         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
625         if (!tx_ring)
626                 goto err_alloc_tx;
627
628         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
629         if (!rx_ring)
630                 goto err_alloc_rx;
631
632         adapter->tx_ring = tx_ring;
633         adapter->rx_ring = rx_ring;
634
635         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
636         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
637         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
638
639         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
640         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
641         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
642
643         if (netif_running(adapter->netdev)) {
644                 /* Try to get new resources before deleting old */
645                 err = e1000e_setup_rx_resources(adapter);
646                 if (err)
647                         goto err_setup_rx;
648                 err = e1000e_setup_tx_resources(adapter);
649                 if (err)
650                         goto err_setup_tx;
651
652                 /* save the new, restore the old in order to free it,
653                  * then restore the new back again */
654                 adapter->rx_ring = rx_old;
655                 adapter->tx_ring = tx_old;
656                 e1000e_free_rx_resources(adapter);
657                 e1000e_free_tx_resources(adapter);
658                 kfree(tx_old);
659                 kfree(rx_old);
660                 adapter->rx_ring = rx_ring;
661                 adapter->tx_ring = tx_ring;
662                 err = e1000e_up(adapter);
663                 if (err)
664                         goto err_setup;
665         }
666
667         clear_bit(__E1000_RESETTING, &adapter->state);
668         return 0;
669 err_setup_tx:
670         e1000e_free_rx_resources(adapter);
671 err_setup_rx:
672         adapter->rx_ring = rx_old;
673         adapter->tx_ring = tx_old;
674         kfree(rx_ring);
675 err_alloc_rx:
676         kfree(tx_ring);
677 err_alloc_tx:
678         e1000e_up(adapter);
679 err_setup:
680         clear_bit(__E1000_RESETTING, &adapter->state);
681         return err;
682 }
683
684 #define REG_PATTERN_TEST(R, M, W) REG_PATTERN_TEST_ARRAY(R, 0, M, W)
685 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, writeable)                  \
686 {                                                                             \
687         u32 _pat;                                                             \
688         u32 _value;                                                           \
689         u32 _test[] = {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};       \
690         for (_pat = 0; _pat < ARRAY_SIZE(_test); _pat++) {                    \
691                 E1000_WRITE_REG_ARRAY(hw, reg, offset,        \
692                                       (_test[_pat] & writeable));             \
693                 _value = E1000_READ_REG_ARRAY(hw, reg, offset);     \
694                 if (_value != (_test[_pat] & writeable & mask)) {             \
695                         ndev_err(netdev, "pattern test reg %04X "             \
696                                  "failed: got 0x%08X expected 0x%08X\n",      \
697                                  reg + offset,  \
698                                  value, (_test[_pat] & writeable & mask));    \
699                         *data = reg;                                          \
700                         return 1;                                             \
701                 }                                                             \
702         }                                                                     \
703 }
704
705 #define REG_SET_AND_CHECK(R, M, W)                                            \
706 {                                                                             \
707         u32 _value;                                                           \
708         __ew32(hw, R, W & M);                                           \
709         _value = __er32(hw, R);                                         \
710         if ((W & M) != (_value & M)) {                                        \
711                 ndev_err(netdev, "set/check reg %04X test failed: "           \
712                          "got 0x%08X expected 0x%08X\n", R, (_value & M),     \
713                          (W & M));                                            \
714                 *data = R;                                                    \
715                 return 1;                                                     \
716         }                                                                     \
717 }
718
719 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
720 {
721         struct e1000_hw *hw = &adapter->hw;
722         struct e1000_mac_info *mac = &adapter->hw.mac;
723         struct net_device *netdev = adapter->netdev;
724         u32 value;
725         u32 before;
726         u32 after;
727         u32 i;
728         u32 toggle;
729
730         /* The status register is Read Only, so a write should fail.
731          * Some bits that get toggled are ignored.
