2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
107 #undef TTY_DEBUG_HANGUP
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
112 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
113 .c_iflag = ICRNL | IXON,
114 .c_oflag = OPOST | ONLCR,
115 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
116 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
117 ECHOCTL | ECHOKE | IEXTEN,
123 EXPORT_SYMBOL(tty_std_termios);
125 /* This list gets poked at by procfs and various bits of boot up code. This
126 could do with some rationalisation such as pulling the tty proc function
129 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131 /* Mutex to protect creating and releasing a tty. This is shared with
132 vt.c for deeply disgusting hack reasons */
133 DEFINE_MUTEX(tty_mutex);
134 EXPORT_SYMBOL(tty_mutex);
136 #ifdef CONFIG_UNIX98_PTYS
137 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
138 extern int pty_limit; /* Config limit on Unix98 ptys */
139 static DEFINE_IDR(allocated_ptys);
140 static DECLARE_MUTEX(allocated_ptys_lock);
141 static int ptmx_open(struct inode *, struct file *);
144 static void initialize_tty_struct(struct tty_struct *tty);
146 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
147 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
148 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 static int tty_release(struct inode *, struct file *);
152 int tty_ioctl(struct inode * inode, struct file * file,
153 unsigned int cmd, unsigned long arg);
154 static int tty_fasync(int fd, struct file * filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
160 * alloc_tty_struct - allocate a tty object
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
168 static struct tty_struct *alloc_tty_struct(void)
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
173 static void tty_buffer_free_all(struct tty_struct *);
176 * free_tty_struct - free a disused tty
177 * @tty: tty struct to free
179 * Free the write buffers, tty queue and tty memory itself.
181 * Locking: none. Must be called after tty is definitely unused
184 static inline void free_tty_struct(struct tty_struct *tty)
186 kfree(tty->write_buf);
187 tty_buffer_free_all(tty);
191 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
194 * tty_name - return tty naming
195 * @tty: tty structure
196 * @buf: buffer for output
198 * Convert a tty structure into a name. The name reflects the kernel
199 * naming policy and if udev is in use may not reflect user space
204 char *tty_name(struct tty_struct *tty, char *buf)
206 if (!tty) /* Hmm. NULL pointer. That's fun. */
207 strcpy(buf, "NULL tty");
209 strcpy(buf, tty->name);
213 EXPORT_SYMBOL(tty_name);
215 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
218 #ifdef TTY_PARANOIA_CHECK
221 "null TTY for (%d:%d) in %s\n",
222 imajor(inode), iminor(inode), routine);
225 if (tty->magic != TTY_MAGIC) {
227 "bad magic number for tty struct (%d:%d) in %s\n",
228 imajor(inode), iminor(inode), routine);
235 static int check_tty_count(struct tty_struct *tty, const char *routine)
237 #ifdef CHECK_TTY_COUNT
242 list_for_each(p, &tty->tty_files) {
246 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
247 tty->driver->subtype == PTY_TYPE_SLAVE &&
248 tty->link && tty->link->count)
250 if (tty->count != count) {
251 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
252 "!= #fd's(%d) in %s\n",
253 tty->name, tty->count, count, routine);
261 * Tty buffer allocation management
265 * tty_buffer_free_all - free buffers used by a tty
266 * @tty: tty to free from
268 * Remove all the buffers pending on a tty whether queued with data
269 * or in the free ring. Must be called when the tty is no longer in use
274 static void tty_buffer_free_all(struct tty_struct *tty)
276 struct tty_buffer *thead;
277 while((thead = tty->buf.head) != NULL) {
278 tty->buf.head = thead->next;
281 while((thead = tty->buf.free) != NULL) {
282 tty->buf.free = thead->next;
285 tty->buf.tail = NULL;
286 tty->buf.memory_used = 0;
290 * tty_buffer_init - prepare a tty buffer structure
291 * @tty: tty to initialise
293 * Set up the initial state of the buffer management for a tty device.
294 * Must be called before the other tty buffer functions are used.
299 static void tty_buffer_init(struct tty_struct *tty)
301 spin_lock_init(&tty->buf.lock);
302 tty->buf.head = NULL;
303 tty->buf.tail = NULL;
304 tty->buf.free = NULL;
305 tty->buf.memory_used = 0;
309 * tty_buffer_alloc - allocate a tty buffer
311 * @size: desired size (characters)
313 * Allocate a new tty buffer to hold the desired number of characters.
314 * Return NULL if out of memory or the allocation would exceed the
317 * Locking: Caller must hold tty->buf.lock
320 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
322 struct tty_buffer *p;
324 if (tty->buf.memory_used + size > 65536)
326 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
334 p->char_buf_ptr = (char *)(p->data);
335 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
336 tty->buf.memory_used += size;
341 * tty_buffer_free - free a tty buffer
342 * @tty: tty owning the buffer
343 * @b: the buffer to free
345 * Free a tty buffer, or add it to the free list according to our
348 * Locking: Caller must hold tty->buf.lock
351 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
353 /* Dumb strategy for now - should keep some stats */
354 tty->buf.memory_used -= b->size;
355 WARN_ON(tty->buf.memory_used < 0);
360 b->next = tty->buf.free;
366 * tty_buffer_find - find a free tty buffer
367 * @tty: tty owning the buffer
368 * @size: characters wanted
370 * Locate an existing suitable tty buffer or if we are lacking one then
371 * allocate a new one. We round our buffers off in 256 character chunks
372 * to get better allocation behaviour.
374 * Locking: Caller must hold tty->buf.lock
377 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
379 struct tty_buffer **tbh = &tty->buf.free;
380 while((*tbh) != NULL) {
381 struct tty_buffer *t = *tbh;
382 if(t->size >= size) {
388 tty->buf.memory_used += t->size;
391 tbh = &((*tbh)->next);
393 /* Round the buffer size out */
394 size = (size + 0xFF) & ~ 0xFF;
395 return tty_buffer_alloc(tty, size);
396 /* Should possibly check if this fails for the largest buffer we
397 have queued and recycle that ? */
401 * tty_buffer_request_room - grow tty buffer if needed
402 * @tty: tty structure
403 * @size: size desired
405 * Make at least size bytes of linear space available for the tty
406 * buffer. If we fail return the size we managed to find.
408 * Locking: Takes tty->buf.lock
410 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
412 struct tty_buffer *b, *n;
416 spin_lock_irqsave(&tty->buf.lock, flags);
418 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
419 remove this conditional if its worth it. This would be invisible
421 if ((b = tty->buf.tail) != NULL)
422 left = b->size - b->used;
427 /* This is the slow path - looking for new buffers to use */
428 if ((n = tty_buffer_find(tty, size)) != NULL) {
439 spin_unlock_irqrestore(&tty->buf.lock, flags);
442 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
445 * tty_insert_flip_string - Add characters to the tty buffer
446 * @tty: tty structure
450 * Queue a series of bytes to the tty buffering. All the characters
451 * passed are marked as without error. Returns the number added.
453 * Locking: Called functions may take tty->buf.lock
456 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
461 int space = tty_buffer_request_room(tty, size - copied);
462 struct tty_buffer *tb = tty->buf.tail;
463 /* If there is no space then tb may be NULL */
464 if(unlikely(space == 0))
466 memcpy(tb->char_buf_ptr + tb->used, chars, space);
467 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
471 /* There is a small chance that we need to split the data over
472 several buffers. If this is the case we must loop */
473 } while (unlikely(size > copied));
476 EXPORT_SYMBOL(tty_insert_flip_string);
479 * tty_insert_flip_string_flags - Add characters to the tty buffer
480 * @tty: tty structure
485 * Queue a series of bytes to the tty buffering. For each character
486 * the flags array indicates the status of the character. Returns the
489 * Locking: Called functions may take tty->buf.lock
492 int tty_insert_flip_string_flags(struct tty_struct *tty,
493 const unsigned char *chars, const char *flags, size_t size)
497 int space = tty_buffer_request_room(tty, size - copied);
498 struct tty_buffer *tb = tty->buf.tail;
499 /* If there is no space then tb may be NULL */
500 if(unlikely(space == 0))
502 memcpy(tb->char_buf_ptr + tb->used, chars, space);
503 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
508 /* There is a small chance that we need to split the data over
509 several buffers. If this is the case we must loop */
510 } while (unlikely(size > copied));
513 EXPORT_SYMBOL(tty_insert_flip_string_flags);
516 * tty_schedule_flip - push characters to ldisc
517 * @tty: tty to push from
519 * Takes any pending buffers and transfers their ownership to the
520 * ldisc side of the queue. It then schedules those characters for
521 * processing by the line discipline.
523 * Locking: Takes tty->buf.lock
526 void tty_schedule_flip(struct tty_struct *tty)
529 spin_lock_irqsave(&tty->buf.lock, flags);
530 if (tty->buf.tail != NULL)
531 tty->buf.tail->commit = tty->buf.tail->used;
532 spin_unlock_irqrestore(&tty->buf.lock, flags);
533 schedule_delayed_work(&tty->buf.work, 1);
535 EXPORT_SYMBOL(tty_schedule_flip);
538 * tty_prepare_flip_string - make room for characters
540 * @chars: return pointer for character write area
541 * @size: desired size
543 * Prepare a block of space in the buffer for data. Returns the length
544 * available and buffer pointer to the space which is now allocated and
545 * accounted for as ready for normal characters. This is used for drivers
546 * that need their own block copy routines into the buffer. There is no
547 * guarantee the buffer is a DMA target!
549 * Locking: May call functions taking tty->buf.lock
552 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
554 int space = tty_buffer_request_room(tty, size);
556 struct tty_buffer *tb = tty->buf.tail;
557 *chars = tb->char_buf_ptr + tb->used;
558 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
564 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
567 * tty_prepare_flip_string_flags - make room for characters
569 * @chars: return pointer for character write area
570 * @flags: return pointer for status flag write area
571 * @size: desired size
573 * Prepare a block of space in the buffer for data. Returns the length
574 * available and buffer pointer to the space which is now allocated and
575 * accounted for as ready for characters. This is used for drivers
576 * that need their own block copy routines into the buffer. There is no
577 * guarantee the buffer is a DMA target!
579 * Locking: May call functions taking tty->buf.lock
582 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
584 int space = tty_buffer_request_room(tty, size);
586 struct tty_buffer *tb = tty->buf.tail;
587 *chars = tb->char_buf_ptr + tb->used;
588 *flags = tb->flag_buf_ptr + tb->used;
594 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
599 * tty_set_termios_ldisc - set ldisc field
600 * @tty: tty structure
601 * @num: line discipline number
603 * This is probably overkill for real world processors but
604 * they are not on hot paths so a little discipline won't do
607 * Locking: takes termios_mutex
610 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
612 mutex_lock(&tty->termios_mutex);
613 tty->termios->c_line = num;
614 mutex_unlock(&tty->termios_mutex);
618 * This guards the refcounted line discipline lists. The lock
619 * must be taken with irqs off because there are hangup path
620 * callers who will do ldisc lookups and cannot sleep.
