1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
13 #define DRV_NAME "DL2000/TC902x-based linux driver"
14 #define DRV_VERSION "v1.19"
15 #define DRV_RELDATE "2007/08/12"
17 #include <linux/dma-mapping.h>
19 static char version[] __devinitdata =
20 KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
22 static int mtu[MAX_UNITS];
23 static int vlan[MAX_UNITS];
24 static int jumbo[MAX_UNITS];
25 static char *media[MAX_UNITS];
26 static int tx_flow=-1;
27 static int rx_flow=-1;
28 static int copy_thresh;
29 static int rx_coalesce=10; /* Rx frame count each interrupt */
30 static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
31 static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
34 MODULE_AUTHOR ("Edward Peng");
35 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
36 MODULE_LICENSE("GPL");
37 module_param_array(mtu, int, NULL, 0);
38 module_param_array(media, charp, NULL, 0);
39 module_param_array(vlan, int, NULL, 0);
40 module_param_array(jumbo, int, NULL, 0);
41 module_param(tx_flow, int, 0);
42 module_param(rx_flow, int, 0);
43 module_param(copy_thresh, int, 0);
44 module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
45 module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
46 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
49 /* Enable the default interrupts */
50 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
51 UpdateStats | LinkEvent)
53 writew(DEFAULT_INTR, ioaddr + IntEnable)
55 static const int max_intrloop = 50;
56 static const int multicast_filter_limit = 0x40;
58 static int rio_open (struct net_device *dev);
59 static void rio_timer (unsigned long data);
60 static void rio_tx_timeout (struct net_device *dev);
61 static void alloc_list (struct net_device *dev);
62 static int start_xmit (struct sk_buff *skb, struct net_device *dev);
63 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
64 static void rio_free_tx (struct net_device *dev, int irq);
65 static void tx_error (struct net_device *dev, int tx_status);
66 static int receive_packet (struct net_device *dev);
67 static void rio_error (struct net_device *dev, int int_status);
68 static int change_mtu (struct net_device *dev, int new_mtu);
69 static void set_multicast (struct net_device *dev);
70 static struct net_device_stats *get_stats (struct net_device *dev);
71 static int clear_stats (struct net_device *dev);
72 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
73 static int rio_close (struct net_device *dev);
74 static int find_miiphy (struct net_device *dev);
75 static int parse_eeprom (struct net_device *dev);
76 static int read_eeprom (long ioaddr, int eep_addr);
77 static int mii_wait_link (struct net_device *dev, int wait);
78 static int mii_set_media (struct net_device *dev);
79 static int mii_get_media (struct net_device *dev);
80 static int mii_set_media_pcs (struct net_device *dev);
81 static int mii_get_media_pcs (struct net_device *dev);
82 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
83 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
86 static const struct ethtool_ops ethtool_ops;
89 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
91 struct net_device *dev;
92 struct netdev_private *np;
94 int chip_idx = ent->driver_data;
97 static int version_printed;
101 if (!version_printed++)
102 printk ("%s", version);
104 err = pci_enable_device (pdev);
109 err = pci_request_regions (pdev, "dl2k");
111 goto err_out_disable;
113 pci_set_master (pdev);
114 dev = alloc_etherdev (sizeof (*np));
119 SET_NETDEV_DEV(dev, &pdev->dev);
122 ioaddr = pci_resource_start (pdev, 1);
123 ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE);
129 ioaddr = pci_resource_start (pdev, 0);
131 dev->base_addr = ioaddr;
133 np = netdev_priv(dev);
134 np->chip_id = chip_idx;
136 spin_lock_init (&np->tx_lock);
137 spin_lock_init (&np->rx_lock);
139 /* Parse manual configuration */
142 if (card_idx < MAX_UNITS) {
143 if (media[card_idx] != NULL) {
145 if (strcmp (media[card_idx], "auto") == 0 ||
146 strcmp (media[card_idx], "autosense") == 0 ||
147 strcmp (media[card_idx], "0") == 0 ) {
149 } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
150 strcmp (media[card_idx], "4") == 0) {
153 } else if (strcmp (media[card_idx], "100mbps_hd") == 0
154 || strcmp (media[card_idx], "3") == 0) {
157 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
158 strcmp (media[card_idx], "2") == 0) {
