2 * message.c - synchronous message handling
5 #include <linux/pci.h> /* for scatterlist macros */
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/device.h>
14 #include <linux/usb/quirks.h>
15 #include <asm/byteorder.h>
16 #include <asm/scatterlist.h>
18 #include "hcd.h" /* for usbcore internals */
21 static void usb_api_blocking_completion(struct urb *urb)
23 complete((struct completion *)urb->context);
28 * Starts urb and waits for completion or timeout. Note that this call
29 * is NOT interruptible. Many device driver i/o requests should be
30 * interruptible and therefore these drivers should implement their
31 * own interruptible routines.
33 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
35 struct completion done;
38 int status = urb->status;
40 init_completion(&done);
42 urb->actual_length = 0;
43 retval = usb_submit_urb(urb, GFP_NOIO);
47 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
48 if (!wait_for_completion_timeout(&done, expire)) {
50 dev_dbg(&urb->dev->dev,
51 "%s timed out on ep%d%s len=%d/%d\n",
53 usb_pipeendpoint(urb->pipe),
54 usb_pipein(urb->pipe) ? "in" : "out",
56 urb->transfer_buffer_length);
59 retval = status == -ENOENT ? -ETIMEDOUT : status;
64 *actual_length = urb->actual_length;
70 /*-------------------------------------------------------------------*/
71 // returns status (negative) or length (positive)
72 static int usb_internal_control_msg(struct usb_device *usb_dev,
74 struct usb_ctrlrequest *cmd,
75 void *data, int len, int timeout)
81 urb = usb_alloc_urb(0, GFP_NOIO);
85 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
86 len, usb_api_blocking_completion, NULL);
88 retv = usb_start_wait_urb(urb, timeout, &length);
96 * usb_control_msg - Builds a control urb, sends it off and waits for completion
97 * @dev: pointer to the usb device to send the message to
98 * @pipe: endpoint "pipe" to send the message to
99 * @request: USB message request value
100 * @requesttype: USB message request type value
101 * @value: USB message value
102 * @index: USB message index value
103 * @data: pointer to the data to send
104 * @size: length in bytes of the data to send
105 * @timeout: time in msecs to wait for the message to complete before
106 * timing out (if 0 the wait is forever)
107 * Context: !in_interrupt ()
109 * This function sends a simple control message to a specified endpoint
110 * and waits for the message to complete, or timeout.
112 * If successful, it returns the number of bytes transferred, otherwise a negative error number.
114 * Don't use this function from within an interrupt context, like a
115 * bottom half handler. If you need an asynchronous message, or need to send
116 * a message from within interrupt context, use usb_submit_urb()
117 * If a thread in your driver uses this call, make sure your disconnect()
118 * method can wait for it to complete. Since you don't have a handle on
119 * the URB used, you can't cancel the request.
121 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype,
122 __u16 value, __u16 index, void *data, __u16 size, int timeout)
124 struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
130 dr->bRequestType= requesttype;
131 dr->bRequest = request;
132 dr->wValue = cpu_to_le16p(&value);
133 dr->wIndex = cpu_to_le16p(&index);
134 dr->wLength = cpu_to_le16p(&size);
136 //dbg("usb_control_msg");
138 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
147 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
148 * @usb_dev: pointer to the usb device to send the message to
149 * @pipe: endpoint "pipe" to send the message to
150 * @data: pointer to the data to send
151 * @len: length in bytes of the data to send
152 * @actual_length: pointer to a location to put the actual length transferred in bytes
153 * @timeout: time in msecs to wait for the message to complete before
154 * timing out (if 0 the wait is forever)
155 * Context: !in_interrupt ()
157 * This function sends a simple interrupt message to a specified endpoint and
158 * waits for the message to complete, or timeout.
160 * If successful, it returns 0, otherwise a negative error number. The number
161 * of actual bytes transferred will be stored in the actual_length paramater.
163 * Don't use this function from within an interrupt context, like a bottom half
164 * handler. If you need an asynchronous message, or need to send a message
165 * from within interrupt context, use usb_submit_urb() If a thread in your
166 * driver uses this call, make sure your disconnect() method can wait for it to
167 * complete. Since you don't have a handle on the URB used, you can't cancel
170 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
171 void *data, int len, int *actual_length, int timeout)
173 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
175 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
178 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
179 * @usb_dev: pointer to the usb device to send the message to
180 * @pipe: endpoint "pipe" to send the message to
181 * @data: pointer to the data to send
182 * @len: length in bytes of the data to send
183 * @actual_length: pointer to a location to put the actual length transferred in bytes
184 * @timeout: time in msecs to wait for the message to complete before
185 * timing out (if 0 the wait is forever)
186 * Context: !in_interrupt ()
188 * This function sends a simple bulk message to a specified endpoint
189 * and waits for the message to complete, or timeout.
191 * If successful, it returns 0, otherwise a negative error number.
192 * The number of actual bytes transferred will be stored in the
193 * actual_length paramater.
195 * Don't use this function from within an interrupt context, like a
196 * bottom half handler. If you need an asynchronous message, or need to
197 * send a message from within interrupt context, use usb_submit_urb()
198 * If a thread in your driver uses this call, make sure your disconnect()
199 * method can wait for it to complete. Since you don't have a handle on
200 * the URB used, you can't cancel the request.
202 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT
203 * ioctl, users are forced to abuse this routine by using it to submit
204 * URBs for interrupt endpoints. We will take the liberty of creating
205 * an interrupt URB (with the default interval) if the target is an
206 * interrupt endpoint.