623 static DEFINE_SPINLOCK(tty_ldisc_lock);
624 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
625 static struct tty_ldisc tty_ldiscs[NR_LDISCS]; /* line disc dispatch table */
628 * tty_register_ldisc - install a line discipline
629 * @disc: ldisc number
630 * @new_ldisc: pointer to the ldisc object
632 * Installs a new line discipline into the kernel. The discipline
633 * is set up as unreferenced and then made available to the kernel
634 * from this point onwards.
637 * takes tty_ldisc_lock to guard against ldisc races
640 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
645 if (disc < N_TTY || disc >= NR_LDISCS)
648 spin_lock_irqsave(&tty_ldisc_lock, flags);
649 tty_ldiscs[disc] = *new_ldisc;
650 tty_ldiscs[disc].num = disc;
651 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
652 tty_ldiscs[disc].refcount = 0;
653 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
657 EXPORT_SYMBOL(tty_register_ldisc);
660 * tty_unregister_ldisc - unload a line discipline
661 * @disc: ldisc number
662 * @new_ldisc: pointer to the ldisc object
664 * Remove a line discipline from the kernel providing it is not
668 * takes tty_ldisc_lock to guard against ldisc races
671 int tty_unregister_ldisc(int disc)
676 if (disc < N_TTY || disc >= NR_LDISCS)
679 spin_lock_irqsave(&tty_ldisc_lock, flags);
680 if (tty_ldiscs[disc].refcount)
683 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
684 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
688 EXPORT_SYMBOL(tty_unregister_ldisc);
691 * tty_ldisc_get - take a reference to an ldisc
692 * @disc: ldisc number
694 * Takes a reference to a line discipline. Deals with refcounts and
695 * module locking counts. Returns NULL if the discipline is not available.
696 * Returns a pointer to the discipline and bumps the ref count if it is
700 * takes tty_ldisc_lock to guard against ldisc races
703 struct tty_ldisc *tty_ldisc_get(int disc)
706 struct tty_ldisc *ld;
708 if (disc < N_TTY || disc >= NR_LDISCS)
711 spin_lock_irqsave(&tty_ldisc_lock, flags);
713 ld = &tty_ldiscs[disc];
714 /* Check the entry is defined */
715 if(ld->flags & LDISC_FLAG_DEFINED)
717 /* If the module is being unloaded we can't use it */
718 if (!try_module_get(ld->owner))
725 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
729 EXPORT_SYMBOL_GPL(tty_ldisc_get);
732 * tty_ldisc_put - drop ldisc reference
733 * @disc: ldisc number
735 * Drop a reference to a line discipline. Manage refcounts and
736 * module usage counts
739 * takes tty_ldisc_lock to guard against ldisc races
742 void tty_ldisc_put(int disc)
744 struct tty_ldisc *ld;
747 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
749 spin_lock_irqsave(&tty_ldisc_lock, flags);
750 ld = &tty_ldiscs[disc];
751 BUG_ON(ld->refcount == 0);
753 module_put(ld->owner);
754 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
757 EXPORT_SYMBOL_GPL(tty_ldisc_put);
760 * tty_ldisc_assign - set ldisc on a tty
761 * @tty: tty to assign
762 * @ld: line discipline
764 * Install an instance of a line discipline into a tty structure. The
765 * ldisc must have a reference count above zero to ensure it remains/
766 * The tty instance refcount starts at zero.
769 * Caller must hold references
772 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
775 tty->ldisc.refcount = 0;
779 * tty_ldisc_try - internal helper
782 * Make a single attempt to grab and bump the refcount on
783 * the tty ldisc. Return 0 on failure or 1 on success. This is
784 * used to implement both the waiting and non waiting versions
787 * Locking: takes tty_ldisc_lock
790 static int tty_ldisc_try(struct tty_struct *tty)
793 struct tty_ldisc *ld;
796 spin_lock_irqsave(&tty_ldisc_lock, flags);
798 if(test_bit(TTY_LDISC, &tty->flags))
803 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
808 * tty_ldisc_ref_wait - wait for the tty ldisc
811 * Dereference the line discipline for the terminal and take a
812 * reference to it. If the line discipline is in flux then
813 * wait patiently until it changes.
815 * Note: Must not be called from an IRQ/timer context. The caller
816 * must also be careful not to hold other locks that will deadlock
817 * against a discipline change, such as an existing ldisc reference
818 * (which we check for)
820 * Locking: call functions take tty_ldisc_lock
823 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
825 /* wait_event is a macro */
826 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
827 if(tty->ldisc.refcount == 0)
828 printk(KERN_ERR "tty_ldisc_ref_wait\n");
832 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
835 * tty_ldisc_ref - get the tty ldisc
838 * Dereference the line discipline for the terminal and take a
839 * reference to it. If the line discipline is in flux then
840 * return NULL. Can be called from IRQ and timer functions.
842 * Locking: called functions take tty_ldisc_lock
845 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
847 if(tty_ldisc_try(tty))
852 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
855 * tty_ldisc_deref - free a tty ldisc reference
856 * @ld: reference to free up
858 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
859 * be called in IRQ context.
861 * Locking: takes tty_ldisc_lock
864 void tty_ldisc_deref(struct tty_ldisc *ld)
870 spin_lock_irqsave(&tty_ldisc_lock, flags);
871 if(ld->refcount == 0)
872 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
875 if(ld->refcount == 0)
876 wake_up(&tty_ldisc_wait);
877 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
880 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
883 * tty_ldisc_enable - allow ldisc use
884 * @tty: terminal to activate ldisc on
886 * Set the TTY_LDISC flag when the line discipline can be called
887 * again. Do neccessary wakeups for existing sleepers.
889 * Note: nobody should set this bit except via this function. Clearing
890 * directly is allowed.
893 static void tty_ldisc_enable(struct tty_struct *tty)
895 set_bit(TTY_LDISC, &tty->flags);
896 wake_up(&tty_ldisc_wait);
900 * tty_set_ldisc - set line discipline
901 * @tty: the terminal to set
902 * @ldisc: the line discipline
904 * Set the discipline of a tty line. Must be called from a process
907 * Locking: takes tty_ldisc_lock.
908 * called functions take termios_mutex
911 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
914 struct tty_ldisc o_ldisc;
918 struct tty_ldisc *ld;
919 struct tty_struct *o_tty;
921 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
926 ld = tty_ldisc_get(ldisc);
927 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
928 /* Cyrus Durgin <cider@speakeasy.org> */
930 request_module("tty-ldisc-%d", ldisc);
931 ld = tty_ldisc_get(ldisc);
937 * Problem: What do we do if this blocks ?
940 tty_wait_until_sent(tty, 0);
942 if (tty->ldisc.num == ldisc) {
943 tty_ldisc_put(ldisc);
948 * No more input please, we are switching. The new ldisc
949 * will update this value in the ldisc open function
952 tty->receive_room = 0;
954 o_ldisc = tty->ldisc;
958 * Make sure we don't change while someone holds a
959 * reference to the line discipline. The TTY_LDISC bit
960 * prevents anyone taking a reference once it is clear.
961 * We need the lock to avoid racing reference takers.
964 spin_lock_irqsave(&tty_ldisc_lock, flags);
965 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
966 if(tty->ldisc.refcount) {
967 /* Free the new ldisc we grabbed. Must drop the lock
969 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
970 tty_ldisc_put(ldisc);
972 * There are several reasons we may be busy, including
973 * random momentary I/O traffic. We must therefore
974 * retry. We could distinguish between blocking ops
975 * and retries if we made tty_ldisc_wait() smarter. That
976 * is up for discussion.
978 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
982 if(o_tty && o_tty->ldisc.refcount) {
983 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
984 tty_ldisc_put(ldisc);
985 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
991 /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
993 if (!test_bit(TTY_LDISC, &tty->flags)) {
994 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
995 tty_ldisc_put(ldisc);
996 ld = tty_ldisc_ref_wait(tty);
1001 clear_bit(TTY_LDISC, &tty->flags);
1003 clear_bit(TTY_LDISC, &o_tty->flags);
1004 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1007 * From this point on we know nobody has an ldisc
1008 * usage reference, nor can they obtain one until
1009 * we say so later on.
1012 work = cancel_delayed_work(&tty->buf.work);
1014 * Wait for ->hangup_work and ->buf.work handlers to terminate
1017 flush_scheduled_work();
1018 /* Shutdown the current discipline. */
1019 if (tty->ldisc.close)
1020 (tty->ldisc.close)(tty);
1022 /* Now set up the new line discipline. */
1023 tty_ldisc_assign(tty, ld);
1024 tty_set_termios_ldisc(tty, ldisc);
1025 if (tty->ldisc.open)
1026 retval = (tty->ldisc.open)(tty);
1028 tty_ldisc_put(ldisc);
1029 /* There is an outstanding reference here so this is safe */
1030 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1031 tty_set_termios_ldisc(tty, tty->ldisc.num);
1032 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1033 tty_ldisc_put(o_ldisc.num);
1034 /* This driver is always present */
1035 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1036 tty_set_termios_ldisc(tty, N_TTY);
1037 if (tty->ldisc.open) {
1038 int r = tty->ldisc.open(tty);
1041 panic("Couldn't open N_TTY ldisc for "
1043 tty_name(tty, buf), r);
1047 /* At this point we hold a reference to the new ldisc and a
1048 a reference to the old ldisc. If we ended up flipping back
1049 to the existing ldisc we have two references to it */
1051 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1052 tty->driver->set_ldisc(tty);
1054 tty_ldisc_put(o_ldisc.num);
1057 * Allow ldisc referencing to occur as soon as the driver
1058 * ldisc callback completes.
1061 tty_ldisc_enable(tty);
1063 tty_ldisc_enable(o_tty);
1065 /* Restart it in case no characters kick it off. Safe if
1068 schedule_delayed_work(&tty->buf.work, 1);
1073 * get_tty_driver - find device of a tty
1074 * @dev_t: device identifier
1075 * @index: returns the index of the tty
1077 * This routine returns a tty driver structure, given a device number
1078 * and also passes back the index number.