161 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
162 strcmp (media[card_idx], "1") == 0) {
165 } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
166 strcmp (media[card_idx], "6") == 0) {
169 } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
170 strcmp (media[card_idx], "5") == 0) {
177 if (jumbo[card_idx] != 0) {
179 dev->mtu = MAX_JUMBO;
182 if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
183 dev->mtu = mtu[card_idx];
185 np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
187 if (rx_coalesce > 0 && rx_timeout > 0) {
188 np->rx_coalesce = rx_coalesce;
189 np->rx_timeout = rx_timeout;
192 np->tx_flow = (tx_flow == 0) ? 0 : 1;
193 np->rx_flow = (rx_flow == 0) ? 0 : 1;
197 else if (tx_coalesce > TX_RING_SIZE-1)
198 tx_coalesce = TX_RING_SIZE - 1;
200 dev->open = &rio_open;
201 dev->hard_start_xmit = &start_xmit;
202 dev->stop = &rio_close;
203 dev->get_stats = &get_stats;
204 dev->set_multicast_list = &set_multicast;
205 dev->do_ioctl = &rio_ioctl;
206 dev->tx_timeout = &rio_tx_timeout;
207 dev->watchdog_timeo = TX_TIMEOUT;
208 dev->change_mtu = &change_mtu;
209 SET_ETHTOOL_OPS(dev, ðtool_ops);
211 dev->features = NETIF_F_IP_CSUM;
213 pci_set_drvdata (pdev, dev);
215 ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
217 goto err_out_iounmap;
218 np->tx_ring = (struct netdev_desc *) ring_space;
219 np->tx_ring_dma = ring_dma;
221 ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
223 goto err_out_unmap_tx;
224 np->rx_ring = (struct netdev_desc *) ring_space;
225 np->rx_ring_dma = ring_dma;
227 /* Parse eeprom data */
230 /* Find PHY address */
231 err = find_miiphy (dev);
233 goto err_out_unmap_rx;
236 np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0;
238 /* Set media and reset PHY */
240 /* default Auto-Negotiation for fiber deivices */
241 if (np->an_enable == 2) {
244 mii_set_media_pcs (dev);
246 /* Auto-Negotiation is mandatory for 1000BASE-T,
247 IEEE 802.3ab Annex 28D page 14 */
248 if (np->speed == 1000)
253 err = register_netdev (dev);
255 goto err_out_unmap_rx;
259 printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
260 dev->name, np->name, dev->dev_addr, irq);
262 printk(KERN_INFO "tx_coalesce:\t%d packets\n",
265 printk(KERN_INFO "rx_coalesce:\t%d packets\n"
266 KERN_INFO "rx_timeout: \t%d ns\n",
267 np->rx_coalesce, np->rx_timeout*640);
269 printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
273 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
275 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
278 iounmap ((void *) ioaddr);
285 pci_release_regions (pdev);
288 pci_disable_device (pdev);
293 find_miiphy (struct net_device *dev)
295 int i, phy_found = 0;
296 struct netdev_private *np;
298 np = netdev_priv(dev);
299 ioaddr = dev->base_addr;
302 for (i = 31; i >= 0; i--) {
303 int mii_status = mii_read (dev, i, 1);
304 if (mii_status != 0xffff && mii_status != 0x0000) {
310 printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
317 parse_eeprom (struct net_device *dev)
320 long ioaddr = dev->base_addr;
324 PSROM_t psrom = (PSROM_t) sromdata;
325 struct netdev_private *np = netdev_priv(dev);
330 ioaddr = pci_resource_start (np->pdev, 0);
333 for (i = 0; i < 128; i++) {
334 ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom (ioaddr, i));
337 ioaddr = dev->base_addr;
339 if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */
341 crc = ~ether_crc_le (256 - 4, sromdata);
342 if (psrom->crc != crc) {
343 printk (KERN_ERR "%s: EEPROM data CRC error.\n",
349 /* Set MAC address */
350 for (i = 0; i < 6; i++)
351 dev->dev_addr[i] = psrom->mac_addr[i];
353 if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
357 /* Parse Software Information Block */
359 psib = (u8 *) sromdata;
363 if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
364 printk (KERN_ERR "Cell data error\n");
368 case 0: /* Format version */
370 case 1: /* End of cell */
372 case 2: /* Duplex Polarity */
373 np->duplex_polarity = psib[i];
374 writeb (readb (ioaddr + PhyCtrl) | psib[i],
377 case 3: /* Wake Polarity */
378 np->wake_polarity = psib[i];
380 case 9: /* Adapter description */
381 j = (next - i > 255) ? 255 : next - i;
382 memcpy (np->name, &(psib[i]), j);
388 case 8: /* Reversed */
390 default: /* Unknown cell */
400 rio_open (struct net_device *dev)
402 struct netdev_private *np = netdev_priv(dev);
403 long ioaddr = dev->base_addr;