732          */
733         switch (mac->type) {
734         /* there are several bits on newer hardware that are r/w */
735         case e1000_82571:
736         case e1000_82572:
737         case e1000_80003es2lan:
738                 toggle = 0x7FFFF3FF;
739                 break;
740         case e1000_82573:
741         case e1000_ich8lan:
742         case e1000_ich9lan:
743                 toggle = 0x7FFFF033;
744                 break;
745         default:
746                 toggle = 0xFFFFF833;
747                 break;
748         }
749
750         before = er32(STATUS);
751         value = (er32(STATUS) & toggle);
752         ew32(STATUS, toggle);
753         after = er32(STATUS) & toggle;
754         if (value != after) {
755                 ndev_err(netdev, "failed STATUS register test got: "
756                          "0x%08X expected: 0x%08X\n", after, value);
757                 *data = 1;
758                 return 1;
759         }
760         /* restore previous status */
761         ew32(STATUS, before);
762
763         if ((mac->type != e1000_ich8lan) &&
764             (mac->type != e1000_ich9lan)) {
765                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
766                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
767                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
768                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
769         }
770
771         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
772         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
773         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
774         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
775         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
776         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
777         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
778         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
779         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
780         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
781
782         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
783
784         before = (((mac->type == e1000_ich8lan) ||
785                    (mac->type == e1000_ich9lan)) ? 0x06C3B33E : 0x06DFB3FE);
786         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
787         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
788
789         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x01FFFFFF);
790         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFF000, 0xFFFFFFFF);
791         REG_PATTERN_TEST(E1000_TXCW, 0x0000FFFF, 0x0000FFFF);
792         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFF000, 0xFFFFFFFF);
793
794         for (i = 0; i < mac->mta_reg_count; i++)
795                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
796
797         *data = 0;
798         return 0;
799 }
800
801 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
802 {
803         u16 temp;
804         u16 checksum = 0;
805         u16 i;
806
807         *data = 0;
808         /* Read and add up the contents of the EEPROM */
809         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
810                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
811                         *data = 1;
812                         break;
813                 }
814                 checksum += temp;
815         }
816
817         /* If Checksum is not Correct return error else test passed */
818         if ((checksum != (u16) NVM_SUM) && !(*data))
819                 *data = 2;
820
821         return *data;
822 }
823
824 static irqreturn_t e1000_test_intr(int irq, void *data)
825 {
826         struct net_device *netdev = (struct net_device *) data;
827         struct e1000_adapter *adapter = netdev_priv(netdev);
828         struct e1000_hw *hw = &adapter->hw;
829
830         adapter->test_icr |= er32(ICR);
831
832         return IRQ_HANDLED;
833 }
834
835 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
836 {
837         struct net_device *netdev = adapter->netdev;
838         struct e1000_hw *hw = &adapter->hw;
839         u32 mask;
840         u32 shared_int = 1;
841         u32 irq = adapter->pdev->irq;
842         int i;
843
844         *data = 0;
845
846         /* NOTE: we don't test MSI interrupts here, yet */
847         /* Hook up test interrupt handler just for this test */
848         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
849                          netdev)) {
850                 shared_int = 0;
851         } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
852                  netdev->name, netdev)) {
853                 *data = 1;
854                 return -1;
855         }
856         ndev_info(netdev, "testing %s interrupt\n",
857                   (shared_int ? "shared" : "unshared"));
858
859         /* Disable all the interrupts */
860         ew32(IMC, 0xFFFFFFFF);
861         msleep(10);
862
863         /* Test each interrupt */
864         for (i = 0; i < 10; i++) {
865
866                 if (((adapter->hw.mac.type == e1000_ich8lan) ||
867                      (adapter->hw.mac.type == e1000_ich9lan)) && i == 8)
868                         continue;
869
870                 /* Interrupt to test */
871                 mask = 1 << i;
872
873                 if (!shared_int) {
874                         /* Disable the interrupt to be reported in
875                          * the cause register and then force the same
876                          * interrupt and see if one gets posted.  If
877                          * an interrupt was posted to the bus, the
878                          * test failed.
879                          */
880                         adapter->test_icr = 0;
881                         ew32(IMC, mask);
882                         ew32(ICS, mask);
883                         msleep(10);
884
885                         if (adapter->test_icr & mask) {
886                                 *data = 3;
887                                 break;
888                         }
889                 }
890
891                 /* Enable the interrupt to be reported in
892                  * the cause register and then force the same
893                  * interrupt and see if one gets posted.  If
894                  * an interrupt was not posted to the bus, the
895                  * test failed.
896                  */
897                 adapter->test_icr = 0;
898                 ew32(IMS, mask);
899                 ew32(ICS, mask);
900                 msleep(10);
901
902                 if (!(adapter->test_icr & mask)) {
903                         *data = 4;
904                         break;
905                 }
906
907                 if (!shared_int) {
908                         /* Disable the other interrupts to be reported in
909                          * the cause register and then force the other
910                          * interrupts and see if any get posted.  If
911                          * an interrupt was posted to the bus, the
912                          * test failed.