1080 * Locking: caller must hold tty_mutex
1083 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1085 struct tty_driver *p;
1087 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1088 dev_t base = MKDEV(p->major, p->minor_start);
1089 if (device < base || device >= base + p->num)
1091 *index = device - base;
1098 * tty_check_change - check for POSIX terminal changes
1099 * @tty: tty to check
1101 * If we try to write to, or set the state of, a terminal and we're
1102 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1103 * ignored, go ahead and perform the operation. (POSIX 7.2)
1108 int tty_check_change(struct tty_struct * tty)
1110 if (current->signal->tty != tty)
1113 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
1116 if (task_pgrp(current) == tty->pgrp)
1118 if (is_ignored(SIGTTOU))
1120 if (is_current_pgrp_orphaned())
1122 (void) kill_pgrp(task_pgrp(current), SIGTTOU, 1);
1123 return -ERESTARTSYS;
1126 EXPORT_SYMBOL(tty_check_change);
1128 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1129 size_t count, loff_t *ppos)
1134 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1135 size_t count, loff_t *ppos)
1140 /* No kernel lock held - none needed ;) */
1141 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1143 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1146 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1147 unsigned int cmd, unsigned long arg)
1149 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1152 static const struct file_operations tty_fops = {
1153 .llseek = no_llseek,
1159 .release = tty_release,
1160 .fasync = tty_fasync,
1163 #ifdef CONFIG_UNIX98_PTYS
1164 static const struct file_operations ptmx_fops = {
1165 .llseek = no_llseek,
1171 .release = tty_release,
1172 .fasync = tty_fasync,
1176 static const struct file_operations console_fops = {
1177 .llseek = no_llseek,
1179 .write = redirected_tty_write,
1183 .release = tty_release,
1184 .fasync = tty_fasync,
1187 static const struct file_operations hung_up_tty_fops = {
1188 .llseek = no_llseek,
1189 .read = hung_up_tty_read,
1190 .write = hung_up_tty_write,
1191 .poll = hung_up_tty_poll,
1192 .ioctl = hung_up_tty_ioctl,
1193 .release = tty_release,
1196 static DEFINE_SPINLOCK(redirect_lock);
1197 static struct file *redirect;
1200 * tty_wakeup - request more data
1203 * Internal and external helper for wakeups of tty. This function
1204 * informs the line discipline if present that the driver is ready
1205 * to receive more output data.
1208 void tty_wakeup(struct tty_struct *tty)
1210 struct tty_ldisc *ld;
1212 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1213 ld = tty_ldisc_ref(tty);
1215 if(ld->write_wakeup)
1216 ld->write_wakeup(tty);
1217 tty_ldisc_deref(ld);
1220 wake_up_interruptible(&tty->write_wait);
1223 EXPORT_SYMBOL_GPL(tty_wakeup);
1226 * tty_ldisc_flush - flush line discipline queue
1229 * Flush the line discipline queue (if any) for this tty. If there
1230 * is no line discipline active this is a no-op.
1233 void tty_ldisc_flush(struct tty_struct *tty)
1235 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1237 if(ld->flush_buffer)
1238 ld->flush_buffer(tty);
1239 tty_ldisc_deref(ld);
1243 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1246 * tty_reset_termios - reset terminal state
1247 * @tty: tty to reset
1249 * Restore a terminal to the driver default state
1252 static void tty_reset_termios(struct tty_struct *tty)
1254 mutex_lock(&tty->termios_mutex);
1255 *tty->termios = tty->driver->init_termios;
1256 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1257 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1258 mutex_unlock(&tty->termios_mutex);
1262 * do_tty_hangup - actual handler for hangup events
1265 * This can be called by the "eventd" kernel thread. That is process
1266 * synchronous but doesn't hold any locks, so we need to make sure we
1267 * have the appropriate locks for what we're doing.
1269 * The hangup event clears any pending redirections onto the hung up
1270 * device. It ensures future writes will error and it does the needed
1271 * line discipline hangup and signal delivery. The tty object itself
1276 * redirect lock for undoing redirection
1277 * file list lock for manipulating list of ttys
1278 * tty_ldisc_lock from called functions
1279 * termios_mutex resetting termios data
1280 * tasklist_lock to walk task list for hangup event
1281 * ->siglock to protect ->signal/->sighand
1283 static void do_tty_hangup(struct work_struct *work)
1285 struct tty_struct *tty =
1286 container_of(work, struct tty_struct, hangup_work);
1287 struct file * cons_filp = NULL;
1288 struct file *filp, *f = NULL;
1289 struct task_struct *p;
1290 struct tty_ldisc *ld;
1291 int closecount = 0, n;
1296 /* inuse_filps is protected by the single kernel lock */
1299 spin_lock(&redirect_lock);
1300 if (redirect && redirect->private_data == tty) {
1304 spin_unlock(&redirect_lock);
1306 check_tty_count(tty, "do_tty_hangup");
1308 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1309 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1310 if (filp->f_op->write == redirected_tty_write)
1312 if (filp->f_op->write != tty_write)
1315 tty_fasync(-1, filp, 0); /* can't block */
1316 filp->f_op = &hung_up_tty_fops;
1320 /* FIXME! What are the locking issues here? This may me overdoing things..
1321 * this question is especially important now that we've removed the irqlock. */
1323 ld = tty_ldisc_ref(tty);
1324 if(ld != NULL) /* We may have no line discipline at this point */
1326 if (ld->flush_buffer)
1327 ld->flush_buffer(tty);
1328 if (tty->driver->flush_buffer)
1329 tty->driver->flush_buffer(tty);
1330 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1332 ld->write_wakeup(tty);
1337 /* FIXME: Once we trust the LDISC code better we can wait here for
1338 ldisc completion and fix the driver call race */
1340 wake_up_interruptible(&tty->write_wait);
1341 wake_up_interruptible(&tty->read_wait);
1344 * Shutdown the current line discipline, and reset it to
1347 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1348 tty_reset_termios(tty);
1350 /* Defer ldisc switch */
1351 /* tty_deferred_ldisc_switch(N_TTY);
1353 This should get done automatically when the port closes and
1354 tty_release is called */
1356 read_lock(&tasklist_lock);
1358 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
1359 spin_lock_irq(&p->sighand->siglock);
1360 if (p->signal->tty == tty)
1361 p->signal->tty = NULL;
1362 if (!p->signal->leader) {
1363 spin_unlock_irq(&p->sighand->siglock);
1366 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1367 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1368 put_pid(p->signal->tty_old_pgrp); /* A noop */
1370 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
1371 spin_unlock_irq(&p->sighand->siglock);
1372 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
1374 read_unlock(&tasklist_lock);
1377 put_pid(tty->session);
1379 tty->session = NULL;
1381 tty->ctrl_status = 0;
1383 * If one of the devices matches a console pointer, we
1384 * cannot just call hangup() because that will cause
1385 * tty->count and state->count to go out of sync.
1386 * So we just call close() the right number of times.
1389 if (tty->driver->close)
1390 for (n = 0; n < closecount; n++)
1391 tty->driver->close(tty, cons_filp);
1392 } else if (tty->driver->hangup)
1393 (tty->driver->hangup)(tty);
1395 /* We don't want to have driver/ldisc interactions beyond
1396 the ones we did here. The driver layer expects no
1397 calls after ->hangup() from the ldisc side. However we
1398 can't yet guarantee all that */
1400 set_bit(TTY_HUPPED, &tty->flags);
1402 tty_ldisc_enable(tty);
1403 tty_ldisc_deref(ld);
1411 * tty_hangup - trigger a hangup event
1412 * @tty: tty to hangup
1414 * A carrier loss (virtual or otherwise) has occurred on this like
1415 * schedule a hangup sequence to run after this event.
1418 void tty_hangup(struct tty_struct * tty)
1420 #ifdef TTY_DEBUG_HANGUP
1423 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1425 schedule_work(&tty->hangup_work);
1428 EXPORT_SYMBOL(tty_hangup);
1431 * tty_vhangup - process vhangup
1432 * @tty: tty to hangup
1434 * The user has asked via system call for the terminal to be hung up.
1435 * We do this synchronously so that when the syscall returns the process
1436 * is complete. That guarantee is neccessary for security reasons.
1439 void tty_vhangup(struct tty_struct * tty)
1441 #ifdef TTY_DEBUG_HANGUP
1444 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1446 do_tty_hangup(&tty->hangup_work);
1448 EXPORT_SYMBOL(tty_vhangup);
1451 * tty_hung_up_p - was tty hung up
1452 * @filp: file pointer of tty
1454 * Return true if the tty has been subject to a vhangup or a carrier
1458 int tty_hung_up_p(struct file * filp)
1460 return (filp->f_op == &hung_up_tty_fops);
1463 EXPORT_SYMBOL(tty_hung_up_p);
1465 static void session_clear_tty(struct pid *session)
1467 struct task_struct *p;
1468 do_each_pid_task(session, PIDTYPE_SID, p) {
1470 } while_each_pid_task(session, PIDTYPE_SID, p);
1474 * disassociate_ctty - disconnect controlling tty
1475 * @on_exit: true if exiting so need to "hang up" the session
1477 * This function is typically called only by the session leader, when
1478 * it wants to disassociate itself from its controlling tty.
1480 * It performs the following functions:
1481 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1482 * (2) Clears the tty from being controlling the session
1483 * (3) Clears the controlling tty for all processes in the
1486 * The argument on_exit is set to 1 if called when a process is
1487 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1490 * BKL is taken for hysterical raisins
1491 * tty_mutex is taken to protect tty
1492 * ->siglock is taken to protect ->signal/->sighand
1493 * tasklist_lock is taken to walk process list for sessions
1494 * ->siglock is taken to protect ->signal/->sighand
1497 void disassociate_ctty(int on_exit)
1499 struct tty_struct *tty;
1500 struct pid *tty_pgrp = NULL;
1504 mutex_lock(&tty_mutex);
1505 tty = get_current_tty();
1507 tty_pgrp = get_pid(tty->pgrp);
1508 mutex_unlock(&tty_mutex);
1509 /* XXX: here we race, there is nothing protecting tty */
1510 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1512 } else if (on_exit) {
1513 struct pid *old_pgrp;
1514 spin_lock_irq(¤t->sighand->siglock);
1515 old_pgrp = current->signal->tty_old_pgrp;
1516 current->signal->tty_old_pgrp = NULL;
1517 spin_unlock_irq(¤t->sighand->siglock);
1519 kill_pgrp(old_pgrp, SIGHUP, on_exit);
1520 kill_pgrp(old_pgrp, SIGCONT, on_exit);
1523 mutex_unlock(&tty_mutex);
1528 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
1530 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
1534 spin_lock_irq(¤t->sighand->siglock);
1535 put_pid(current->signal->tty_old_pgrp);
1536 current->signal->tty_old_pgrp = NULL;
1537 spin_unlock_irq(¤t->sighand->siglock);
1539 mutex_lock(&tty_mutex);
1540 /* It is possible that do_tty_hangup has free'd this tty */
1541 tty = get_current_tty();
1543 put_pid(tty->session);
1545 tty->session = NULL;
1548 #ifdef TTY_DEBUG_HANGUP
1549 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1553 mutex_unlock(&tty_mutex);
1555 /* Now clear signal->tty under the lock */
1556 read_lock(&tasklist_lock);
1557 session_clear_tty(task_session(current));
1558 read_unlock(&tasklist_lock);
1564 * no_tty - Ensure the current process does not have a controlling tty
1568 struct task_struct *tsk = current;
1569 if (tsk->signal->leader)
1570 disassociate_ctty(0);
1571 proc_clear_tty(tsk);
1576 * stop_tty - propagate flow control
1579 * Perform flow control to the driver. For PTY/TTY pairs we
1580 * must also propagate the TIOCKPKT status. May be called
1581 * on an already stopped device and will not re-call the driver
1584 * This functionality is used by both the line disciplines for
1585 * halting incoming flow and by the driver. It may therefore be
1586 * called from any context, may be under the tty atomic_write_lock
1590 * Broken. Relies on BKL which is unsafe here.