407 i = request_irq (dev->irq, &rio_interrupt, IRQF_SHARED, dev->name, dev);
411 /* Reset all logic functions */
412 writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset,
413 ioaddr + ASICCtrl + 2);
416 /* DebugCtrl bit 4, 5, 9 must set */
417 writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl);
421 writew (MAX_JUMBO+14, ioaddr + MaxFrameSize);
425 /* Get station address */
426 for (i = 0; i < 6; i++)
427 writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i);
431 writel (np->rx_coalesce | np->rx_timeout << 16,
432 ioaddr + RxDMAIntCtrl);
434 /* Set RIO to poll every N*320nsec. */
435 writeb (0x20, ioaddr + RxDMAPollPeriod);
436 writeb (0xff, ioaddr + TxDMAPollPeriod);
437 writeb (0x30, ioaddr + RxDMABurstThresh);
438 writeb (0x30, ioaddr + RxDMAUrgentThresh);
439 writel (0x0007ffff, ioaddr + RmonStatMask);
440 /* clear statistics */
445 /* priority field in RxDMAIntCtrl */
446 writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10,
447 ioaddr + RxDMAIntCtrl);
449 writew (np->vlan, ioaddr + VLANId);
450 /* Length/Type should be 0x8100 */
451 writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag);
452 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
453 VLAN information tagged by TFC' VID, CFI fields. */
454 writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging,
458 init_timer (&np->timer);
459 np->timer.expires = jiffies + 1*HZ;
460 np->timer.data = (unsigned long) dev;
461 np->timer.function = &rio_timer;
462 add_timer (&np->timer);
465 writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable,
469 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
470 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
471 macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
472 macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
473 writew(macctrl, ioaddr + MACCtrl);
475 netif_start_queue (dev);
477 /* Enable default interrupts */
483 rio_timer (unsigned long data)
485 struct net_device *dev = (struct net_device *)data;
486 struct netdev_private *np = netdev_priv(dev);
488 int next_tick = 1*HZ;
491 spin_lock_irqsave(&np->rx_lock, flags);
492 /* Recover rx ring exhausted error */
493 if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
494 printk(KERN_INFO "Try to recover rx ring exhausted...\n");
495 /* Re-allocate skbuffs to fill the descriptor ring */
496 for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
498 entry = np->old_rx % RX_RING_SIZE;
499 /* Dropped packets don't need to re-allocate */
500 if (np->rx_skbuff[entry] == NULL) {
501 skb = netdev_alloc_skb (dev, np->rx_buf_sz);
503 np->rx_ring[entry].fraginfo = 0;
505 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
509 np->rx_skbuff[entry] = skb;
510 /* 16 byte align the IP header */
511 skb_reserve (skb, 2);
512 np->rx_ring[entry].fraginfo =
513 cpu_to_le64 (pci_map_single
514 (np->pdev, skb->data, np->rx_buf_sz,
515 PCI_DMA_FROMDEVICE));
517 np->rx_ring[entry].fraginfo |=
518 cpu_to_le64((u64)np->rx_buf_sz << 48);
519 np->rx_ring[entry].status = 0;
522 spin_unlock_irqrestore (&np->rx_lock, flags);
523 np->timer.expires = jiffies + next_tick;
524 add_timer(&np->timer);
528 rio_tx_timeout (struct net_device *dev)
530 long ioaddr = dev->base_addr;
532 printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
533 dev->name, readl (ioaddr + TxStatus));
536 dev->trans_start = jiffies;
539 /* allocate and initialize Tx and Rx descriptors */
541 alloc_list (struct net_device *dev)
543 struct netdev_private *np = netdev_priv(dev);
546 np->cur_rx = np->cur_tx = 0;
547 np->old_rx = np->old_tx = 0;
548 np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
550 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
551 for (i = 0; i < TX_RING_SIZE; i++) {
552 np->tx_skbuff[i] = NULL;
553 np->tx_ring[i].status = cpu_to_le64 (TFDDone);
554 np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
555 ((i+1)%TX_RING_SIZE) *
556 sizeof (struct netdev_desc));
559 /* Initialize Rx descriptors */
560 for (i = 0; i < RX_RING_SIZE; i++) {
561 np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
562 ((i + 1) % RX_RING_SIZE) *
563 sizeof (struct netdev_desc));
564 np->rx_ring[i].status = 0;
565 np->rx_ring[i].fraginfo = 0;
566 np->rx_skbuff[i] = NULL;
569 /* Allocate the rx buffers */
570 for (i = 0; i < RX_RING_SIZE; i++) {
571 /* Allocated fixed size of skbuff */
572 struct sk_buff *skb = netdev_alloc_skb (dev, np->rx_buf_sz);