208 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
209 void *data, int len, int *actual_length, int timeout)
212 struct usb_host_endpoint *ep;
214 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
215 [usb_pipeendpoint(pipe)];
219 urb = usb_alloc_urb(0, GFP_KERNEL);
223 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
224 USB_ENDPOINT_XFER_INT) {
225 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
226 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
227 usb_api_blocking_completion, NULL,
230 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
231 usb_api_blocking_completion, NULL);
233 return usb_start_wait_urb(urb, timeout, actual_length);
236 /*-------------------------------------------------------------------*/
238 static void sg_clean (struct usb_sg_request *io)
241 while (io->entries--)
242 usb_free_urb (io->urbs [io->entries]);
246 if (io->dev->dev.dma_mask != NULL)
247 usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents);
251 static void sg_complete (struct urb *urb)
253 struct usb_sg_request *io = urb->context;
254 int status = urb->status;
256 spin_lock (&io->lock);
258 /* In 2.5 we require hcds' endpoint queues not to progress after fault
259 * reports, until the completion callback (this!) returns. That lets
260 * device driver code (like this routine) unlink queued urbs first,
261 * if it needs to, since the HC won't work on them at all. So it's
262 * not possible for page N+1 to overwrite page N, and so on.
264 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
265 * complete before the HCD can get requests away from hardware,
266 * though never during cleanup after a hard fault.
269 && (io->status != -ECONNRESET
270 || status != -ECONNRESET)
271 && urb->actual_length) {
272 dev_err (io->dev->bus->controller,
273 "dev %s ep%d%s scatterlist error %d/%d\n",
275 usb_pipeendpoint (urb->pipe),
276 usb_pipein (urb->pipe) ? "in" : "out",
281 if (io->status == 0 && status && status != -ECONNRESET) {
282 int i, found, retval;
286 /* the previous urbs, and this one, completed already.
287 * unlink pending urbs so they won't rx/tx bad data.
288 * careful: unlink can sometimes be synchronous...
290 spin_unlock (&io->lock);
291 for (i = 0, found = 0; i < io->entries; i++) {
292 if (!io->urbs [i] || !io->urbs [i]->dev)
295 retval = usb_unlink_urb (io->urbs [i]);
296 if (retval != -EINPROGRESS &&
299 dev_err (&io->dev->dev,
300 "%s, unlink --> %d\n",
301 __FUNCTION__, retval);
302 } else if (urb == io->urbs [i])
305 spin_lock (&io->lock);
309 /* on the last completion, signal usb_sg_wait() */
310 io->bytes += urb->actual_length;
313 complete (&io->complete);
315 spin_unlock (&io->lock);
320 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
321 * @io: request block being initialized. until usb_sg_wait() returns,
322 * treat this as a pointer to an opaque block of memory,
323 * @dev: the usb device that will send or receive the data
324 * @pipe: endpoint "pipe" used to transfer the data
325 * @period: polling rate for interrupt endpoints, in frames or
326 * (for high speed endpoints) microframes; ignored for bulk
327 * @sg: scatterlist entries
328 * @nents: how many entries in the scatterlist
329 * @length: how many bytes to send from the scatterlist, or zero to
330 * send every byte identified in the list.
331 * @mem_flags: SLAB_* flags affecting memory allocations in this call
333 * Returns zero for success, else a negative errno value. This initializes a
334 * scatter/gather request, allocating resources such as I/O mappings and urb
335 * memory (except maybe memory used by USB controller drivers).
337 * The request must be issued using usb_sg_wait(), which waits for the I/O to
338 * complete (or to be canceled) and then cleans up all resources allocated by
341 * The request may be canceled with usb_sg_cancel(), either before or after
342 * usb_sg_wait() is called.
345 struct usb_sg_request *io,
346 struct usb_device *dev,
349 struct scatterlist *sg,
359 if (!io || !dev || !sg
360 || usb_pipecontrol (pipe)
361 || usb_pipeisoc (pipe)
365 spin_lock_init (&io->lock);
371 /* not all host controllers use DMA (like the mainstream pci ones);
372 * they can use PIO (sl811) or be software over another transport.
374 dma = (dev->dev.dma_mask != NULL);
376 io->entries = usb_buffer_map_sg (dev, pipe, sg, nents);
380 /* initialize all the urbs we'll use */
381 if (io->entries <= 0)
384 io->count = io->entries;
385 io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags);
389 urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT;
390 if (usb_pipein (pipe))
391 urb_flags |= URB_SHORT_NOT_OK;
393 for (i = 0; i < io->entries; i++) {
396 io->urbs [i] = usb_alloc_urb (0, mem_flags);
402 io->urbs [i]->dev = NULL;
403 io->urbs [i]->pipe = pipe;
404 io->urbs [i]->interval = period;
405 io->urbs [i]->transfer_flags = urb_flags;
407 io->urbs [i]->complete = sg_complete;
408 io->urbs [i]->context = io;
411 * Some systems need to revert to PIO when DMA is temporarily
412 * unavailable. For their sakes, both transfer_buffer and
413 * transfer_dma are set when possible. However this can only
414 * work on systems without:
416 * - HIGHMEM, since DMA buffers located in high memory are
417 * not directly addressable by the CPU for PIO;
419 * - IOMMU, since dma_map_sg() is allowed to use an IOMMU to
420 * make virtually discontiguous buffers be "dma-contiguous"
421 * so that PIO and DMA need diferent numbers of URBs.
423 * So when HIGHMEM or IOMMU are in use, transfer_buffer is NULL
424 * to prevent stale pointers and to help spot bugs.
427 io->urbs [i]->transfer_dma = sg_dma_address (sg + i);
428 len = sg_dma_len (sg + i);
429 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_IOMMU)
430 io->urbs[i]->transfer_buffer = NULL;
432 io->urbs[i]->transfer_buffer =
433 page_address(sg[i].page) + sg[i].offset;
436 /* hc may use _only_ transfer_buffer */
437 io->urbs [i]->transfer_buffer =
438 page_address (sg [i].page) + sg [i].offset;
443 len = min_t (unsigned, len, length);
448 io->urbs [i]->transfer_buffer_length = len;
450 io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT;
452 /* transaction state */
455 init_completion (&io->complete);
465 * usb_sg_wait - synchronously execute scatter/gather request
466 * @io: request block handle, as initialized with usb_sg_init().