913                          */
914                         adapter->test_icr = 0;
915                         ew32(IMC, ~mask & 0x00007FFF);
916                         ew32(ICS, ~mask & 0x00007FFF);
917                         msleep(10);
918
919                         if (adapter->test_icr) {
920                                 *data = 5;
921                                 break;
922                         }
923                 }
924         }
925
926         /* Disable all the interrupts */
927         ew32(IMC, 0xFFFFFFFF);
928         msleep(10);
929
930         /* Unhook test interrupt handler */
931         free_irq(irq, netdev);
932
933         return *data;
934 }
935
936 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
937 {
938         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
939         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
940         struct pci_dev *pdev = adapter->pdev;
941         int i;
942
943         if (tx_ring->desc && tx_ring->buffer_info) {
944                 for (i = 0; i < tx_ring->count; i++) {
945                         if (tx_ring->buffer_info[i].dma)
946                                 pci_unmap_single(pdev,
947                                         tx_ring->buffer_info[i].dma,
948                                         tx_ring->buffer_info[i].length,
949                                         PCI_DMA_TODEVICE);
950                         if (tx_ring->buffer_info[i].skb)
951                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
952                 }
953         }
954
955         if (rx_ring->desc && rx_ring->buffer_info) {
956                 for (i = 0; i < rx_ring->count; i++) {
957                         if (rx_ring->buffer_info[i].dma)
958                                 pci_unmap_single(pdev,
959                                         rx_ring->buffer_info[i].dma,
960                                         2048, PCI_DMA_FROMDEVICE);
961                         if (rx_ring->buffer_info[i].skb)
962                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
963                 }
964         }
965
966         if (tx_ring->desc) {
967                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
968                                   tx_ring->dma);
969                 tx_ring->desc = NULL;
970         }
971         if (rx_ring->desc) {
972                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
973                                   rx_ring->dma);
974                 rx_ring->desc = NULL;
975         }
976
977         kfree(tx_ring->buffer_info);
978         tx_ring->buffer_info = NULL;
979         kfree(rx_ring->buffer_info);
980         rx_ring->buffer_info = NULL;
981 }
982
983 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
984 {
985         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
986         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
987         struct pci_dev *pdev = adapter->pdev;
988         struct e1000_hw *hw = &adapter->hw;
989         u32 rctl;
990         int size;
991         int i;
992         int ret_val;
993
994         /* Setup Tx descriptor ring and Tx buffers */
995
996         if (!tx_ring->count)
997                 tx_ring->count = E1000_DEFAULT_TXD;
998
999         size = tx_ring->count * sizeof(struct e1000_buffer);
1000         tx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
1001         if (!tx_ring->buffer_info) {
1002                 ret_val = 1;
1003                 goto err_nomem;
1004         }
1005         memset(tx_ring->buffer_info, 0, size);
1006
1007         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1008         tx_ring->size = ALIGN(tx_ring->size, 4096);
1009         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1010                                            &tx_ring->dma, GFP_KERNEL);
1011         if (!tx_ring->desc) {
1012                 ret_val = 2;
1013                 goto err_nomem;
1014         }
1015         memset(tx_ring->desc, 0, tx_ring->size);
1016         tx_ring->next_to_use = 0;
1017         tx_ring->next_to_clean = 0;
1018
1019         ew32(TDBAL,
1020                         ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1021         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1022         ew32(TDLEN,
1023                         tx_ring->count * sizeof(struct e1000_tx_desc));
1024         ew32(TDH, 0);
1025         ew32(TDT, 0);
1026         ew32(TCTL,
1027                         E1000_TCTL_PSP | E1000_TCTL_EN |
1028                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1029                         E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1030
1031         for (i = 0; i < tx_ring->count; i++) {
1032                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1033                 struct sk_buff *skb;
1034                 unsigned int skb_size = 1024;
1035
1036                 skb = alloc_skb(skb_size, GFP_KERNEL);
1037                 if (!skb) {
1038                         ret_val = 3;
1039                         goto err_nomem;
1040                 }
1041                 skb_put(skb, skb_size);
1042                 tx_ring->buffer_info[i].skb = skb;
1043                 tx_ring->buffer_info[i].length = skb->len;
1044                 tx_ring->buffer_info[i].dma =
1045                         pci_map_single(pdev, skb->data, skb->len,
1046                                        PCI_DMA_TODEVICE);
1047                 if (pci_dma_mapping_error(tx_ring->buffer_info[i].dma)) {
1048                         ret_val = 4;
1049                         goto err_nomem;
1050                 }
1051                 tx_desc->buffer_addr = cpu_to_le64(
1052                                          tx_ring->buffer_info[i].dma);
1053                 tx_desc->lower.data = cpu_to_le32(skb->len);