573 np->rx_skbuff[i] = skb;
576 "%s: alloc_list: allocate Rx buffer error! ",
580 skb_reserve (skb, 2); /* 16 byte align the IP header. */
581 /* Rubicon now supports 40 bits of addressing space. */
582 np->rx_ring[i].fraginfo =
583 cpu_to_le64 ( pci_map_single (
584 np->pdev, skb->data, np->rx_buf_sz,
585 PCI_DMA_FROMDEVICE));
586 np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
590 writel (np->rx_ring_dma, dev->base_addr + RFDListPtr0);
591 writel (0, dev->base_addr + RFDListPtr1);
597 start_xmit (struct sk_buff *skb, struct net_device *dev)
599 struct netdev_private *np = netdev_priv(dev);
600 struct netdev_desc *txdesc;
603 u64 tfc_vlan_tag = 0;
605 if (np->link_status == 0) { /* Link Down */
609 ioaddr = dev->base_addr;
610 entry = np->cur_tx % TX_RING_SIZE;
611 np->tx_skbuff[entry] = skb;
612 txdesc = &np->tx_ring[entry];
615 if (skb->ip_summed == CHECKSUM_PARTIAL) {
617 cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
622 tfc_vlan_tag = VLANTagInsert |
623 ((u64)np->vlan << 32) |
624 ((u64)skb->priority << 45);
626 txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
629 txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
631 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
632 * Work around: Always use 1 descriptor in 10Mbps mode */
633 if (entry % np->tx_coalesce == 0 || np->speed == 10)
634 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
637 (1 << FragCountShift));
639 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
641 (1 << FragCountShift));
644 writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl);
646 writel(10000, ioaddr + CountDown);
647 np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
648 if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
649 < TX_QUEUE_LEN - 1 && np->speed != 10) {
651 } else if (!netif_queue_stopped(dev)) {
652 netif_stop_queue (dev);
655 /* The first TFDListPtr */
656 if (readl (dev->base_addr + TFDListPtr0) == 0) {
657 writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc),
658 dev->base_addr + TFDListPtr0);
659 writel (0, dev->base_addr + TFDListPtr1);
662 /* NETDEV WATCHDOG timer */
663 dev->trans_start = jiffies;
668 rio_interrupt (int irq, void *dev_instance)
670 struct net_device *dev = dev_instance;
671 struct netdev_private *np;
674 int cnt = max_intrloop;
677 ioaddr = dev->base_addr;
678 np = netdev_priv(dev);
680 int_status = readw (ioaddr + IntStatus);
681 writew (int_status, ioaddr + IntStatus);
682 int_status &= DEFAULT_INTR;
683 if (int_status == 0 || --cnt < 0)
686 /* Processing received packets */
687 if (int_status & RxDMAComplete)
688 receive_packet (dev);
689 /* TxDMAComplete interrupt */
690 if ((int_status & (TxDMAComplete|IntRequested))) {
692 tx_status = readl (ioaddr + TxStatus);
693 if (tx_status & 0x01)
694 tx_error (dev, tx_status);
695 /* Free used tx skbuffs */
696 rio_free_tx (dev, 1);
699 /* Handle uncommon events */
701 (HostError | LinkEvent | UpdateStats))
702 rio_error (dev, int_status);
704 if (np->cur_tx != np->old_tx)
705 writel (100, ioaddr + CountDown);
706 return IRQ_RETVAL(handled);
709 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
711 return le64_to_cpu(desc->fraginfo) & DMA_48BIT_MASK;
715 rio_free_tx (struct net_device *dev, int irq)
717 struct netdev_private *np = netdev_priv(dev);
718 int entry = np->old_tx % TX_RING_SIZE;
720 unsigned long flag = 0;
723 spin_lock(&np->tx_lock);
725 spin_lock_irqsave(&np->tx_lock, flag);
727 /* Free used tx skbuffs */
728 while (entry != np->cur_tx) {
731 if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
733 skb = np->tx_skbuff[entry];
734 pci_unmap_single (np->pdev,
735 desc_to_dma(&np->tx_ring[entry]),
736 skb->len, PCI_DMA_TODEVICE);
738 dev_kfree_skb_irq (skb);
742 np->tx_skbuff[entry] = NULL;
743 entry = (entry + 1) % TX_RING_SIZE;
747 spin_unlock(&np->tx_lock);
749 spin_unlock_irqrestore(&np->tx_lock, flag);
752 /* If the ring is no longer full, clear tx_full and
753 call netif_wake_queue() */
755 if (netif_queue_stopped(dev) &&
756 ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
757 < TX_QUEUE_LEN - 1 || np->speed == 10)) {
758 netif_wake_queue (dev);
763 tx_error (struct net_device *dev, int tx_status)
765 struct netdev_private *np;
766 long ioaddr = dev->base_addr;
770 np = netdev_priv(dev);
772 frame_id = (tx_status & 0xffff0000);
773 printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