467 * some fields become accessible when this call returns.
468 * Context: !in_interrupt ()
470 * This function blocks until the specified I/O operation completes. It
471 * leverages the grouping of the related I/O requests to get good transfer
472 * rates, by queueing the requests. At higher speeds, such queuing can
473 * significantly improve USB throughput.
475 * There are three kinds of completion for this function.
476 * (1) success, where io->status is zero. The number of io->bytes
477 * transferred is as requested.
478 * (2) error, where io->status is a negative errno value. The number
479 * of io->bytes transferred before the error is usually less
480 * than requested, and can be nonzero.
481 * (3) cancellation, a type of error with status -ECONNRESET that
482 * is initiated by usb_sg_cancel().
484 * When this function returns, all memory allocated through usb_sg_init() or
485 * this call will have been freed. The request block parameter may still be
486 * passed to usb_sg_cancel(), or it may be freed. It could also be
487 * reinitialized and then reused.
489 * Data Transfer Rates:
491 * Bulk transfers are valid for full or high speed endpoints.
492 * The best full speed data rate is 19 packets of 64 bytes each
493 * per frame, or 1216 bytes per millisecond.
494 * The best high speed data rate is 13 packets of 512 bytes each
495 * per microframe, or 52 KBytes per millisecond.
497 * The reason to use interrupt transfers through this API would most likely
498 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
499 * could be transferred. That capability is less useful for low or full
500 * speed interrupt endpoints, which allow at most one packet per millisecond,
501 * of at most 8 or 64 bytes (respectively).
503 void usb_sg_wait (struct usb_sg_request *io)
505 int i, entries = io->entries;
507 /* queue the urbs. */
508 spin_lock_irq (&io->lock);
510 while (i < entries && !io->status) {
513 io->urbs [i]->dev = io->dev;
514 retval = usb_submit_urb (io->urbs [i], GFP_ATOMIC);
516 /* after we submit, let completions or cancelations fire;
517 * we handshake using io->status.
519 spin_unlock_irq (&io->lock);
521 /* maybe we retrying will recover */
522 case -ENXIO: // hc didn't queue this one
525 io->urbs[i]->dev = NULL;
530 /* no error? continue immediately.
532 * NOTE: to work better with UHCI (4K I/O buffer may
533 * need 3K of TDs) it may be good to limit how many
534 * URBs are queued at once; N milliseconds?
541 /* fail any uncompleted urbs */
543 io->urbs [i]->dev = NULL;
544 io->urbs [i]->status = retval;
545 dev_dbg (&io->dev->dev, "%s, submit --> %d\n",
546 __FUNCTION__, retval);
549 spin_lock_irq (&io->lock);
550 if (retval && (io->status == 0 || io->status == -ECONNRESET))
553 io->count -= entries - i;
555 complete (&io->complete);
556 spin_unlock_irq (&io->lock);
558 /* OK, yes, this could be packaged as non-blocking.
559 * So could the submit loop above ... but it's easier to
560 * solve neither problem than to solve both!
562 wait_for_completion (&io->complete);
568 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
569 * @io: request block, initialized with usb_sg_init()
571 * This stops a request after it has been started by usb_sg_wait().
572 * It can also prevents one initialized by usb_sg_init() from starting,
573 * so that call just frees resources allocated to the request.
575 void usb_sg_cancel (struct usb_sg_request *io)
579 spin_lock_irqsave (&io->lock, flags);
581 /* shut everything down, if it didn't already */
585 io->status = -ECONNRESET;
586 spin_unlock (&io->lock);
587 for (i = 0; i < io->entries; i++) {
590 if (!io->urbs [i]->dev)
592 retval = usb_unlink_urb (io->urbs [i]);
593 if (retval != -EINPROGRESS && retval != -EBUSY)
594 dev_warn (&io->dev->dev, "%s, unlink --> %d\n",
595 __FUNCTION__, retval);
597 spin_lock (&io->lock);
599 spin_unlock_irqrestore (&io->lock, flags);
602 /*-------------------------------------------------------------------*/
605 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
606 * @dev: the device whose descriptor is being retrieved
607 * @type: the descriptor type (USB_DT_*)
608 * @index: the number of the descriptor
609 * @buf: where to put the descriptor
610 * @size: how big is "buf"?
611 * Context: !in_interrupt ()
613 * Gets a USB descriptor. Convenience functions exist to simplify
614 * getting some types of descriptors. Use
615 * usb_get_string() or usb_string() for USB_DT_STRING.
616 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
617 * are part of the device structure.
618 * In addition to a number of USB-standard descriptors, some
619 * devices also use class-specific or vendor-specific descriptors.
621 * This call is synchronous, and may not be used in an interrupt context.
623 * Returns the number of bytes received on success, or else the status code
624 * returned by the underlying usb_control_msg() call.
626 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
631 memset(buf,0,size); // Make sure we parse really received data
633 for (i = 0; i < 3; ++i) {
634 /* retry on length 0 or stall; some devices are flakey */
635 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
636 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
637 (type << 8) + index, 0, buf, size,
638 USB_CTRL_GET_TIMEOUT);
639 if (result == 0 || result == -EPIPE)
641 if (result > 1 && ((u8 *)buf)[1] != type) {
651 * usb_get_string - gets a string descriptor
652 * @dev: the device whose string descriptor is being retrieved
653 * @langid: code for language chosen (from string descriptor zero)
654 * @index: the number of the descriptor
655 * @buf: where to put the string
656 * @size: how big is "buf"?
657 * Context: !in_interrupt ()
659 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
660 * in little-endian byte order).
661 * The usb_string() function will often be a convenient way to turn
662 * these strings into kernel-printable form.