1593 void stop_tty(struct tty_struct *tty)
1598 if (tty->link && tty->link->packet) {
1599 tty->ctrl_status &= ~TIOCPKT_START;
1600 tty->ctrl_status |= TIOCPKT_STOP;
1601 wake_up_interruptible(&tty->link->read_wait);
1603 if (tty->driver->stop)
1604 (tty->driver->stop)(tty);
1607 EXPORT_SYMBOL(stop_tty);
1610 * start_tty - propagate flow control
1611 * @tty: tty to start
1613 * Start a tty that has been stopped if at all possible. Perform
1614 * any neccessary wakeups and propagate the TIOCPKT status. If this
1615 * is the tty was previous stopped and is being started then the
1616 * driver start method is invoked and the line discipline woken.
1619 * Broken. Relies on BKL which is unsafe here.
1622 void start_tty(struct tty_struct *tty)
1624 if (!tty->stopped || tty->flow_stopped)
1627 if (tty->link && tty->link->packet) {
1628 tty->ctrl_status &= ~TIOCPKT_STOP;
1629 tty->ctrl_status |= TIOCPKT_START;
1630 wake_up_interruptible(&tty->link->read_wait);
1632 if (tty->driver->start)
1633 (tty->driver->start)(tty);
1635 /* If we have a running line discipline it may need kicking */
1639 EXPORT_SYMBOL(start_tty);
1642 * tty_read - read method for tty device files
1643 * @file: pointer to tty file
1645 * @count: size of user buffer
1648 * Perform the read system call function on this terminal device. Checks
1649 * for hung up devices before calling the line discipline method.
1652 * Locks the line discipline internally while needed
1653 * For historical reasons the line discipline read method is
1654 * invoked under the BKL. This will go away in time so do not rely on it
1655 * in new code. Multiple read calls may be outstanding in parallel.
1658 static ssize_t tty_read(struct file * file, char __user * buf, size_t count,
1662 struct tty_struct * tty;
1663 struct inode *inode;
1664 struct tty_ldisc *ld;
1666 tty = (struct tty_struct *)file->private_data;
1667 inode = file->f_path.dentry->d_inode;
1668 if (tty_paranoia_check(tty, inode, "tty_read"))
1670 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1673 /* We want to wait for the line discipline to sort out in this
1675 ld = tty_ldisc_ref_wait(tty);
1678 i = (ld->read)(tty,file,buf,count);
1681 tty_ldisc_deref(ld);
1684 inode->i_atime = current_fs_time(inode->i_sb);
1689 * Split writes up in sane blocksizes to avoid
1690 * denial-of-service type attacks
1692 static inline ssize_t do_tty_write(
1693 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1694 struct tty_struct *tty,
1696 const char __user *buf,
1699 ssize_t ret = 0, written = 0;
1702 /* FIXME: O_NDELAY ... */
1703 if (mutex_lock_interruptible(&tty->atomic_write_lock)) {
1704 return -ERESTARTSYS;
1708 * We chunk up writes into a temporary buffer. This
1709 * simplifies low-level drivers immensely, since they
1710 * don't have locking issues and user mode accesses.
1712 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1715 * The default chunk-size is 2kB, because the NTTY
1716 * layer has problems with bigger chunks. It will
1717 * claim to be able to handle more characters than
1720 * FIXME: This can probably go away now except that 64K chunks
1721 * are too likely to fail unless switched to vmalloc...
1724 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1729 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1730 if (tty->write_cnt < chunk) {
1736 buf = kmalloc(chunk, GFP_KERNEL);
1738 mutex_unlock(&tty->atomic_write_lock);
1741 kfree(tty->write_buf);
1742 tty->write_cnt = chunk;
1743 tty->write_buf = buf;
1746 /* Do the write .. */
1748 size_t size = count;
1752 if (copy_from_user(tty->write_buf, buf, size))
1755 ret = write(tty, file, tty->write_buf, size);
1765 if (signal_pending(current))
1770 struct inode *inode = file->f_path.dentry->d_inode;
1771 inode->i_mtime = current_fs_time(inode->i_sb);
1774 mutex_unlock(&tty->atomic_write_lock);
1780 * tty_write - write method for tty device file
1781 * @file: tty file pointer
1782 * @buf: user data to write
1783 * @count: bytes to write
1786 * Write data to a tty device via the line discipline.
1789 * Locks the line discipline as required
1790 * Writes to the tty driver are serialized by the atomic_write_lock
1791 * and are then processed in chunks to the device. The line discipline
1792 * write method will not be involked in parallel for each device
1793 * The line discipline write method is called under the big
1794 * kernel lock for historical reasons. New code should not rely on this.
1797 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1800 struct tty_struct * tty;
1801 struct inode *inode = file->f_path.dentry->d_inode;
1803 struct tty_ldisc *ld;
1805 tty = (struct tty_struct *)file->private_data;
1806 if (tty_paranoia_check(tty, inode, "tty_write"))
1808 if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1811 ld = tty_ldisc_ref_wait(tty);
1815 ret = do_tty_write(ld->write, tty, file, buf, count);
1816 tty_ldisc_deref(ld);
1820 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1823 struct file *p = NULL;
1825 spin_lock(&redirect_lock);
1830 spin_unlock(&redirect_lock);
1834 res = vfs_write(p, buf, count, &p->f_pos);
1839 return tty_write(file, buf, count, ppos);
1842 static char ptychar[] = "pqrstuvwxyzabcde";
1845 * pty_line_name - generate name for a pty
1846 * @driver: the tty driver in use
1847 * @index: the minor number
1848 * @p: output buffer of at least 6 bytes
1850 * Generate a name from a driver reference and write it to the output
1855 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1857 int i = index + driver->name_base;
1858 /* ->name is initialized to "ttyp", but "tty" is expected */
1859 sprintf(p, "%s%c%x",
1860 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1861 ptychar[i >> 4 & 0xf], i & 0xf);
1865 * pty_line_name - generate name for a tty
1866 * @driver: the tty driver in use
1867 * @index: the minor number
1868 * @p: output buffer of at least 7 bytes
1870 * Generate a name from a driver reference and write it to the output
1875 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1877 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1881 * init_dev - initialise a tty device
1882 * @driver: tty driver we are opening a device on
1883 * @idx: device index
1884 * @tty: returned tty structure
1886 * Prepare a tty device. This may not be a "new" clean device but
1887 * could also be an active device. The pty drivers require special
1888 * handling because of this.
1891 * The function is called under the tty_mutex, which
1892 * protects us from the tty struct or driver itself going away.
1894 * On exit the tty device has the line discipline attached and
1895 * a reference count of 1. If a pair was created for pty/tty use
1896 * and the other was a pty master then it too has a reference count of 1.
1898 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1899 * failed open. The new code protects the open with a mutex, so it's
1900 * really quite straightforward. The mutex locking can probably be
1901 * relaxed for the (most common) case of reopening a tty.
1904 static int init_dev(struct tty_driver *driver, int idx,
1905 struct tty_struct **ret_tty)
1907 struct tty_struct *tty, *o_tty;
1908 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1909 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1912 /* check whether we're reopening an existing tty */
1913 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1914 tty = devpts_get_tty(idx);
1916 * If we don't have a tty here on a slave open, it's because
1917 * the master already started the close process and there's
1918 * no relation between devpts file and tty anymore.
1920 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
1925 * It's safe from now on because init_dev() is called with
1926 * tty_mutex held and release_dev() won't change tty->count
1927 * or tty->flags without having to grab tty_mutex
1929 if (tty && driver->subtype == PTY_TYPE_MASTER)
1932 tty = driver->ttys[idx];
1934 if (tty) goto fast_track;
1937 * First time open is complex, especially for PTY devices.
1938 * This code guarantees that either everything succeeds and the
1939 * TTY is ready for operation, or else the table slots are vacated
1940 * and the allocated memory released. (Except that the termios
1941 * and locked termios may be retained.)
1944 if (!try_module_get(driver->owner)) {
1953 tty = alloc_tty_struct();
1956 initialize_tty_struct(tty);
1957 tty->driver = driver;
1959 tty_line_name(driver, idx, tty->name);
1961 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1962 tp_loc = &tty->termios;
1963 ltp_loc = &tty->termios_locked;
1965 tp_loc = &driver->termios[idx];
1966 ltp_loc = &driver->termios_locked[idx];
1970 tp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
1974 *tp = driver->init_termios;
1978 ltp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
1982 memset(ltp, 0, sizeof(struct ktermios));
1985 if (driver->type == TTY_DRIVER_TYPE_PTY) {
1986 o_tty = alloc_tty_struct();
1989 initialize_tty_struct(o_tty);
1990 o_tty->driver = driver->other;
1992 tty_line_name(driver->other, idx, o_tty->name);
1994 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1995 o_tp_loc = &o_tty->termios;
1996 o_ltp_loc = &o_tty->termios_locked;
1998 o_tp_loc = &driver->other->termios[idx];
1999 o_ltp_loc = &driver->other->termios_locked[idx];
2003 o_tp = (struct ktermios *)
2004 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2007 *o_tp = driver->other->init_termios;
2011 o_ltp = (struct ktermios *)
2012 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2015 memset(o_ltp, 0, sizeof(struct ktermios));
2019 * Everything allocated ... set up the o_tty structure.
2021 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
2022 driver->other->ttys[idx] = o_tty;
2028 o_tty->termios = *o_tp_loc;
2029 o_tty->termios_locked = *o_ltp_loc;
2030 driver->other->refcount++;
2031 if (driver->subtype == PTY_TYPE_MASTER)
2034 /* Establish the links in both directions */
2040 * All structures have been allocated, so now we install them.
2041 * Failures after this point use release_tty to clean up, so
2042 * there's no need to null out the local pointers.
2044 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2045 driver->ttys[idx] = tty;
2052 tty->termios = *tp_loc;
2053 tty->termios_locked = *ltp_loc;
2054 /* Compatibility until drivers always set this */
2055 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2056 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2061 * Structures all installed ... call the ldisc open routines.