1054                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1055                                                    E1000_TXD_CMD_IFCS |
1056                                                    E1000_TXD_CMD_RPS);
1057                 tx_desc->upper.data = 0;
1058         }
1059
1060         /* Setup Rx descriptor ring and Rx buffers */
1061
1062         if (!rx_ring->count)
1063                 rx_ring->count = E1000_DEFAULT_RXD;
1064
1065         size = rx_ring->count * sizeof(struct e1000_buffer);
1066         rx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
1067         if (!rx_ring->buffer_info) {
1068                 ret_val = 5;
1069                 goto err_nomem;
1070         }
1071         memset(rx_ring->buffer_info, 0, size);
1072
1073         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1074         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1075                                            &rx_ring->dma, GFP_KERNEL);
1076         if (!rx_ring->desc) {
1077                 ret_val = 6;
1078                 goto err_nomem;
1079         }
1080         memset(rx_ring->desc, 0, rx_ring->size);
1081         rx_ring->next_to_use = 0;
1082         rx_ring->next_to_clean = 0;
1083
1084         rctl = er32(RCTL);
1085         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1086         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1087         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1088         ew32(RDLEN, rx_ring->size);
1089         ew32(RDH, 0);
1090         ew32(RDT, 0);
1091         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1092                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1093                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1094         ew32(RCTL, rctl);
1095
1096         for (i = 0; i < rx_ring->count; i++) {
1097                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1098                 struct sk_buff *skb;
1099
1100                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1101                 if (!skb) {
1102                         ret_val = 7;
1103                         goto err_nomem;
1104                 }
1105                 skb_reserve(skb, NET_IP_ALIGN);
1106                 rx_ring->buffer_info[i].skb = skb;
1107                 rx_ring->buffer_info[i].dma =
1108                         pci_map_single(pdev, skb->data, 2048,
1109                                        PCI_DMA_FROMDEVICE);
1110                 if (pci_dma_mapping_error(rx_ring->buffer_info[i].dma)) {
1111                         ret_val = 8;
1112                         goto err_nomem;
1113                 }
1114                 rx_desc->buffer_addr =
1115                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1116                 memset(skb->data, 0x00, skb->len);
1117         }
1118
1119         return 0;
1120
1121 err_nomem:
1122         e1000_free_desc_rings(adapter);
1123         return ret_val;
1124 }
1125
1126 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1127 {
1128         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1129         e1e_wphy(&adapter->hw, 29, 0x001F);
1130         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1131         e1e_wphy(&adapter->hw, 29, 0x001A);
1132         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1133 }
1134
1135 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1136 {
1137         struct e1000_hw *hw = &adapter->hw;
1138         u32 ctrl_reg = 0;
1139         u32 stat_reg = 0;
1140
1141         adapter->hw.mac.autoneg = 0;
1142
1143         if (adapter->hw.phy.type == e1000_phy_m88) {
1144                 /* Auto-MDI/MDIX Off */
1145                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1146                 /* reset to update Auto-MDI/MDIX */
1147                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1148                 /* autoneg off */
1149                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1150         } else if (adapter->hw.phy.type == e1000_phy_gg82563)
1151                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1152
1153         ctrl_reg = er32(CTRL);
1154
1155         if (adapter->hw.phy.type == e1000_phy_ife) {
1156                 /* force 100, set loopback */
1157                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1158
1159                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1160                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1161                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1162                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1163                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1164                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1165         } else {
1166                 /* force 1000, set loopback */
1167                 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1168
1169                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1170                 ctrl_reg = er32(CTRL);
1171                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1172                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1173                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1174                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1175                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1176         }
1177
1178         if (adapter->hw.media_type == e1000_media_type_copper &&
1179            adapter->hw.phy.type == e1000_phy_m88) {
1180                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1181         } else {
1182                 /* Set the ILOS bit on the fiber Nic if half duplex link is
1183                  * detected. */
1184                 stat_reg = er32(STATUS);
1185                 if ((stat_reg & E1000_STATUS_FD) == 0)
1186                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1187         }