664 * Strings may be referenced in device, configuration, interface, or other
665 * descriptors, and could also be used in vendor-specific ways.
667 * This call is synchronous, and may not be used in an interrupt context.
669 * Returns the number of bytes received on success, or else the status code
670 * returned by the underlying usb_control_msg() call.
672 static int usb_get_string(struct usb_device *dev, unsigned short langid,
673 unsigned char index, void *buf, int size)
678 for (i = 0; i < 3; ++i) {
679 /* retry on length 0 or stall; some devices are flakey */
680 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
681 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
682 (USB_DT_STRING << 8) + index, langid, buf, size,
683 USB_CTRL_GET_TIMEOUT);
684 if (!(result == 0 || result == -EPIPE))
690 static void usb_try_string_workarounds(unsigned char *buf, int *length)
692 int newlength, oldlength = *length;
694 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
695 if (!isprint(buf[newlength]) || buf[newlength + 1])
704 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
705 unsigned int index, unsigned char *buf)
709 /* Try to read the string descriptor by asking for the maximum
710 * possible number of bytes */
711 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
714 rc = usb_get_string(dev, langid, index, buf, 255);
716 /* If that failed try to read the descriptor length, then
717 * ask for just that many bytes */
719 rc = usb_get_string(dev, langid, index, buf, 2);
721 rc = usb_get_string(dev, langid, index, buf, buf[0]);
725 if (!buf[0] && !buf[1])
726 usb_try_string_workarounds(buf, &rc);
728 /* There might be extra junk at the end of the descriptor */
732 rc = rc - (rc & 1); /* force a multiple of two */
736 rc = (rc < 0 ? rc : -EINVAL);
742 * usb_string - returns ISO 8859-1 version of a string descriptor
743 * @dev: the device whose string descriptor is being retrieved
744 * @index: the number of the descriptor
745 * @buf: where to put the string
746 * @size: how big is "buf"?
747 * Context: !in_interrupt ()
749 * This converts the UTF-16LE encoded strings returned by devices, from
750 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
751 * that are more usable in most kernel contexts. Note that all characters
752 * in the chosen descriptor that can't be encoded using ISO-8859-1
753 * are converted to the question mark ("?") character, and this function
754 * chooses strings in the first language supported by the device.
756 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
757 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
758 * and is appropriate for use many uses of English and several other
759 * Western European languages. (But it doesn't include the "Euro" symbol.)
761 * This call is synchronous, and may not be used in an interrupt context.
763 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
765 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
771 if (dev->state == USB_STATE_SUSPENDED)
772 return -EHOSTUNREACH;
773 if (size <= 0 || !buf || !index)
776 tbuf = kmalloc(256, GFP_KERNEL);
780 /* get langid for strings if it's not yet known */
781 if (!dev->have_langid) {
782 err = usb_string_sub(dev, 0, 0, tbuf);
785 "string descriptor 0 read error: %d\n",
788 } else if (err < 4) {
789 dev_err (&dev->dev, "string descriptor 0 too short\n");
793 dev->have_langid = 1;
794 dev->string_langid = tbuf[2] | (tbuf[3]<< 8);
795 /* always use the first langid listed */
796 dev_dbg (&dev->dev, "default language 0x%04x\n",
801 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
805 size--; /* leave room for trailing NULL char in output buffer */
806 for (idx = 0, u = 2; u < err; u += 2) {
809 if (tbuf[u+1]) /* high byte */
810 buf[idx++] = '?'; /* non ISO-8859-1 character */
812 buf[idx++] = tbuf[u];
817 if (tbuf[1] != USB_DT_STRING)
818 dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf);
826 * usb_cache_string - read a string descriptor and cache it for later use
827 * @udev: the device whose string descriptor is being read
828 * @index: the descriptor index
830 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
831 * or NULL if the index is 0 or the string could not be read.
833 char *usb_cache_string(struct usb_device *udev, int index)
836 char *smallbuf = NULL;
839 if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) {
840 if ((len = usb_string(udev, index, buf, 256)) > 0) {
841 if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL)
843 memcpy(smallbuf, buf, len);
851 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
852 * @dev: the device whose device descriptor is being updated
853 * @size: how much of the descriptor to read
854 * Context: !in_interrupt ()
856 * Updates the copy of the device descriptor stored in the device structure,
857 * which dedicates space for this purpose.
859 * Not exported, only for use by the core. If drivers really want to read
860 * the device descriptor directly, they can call usb_get_descriptor() with
861 * type = USB_DT_DEVICE and index = 0.
863 * This call is synchronous, and may not be used in an interrupt context.
865 * Returns the number of bytes received on success, or else the status code
866 * returned by the underlying usb_control_msg() call.
868 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
870 struct usb_device_descriptor *desc;
873 if (size > sizeof(*desc))
875 desc = kmalloc(sizeof(*desc), GFP_NOIO);
879 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
881 memcpy(&dev->descriptor, desc, size);
887 * usb_get_status - issues a GET_STATUS call
888 * @dev: the device whose status is being checked
889 * @type: USB_RECIP_*; for device, interface, or endpoint
890 * @target: zero (for device), else interface or endpoint number
891 * @data: pointer to two bytes of bitmap data
892 * Context: !in_interrupt ()
894 * Returns device, interface, or endpoint status. Normally only of
895 * interest to see if the device is self powered, or has enabled the
896 * remote wakeup facility; or whether a bulk or interrupt endpoint
897 * is halted ("stalled").
899 * Bits in these status bitmaps are set using the SET_FEATURE request,
900 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
901 * function should be used to clear halt ("stall") status.
903 * This call is synchronous, and may not be used in an interrupt context.
905 * Returns the number of bytes received on success, or else the status code
906 * returned by the underlying usb_control_msg() call.