774 dev->name, tx_status, frame_id);
775 np->stats.tx_errors++;
776 /* Ttransmit Underrun */
777 if (tx_status & 0x10) {
778 np->stats.tx_fifo_errors++;
779 writew (readw (ioaddr + TxStartThresh) + 0x10,
780 ioaddr + TxStartThresh);
781 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
782 writew (TxReset | DMAReset | FIFOReset | NetworkReset,
783 ioaddr + ASICCtrl + 2);
784 /* Wait for ResetBusy bit clear */
785 for (i = 50; i > 0; i--) {
786 if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
790 rio_free_tx (dev, 1);
791 /* Reset TFDListPtr */
792 writel (np->tx_ring_dma +
793 np->old_tx * sizeof (struct netdev_desc),
794 dev->base_addr + TFDListPtr0);
795 writel (0, dev->base_addr + TFDListPtr1);
797 /* Let TxStartThresh stay default value */
800 if (tx_status & 0x04) {
801 np->stats.tx_fifo_errors++;
802 /* TxReset and clear FIFO */
803 writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2);
804 /* Wait reset done */
805 for (i = 50; i > 0; i--) {
806 if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
810 /* Let TxStartThresh stay default value */
812 /* Maximum Collisions */
814 if (tx_status & 0x08)
815 np->stats.collisions16++;
817 if (tx_status & 0x08)
818 np->stats.collisions++;
821 writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl);
825 receive_packet (struct net_device *dev)
827 struct netdev_private *np = netdev_priv(dev);
828 int entry = np->cur_rx % RX_RING_SIZE;
831 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
833 struct netdev_desc *desc = &np->rx_ring[entry];
837 if (!(desc->status & cpu_to_le64(RFDDone)) ||
838 !(desc->status & cpu_to_le64(FrameStart)) ||
839 !(desc->status & cpu_to_le64(FrameEnd)))
842 /* Chip omits the CRC. */
843 frame_status = le64_to_cpu(desc->status);
844 pkt_len = frame_status & 0xffff;
847 /* Update rx error statistics, drop packet. */
848 if (frame_status & RFS_Errors) {
849 np->stats.rx_errors++;
850 if (frame_status & (RxRuntFrame | RxLengthError))
851 np->stats.rx_length_errors++;
852 if (frame_status & RxFCSError)
853 np->stats.rx_crc_errors++;
854 if (frame_status & RxAlignmentError && np->speed != 1000)
855 np->stats.rx_frame_errors++;
856 if (frame_status & RxFIFOOverrun)
857 np->stats.rx_fifo_errors++;
861 /* Small skbuffs for short packets */
862 if (pkt_len > copy_thresh) {
863 pci_unmap_single (np->pdev,
867 skb_put (skb = np->rx_skbuff[entry], pkt_len);
868 np->rx_skbuff[entry] = NULL;
869 } else if ((skb = netdev_alloc_skb(dev, pkt_len + 2))) {
870 pci_dma_sync_single_for_cpu(np->pdev,
874 /* 16 byte align the IP header */
875 skb_reserve (skb, 2);
876 skb_copy_to_linear_data (skb,
877 np->rx_skbuff[entry]->data,
879 skb_put (skb, pkt_len);
880 pci_dma_sync_single_for_device(np->pdev,
885 skb->protocol = eth_type_trans (skb, dev);
887 /* Checksum done by hw, but csum value unavailable. */
888 if (np->pdev->pci_rev_id >= 0x0c &&
889 !(frame_status & (TCPError | UDPError | IPError))) {
890 skb->ip_summed = CHECKSUM_UNNECESSARY;
894 dev->last_rx = jiffies;
896 entry = (entry + 1) % RX_RING_SIZE;
898 spin_lock(&np->rx_lock);
900 /* Re-allocate skbuffs to fill the descriptor ring */
902 while (entry != np->cur_rx) {
904 /* Dropped packets don't need to re-allocate */
905 if (np->rx_skbuff[entry] == NULL) {
906 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
908 np->rx_ring[entry].fraginfo = 0;
910 "%s: receive_packet: "
911 "Unable to re-allocate Rx skbuff.#%d\n",
915 np->rx_skbuff[entry] = skb;
916 /* 16 byte align the IP header */
917 skb_reserve (skb, 2);
918 np->rx_ring[entry].fraginfo =
919 cpu_to_le64 (pci_map_single
920 (np->pdev, skb->data, np->rx_buf_sz,
921 PCI_DMA_FROMDEVICE));
923 np->rx_ring[entry].fraginfo |=
924 cpu_to_le64((u64)np->rx_buf_sz << 48);
925 np->rx_ring[entry].status = 0;
926 entry = (entry + 1) % RX_RING_SIZE;
929 spin_unlock(&np->rx_lock);
934 rio_error (struct net_device *dev, int int_status)
936 long ioaddr = dev->base_addr;
937 struct netdev_private *np = netdev_priv(dev);
940 /* Link change event */
941 if (int_status & LinkEvent) {
942 if (mii_wait_link (dev, 10) == 0) {
943 printk (KERN_INFO "%s: Link up\n", dev->name);
945 mii_get_media_pcs (dev);
948 if (np->speed == 1000)
949 np->tx_coalesce = tx_coalesce;
953 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
954 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
955 macctrl |= (np->tx_flow) ?