1188
1189         ew32(CTRL, ctrl_reg);
1190
1191         /* Disable the receiver on the PHY so when a cable is plugged in, the
1192          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1193          */
1194         if (adapter->hw.phy.type == e1000_phy_m88)
1195                 e1000_phy_disable_receiver(adapter);
1196
1197         udelay(500);
1198
1199         return 0;
1200 }
1201
1202 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1203 {
1204         struct e1000_hw *hw = &adapter->hw;
1205         u32 ctrl = er32(CTRL);
1206         int link = 0;
1207
1208         /* special requirements for 82571/82572 fiber adapters */
1209
1210         /* jump through hoops to make sure link is up because serdes
1211          * link is hardwired up */
1212         ctrl |= E1000_CTRL_SLU;
1213         ew32(CTRL, ctrl);
1214
1215         /* disable autoneg */
1216         ctrl = er32(TXCW);
1217         ctrl &= ~(1 << 31);
1218         ew32(TXCW, ctrl);
1219
1220         link = (er32(STATUS) & E1000_STATUS_LU);
1221
1222         if (!link) {
1223                 /* set invert loss of signal */
1224                 ctrl = er32(CTRL);
1225                 ctrl |= E1000_CTRL_ILOS;
1226                 ew32(CTRL, ctrl);
1227         }
1228
1229         /* special write to serdes control register to enable SerDes analog
1230          * loopback */
1231 #define E1000_SERDES_LB_ON 0x410
1232         ew32(SCTL, E1000_SERDES_LB_ON);
1233         msleep(10);
1234
1235         return 0;
1236 }
1237
1238 /* only call this for fiber/serdes connections to es2lan */
1239 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1240 {
1241         struct e1000_hw *hw = &adapter->hw;
1242         u32 ctrlext = er32(CTRL_EXT);
1243         u32 ctrl = er32(CTRL);
1244
1245         /* save CTRL_EXT to restore later, reuse an empty variable (unused
1246            on mac_type 80003es2lan) */
1247         adapter->tx_fifo_head = ctrlext;
1248
1249         /* clear the serdes mode bits, putting the device into mac loopback */
1250         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1251         ew32(CTRL_EXT, ctrlext);
1252
1253         /* force speed to 1000/FD, link up */
1254         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1255         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1256                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1257         ew32(CTRL, ctrl);
1258
1259         /* set mac loopback */
1260         ctrl = er32(RCTL);
1261         ctrl |= E1000_RCTL_LBM_MAC;
1262         ew32(RCTL, ctrl);
1263
1264         /* set testing mode parameters (no need to reset later) */
1265 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1266 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1267         ew32(KMRNCTRLSTA,
1268                 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1269
1270         return 0;
1271 }
1272
1273 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1274 {
1275         struct e1000_hw *hw = &adapter->hw;
1276         u32 rctl;
1277
1278         if (hw->media_type == e1000_media_type_fiber ||
1279             hw->media_type == e1000_media_type_internal_serdes) {
1280                 switch (hw->mac.type) {
1281                 case e1000_80003es2lan:
1282                         return e1000_set_es2lan_mac_loopback(adapter);
1283                         break;
1284                 case e1000_82571:
1285                 case e1000_82572:
1286                         return e1000_set_82571_fiber_loopback(adapter);
1287                         break;
1288                 default:
1289                         rctl = er32(RCTL);
1290                         rctl |= E1000_RCTL_LBM_TCVR;
1291                         ew32(RCTL, rctl);
1292                         return 0;
1293                 }
1294         } else if (hw->media_type == e1000_media_type_copper) {
1295                 return e1000_integrated_phy_loopback(adapter);
1296         }
1297
1298         return 7;
1299 }
1300
1301 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1302 {
1303         struct e1000_hw *hw = &adapter->hw;
1304         u32 rctl;
1305         u16 phy_reg;
1306
1307         rctl = er32(RCTL);
1308         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1309         ew32(RCTL, rctl);
1310
1311         switch (hw->mac.type) {
1312         case e1000_80003es2lan:
1313                 if (hw->media_type == e1000_media_type_fiber ||
1314                     hw->media_type == e1000_media_type_internal_serdes) {
1315                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1316                         ew32(CTRL_EXT,
1317                                         adapter->tx_fifo_head);
1318                         adapter->tx_fifo_head = 0;
1319                 }
1320                 /* fall through */
1321         case e1000_82571:
1322         case e1000_82572:
1323                 if (hw->media_type == e1000_media_type_fiber ||
1324                     hw->media_type == e1000_media_type_internal_serdes) {
1325 #define E1000_SERDES_LB_OFF 0x400
1326                         ew32(SCTL, E1000_SERDES_LB_OFF);
1327                         msleep(10);
1328                         break;
1329                 }
1330                 /* Fall Through */
1331         default:
1332                 hw->mac.autoneg = 1;
1333                 if (hw->phy.type == e1000_phy_gg82563)
1334                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1335                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1336                 if (phy_reg & MII_CR_LOOPBACK) {
1337                         phy_reg &= ~MII_CR_LOOPBACK;
1338                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1339                         e1000e_commit_phy(hw);
1340                 }
1341                 break;
1342         }
1343 }
1344