908 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
911 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
916 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
917 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
918 sizeof(*status), USB_CTRL_GET_TIMEOUT);
920 *(u16 *)data = *status;
926 * usb_clear_halt - tells device to clear endpoint halt/stall condition
927 * @dev: device whose endpoint is halted
928 * @pipe: endpoint "pipe" being cleared
929 * Context: !in_interrupt ()
931 * This is used to clear halt conditions for bulk and interrupt endpoints,
932 * as reported by URB completion status. Endpoints that are halted are
933 * sometimes referred to as being "stalled". Such endpoints are unable
934 * to transmit or receive data until the halt status is cleared. Any URBs
935 * queued for such an endpoint should normally be unlinked by the driver
936 * before clearing the halt condition, as described in sections 5.7.5
937 * and 5.8.5 of the USB 2.0 spec.
939 * Note that control and isochronous endpoints don't halt, although control
940 * endpoints report "protocol stall" (for unsupported requests) using the
941 * same status code used to report a true stall.
943 * This call is synchronous, and may not be used in an interrupt context.
945 * Returns zero on success, or else the status code returned by the
946 * underlying usb_control_msg() call.
948 int usb_clear_halt(struct usb_device *dev, int pipe)
951 int endp = usb_pipeendpoint(pipe);
953 if (usb_pipein (pipe))
956 /* we don't care if it wasn't halted first. in fact some devices
957 * (like some ibmcam model 1 units) seem to expect hosts to make
958 * this request for iso endpoints, which can't halt!
960 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
961 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
962 USB_ENDPOINT_HALT, endp, NULL, 0,
963 USB_CTRL_SET_TIMEOUT);
965 /* don't un-halt or force to DATA0 except on success */
969 /* NOTE: seems like Microsoft and Apple don't bother verifying
970 * the clear "took", so some devices could lock up if you check...
971 * such as the Hagiwara FlashGate DUAL. So we won't bother.
973 * NOTE: make sure the logic here doesn't diverge much from
974 * the copy in usb-storage, for as long as we need two copies.
977 /* toggle was reset by the clear */
978 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
984 * usb_disable_endpoint -- Disable an endpoint by address
985 * @dev: the device whose endpoint is being disabled
986 * @epaddr: the endpoint's address. Endpoint number for output,
987 * endpoint number + USB_DIR_IN for input
989 * Deallocates hcd/hardware state for this endpoint ... and nukes all
992 * If the HCD hasn't registered a disable() function, this sets the
993 * endpoint's maxpacket size to 0 to prevent further submissions.
995 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
997 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
998 struct usb_host_endpoint *ep;
1003 if (usb_endpoint_out(epaddr)) {
1004 ep = dev->ep_out[epnum];
1005 dev->ep_out[epnum] = NULL;
1007 ep = dev->ep_in[epnum];
1008 dev->ep_in[epnum] = NULL;
1011 usb_hcd_endpoint_disable(dev, ep);
1015 * usb_disable_interface -- Disable all endpoints for an interface
1016 * @dev: the device whose interface is being disabled
1017 * @intf: pointer to the interface descriptor
1019 * Disables all the endpoints for the interface's current altsetting.
1021 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
1023 struct usb_host_interface *alt = intf->cur_altsetting;
1026 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1027 usb_disable_endpoint(dev,
1028 alt->endpoint[i].desc.bEndpointAddress);
1033 * usb_disable_device - Disable all the endpoints for a USB device
1034 * @dev: the device whose endpoints are being disabled
1035 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1037 * Disables all the device's endpoints, potentially including endpoint 0.
1038 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1039 * pending urbs) and usbcore state for the interfaces, so that usbcore
1040 * must usb_set_configuration() before any interfaces could be used.
1042 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1046 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
1047 skip_ep0 ? "non-ep0" : "all");
1048 for (i = skip_ep0; i < 16; ++i) {
1049 usb_disable_endpoint(dev, i);
1050 usb_disable_endpoint(dev, i + USB_DIR_IN);
1052 dev->toggle[0] = dev->toggle[1] = 0;
1054 /* getting rid of interfaces will disconnect
1055 * any drivers bound to them (a key side effect)
1057 if (dev->actconfig) {
1058 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1059 struct usb_interface *interface;
1061 /* remove this interface if it has been registered */
1062 interface = dev->actconfig->interface[i];
1063 if (!device_is_registered(&interface->dev))
1065 dev_dbg (&dev->dev, "unregistering interface %s\n",
1066 interface->dev.bus_id);
1067 usb_remove_sysfs_intf_files(interface);
1068 device_del (&interface->dev);
1071 /* Now that the interfaces are unbound, nobody should
1072 * try to access them.
1074 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1075 put_device (&dev->actconfig->interface[i]->dev);
1076 dev->actconfig->interface[i] = NULL;
1078 dev->actconfig = NULL;
1079 if (dev->state == USB_STATE_CONFIGURED)
1080 usb_set_device_state(dev, USB_STATE_ADDRESS);
1086 * usb_enable_endpoint - Enable an endpoint for USB communications
1087 * @dev: the device whose interface is being enabled
1090 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
1091 * For control endpoints, both the input and output sides are handled.
1094 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
1096 unsigned int epaddr = ep->desc.bEndpointAddress;
1097 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1100 is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
1101 == USB_ENDPOINT_XFER_CONTROL);
1102 if (usb_endpoint_out(epaddr) || is_control) {
1103 usb_settoggle(dev, epnum, 1, 0);
1104 dev->ep_out[epnum] = ep;
1106 if (!usb_endpoint_out(epaddr) || is_control) {
1107 usb_settoggle(dev, epnum, 0, 0);
1108 dev->ep_in[epnum] = ep;
1113 * usb_enable_interface - Enable all the endpoints for an interface
1114 * @dev: the device whose interface is being enabled
1115 * @intf: pointer to the interface descriptor
1117 * Enables all the endpoints for the interface's current altsetting.