2062 * If we fail here just call release_tty to clean up. No need
2063 * to decrement the use counts, as release_tty doesn't care.
2066 if (tty->ldisc.open) {
2067 retval = (tty->ldisc.open)(tty);
2069 goto release_mem_out;
2071 if (o_tty && o_tty->ldisc.open) {
2072 retval = (o_tty->ldisc.open)(o_tty);
2074 if (tty->ldisc.close)
2075 (tty->ldisc.close)(tty);
2076 goto release_mem_out;
2078 tty_ldisc_enable(o_tty);
2080 tty_ldisc_enable(tty);
2084 * This fast open can be used if the tty is already open.
2085 * No memory is allocated, and the only failures are from
2086 * attempting to open a closing tty or attempting multiple
2087 * opens on a pty master.
2090 if (test_bit(TTY_CLOSING, &tty->flags)) {
2094 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2095 driver->subtype == PTY_TYPE_MASTER) {
2097 * special case for PTY masters: only one open permitted,
2098 * and the slave side open count is incremented as well.
2107 tty->driver = driver; /* N.B. why do this every time?? */
2110 if(!test_bit(TTY_LDISC, &tty->flags))
2111 printk(KERN_ERR "init_dev but no ldisc\n");
2115 /* All paths come through here to release the mutex */
2119 /* Release locally allocated memory ... nothing placed in slots */
2123 free_tty_struct(o_tty);
2126 free_tty_struct(tty);
2129 module_put(driver->owner);
2133 /* call the tty release_tty routine to clean out this slot */
2135 if (printk_ratelimit())
2136 printk(KERN_INFO "init_dev: ldisc open failed, "
2137 "clearing slot %d\n", idx);
2138 release_tty(tty, idx);
2143 * release_one_tty - release tty structure memory
2145 * Releases memory associated with a tty structure, and clears out the
2146 * driver table slots. This function is called when a device is no longer
2147 * in use. It also gets called when setup of a device fails.
2150 * tty_mutex - sometimes only
2151 * takes the file list lock internally when working on the list
2152 * of ttys that the driver keeps.
2153 * FIXME: should we require tty_mutex is held here ??
2155 static void release_one_tty(struct tty_struct *tty, int idx)
2157 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2158 struct ktermios *tp;
2161 tty->driver->ttys[idx] = NULL;
2163 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2166 tty->driver->termios[idx] = NULL;
2169 tp = tty->termios_locked;
2171 tty->driver->termios_locked[idx] = NULL;
2177 tty->driver->refcount--;
2180 list_del_init(&tty->tty_files);
2183 free_tty_struct(tty);
2187 * release_tty - release tty structure memory
2189 * Release both @tty and a possible linked partner (think pty pair),
2190 * and decrement the refcount of the backing module.
2193 * tty_mutex - sometimes only
2194 * takes the file list lock internally when working on the list
2195 * of ttys that the driver keeps.
2196 * FIXME: should we require tty_mutex is held here ??
2198 static void release_tty(struct tty_struct *tty, int idx)
2200 struct tty_driver *driver = tty->driver;
2203 release_one_tty(tty->link, idx);
2204 release_one_tty(tty, idx);
2205 module_put(driver->owner);
2209 * Even releasing the tty structures is a tricky business.. We have
2210 * to be very careful that the structures are all released at the
2211 * same time, as interrupts might otherwise get the wrong pointers.
2213 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2214 * lead to double frees or releasing memory still in use.
2216 static void release_dev(struct file * filp)
2218 struct tty_struct *tty, *o_tty;
2219 int pty_master, tty_closing, o_tty_closing, do_sleep;
2223 unsigned long flags;
2225 tty = (struct tty_struct *)filp->private_data;
2226 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "release_dev"))
2229 check_tty_count(tty, "release_dev");
2231 tty_fasync(-1, filp, 0);
2234 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2235 tty->driver->subtype == PTY_TYPE_MASTER);
2236 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2239 #ifdef TTY_PARANOIA_CHECK
2240 if (idx < 0 || idx >= tty->driver->num) {
2241 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2242 "free (%s)\n", tty->name);
2245 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2246 if (tty != tty->driver->ttys[idx]) {
2247 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2248 "for (%s)\n", idx, tty->name);
2251 if (tty->termios != tty->driver->termios[idx]) {
2252 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2257 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2258 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2259 "termios_locked for (%s)\n",
2266 #ifdef TTY_DEBUG_HANGUP
2267 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2268 tty_name(tty, buf), tty->count);
2271 #ifdef TTY_PARANOIA_CHECK
2272 if (tty->driver->other &&
2273 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2274 if (o_tty != tty->driver->other->ttys[idx]) {
2275 printk(KERN_DEBUG "release_dev: other->table[%d] "
2276 "not o_tty for (%s)\n",
2280 if (o_tty->termios != tty->driver->other->termios[idx]) {
2281 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2282 "not o_termios for (%s)\n",
2286 if (o_tty->termios_locked !=
2287 tty->driver->other->termios_locked[idx]) {
2288 printk(KERN_DEBUG "release_dev: other->termios_locked["
2289 "%d] not o_termios_locked for (%s)\n",
2293 if (o_tty->link != tty) {
2294 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2299 if (tty->driver->close)
2300 tty->driver->close(tty, filp);
2303 * Sanity check: if tty->count is going to zero, there shouldn't be
2304 * any waiters on tty->read_wait or tty->write_wait. We test the
2305 * wait queues and kick everyone out _before_ actually starting to
2306 * close. This ensures that we won't block while releasing the tty
2309 * The test for the o_tty closing is necessary, since the master and
2310 * slave sides may close in any order. If the slave side closes out
2311 * first, its count will be one, since the master side holds an open.
2312 * Thus this test wouldn't be triggered at the time the slave closes,
2315 * Note that it's possible for the tty to be opened again while we're
2316 * flushing out waiters. By recalculating the closing flags before
2317 * each iteration we avoid any problems.
2320 /* Guard against races with tty->count changes elsewhere and
2321 opens on /dev/tty */
2323 mutex_lock(&tty_mutex);
2324 tty_closing = tty->count <= 1;
2325 o_tty_closing = o_tty &&
2326 (o_tty->count <= (pty_master ? 1 : 0));
2330 if (waitqueue_active(&tty->read_wait)) {
2331 wake_up(&tty->read_wait);
2334 if (waitqueue_active(&tty->write_wait)) {
2335 wake_up(&tty->write_wait);
2339 if (o_tty_closing) {
2340 if (waitqueue_active(&o_tty->read_wait)) {
2341 wake_up(&o_tty->read_wait);
2344 if (waitqueue_active(&o_tty->write_wait)) {
2345 wake_up(&o_tty->write_wait);
2352 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2353 "active!\n", tty_name(tty, buf));
2354 mutex_unlock(&tty_mutex);
2359 * The closing flags are now consistent with the open counts on
2360 * both sides, and we've completed the last operation that could
2361 * block, so it's safe to proceed with closing.
2364 if (--o_tty->count < 0) {
2365 printk(KERN_WARNING "release_dev: bad pty slave count "
2367 o_tty->count, tty_name(o_tty, buf));
2371 if (--tty->count < 0) {
2372 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2373 tty->count, tty_name(tty, buf));
2378 * We've decremented tty->count, so we need to remove this file
2379 * descriptor off the tty->tty_files list; this serves two
2381 * - check_tty_count sees the correct number of file descriptors
2382 * associated with this tty.
2383 * - do_tty_hangup no longer sees this file descriptor as
2384 * something that needs to be handled for hangups.
2387 filp->private_data = NULL;
2390 * Perform some housekeeping before deciding whether to return.
2392 * Set the TTY_CLOSING flag if this was the last open. In the
2393 * case of a pty we may have to wait around for the other side
2394 * to close, and TTY_CLOSING makes sure we can't be reopened.
2397 set_bit(TTY_CLOSING, &tty->flags);
2399 set_bit(TTY_CLOSING, &o_tty->flags);
2402 * If _either_ side is closing, make sure there aren't any
2403 * processes that still think tty or o_tty is their controlling
2406 if (tty_closing || o_tty_closing) {
2407 read_lock(&tasklist_lock);
2408 session_clear_tty(tty->session);
2410 session_clear_tty(o_tty->session);
2411 read_unlock(&tasklist_lock);
2414 mutex_unlock(&tty_mutex);
2416 /* check whether both sides are closing ... */
2417 if (!tty_closing || (o_tty && !o_tty_closing))
2420 #ifdef TTY_DEBUG_HANGUP
2421 printk(KERN_DEBUG "freeing tty structure...");
2424 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2425 * kill any delayed work. As this is the final close it does not
2426 * race with the set_ldisc code path.
2428 clear_bit(TTY_LDISC, &tty->flags);
2429 cancel_delayed_work(&tty->buf.work);
2432 * Wait for ->hangup_work and ->buf.work handlers to terminate
2435 flush_scheduled_work();
2438 * Wait for any short term users (we know they are just driver
2439 * side waiters as the file is closing so user count on the file
2442 spin_lock_irqsave(&tty_ldisc_lock, flags);
2443 while(tty->ldisc.refcount)
2445 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2446 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2447 spin_lock_irqsave(&tty_ldisc_lock, flags);
2449 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2451 * Shutdown the current line discipline, and reset it to N_TTY.
2452 * N.B. why reset ldisc when we're releasing the memory??
2454 * FIXME: this MUST get fixed for the new reflocking
2456 if (tty->ldisc.close)
2457 (tty->ldisc.close)(tty);
2458 tty_ldisc_put(tty->ldisc.num);
2461 * Switch the line discipline back
2463 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2464 tty_set_termios_ldisc(tty,N_TTY);
2466 /* FIXME: could o_tty be in setldisc here ? */
2467 clear_bit(TTY_LDISC, &o_tty->flags);
2468 if (o_tty->ldisc.close)
2469 (o_tty->ldisc.close)(o_tty);
2470 tty_ldisc_put(o_tty->ldisc.num);
2471 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2472 tty_set_termios_ldisc(o_tty,N_TTY);
2475 * The release_tty function takes care of the details of clearing
2476 * the slots and preserving the termios structure.
2478 release_tty(tty, idx);
2480 #ifdef CONFIG_UNIX98_PTYS
2481 /* Make this pty number available for reallocation */
2483 down(&allocated_ptys_lock);
2484 idr_remove(&allocated_ptys, idx);
2485 up(&allocated_ptys_lock);
2492 * tty_open - open a tty device
2493 * @inode: inode of device file
2494 * @filp: file pointer to tty
2496 * tty_open and tty_release keep up the tty count that contains the
2497 * number of opens done on a tty. We cannot use the inode-count, as
2498 * different inodes might point to the same tty.
2500 * Open-counting is needed for pty masters, as well as for keeping
2501 * track of serial lines: DTR is dropped when the last close happens.