956 TxFlowControlEnable : 0;
957 macctrl |= (np->rx_flow) ?
958 RxFlowControlEnable : 0;
959 writew(macctrl, ioaddr + MACCtrl);
961 netif_carrier_on(dev);
963 printk (KERN_INFO "%s: Link off\n", dev->name);
965 netif_carrier_off(dev);
969 /* UpdateStats statistics registers */
970 if (int_status & UpdateStats) {
974 /* PCI Error, a catastronphic error related to the bus interface
975 occurs, set GlobalReset and HostReset to reset. */
976 if (int_status & HostError) {
977 printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
978 dev->name, int_status);
979 writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2);
984 static struct net_device_stats *
985 get_stats (struct net_device *dev)
987 long ioaddr = dev->base_addr;
988 struct netdev_private *np = netdev_priv(dev);
992 unsigned int stat_reg;
994 /* All statistics registers need to be acknowledged,
995 else statistic overflow could cause problems */
997 np->stats.rx_packets += readl (ioaddr + FramesRcvOk);
998 np->stats.tx_packets += readl (ioaddr + FramesXmtOk);
999 np->stats.rx_bytes += readl (ioaddr + OctetRcvOk);
1000 np->stats.tx_bytes += readl (ioaddr + OctetXmtOk);
1002 np->stats.multicast = readl (ioaddr + McstFramesRcvdOk);
1003 np->stats.collisions += readl (ioaddr + SingleColFrames)
1004 + readl (ioaddr + MultiColFrames);
1006 /* detailed tx errors */
1007 stat_reg = readw (ioaddr + FramesAbortXSColls);
1008 np->stats.tx_aborted_errors += stat_reg;
1009 np->stats.tx_errors += stat_reg;
1011 stat_reg = readw (ioaddr + CarrierSenseErrors);
1012 np->stats.tx_carrier_errors += stat_reg;
1013 np->stats.tx_errors += stat_reg;
1015 /* Clear all other statistic register. */
1016 readl (ioaddr + McstOctetXmtOk);
1017 readw (ioaddr + BcstFramesXmtdOk);
1018 readl (ioaddr + McstFramesXmtdOk);
1019 readw (ioaddr + BcstFramesRcvdOk);
1020 readw (ioaddr + MacControlFramesRcvd);
1021 readw (ioaddr + FrameTooLongErrors);
1022 readw (ioaddr + InRangeLengthErrors);
1023 readw (ioaddr + FramesCheckSeqErrors);
1024 readw (ioaddr + FramesLostRxErrors);
1025 readl (ioaddr + McstOctetXmtOk);
1026 readl (ioaddr + BcstOctetXmtOk);
1027 readl (ioaddr + McstFramesXmtdOk);
1028 readl (ioaddr + FramesWDeferredXmt);
1029 readl (ioaddr + LateCollisions);
1030 readw (ioaddr + BcstFramesXmtdOk);
1031 readw (ioaddr + MacControlFramesXmtd);
1032 readw (ioaddr + FramesWEXDeferal);
1035 for (i = 0x100; i <= 0x150; i += 4)
1038 readw (ioaddr + TxJumboFrames);
1039 readw (ioaddr + RxJumboFrames);
1040 readw (ioaddr + TCPCheckSumErrors);
1041 readw (ioaddr + UDPCheckSumErrors);
1042 readw (ioaddr + IPCheckSumErrors);
1047 clear_stats (struct net_device *dev)
1049 long ioaddr = dev->base_addr;
1054 /* All statistics registers need to be acknowledged,
1055 else statistic overflow could cause problems */
1056 readl (ioaddr + FramesRcvOk);
1057 readl (ioaddr + FramesXmtOk);
1058 readl (ioaddr + OctetRcvOk);
1059 readl (ioaddr + OctetXmtOk);
1061 readl (ioaddr + McstFramesRcvdOk);
1062 readl (ioaddr + SingleColFrames);
1063 readl (ioaddr + MultiColFrames);
1064 readl (ioaddr + LateCollisions);
1065 /* detailed rx errors */
1066 readw (ioaddr + FrameTooLongErrors);
1067 readw (ioaddr + InRangeLengthErrors);
1068 readw (ioaddr + FramesCheckSeqErrors);
1069 readw (ioaddr + FramesLostRxErrors);
1071 /* detailed tx errors */
1072 readw (ioaddr + FramesAbortXSColls);
1073 readw (ioaddr + CarrierSenseErrors);
1075 /* Clear all other statistic register. */
1076 readl (ioaddr + McstOctetXmtOk);
1077 readw (ioaddr + BcstFramesXmtdOk);
1078 readl (ioaddr + McstFramesXmtdOk);
1079 readw (ioaddr + BcstFramesRcvdOk);
1080 readw (ioaddr + MacControlFramesRcvd);
1081 readl (ioaddr + McstOctetXmtOk);
1082 readl (ioaddr + BcstOctetXmtOk);
1083 readl (ioaddr + McstFramesXmtdOk);
1084 readl (ioaddr + FramesWDeferredXmt);