1119 static void usb_enable_interface(struct usb_device *dev,
1120 struct usb_interface *intf)
1122 struct usb_host_interface *alt = intf->cur_altsetting;
1125 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1126 usb_enable_endpoint(dev, &alt->endpoint[i]);
1130 * usb_set_interface - Makes a particular alternate setting be current
1131 * @dev: the device whose interface is being updated
1132 * @interface: the interface being updated
1133 * @alternate: the setting being chosen.
1134 * Context: !in_interrupt ()
1136 * This is used to enable data transfers on interfaces that may not
1137 * be enabled by default. Not all devices support such configurability.
1138 * Only the driver bound to an interface may change its setting.
1140 * Within any given configuration, each interface may have several
1141 * alternative settings. These are often used to control levels of
1142 * bandwidth consumption. For example, the default setting for a high
1143 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1144 * while interrupt transfers of up to 3KBytes per microframe are legal.
1145 * Also, isochronous endpoints may never be part of an
1146 * interface's default setting. To access such bandwidth, alternate
1147 * interface settings must be made current.
1149 * Note that in the Linux USB subsystem, bandwidth associated with
1150 * an endpoint in a given alternate setting is not reserved until an URB
1151 * is submitted that needs that bandwidth. Some other operating systems
1152 * allocate bandwidth early, when a configuration is chosen.
1154 * This call is synchronous, and may not be used in an interrupt context.
1155 * Also, drivers must not change altsettings while urbs are scheduled for
1156 * endpoints in that interface; all such urbs must first be completed
1157 * (perhaps forced by unlinking).
1159 * Returns zero on success, or else the status code returned by the
1160 * underlying usb_control_msg() call.
1162 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1164 struct usb_interface *iface;
1165 struct usb_host_interface *alt;
1169 if (dev->state == USB_STATE_SUSPENDED)
1170 return -EHOSTUNREACH;
1172 iface = usb_ifnum_to_if(dev, interface);
1174 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1179 alt = usb_altnum_to_altsetting(iface, alternate);
1181 warn("selecting invalid altsetting %d", alternate);
1185 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1186 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1187 alternate, interface, NULL, 0, 5000);
1189 /* 9.4.10 says devices don't need this and are free to STALL the
1190 * request if the interface only has one alternate setting.
1192 if (ret == -EPIPE && iface->num_altsetting == 1) {
1194 "manual set_interface for iface %d, alt %d\n",
1195 interface, alternate);
1200 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1201 * when they implement async or easily-killable versions of this or
1202 * other "should-be-internal" functions (like clear_halt).
1203 * should hcd+usbcore postprocess control requests?
1206 /* prevent submissions using previous endpoint settings */
1207 if (device_is_registered(&iface->dev))
1208 usb_remove_sysfs_intf_files(iface);
1209 usb_disable_interface(dev, iface);
1211 iface->cur_altsetting = alt;
1213 /* If the interface only has one altsetting and the device didn't
1214 * accept the request, we attempt to carry out the equivalent action
1215 * by manually clearing the HALT feature for each endpoint in the
1221 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1222 unsigned int epaddr =
1223 alt->endpoint[i].desc.bEndpointAddress;
1225 __create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
1226 | (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);
1228 usb_clear_halt(dev, pipe);
1232 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1235 * Despite EP0 is always present in all interfaces/AS, the list of
1236 * endpoints from the descriptor does not contain EP0. Due to its
1237 * omnipresence one might expect EP0 being considered "affected" by
1238 * any SetInterface request and hence assume toggles need to be reset.
1239 * However, EP0 toggles are re-synced for every individual transfer
1240 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1241 * (Likewise, EP0 never "halts" on well designed devices.)
1243 usb_enable_interface(dev, iface);
1244 if (device_is_registered(&iface->dev))
1245 usb_create_sysfs_intf_files(iface);
1251 * usb_reset_configuration - lightweight device reset
1252 * @dev: the device whose configuration is being reset
1254 * This issues a standard SET_CONFIGURATION request to the device using
1255 * the current configuration. The effect is to reset most USB-related
1256 * state in the device, including interface altsettings (reset to zero),
1257 * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1258 * endpoints). Other usbcore state is unchanged, including bindings of
1259 * usb device drivers to interfaces.
1261 * Because this affects multiple interfaces, avoid using this with composite
1262 * (multi-interface) devices. Instead, the driver for each interface may
1263 * use usb_set_interface() on the interfaces it claims. Be careful though;
1264 * some devices don't support the SET_INTERFACE request, and others won't
1265 * reset all the interface state (notably data toggles). Resetting the whole
1266 * configuration would affect other drivers' interfaces.
1268 * The caller must own the device lock.
1270 * Returns zero on success, else a negative error code.
1272 int usb_reset_configuration(struct usb_device *dev)
1275 struct usb_host_config *config;
1277 if (dev->state == USB_STATE_SUSPENDED)
1278 return -EHOSTUNREACH;
1280 /* caller must have locked the device and must own
1281 * the usb bus readlock (so driver bindings are stable);
1282 * calls during probe() are fine
1285 for (i = 1; i < 16; ++i) {
1286 usb_disable_endpoint(dev, i);
1287 usb_disable_endpoint(dev, i + USB_DIR_IN);
1290 config = dev->actconfig;
1291 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1292 USB_REQ_SET_CONFIGURATION, 0,
1293 config->desc.bConfigurationValue, 0,
1294 NULL, 0, USB_CTRL_SET_TIMEOUT);
1298 dev->toggle[0] = dev->toggle[1] = 0;
1300 /* re-init hc/hcd interface/endpoint state */
1301 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1302 struct usb_interface *intf = config->interface[i];
1303 struct usb_host_interface *alt;
1305 if (device_is_registered(&intf->dev))
1306 usb_remove_sysfs_intf_files(intf);
1307 alt = usb_altnum_to_altsetting(intf, 0);
1309 /* No altsetting 0? We'll assume the first altsetting.