2502 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2504 * The termios state of a pty is reset on first open so that
2505 * settings don't persist across reuse.
2507 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2508 * tty->count should protect the rest.
2509 * ->siglock protects ->signal/->sighand
2512 static int tty_open(struct inode * inode, struct file * filp)
2514 struct tty_struct *tty;
2516 struct tty_driver *driver;
2518 dev_t device = inode->i_rdev;
2519 unsigned short saved_flags = filp->f_flags;
2521 nonseekable_open(inode, filp);
2524 noctty = filp->f_flags & O_NOCTTY;
2528 mutex_lock(&tty_mutex);
2530 if (device == MKDEV(TTYAUX_MAJOR,0)) {
2531 tty = get_current_tty();
2533 mutex_unlock(&tty_mutex);
2536 driver = tty->driver;
2538 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2543 if (device == MKDEV(TTY_MAJOR,0)) {
2544 extern struct tty_driver *console_driver;
2545 driver = console_driver;
2551 if (device == MKDEV(TTYAUX_MAJOR,1)) {
2552 driver = console_device(&index);
2554 /* Don't let /dev/console block */
2555 filp->f_flags |= O_NONBLOCK;
2559 mutex_unlock(&tty_mutex);
2563 driver = get_tty_driver(device, &index);
2565 mutex_unlock(&tty_mutex);
2569 retval = init_dev(driver, index, &tty);
2570 mutex_unlock(&tty_mutex);
2574 filp->private_data = tty;
2575 file_move(filp, &tty->tty_files);
2576 check_tty_count(tty, "tty_open");
2577 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2578 tty->driver->subtype == PTY_TYPE_MASTER)
2580 #ifdef TTY_DEBUG_HANGUP
2581 printk(KERN_DEBUG "opening %s...", tty->name);
2584 if (tty->driver->open)
2585 retval = tty->driver->open(tty, filp);
2589 filp->f_flags = saved_flags;
2591 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2595 #ifdef TTY_DEBUG_HANGUP
2596 printk(KERN_DEBUG "error %d in opening %s...", retval,
2600 if (retval != -ERESTARTSYS)
2602 if (signal_pending(current))
2606 * Need to reset f_op in case a hangup happened.
2608 if (filp->f_op == &hung_up_tty_fops)
2609 filp->f_op = &tty_fops;
2613 mutex_lock(&tty_mutex);
2614 spin_lock_irq(¤t->sighand->siglock);
2616 current->signal->leader &&
2617 !current->signal->tty &&
2618 tty->session == NULL)
2619 __proc_set_tty(current, tty);
2620 spin_unlock_irq(¤t->sighand->siglock);
2621 mutex_unlock(&tty_mutex);
2625 #ifdef CONFIG_UNIX98_PTYS
2627 * ptmx_open - open a unix 98 pty master
2628 * @inode: inode of device file
2629 * @filp: file pointer to tty
2631 * Allocate a unix98 pty master device from the ptmx driver.
2633 * Locking: tty_mutex protects theinit_dev work. tty->count should
2635 * allocated_ptys_lock handles the list of free pty numbers
2638 static int ptmx_open(struct inode * inode, struct file * filp)
2640 struct tty_struct *tty;
2645 nonseekable_open(inode, filp);
2647 /* find a device that is not in use. */
2648 down(&allocated_ptys_lock);
2649 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2650 up(&allocated_ptys_lock);
2653 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2655 up(&allocated_ptys_lock);
2656 if (idr_ret == -EAGAIN)
2660 if (index >= pty_limit) {
2661 idr_remove(&allocated_ptys, index);
2662 up(&allocated_ptys_lock);
2665 up(&allocated_ptys_lock);
2667 mutex_lock(&tty_mutex);
2668 retval = init_dev(ptm_driver, index, &tty);
2669 mutex_unlock(&tty_mutex);
2674 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2675 filp->private_data = tty;
2676 file_move(filp, &tty->tty_files);
2679 if (devpts_pty_new(tty->link))
2682 check_tty_count(tty, "tty_open");
2683 retval = ptm_driver->open(tty, filp);
2690 down(&allocated_ptys_lock);
2691 idr_remove(&allocated_ptys, index);
2692 up(&allocated_ptys_lock);
2698 * tty_release - vfs callback for close
2699 * @inode: inode of tty
2700 * @filp: file pointer for handle to tty
2702 * Called the last time each file handle is closed that references
2703 * this tty. There may however be several such references.
2706 * Takes bkl. See release_dev
2709 static int tty_release(struct inode * inode, struct file * filp)
2718 * tty_poll - check tty status
2719 * @filp: file being polled
2720 * @wait: poll wait structures to update
2722 * Call the line discipline polling method to obtain the poll
2723 * status of the device.
2725 * Locking: locks called line discipline but ldisc poll method
2726 * may be re-entered freely by other callers.
2729 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2731 struct tty_struct * tty;
2732 struct tty_ldisc *ld;
2735 tty = (struct tty_struct *)filp->private_data;
2736 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2739 ld = tty_ldisc_ref_wait(tty);
2741 ret = (ld->poll)(tty, filp, wait);
2742 tty_ldisc_deref(ld);
2746 static int tty_fasync(int fd, struct file * filp, int on)
2748 struct tty_struct * tty;
2751 tty = (struct tty_struct *)filp->private_data;
2752 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2755 retval = fasync_helper(fd, filp, on, &tty->fasync);
2762 if (!waitqueue_active(&tty->read_wait))
2763 tty->minimum_to_wake = 1;
2766 type = PIDTYPE_PGID;
2768 pid = task_pid(current);
2771 retval = __f_setown(filp, pid, type, 0);
2775 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2776 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2782 * tiocsti - fake input character
2783 * @tty: tty to fake input into
2784 * @p: pointer to character
2786 * Fake input to a tty device. Does the neccessary locking and
2789 * FIXME: does not honour flow control ??
2792 * Called functions take tty_ldisc_lock
2793 * current->signal->tty check is safe without locks
2795 * FIXME: may race normal receive processing
2798 static int tiocsti(struct tty_struct *tty, char __user *p)
2801 struct tty_ldisc *ld;
2803 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2805 if (get_user(ch, p))
2807 ld = tty_ldisc_ref_wait(tty);
2808 ld->receive_buf(tty, &ch, &mbz, 1);
2809 tty_ldisc_deref(ld);
2814 * tiocgwinsz - implement window query ioctl
2816 * @arg: user buffer for result
2818 * Copies the kernel idea of the window size into the user buffer.
2820 * Locking: tty->termios_mutex is taken to ensure the winsize data
2824 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2828 mutex_lock(&tty->termios_mutex);
2829 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2830 mutex_unlock(&tty->termios_mutex);
2832 return err ? -EFAULT: 0;
2836 * tiocswinsz - implement window size set ioctl
2838 * @arg: user buffer for result
2840 * Copies the user idea of the window size to the kernel. Traditionally
2841 * this is just advisory information but for the Linux console it
2842 * actually has driver level meaning and triggers a VC resize.
2845 * Called function use the console_sem is used to ensure we do
2846 * not try and resize the console twice at once.
2847 * The tty->termios_mutex is used to ensure we don't double
2848 * resize and get confused. Lock order - tty->termios_mutex before
2852 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2853 struct winsize __user * arg)
2855 struct winsize tmp_ws;
2857 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2860 mutex_lock(&tty->termios_mutex);
2861 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2865 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2866 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2868 mutex_unlock(&tty->termios_mutex);
2874 kill_pgrp(tty->pgrp, SIGWINCH, 1);
2875 if ((real_tty->pgrp != tty->pgrp) && real_tty->pgrp)
2876 kill_pgrp(real_tty->pgrp, SIGWINCH, 1);
2877 tty->winsize = tmp_ws;
2878 real_tty->winsize = tmp_ws;
2880 mutex_unlock(&tty->termios_mutex);
2885 * tioccons - allow admin to move logical console
2886 * @file: the file to become console
2888 * Allow the adminstrator to move the redirected console device
2890 * Locking: uses redirect_lock to guard the redirect information
2893 static int tioccons(struct file *file)
2895 if (!capable(CAP_SYS_ADMIN))
2897 if (file->f_op->write == redirected_tty_write) {
2899 spin_lock(&redirect_lock);
2902 spin_unlock(&redirect_lock);
2907 spin_lock(&redirect_lock);
2909 spin_unlock(&redirect_lock);
2914 spin_unlock(&redirect_lock);
2919 * fionbio - non blocking ioctl
2920 * @file: file to set blocking value
2921 * @p: user parameter
2923 * Historical tty interfaces had a blocking control ioctl before
2924 * the generic functionality existed. This piece of history is preserved
2925 * in the expected tty API of posix OS's.
2927 * Locking: none, the open fle handle ensures it won't go away.
2930 static int fionbio(struct file *file, int __user *p)
2934 if (get_user(nonblock, p))
2938 file->f_flags |= O_NONBLOCK;
2940 file->f_flags &= ~O_NONBLOCK;
2945 * tiocsctty - set controlling tty
2946 * @tty: tty structure
2947 * @arg: user argument
2949 * This ioctl is used to manage job control. It permits a session
2950 * leader to set this tty as the controlling tty for the session.
2953 * Takes tty_mutex() to protect tty instance
2954 * Takes tasklist_lock internally to walk sessions
2955 * Takes ->siglock() when updating signal->tty
2958 static int tiocsctty(struct tty_struct *tty, int arg)
2961 if (current->signal->leader && (task_session(current) == tty->session))
2964 mutex_lock(&tty_mutex);
2966 * The process must be a session leader and
2967 * not have a controlling tty already.
2969 if (!current->signal->leader || current->signal->tty) {
2976 * This tty is already the controlling
2977 * tty for another session group!
2979 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
2983 read_lock(&tasklist_lock);
2984 session_clear_tty(tty->session);
2985 read_unlock(&tasklist_lock);
2991 proc_set_tty(current, tty);
2993 mutex_unlock(&tty_mutex);
2998 * tiocgpgrp - get process group
2999 * @tty: tty passed by user
3000 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3003 * Obtain the process group of the tty. If there is no process group
3006 * Locking: none. Reference to current->signal->tty is safe.
3009 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3012 * (tty == real_tty) is a cheap way of
3013 * testing if the tty is NOT a master pty.
3015 if (tty == real_tty && current->signal->tty != real_tty)
3017 return put_user(pid_nr(real_tty->pgrp), p);
3021 * tiocspgrp - attempt to set process group
3022 * @tty: tty passed by user
3023 * @real_tty: tty side device matching tty passed by user
3026 * Set the process group of the tty to the session passed. Only
3027 * permitted where the tty session is our session.