1345 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1346                                       unsigned int frame_size)
1347 {
1348         memset(skb->data, 0xFF, frame_size);
1349         frame_size &= ~1;
1350         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1351         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1352         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1353 }
1354
1355 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1356                                     unsigned int frame_size)
1357 {
1358         frame_size &= ~1;
1359         if (*(skb->data + 3) == 0xFF)
1360                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1361                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1362                         return 0;
1363         return 13;
1364 }
1365
1366 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1367 {
1368         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1369         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1370         struct pci_dev *pdev = adapter->pdev;
1371         struct e1000_hw *hw = &adapter->hw;
1372         int i, j, k, l;
1373         int lc;
1374         int good_cnt;
1375         int ret_val = 0;
1376         unsigned long time;
1377
1378         ew32(RDT, rx_ring->count - 1);
1379
1380         /* Calculate the loop count based on the largest descriptor ring
1381          * The idea is to wrap the largest ring a number of times using 64
1382          * send/receive pairs during each loop
1383          */
1384
1385         if (rx_ring->count <= tx_ring->count)
1386                 lc = ((tx_ring->count / 64) * 2) + 1;
1387         else
1388                 lc = ((rx_ring->count / 64) * 2) + 1;
1389
1390         k = 0;
1391         l = 0;
1392         for (j = 0; j <= lc; j++) { /* loop count loop */
1393                 for (i = 0; i < 64; i++) { /* send the packets */
1394                         e1000_create_lbtest_frame(
1395                                 tx_ring->buffer_info[i].skb, 1024);
1396                         pci_dma_sync_single_for_device(pdev,
1397                                         tx_ring->buffer_info[k].dma,
1398                                         tx_ring->buffer_info[k].length,
1399                                         PCI_DMA_TODEVICE);
1400                         k++;
1401                         if (k == tx_ring->count)
1402                                 k = 0;
1403                 }
1404                 ew32(TDT, k);
1405                 msleep(200);
1406                 time = jiffies; /* set the start time for the receive */
1407                 good_cnt = 0;
1408                 do { /* receive the sent packets */
1409                         pci_dma_sync_single_for_cpu(pdev,
1410                                         rx_ring->buffer_info[l].dma, 2048,
1411                                         PCI_DMA_FROMDEVICE);
1412
1413                         ret_val = e1000_check_lbtest_frame(
1414                                         rx_ring->buffer_info[l].skb, 1024);
1415                         if (!ret_val)
1416                                 good_cnt++;
1417                         l++;
1418                         if (l == rx_ring->count)
1419                                 l = 0;
1420                         /* time + 20 msecs (200 msecs on 2.4) is more than
1421                          * enough time to complete the receives, if it's
1422                          * exceeded, break and error off
1423                          */
1424                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1425                 if (good_cnt != 64) {
1426                         ret_val = 13; /* ret_val is the same as mis-compare */
1427                         break;
1428                 }
1429                 if (jiffies >= (time + 2)) {
1430                         ret_val = 14; /* error code for time out error */
1431                         break;
1432                 }
1433         } /* end loop count loop */
1434         return ret_val;
1435 }
1436
1437 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1438 {
1439         /* PHY loopback cannot be performed if SoL/IDER
1440          * sessions are active */
1441         if (e1000_check_reset_block(&adapter->hw)) {
1442                 ndev_err(adapter->netdev, "Cannot do PHY loopback test "
1443                          "when SoL/IDER is active.\n");
1444                 *data = 0;
1445                 goto out;
1446         }
1447
1448         *data = e1000_setup_desc_rings(adapter);
1449         if (data)
1450                 goto out;
1451
1452         *data = e1000_setup_loopback_test(adapter);
1453         if (data)
1454                 goto err_loopback;
1455
1456         *data = e1000_run_loopback_test(adapter);
1457         e1000_loopback_cleanup(adapter);
1458
1459 err_loopback:
1460         e1000_free_desc_rings(adapter);
1461 out:
1462         return *data;
1463 }
1464
1465 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1466 {
1467         struct e1000_hw *hw = &adapter->hw;
1468
1469         *data = 0;
1470         if (hw->media_type == e1000_media_type_internal_serdes) {
1471                 int i = 0;
1472                 hw->mac.serdes_has_link = 0;
1473
1474                 /* On some blade server designs, link establishment
1475                  * could take as long as 2-3 minutes */
1476                 do {
1477                         hw->mac.ops.check_for_link(hw);
1478                         if (hw->mac.serdes_has_link)
1479                                 return *data;
1480                         msleep(20);
1481                 } while (i++ < 3750);
1482
1483                 *data = 1;
1484         } else {
1485                 hw->mac.ops.check_for_link(hw);
1486                 if (hw->mac.autoneg)
1487                         msleep(4000);