1310 * We could use a GetInterface call, but if a device is
1311 * so non-compliant that it doesn't have altsetting 0
1312 * then I wouldn't trust its reply anyway.
1315 alt = &intf->altsetting[0];
1317 intf->cur_altsetting = alt;
1318 usb_enable_interface(dev, intf);
1319 if (device_is_registered(&intf->dev))
1320 usb_create_sysfs_intf_files(intf);
1325 void usb_release_interface(struct device *dev)
1327 struct usb_interface *intf = to_usb_interface(dev);
1328 struct usb_interface_cache *intfc =
1329 altsetting_to_usb_interface_cache(intf->altsetting);
1331 kref_put(&intfc->ref, usb_release_interface_cache);
1335 #ifdef CONFIG_HOTPLUG
1336 static int usb_if_uevent(struct device *dev, char **envp, int num_envp,
1337 char *buffer, int buffer_size)
1339 struct usb_device *usb_dev;
1340 struct usb_interface *intf;
1341 struct usb_host_interface *alt;
1348 /* driver is often null here; dev_dbg() would oops */
1349 pr_debug ("usb %s: uevent\n", dev->bus_id);
1351 intf = to_usb_interface(dev);
1352 usb_dev = interface_to_usbdev(intf);
1353 alt = intf->cur_altsetting;
1355 if (add_uevent_var(envp, num_envp, &i,
1356 buffer, buffer_size, &length,
1357 "INTERFACE=%d/%d/%d",
1358 alt->desc.bInterfaceClass,
1359 alt->desc.bInterfaceSubClass,
1360 alt->desc.bInterfaceProtocol))
1363 if (add_uevent_var(envp, num_envp, &i,
1364 buffer, buffer_size, &length,
1365 "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1366 le16_to_cpu(usb_dev->descriptor.idVendor),
1367 le16_to_cpu(usb_dev->descriptor.idProduct),
1368 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1369 usb_dev->descriptor.bDeviceClass,
1370 usb_dev->descriptor.bDeviceSubClass,
1371 usb_dev->descriptor.bDeviceProtocol,
1372 alt->desc.bInterfaceClass,
1373 alt->desc.bInterfaceSubClass,
1374 alt->desc.bInterfaceProtocol))
1383 static int usb_if_uevent(struct device *dev, char **envp,
1384 int num_envp, char *buffer, int buffer_size)
1388 #endif /* CONFIG_HOTPLUG */
1390 struct device_type usb_if_device_type = {
1391 .name = "usb_interface",
1392 .release = usb_release_interface,
1393 .uevent = usb_if_uevent,
1396 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1397 struct usb_host_config *config,
1400 struct usb_interface_assoc_descriptor *retval = NULL;
1401 struct usb_interface_assoc_descriptor *intf_assoc;
1406 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1407 intf_assoc = config->intf_assoc[i];
1408 if (intf_assoc->bInterfaceCount == 0)
1411 first_intf = intf_assoc->bFirstInterface;
1412 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1413 if (inum >= first_intf && inum <= last_intf) {
1415 retval = intf_assoc;
1417 dev_err(&dev->dev, "Interface #%d referenced"
1418 " by multiple IADs\n", inum);
1427 * usb_set_configuration - Makes a particular device setting be current
1428 * @dev: the device whose configuration is being updated
1429 * @configuration: the configuration being chosen.
1430 * Context: !in_interrupt(), caller owns the device lock
1432 * This is used to enable non-default device modes. Not all devices
1433 * use this kind of configurability; many devices only have one
1436 * @configuration is the value of the configuration to be installed.
1437 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1438 * must be non-zero; a value of zero indicates that the device in
1439 * unconfigured. However some devices erroneously use 0 as one of their
1440 * configuration values. To help manage such devices, this routine will
1441 * accept @configuration = -1 as indicating the device should be put in
1442 * an unconfigured state.
1444 * USB device configurations may affect Linux interoperability,
1445 * power consumption and the functionality available. For example,
1446 * the default configuration is limited to using 100mA of bus power,
1447 * so that when certain device functionality requires more power,
1448 * and the device is bus powered, that functionality should be in some
1449 * non-default device configuration. Other device modes may also be
1450 * reflected as configuration options, such as whether two ISDN
1451 * channels are available independently; and choosing between open
1452 * standard device protocols (like CDC) or proprietary ones.
1454 * Note that USB has an additional level of device configurability,
1455 * associated with interfaces. That configurability is accessed using
1456 * usb_set_interface().
1458 * This call is synchronous. The calling context must be able to sleep,
1459 * must own the device lock, and must not hold the driver model's USB
1460 * bus mutex; usb device driver probe() methods cannot use this routine.
1462 * Returns zero on success, or else the status code returned by the
1463 * underlying call that failed. On successful completion, each interface
1464 * in the original device configuration has been destroyed, and each one
1465 * in the new configuration has been probed by all relevant usb device
1466 * drivers currently known to the kernel.
1468 int usb_set_configuration(struct usb_device *dev, int configuration)
1471 struct usb_host_config *cp = NULL;
1472 struct usb_interface **new_interfaces = NULL;
1475 if (configuration == -1)
1478 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1479 if (dev->config[i].desc.bConfigurationValue ==
1481 cp = &dev->config[i];
1486 if ((!cp && configuration != 0))
1489 /* The USB spec says configuration 0 means unconfigured.
1490 * But if a device includes a configuration numbered 0,
1491 * we will accept it as a correctly configured state.
1492 * Use -1 if you really want to unconfigure the device.