3032 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3036 int retval = tty_check_change(real_tty);
3042 if (!current->signal->tty ||
3043 (current->signal->tty != real_tty) ||
3044 (real_tty->session != task_session(current)))
3046 if (get_user(pgrp_nr, p))
3051 pgrp = find_pid(pgrp_nr);
3056 if (session_of_pgrp(pgrp) != task_session(current))
3059 put_pid(real_tty->pgrp);
3060 real_tty->pgrp = get_pid(pgrp);
3067 * tiocgsid - get session id
3068 * @tty: tty passed by user
3069 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3070 * @p: pointer to returned session id
3072 * Obtain the session id of the tty. If there is no session
3075 * Locking: none. Reference to current->signal->tty is safe.
3078 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3081 * (tty == real_tty) is a cheap way of
3082 * testing if the tty is NOT a master pty.
3084 if (tty == real_tty && current->signal->tty != real_tty)
3086 if (!real_tty->session)
3088 return put_user(pid_nr(real_tty->session), p);
3092 * tiocsetd - set line discipline
3094 * @p: pointer to user data
3096 * Set the line discipline according to user request.
3098 * Locking: see tty_set_ldisc, this function is just a helper
3101 static int tiocsetd(struct tty_struct *tty, int __user *p)
3105 if (get_user(ldisc, p))
3107 return tty_set_ldisc(tty, ldisc);
3111 * send_break - performed time break
3112 * @tty: device to break on
3113 * @duration: timeout in mS
3115 * Perform a timed break on hardware that lacks its own driver level
3116 * timed break functionality.
3119 * atomic_write_lock serializes
3123 static int send_break(struct tty_struct *tty, unsigned int duration)
3125 if (mutex_lock_interruptible(&tty->atomic_write_lock))
3127 tty->driver->break_ctl(tty, -1);
3128 if (!signal_pending(current)) {
3129 msleep_interruptible(duration);
3131 tty->driver->break_ctl(tty, 0);
3132 mutex_unlock(&tty->atomic_write_lock);
3133 if (signal_pending(current))
3139 * tiocmget - get modem status
3141 * @file: user file pointer
3142 * @p: pointer to result
3144 * Obtain the modem status bits from the tty driver if the feature
3145 * is supported. Return -EINVAL if it is not available.
3147 * Locking: none (up to the driver)
3150 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3152 int retval = -EINVAL;
3154 if (tty->driver->tiocmget) {
3155 retval = tty->driver->tiocmget(tty, file);
3158 retval = put_user(retval, p);
3164 * tiocmset - set modem status
3166 * @file: user file pointer
3167 * @cmd: command - clear bits, set bits or set all
3168 * @p: pointer to desired bits
3170 * Set the modem status bits from the tty driver if the feature
3171 * is supported. Return -EINVAL if it is not available.
3173 * Locking: none (up to the driver)
3176 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3179 int retval = -EINVAL;
3181 if (tty->driver->tiocmset) {
3182 unsigned int set, clear, val;
3184 retval = get_user(val, p);
3202 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3203 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3205 retval = tty->driver->tiocmset(tty, file, set, clear);
3211 * Split this up, as gcc can choke on it otherwise..
3213 int tty_ioctl(struct inode * inode, struct file * file,
3214 unsigned int cmd, unsigned long arg)
3216 struct tty_struct *tty, *real_tty;
3217 void __user *p = (void __user *)arg;
3219 struct tty_ldisc *ld;
3221 tty = (struct tty_struct *)file->private_data;
3222 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3225 /* CHECKME: is this safe as one end closes ? */
3228 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3229 tty->driver->subtype == PTY_TYPE_MASTER)
3230 real_tty = tty->link;
3233 * Break handling by driver
3235 if (!tty->driver->break_ctl) {
3239 if (tty->driver->ioctl)
3240 return tty->driver->ioctl(tty, file, cmd, arg);
3243 /* These two ioctl's always return success; even if */
3244 /* the driver doesn't support them. */
3247 if (!tty->driver->ioctl)
3249 retval = tty->driver->ioctl(tty, file, cmd, arg);
3250 if (retval == -ENOIOCTLCMD)
3257 * Factor out some common prep work
3265 retval = tty_check_change(tty);
3268 if (cmd != TIOCCBRK) {
3269 tty_wait_until_sent(tty, 0);
3270 if (signal_pending(current))
3278 return tiocsti(tty, p);
3280 return tiocgwinsz(tty, p);
3282 return tiocswinsz(tty, real_tty, p);
3284 return real_tty!=tty ? -EINVAL : tioccons(file);
3286 return fionbio(file, p);
3288 set_bit(TTY_EXCLUSIVE, &tty->flags);
3291 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3294 if (current->signal->tty != tty)
3299 return tiocsctty(tty, arg);
3301 return tiocgpgrp(tty, real_tty, p);
3303 return tiocspgrp(tty, real_tty, p);
3305 return tiocgsid(tty, real_tty, p);
3307 /* FIXME: check this is ok */
3308 return put_user(tty->ldisc.num, (int __user *)p);
3310 return tiocsetd(tty, p);
3313 return tioclinux(tty, arg);
3318 case TIOCSBRK: /* Turn break on, unconditionally */
3319 tty->driver->break_ctl(tty, -1);
3322 case TIOCCBRK: /* Turn break off, unconditionally */
3323 tty->driver->break_ctl(tty, 0);
3325 case TCSBRK: /* SVID version: non-zero arg --> no break */
3326 /* non-zero arg means wait for all output data
3327 * to be sent (performed above) but don't send break.
3328 * This is used by the tcdrain() termios function.
3331 return send_break(tty, 250);
3333 case TCSBRKP: /* support for POSIX tcsendbreak() */
3334 return send_break(tty, arg ? arg*100 : 250);
3337 return tty_tiocmget(tty, file, p);
3342 return tty_tiocmset(tty, file, cmd, p);
3344 if (tty->driver->ioctl) {
3345 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3346 if (retval != -ENOIOCTLCMD)
3349 ld = tty_ldisc_ref_wait(tty);
3352 retval = ld->ioctl(tty, file, cmd, arg);
3353 if (retval == -ENOIOCTLCMD)
3356 tty_ldisc_deref(ld);
3362 * This implements the "Secure Attention Key" --- the idea is to
3363 * prevent trojan horses by killing all processes associated with this
3364 * tty when the user hits the "Secure Attention Key". Required for
3365 * super-paranoid applications --- see the Orange Book for more details.
3367 * This code could be nicer; ideally it should send a HUP, wait a few
3368 * seconds, then send a INT, and then a KILL signal. But you then
3369 * have to coordinate with the init process, since all processes associated
3370 * with the current tty must be dead before the new getty is allowed
3373 * Now, if it would be correct ;-/ The current code has a nasty hole -
3374 * it doesn't catch files in flight. We may send the descriptor to ourselves
3375 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3377 * Nasty bug: do_SAK is being called in interrupt context. This can
3378 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3380 void __do_SAK(struct tty_struct *tty)
3385 struct task_struct *g, *p;
3386 struct pid *session;
3389 struct fdtable *fdt;
3393 session = tty->session;
3395 tty_ldisc_flush(tty);
3397 if (tty->driver->flush_buffer)
3398 tty->driver->flush_buffer(tty);
3400 read_lock(&tasklist_lock);
3401 /* Kill the entire session */
3402 do_each_pid_task(session, PIDTYPE_SID, p) {
3403 printk(KERN_NOTICE "SAK: killed process %d"
3404 " (%s): process_session(p)==tty->session\n",
3406 send_sig(SIGKILL, p, 1);
3407 } while_each_pid_task(session, PIDTYPE_SID, p);
3408 /* Now kill any processes that happen to have the
3411 do_each_thread(g, p) {
3412 if (p->signal->tty == tty) {
3413 printk(KERN_NOTICE "SAK: killed process %d"
3414 " (%s): process_session(p)==tty->session\n",
3416 send_sig(SIGKILL, p, 1);
3422 * We don't take a ref to the file, so we must
3423 * hold ->file_lock instead.
3425 spin_lock(&p->files->file_lock);
3426 fdt = files_fdtable(p->files);
3427 for (i=0; i < fdt->max_fds; i++) {
3428 filp = fcheck_files(p->files, i);
3431 if (filp->f_op->read == tty_read &&
3432 filp->private_data == tty) {
3433 printk(KERN_NOTICE "SAK: killed process %d"
3434 " (%s): fd#%d opened to the tty\n",
3435 p->pid, p->comm, i);
3436 force_sig(SIGKILL, p);
3440 spin_unlock(&p->files->file_lock);
3443 } while_each_thread(g, p);
3444 read_unlock(&tasklist_lock);
3448 static void do_SAK_work(struct work_struct *work)
3450 struct tty_struct *tty =
3451 container_of(work, struct tty_struct, SAK_work);
3456 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3457 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3458 * the values which we write to it will be identical to the values which it
3459 * already has. --akpm
3461 void do_SAK(struct tty_struct *tty)
3465 schedule_work(&tty->SAK_work);
3468 EXPORT_SYMBOL(do_SAK);
3472 * @work: tty structure passed from work queue.
3474 * This routine is called out of the software interrupt to flush data
3475 * from the buffer chain to the line discipline.
3477 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3478 * while invoking the line discipline receive_buf method. The
3479 * receive_buf method is single threaded for each tty instance.
3482 static void flush_to_ldisc(struct work_struct *work)
3484 struct tty_struct *tty =
3485 container_of(work, struct tty_struct, buf.work.work);
3486 unsigned long flags;
3487 struct tty_ldisc *disc;
3488 struct tty_buffer *tbuf, *head;
3490 unsigned char *flag_buf;
3492 disc = tty_ldisc_ref(tty);
3493 if (disc == NULL) /* !TTY_LDISC */
3496 spin_lock_irqsave(&tty->buf.lock, flags);
3497 head = tty->buf.head;
3499 tty->buf.head = NULL;
3501 int count = head->commit - head->read;
3503 if (head->next == NULL)
3507 tty_buffer_free(tty, tbuf);
3510 if (!tty->receive_room) {
3511 schedule_delayed_work(&tty->buf.work, 1);
3514 if (count > tty->receive_room)
3515 count = tty->receive_room;
3516 char_buf = head->char_buf_ptr + head->read;
3517 flag_buf = head->flag_buf_ptr + head->read;
3518 head->read += count;
3519 spin_unlock_irqrestore(&tty->buf.lock, flags);
3520 disc->receive_buf(tty, char_buf, flag_buf, count);
3521 spin_lock_irqsave(&tty->buf.lock, flags);
3523 tty->buf.head = head;
3525 spin_unlock_irqrestore(&tty->buf.lock, flags);
3527 tty_ldisc_deref(disc);
3531 * tty_flip_buffer_push - terminal
3534 * Queue a push of the terminal flip buffers to the line discipline. This
3535 * function must not be called from IRQ context if tty->low_latency is set.
3537 * In the event of the queue being busy for flipping the work will be
3538 * held off and retried later.