1488
1489                 if (!(er32(STATUS) &
1490                       E1000_STATUS_LU))
1491                         *data = 1;
1492         }
1493         return *data;
1494 }
1495
1496 static int e1000_diag_test_count(struct net_device *netdev)
1497 {
1498         return E1000_TEST_LEN;
1499 }
1500
1501 static void e1000_diag_test(struct net_device *netdev,
1502                             struct ethtool_test *eth_test, u64 *data)
1503 {
1504         struct e1000_adapter *adapter = netdev_priv(netdev);
1505         u16 autoneg_advertised;
1506         u8 forced_speed_duplex;
1507         u8 autoneg;
1508         bool if_running = netif_running(netdev);
1509
1510         set_bit(__E1000_TESTING, &adapter->state);
1511         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1512                 /* Offline tests */
1513
1514                 /* save speed, duplex, autoneg settings */
1515                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1516                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1517                 autoneg = adapter->hw.mac.autoneg;
1518
1519                 ndev_info(netdev, "offline testing starting\n");
1520
1521                 /* Link test performed before hardware reset so autoneg doesn't
1522                  * interfere with test result */
1523                 if (e1000_link_test(adapter, &data[4]))
1524                         eth_test->flags |= ETH_TEST_FL_FAILED;
1525
1526                 if (if_running)
1527                         /* indicate we're in test mode */
1528                         dev_close(netdev);
1529                 else
1530                         e1000e_reset(adapter);
1531
1532                 if (e1000_reg_test(adapter, &data[0]))
1533                         eth_test->flags |= ETH_TEST_FL_FAILED;
1534
1535                 e1000e_reset(adapter);
1536                 if (e1000_eeprom_test(adapter, &data[1]))
1537                         eth_test->flags |= ETH_TEST_FL_FAILED;
1538
1539                 e1000e_reset(adapter);
1540                 if (e1000_intr_test(adapter, &data[2]))
1541                         eth_test->flags |= ETH_TEST_FL_FAILED;
1542
1543                 e1000e_reset(adapter);
1544                 /* make sure the phy is powered up */
1545                 e1000e_power_up_phy(adapter);
1546                 if (e1000_loopback_test(adapter, &data[3]))
1547                         eth_test->flags |= ETH_TEST_FL_FAILED;
1548
1549                 /* restore speed, duplex, autoneg settings */
1550                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1551                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1552                 adapter->hw.mac.autoneg = autoneg;
1553
1554                 /* force this routine to wait until autoneg complete/timeout */
1555                 adapter->hw.phy.wait_for_link = 1;
1556                 e1000e_reset(adapter);
1557                 adapter->hw.phy.wait_for_link = 0;
1558
1559                 clear_bit(__E1000_TESTING, &adapter->state);
1560                 if (if_running)
1561                         dev_open(netdev);
1562         } else {
1563                 ndev_info(netdev, "online testing starting\n");
1564                 /* Online tests */
1565                 if (e1000_link_test(adapter, &data[4]))
1566                         eth_test->flags |= ETH_TEST_FL_FAILED;
1567
1568                 /* Online tests aren't run; pass by default */
1569                 data[0] = 0;
1570                 data[1] = 0;
1571                 data[2] = 0;
1572                 data[3] = 0;
1573
1574                 clear_bit(__E1000_TESTING, &adapter->state);
1575         }
1576         msleep_interruptible(4 * 1000);
1577 }
1578
1579 static void e1000_get_wol(struct net_device *netdev,
1580                           struct ethtool_wolinfo *wol)
1581 {
1582         struct e1000_adapter *adapter = netdev_priv(netdev);
1583
1584         wol->supported = 0;
1585         wol->wolopts = 0;
1586
1587         if (!(adapter->flags & FLAG_HAS_WOL))
1588                 return;
1589
1590         wol->supported = WAKE_UCAST | WAKE_MCAST |
1591                          WAKE_BCAST | WAKE_MAGIC;
1592
1593         /* apply any specific unsupported masks here */
1594         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1595                 wol->supported &= ~WAKE_UCAST;
1596
1597                 if (adapter->wol & E1000_WUFC_EX)
1598                         ndev_err(netdev, "Interface does not support "
1599                                  "directed (unicast) frame wake-up packets\n");
1600         }
1601
1602         if (adapter->wol & E1000_WUFC_EX)
1603                 wol->wolopts |= WAKE_UCAST;
1604         if (adapter->wol & E1000_WUFC_MC)
1605                 wol->wolopts |= WAKE_MCAST;
1606         if (adapter->wol & E1000_WUFC_BC)
1607                 wol->wolopts |= WAKE_BCAST;
1608         if (adapter->wol & E1000_WUFC_MAG)
1609                 wol->wolopts |= WAKE_MAGIC;
1610 }
1611
1612 static int e1000_set_wol(struct net_device *netdev,
1613                          struct ethtool_wolinfo *wol)
1614 {
1615         struct e1000_adapter *adapter = netdev_priv(netdev);
1616
1617         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1618                 return -EOPNOTSUPP;
1619
1620         if (!(adapter->flags & FLAG_HAS_WOL))
1621                 return wol->wolopts ? -EOPNOTSUPP : 0;
1622
1623         /* these settings will always override what we currently have */
1624         adapter->wol = 0;
1625
1626         if (wol->wolopts & WAKE_UCAST)
1627                 adapter->wol |= E1000_WUFC_EX;
1628         if (wol->wolopts & WAKE_MCAST)
1629                 adapter->wol |= E1000_WUFC_MC;
1630         if (wol->wolopts & WAKE_BCAST)
1631                 adapter->wol |= E1000_WUFC_BC;
1632         if (wol->wolopts & WAKE_MAGIC)