1494 if (cp && configuration == 0)
1495 dev_warn(&dev->dev, "config 0 descriptor??\n");
1497 /* Allocate memory for new interfaces before doing anything else,
1498 * so that if we run out then nothing will have changed. */
1501 nintf = cp->desc.bNumInterfaces;
1502 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1504 if (!new_interfaces) {
1505 dev_err(&dev->dev, "Out of memory");
1509 for (; n < nintf; ++n) {
1510 new_interfaces[n] = kzalloc(
1511 sizeof(struct usb_interface),
1513 if (!new_interfaces[n]) {
1514 dev_err(&dev->dev, "Out of memory");
1518 kfree(new_interfaces[n]);
1519 kfree(new_interfaces);
1524 i = dev->bus_mA - cp->desc.bMaxPower * 2;
1526 dev_warn(&dev->dev, "new config #%d exceeds power "
1531 /* Wake up the device so we can send it the Set-Config request */
1532 ret = usb_autoresume_device(dev);
1534 goto free_interfaces;
1536 /* if it's already configured, clear out old state first.
1537 * getting rid of old interfaces means unbinding their drivers.
1539 if (dev->state != USB_STATE_ADDRESS)
1540 usb_disable_device (dev, 1); // Skip ep0
1542 if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1543 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1544 NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) {
1546 /* All the old state is gone, so what else can we do?
1547 * The device is probably useless now anyway.
1552 dev->actconfig = cp;
1554 usb_set_device_state(dev, USB_STATE_ADDRESS);
1555 usb_autosuspend_device(dev);
1556 goto free_interfaces;
1558 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1560 /* Initialize the new interface structures and the
1561 * hc/hcd/usbcore interface/endpoint state.
1563 for (i = 0; i < nintf; ++i) {
1564 struct usb_interface_cache *intfc;
1565 struct usb_interface *intf;
1566 struct usb_host_interface *alt;
1568 cp->interface[i] = intf = new_interfaces[i];
1569 intfc = cp->intf_cache[i];
1570 intf->altsetting = intfc->altsetting;
1571 intf->num_altsetting = intfc->num_altsetting;
1572 intf->intf_assoc = find_iad(dev, cp, i);
1573 kref_get(&intfc->ref);
1575 alt = usb_altnum_to_altsetting(intf, 0);
1577 /* No altsetting 0? We'll assume the first altsetting.
1578 * We could use a GetInterface call, but if a device is
1579 * so non-compliant that it doesn't have altsetting 0
1580 * then I wouldn't trust its reply anyway.
1583 alt = &intf->altsetting[0];
1585 intf->cur_altsetting = alt;
1586 usb_enable_interface(dev, intf);
1587 intf->dev.parent = &dev->dev;
1588 intf->dev.driver = NULL;
1589 intf->dev.bus = &usb_bus_type;
1590 intf->dev.type = &usb_if_device_type;
1591 intf->dev.dma_mask = dev->dev.dma_mask;
1592 device_initialize (&intf->dev);
1593 mark_quiesced(intf);
1594 sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d",
1595 dev->bus->busnum, dev->devpath,
1596 configuration, alt->desc.bInterfaceNumber);
1598 kfree(new_interfaces);
1600 if (cp->string == NULL)
1601 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1603 /* Now that all the interfaces are set up, register them
1604 * to trigger binding of drivers to interfaces. probe()
1605 * routines may install different altsettings and may
1606 * claim() any interfaces not yet bound. Many class drivers
1607 * need that: CDC, audio, video, etc.
1609 for (i = 0; i < nintf; ++i) {
1610 struct usb_interface *intf = cp->interface[i];
1613 "adding %s (config #%d, interface %d)\n",
1614 intf->dev.bus_id, configuration,
1615 intf->cur_altsetting->desc.bInterfaceNumber);
1616 ret = device_add (&intf->dev);
1618 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1619 intf->dev.bus_id, ret);
1622 usb_create_sysfs_intf_files (intf);
1625 usb_autosuspend_device(dev);
1629 struct set_config_request {
1630 struct usb_device *udev;
1632 struct work_struct work;
1635 /* Worker routine for usb_driver_set_configuration() */
1636 static void driver_set_config_work(struct work_struct *work)
1638 struct set_config_request *req =
1639 container_of(work, struct set_config_request, work);
1641 usb_lock_device(req->udev);
1642 usb_set_configuration(req->udev, req->config);
1643 usb_unlock_device(req->udev);
1644 usb_put_dev(req->udev);
1649 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1650 * @udev: the device whose configuration is being updated
1651 * @config: the configuration being chosen.
1652 * Context: In process context, must be able to sleep
1654 * Device interface drivers are not allowed to change device configurations.
1655 * This is because changing configurations will destroy the interface the
1656 * driver is bound to and create new ones; it would be like a floppy-disk
1657 * driver telling the computer to replace the floppy-disk drive with a
1660 * Still, in certain specialized circumstances the need may arise. This
1661 * routine gets around the normal restrictions by using a work thread to
1662 * submit the change-config request.
1664 * Returns 0 if the request was succesfully queued, error code otherwise.
1665 * The caller has no way to know whether the queued request will eventually
1668 int usb_driver_set_configuration(struct usb_device *udev, int config)
1670 struct set_config_request *req;
1672 req = kmalloc(sizeof(*req), GFP_KERNEL);
1676 req->config = config;
1677 INIT_WORK(&req->work, driver_set_config_work);
1680 schedule_work(&req->work);
1683 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1685 // synchronous request completion model
1686 EXPORT_SYMBOL(usb_control_msg);
1687 EXPORT_SYMBOL(usb_bulk_msg);
1689 EXPORT_SYMBOL(usb_sg_init);
1690 EXPORT_SYMBOL(usb_sg_cancel);
1691 EXPORT_SYMBOL(usb_sg_wait);
1693 // synchronous control message convenience routines
1694 EXPORT_SYMBOL(usb_get_descriptor);
1695 EXPORT_SYMBOL(usb_get_status);
1696 EXPORT_SYMBOL(usb_string);
1698 // synchronous calls that also maintain usbcore state
1699 EXPORT_SYMBOL(usb_clear_halt);
1700 EXPORT_SYMBOL(usb_reset_configuration);
1701 EXPORT_SYMBOL(usb_set_interface);