3540 * Locking: tty buffer lock. Driver locks in low latency mode.
3543 void tty_flip_buffer_push(struct tty_struct *tty)
3545 unsigned long flags;
3546 spin_lock_irqsave(&tty->buf.lock, flags);
3547 if (tty->buf.tail != NULL)
3548 tty->buf.tail->commit = tty->buf.tail->used;
3549 spin_unlock_irqrestore(&tty->buf.lock, flags);
3551 if (tty->low_latency)
3552 flush_to_ldisc(&tty->buf.work.work);
3554 schedule_delayed_work(&tty->buf.work, 1);
3557 EXPORT_SYMBOL(tty_flip_buffer_push);
3561 * initialize_tty_struct
3562 * @tty: tty to initialize
3564 * This subroutine initializes a tty structure that has been newly
3567 * Locking: none - tty in question must not be exposed at this point
3570 static void initialize_tty_struct(struct tty_struct *tty)
3572 memset(tty, 0, sizeof(struct tty_struct));
3573 tty->magic = TTY_MAGIC;
3574 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3575 tty->session = NULL;
3577 tty->overrun_time = jiffies;
3578 tty->buf.head = tty->buf.tail = NULL;
3579 tty_buffer_init(tty);
3580 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3581 init_MUTEX(&tty->buf.pty_sem);
3582 mutex_init(&tty->termios_mutex);
3583 init_waitqueue_head(&tty->write_wait);
3584 init_waitqueue_head(&tty->read_wait);
3585 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3586 mutex_init(&tty->atomic_read_lock);
3587 mutex_init(&tty->atomic_write_lock);
3588 spin_lock_init(&tty->read_lock);
3589 INIT_LIST_HEAD(&tty->tty_files);
3590 INIT_WORK(&tty->SAK_work, do_SAK_work);
3594 * The default put_char routine if the driver did not define one.
3597 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3599 tty->driver->write(tty, &ch, 1);
3602 static struct class *tty_class;
3605 * tty_register_device - register a tty device
3606 * @driver: the tty driver that describes the tty device
3607 * @index: the index in the tty driver for this tty device
3608 * @device: a struct device that is associated with this tty device.
3609 * This field is optional, if there is no known struct device
3610 * for this tty device it can be set to NULL safely.
3612 * Returns a pointer to the struct device for this tty device
3613 * (or ERR_PTR(-EFOO) on error).
3615 * This call is required to be made to register an individual tty device
3616 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3617 * that bit is not set, this function should not be called by a tty
3623 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3624 struct device *device)
3627 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3629 if (index >= driver->num) {
3630 printk(KERN_ERR "Attempt to register invalid tty line number "
3632 return ERR_PTR(-EINVAL);
3635 if (driver->type == TTY_DRIVER_TYPE_PTY)
3636 pty_line_name(driver, index, name);
3638 tty_line_name(driver, index, name);
3640 return device_create(tty_class, device, dev, name);
3644 * tty_unregister_device - unregister a tty device
3645 * @driver: the tty driver that describes the tty device
3646 * @index: the index in the tty driver for this tty device
3648 * If a tty device is registered with a call to tty_register_device() then
3649 * this function must be called when the tty device is gone.
3654 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3656 device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3659 EXPORT_SYMBOL(tty_register_device);
3660 EXPORT_SYMBOL(tty_unregister_device);
3662 struct tty_driver *alloc_tty_driver(int lines)
3664 struct tty_driver *driver;
3666 driver = kmalloc(sizeof(struct tty_driver), GFP_KERNEL);
3668 memset(driver, 0, sizeof(struct tty_driver));
3669 driver->magic = TTY_DRIVER_MAGIC;
3670 driver->num = lines;
3671 /* later we'll move allocation of tables here */
3676 void put_tty_driver(struct tty_driver *driver)
3681 void tty_set_operations(struct tty_driver *driver,
3682 const struct tty_operations *op)
3684 driver->open = op->open;
3685 driver->close = op->close;
3686 driver->write = op->write;
3687 driver->put_char = op->put_char;
3688 driver->flush_chars = op->flush_chars;
3689 driver->write_room = op->write_room;
3690 driver->chars_in_buffer = op->chars_in_buffer;
3691 driver->ioctl = op->ioctl;
3692 driver->set_termios = op->set_termios;
3693 driver->throttle = op->throttle;
3694 driver->unthrottle = op->unthrottle;
3695 driver->stop = op->stop;
3696 driver->start = op->start;
3697 driver->hangup = op->hangup;
3698 driver->break_ctl = op->break_ctl;
3699 driver->flush_buffer = op->flush_buffer;
3700 driver->set_ldisc = op->set_ldisc;
3701 driver->wait_until_sent = op->wait_until_sent;
3702 driver->send_xchar = op->send_xchar;
3703 driver->read_proc = op->read_proc;
3704 driver->write_proc = op->write_proc;
3705 driver->tiocmget = op->tiocmget;
3706 driver->tiocmset = op->tiocmset;
3710 EXPORT_SYMBOL(alloc_tty_driver);
3711 EXPORT_SYMBOL(put_tty_driver);
3712 EXPORT_SYMBOL(tty_set_operations);
3715 * Called by a tty driver to register itself.
3717 int tty_register_driver(struct tty_driver *driver)
3724 if (driver->flags & TTY_DRIVER_INSTALLED)
3727 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3728 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3733 if (!driver->major) {
3734 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3737 driver->major = MAJOR(dev);
3738 driver->minor_start = MINOR(dev);
3741 dev = MKDEV(driver->major, driver->minor_start);
3742 error = register_chrdev_region(dev, driver->num, driver->name);
3750 driver->ttys = (struct tty_struct **)p;
3751 driver->termios = (struct ktermios **)(p + driver->num);
3752 driver->termios_locked = (struct ktermios **)(p + driver->num * 2);
3754 driver->ttys = NULL;
3755 driver->termios = NULL;
3756 driver->termios_locked = NULL;
3759 cdev_init(&driver->cdev, &tty_fops);
3760 driver->cdev.owner = driver->owner;
3761 error = cdev_add(&driver->cdev, dev, driver->num);
3763 unregister_chrdev_region(dev, driver->num);
3764 driver->ttys = NULL;
3765 driver->termios = driver->termios_locked = NULL;
3770 if (!driver->put_char)
3771 driver->put_char = tty_default_put_char;
3773 mutex_lock(&tty_mutex);
3774 list_add(&driver->tty_drivers, &tty_drivers);
3775 mutex_unlock(&tty_mutex);
3777 if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3778 for(i = 0; i < driver->num; i++)
3779 tty_register_device(driver, i, NULL);
3781 proc_tty_register_driver(driver);
3785 EXPORT_SYMBOL(tty_register_driver);
3788 * Called by a tty driver to unregister itself.
3790 int tty_unregister_driver(struct tty_driver *driver)
3793 struct ktermios *tp;
3796 if (driver->refcount)
3799 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3801 mutex_lock(&tty_mutex);
3802 list_del(&driver->tty_drivers);
3803 mutex_unlock(&tty_mutex);
3806 * Free the termios and termios_locked structures because
3807 * we don't want to get memory leaks when modular tty
3808 * drivers are removed from the kernel.
3810 for (i = 0; i < driver->num; i++) {
3811 tp = driver->termios[i];
3813 driver->termios[i] = NULL;
3816 tp = driver->termios_locked[i];
3818 driver->termios_locked[i] = NULL;
3821 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3822 tty_unregister_device(driver, i);
3825 proc_tty_unregister_driver(driver);
3826 driver->ttys = NULL;
3827 driver->termios = driver->termios_locked = NULL;
3829 cdev_del(&driver->cdev);
3832 EXPORT_SYMBOL(tty_unregister_driver);
3834 dev_t tty_devnum(struct tty_struct *tty)
3836 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3838 EXPORT_SYMBOL(tty_devnum);
3840 void proc_clear_tty(struct task_struct *p)
3842 spin_lock_irq(&p->sighand->siglock);
3843 p->signal->tty = NULL;
3844 spin_unlock_irq(&p->sighand->siglock);
3847 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3850 /* We should not have a session or pgrp to here but.... */
3851 put_pid(tty->session);
3853 tty->session = get_pid(task_session(tsk));
3854 tty->pgrp = get_pid(task_pgrp(tsk));
3856 put_pid(tsk->signal->tty_old_pgrp);
3857 tsk->signal->tty = tty;
3858 tsk->signal->tty_old_pgrp = NULL;
3861 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3863 spin_lock_irq(&tsk->sighand->siglock);
3864 __proc_set_tty(tsk, tty);
3865 spin_unlock_irq(&tsk->sighand->siglock);
3868 struct tty_struct *get_current_tty(void)
3870 struct tty_struct *tty;
3871 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
3872 tty = current->signal->tty;
3874 * session->tty can be changed/cleared from under us, make sure we
3875 * issue the load. The obtained pointer, when not NULL, is valid as
3876 * long as we hold tty_mutex.
3881 EXPORT_SYMBOL_GPL(get_current_tty);
3884 * Initialize the console device. This is called *early*, so
3885 * we can't necessarily depend on lots of kernel help here.
3886 * Just do some early initializations, and do the complex setup
3889 void __init console_init(void)
3893 /* Setup the default TTY line discipline. */
3894 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
3897 * set up the console device so that later boot sequences can
3898 * inform about problems etc..
3900 call = __con_initcall_start;
3901 while (call < __con_initcall_end) {
3908 extern int vty_init(void);
3911 static int __init tty_class_init(void)
3913 tty_class = class_create(THIS_MODULE, "tty");
3914 if (IS_ERR(tty_class))
3915 return PTR_ERR(tty_class);
3919 postcore_initcall(tty_class_init);
3921 /* 3/2004 jmc: why do these devices exist? */
3923 static struct cdev tty_cdev, console_cdev;
3924 #ifdef CONFIG_UNIX98_PTYS
3925 static struct cdev ptmx_cdev;
3928 static struct cdev vc0_cdev;
3932 * Ok, now we can initialize the rest of the tty devices and can count
3933 * on memory allocations, interrupts etc..
3935 static int __init tty_init(void)
3937 cdev_init(&tty_cdev, &tty_fops);
3938 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3939 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3940 panic("Couldn't register /dev/tty driver\n");
3941 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
3943 cdev_init(&console_cdev, &console_fops);
3944 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3945 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3946 panic("Couldn't register /dev/console driver\n");
3947 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
3949 #ifdef CONFIG_UNIX98_PTYS
3950 cdev_init(&ptmx_cdev, &ptmx_fops);
3951 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
3952 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
3953 panic("Couldn't register /dev/ptmx driver\n");
3954 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
3958 cdev_init(&vc0_cdev, &console_fops);
3959 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
3960 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
3961 panic("Couldn't register /dev/tty0 driver\n");
3962 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
3968 module_init(tty_init);