1633                 adapter->wol |= E1000_WUFC_MAG;
1634
1635         return 0;
1636 }
1637
1638 /* toggle LED 4 times per second = 2 "blinks" per second */
1639 #define E1000_ID_INTERVAL       (HZ/4)
1640
1641 /* bit defines for adapter->led_status */
1642 #define E1000_LED_ON            0
1643
1644 static void e1000_led_blink_callback(unsigned long data)
1645 {
1646         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1647
1648         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1649                 adapter->hw.mac.ops.led_off(&adapter->hw);
1650         else
1651                 adapter->hw.mac.ops.led_on(&adapter->hw);
1652
1653         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1654 }
1655
1656 static int e1000_phys_id(struct net_device *netdev, u32 data)
1657 {
1658         struct e1000_adapter *adapter = netdev_priv(netdev);
1659
1660         if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1661                 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1662
1663         if (adapter->hw.phy.type == e1000_phy_ife) {
1664                 if (!adapter->blink_timer.function) {
1665                         init_timer(&adapter->blink_timer);
1666                         adapter->blink_timer.function =
1667                                 e1000_led_blink_callback;
1668                         adapter->blink_timer.data = (unsigned long) adapter;
1669                 }
1670                 mod_timer(&adapter->blink_timer, jiffies);
1671                 msleep_interruptible(data * 1000);
1672                 del_timer_sync(&adapter->blink_timer);
1673                 e1e_wphy(&adapter->hw,
1674                                     IFE_PHY_SPECIAL_CONTROL_LED, 0);
1675         } else {
1676                 e1000e_blink_led(&adapter->hw);
1677                 msleep_interruptible(data * 1000);
1678         }
1679
1680         adapter->hw.mac.ops.led_off(&adapter->hw);
1681         clear_bit(E1000_LED_ON, &adapter->led_status);
1682         adapter->hw.mac.ops.cleanup_led(&adapter->hw);
1683
1684         return 0;
1685 }
1686
1687 static int e1000_nway_reset(struct net_device *netdev)
1688 {
1689         struct e1000_adapter *adapter = netdev_priv(netdev);
1690         if (netif_running(netdev))
1691                 e1000e_reinit_locked(adapter);
1692         return 0;
1693 }
1694
1695 static int e1000_get_stats_count(struct net_device *netdev)
1696 {
1697         return E1000_STATS_LEN;
1698 }
1699
1700 static void e1000_get_ethtool_stats(struct net_device *netdev,
1701                                     struct ethtool_stats *stats,
1702                                     u64 *data)
1703 {
1704         struct e1000_adapter *adapter = netdev_priv(netdev);
1705         int i;
1706
1707         e1000e_update_stats(adapter);
1708         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1709                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1710                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1711                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1712         }
1713 }
1714
1715 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1716                               u8 *data)
1717 {
1718         u8 *p = data;
1719         int i;
1720
1721         switch (stringset) {
1722         case ETH_SS_TEST:
1723                 memcpy(data, *e1000_gstrings_test,
1724                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1725                 break;
1726         case ETH_SS_STATS:
1727                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1728                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1729                                ETH_GSTRING_LEN);
1730                         p += ETH_GSTRING_LEN;
1731                 }
1732                 break;
1733         }
1734 }
1735
1736 static const struct ethtool_ops e1000_ethtool_ops = {
1737         .get_settings           = e1000_get_settings,
1738         .set_settings           = e1000_set_settings,
1739         .get_drvinfo            = e1000_get_drvinfo,
1740         .get_regs_len           = e1000_get_regs_len,
1741         .get_regs               = e1000_get_regs,
1742         .get_wol                = e1000_get_wol,
1743         .set_wol                = e1000_set_wol,
1744         .get_msglevel           = e1000_get_msglevel,
1745         .set_msglevel           = e1000_set_msglevel,
1746         .nway_reset             = e1000_nway_reset,
1747         .get_link               = ethtool_op_get_link,
1748         .get_eeprom_len         = e1000_get_eeprom_len,
1749         .get_eeprom             = e1000_get_eeprom,
1750         .set_eeprom             = e1000_set_eeprom,
1751         .get_ringparam          = e1000_get_ringparam,
1752         .set_ringparam          = e1000_set_ringparam,
1753         .get_pauseparam         = e1000_get_pauseparam,
1754         .set_pauseparam         = e1000_set_pauseparam,
1755         .get_rx_csum            = e1000_get_rx_csum,
1756         .set_rx_csum            = e1000_set_rx_csum,
1757         .get_tx_csum            = e1000_get_tx_csum,
1758         .set_tx_csum            = e1000_set_tx_csum,
1759         .get_sg                 = ethtool_op_get_sg,
1760         .set_sg                 = ethtool_op_set_sg,
1761         .get_tso                = ethtool_op_get_tso,
1762         .set_tso                = e1000_set_tso,
1763         .self_test_count        = e1000_diag_test_count,
1764         .self_test              = e1000_diag_test,
1765         .get_strings            = e1000_get_strings,
1766         .phys_id                = e1000_phys_id,
1767         .get_stats_count        = e1000_get_stats_count,
1768         .get_ethtool_stats      = e1000_get_ethtool_stats,
1769 };
1770
1771 void e1000e_set_ethtool_ops(struct net_device *netdev)
1772 {
1773         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1774 }