1085 readw (ioaddr + BcstFramesXmtdOk);
1086 readw (ioaddr + MacControlFramesXmtd);
1087 readw (ioaddr + FramesWEXDeferal);
1089 for (i = 0x100; i <= 0x150; i += 4)
1092 readw (ioaddr + TxJumboFrames);
1093 readw (ioaddr + RxJumboFrames);
1094 readw (ioaddr + TCPCheckSumErrors);
1095 readw (ioaddr + UDPCheckSumErrors);
1096 readw (ioaddr + IPCheckSumErrors);
1102 change_mtu (struct net_device *dev, int new_mtu)
1104 struct netdev_private *np = netdev_priv(dev);
1105 int max = (np->jumbo) ? MAX_JUMBO : 1536;
1107 if ((new_mtu < 68) || (new_mtu > max)) {
1117 set_multicast (struct net_device *dev)
1119 long ioaddr = dev->base_addr;
1122 struct netdev_private *np = netdev_priv(dev);
1124 hash_table[0] = hash_table[1] = 0;
1125 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1126 hash_table[1] |= 0x02000000;
1127 if (dev->flags & IFF_PROMISC) {
1128 /* Receive all frames promiscuously. */
1129 rx_mode = ReceiveAllFrames;
1130 } else if ((dev->flags & IFF_ALLMULTI) ||
1131 (dev->mc_count > multicast_filter_limit)) {
1132 /* Receive broadcast and multicast frames */
1133 rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1134 } else if (dev->mc_count > 0) {
1136 struct dev_mc_list *mclist;
1137 /* Receive broadcast frames and multicast frames filtering
1140 ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1141 for (i=0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1142 i++, mclist=mclist->next)
1145 int crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
1146 /* The inverted high significant 6 bits of CRC are
1147 used as an index to hashtable */
1148 for (bit = 0; bit < 6; bit++)
1149 if (crc & (1 << (31 - bit)))
1150 index |= (1 << bit);
1151 hash_table[index / 32] |= (1 << (index % 32));
1154 rx_mode = ReceiveBroadcast | ReceiveUnicast;
1157 /* ReceiveVLANMatch field in ReceiveMode */
1158 rx_mode |= ReceiveVLANMatch;
1161 writel (hash_table[0], ioaddr + HashTable0);
1162 writel (hash_table[1], ioaddr + HashTable1);
1163 writew (rx_mode, ioaddr + ReceiveMode);
1166 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1168 struct netdev_private *np = netdev_priv(dev);
1169 strcpy(info->driver, "dl2k");
1170 strcpy(info->version, DRV_VERSION);
1171 strcpy(info->bus_info, pci_name(np->pdev));
1174 static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1176 struct netdev_private *np = netdev_priv(dev);
1177 if (np->phy_media) {
1179 cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1180 cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1181 cmd->port = PORT_FIBRE;
1182 cmd->transceiver = XCVR_INTERNAL;
1185 cmd->supported = SUPPORTED_10baseT_Half |
1186 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1187 | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1188 SUPPORTED_Autoneg | SUPPORTED_MII;
1189 cmd->advertising = ADVERTISED_10baseT_Half |
1190 ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1191 ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1192 ADVERTISED_Autoneg | ADVERTISED_MII;
1193 cmd->port = PORT_MII;
1194 cmd->transceiver = XCVR_INTERNAL;
1196 if ( np->link_status ) {
1197 cmd->speed = np->speed;
1198 cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1204 cmd->autoneg = AUTONEG_ENABLE;
1206 cmd->autoneg = AUTONEG_DISABLE;
1208 cmd->phy_address = np->phy_addr;
1212 static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1214 struct netdev_private *np = netdev_priv(dev);
1215 netif_carrier_off(dev);
1216 if (cmd->autoneg == AUTONEG_ENABLE) {
1226 if (np->speed == 1000) {
1227 cmd->speed = SPEED_100;
1228 cmd->duplex = DUPLEX_FULL;
1229 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1231 switch(cmd->speed + cmd->duplex) {
1233 case SPEED_10 + DUPLEX_HALF:
1235 np->full_duplex = 0;
1238 case SPEED_10 + DUPLEX_FULL:
1240 np->full_duplex = 1;
1242 case SPEED_100 + DUPLEX_HALF:
1244 np->full_duplex = 0;
1246 case SPEED_100 + DUPLEX_FULL:
1248 np->full_duplex = 1;
1250 case SPEED_1000 + DUPLEX_HALF:/* not supported */
1251 case SPEED_1000 + DUPLEX_FULL:/* not supported */
1260 static u32 rio_get_link(struct net_device *dev)
1262 struct netdev_private *np = netdev_priv(dev);
1263 return np->link_status;
1266 static const struct ethtool_ops ethtool_ops = {
1267 .get_drvinfo = rio_get_drvinfo,
1268 .get_settings = rio_get_settings,
1269 .set_settings = rio_set_settings,
1270 .get_link = rio_get_link,
1274 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1277 struct netdev_private *np = netdev_priv(dev);
1278 struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru;
1280 struct netdev_desc *desc;
1283 phy_addr = np->phy_addr;
1285 case SIOCDEVPRIVATE:
1288 case SIOCDEVPRIVATE + 1:
1289 miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num);
1291 case SIOCDEVPRIVATE + 2:
1292 mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value);
1294 case SIOCDEVPRIVATE + 3:
1296 case SIOCDEVPRIVATE + 4:
1298 case SIOCDEVPRIVATE + 5:
1299 netif_stop_queue (dev);
1301 case SIOCDEVPRIVATE + 6:
1302 netif_wake_queue (dev);
1304 case SIOCDEVPRIVATE + 7:
1306 ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1307 netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx,
1310 case SIOCDEVPRIVATE + 8:
1311 printk("TX ring:\n");
1312 for (i = 0; i < TX_RING_SIZE; i++) {
1313 desc = &np->tx_ring[i];
1315 ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1317 (u32) (np->tx_ring_dma + i * sizeof (*desc)),
1318 (u32)le64_to_cpu(desc->next_desc),
1319 (u32)le64_to_cpu(desc->status),
1320 (u32)(le64_to_cpu(desc->fraginfo) >> 32),
1321 (u32)le64_to_cpu(desc->fraginfo));
1333 #define EEP_READ 0x0200
1334 #define EEP_BUSY 0x8000
1335 /* Read the EEPROM word */
1336 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1338 read_eeprom (long ioaddr, int eep_addr)
1341 outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl);
1343 if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) {
1344 return inw (ioaddr + EepromData);
1350 enum phy_ctrl_bits {
1351 MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1355 #define mii_delay() readb(ioaddr)
1357 mii_sendbit (struct net_device *dev, u32 data)
1359 long ioaddr = dev->base_addr + PhyCtrl;
1360 data = (data) ? MII_DATA1 : 0;
1362 data |= (readb (ioaddr) & 0xf8) | MII_WRITE;
1363 writeb (data, ioaddr);
1365 writeb (data | MII_CLK, ioaddr);
1370 mii_getbit (struct net_device *dev)
1372 long ioaddr = dev->base_addr + PhyCtrl;
1375 data = (readb (ioaddr) & 0xf8) | MII_READ;
1376 writeb (data, ioaddr);
1378 writeb (data | MII_CLK, ioaddr);
1380 return ((readb (ioaddr) >> 1) & 1);
1384 mii_send_bits (struct net_device *dev, u32 data, int len)
1387 for (i = len - 1; i >= 0; i--) {
1388 mii_sendbit (dev, data & (1 << i));
1393 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1400 mii_send_bits (dev, 0xffffffff, 32);
1401 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1402 /* ST,OP = 0110'b for read operation */
1403 cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1404 mii_send_bits (dev, cmd, 14);
1406 if (mii_getbit (dev))
1409 for (i = 0; i < 16; i++) {
1410 retval |= mii_getbit (dev);
1415 return (retval >> 1) & 0xffff;
1421 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1426 mii_send_bits (dev, 0xffffffff, 32);
1427 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1428 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1429 cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1430 mii_send_bits (dev, cmd, 32);
1436 mii_wait_link (struct net_device *dev, int wait)
1440 struct netdev_private *np;
1442 np = netdev_priv(dev);
1443 phy_addr = np->phy_addr;
1446 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1447 if (bmsr & MII_BMSR_LINK_STATUS)
1450 } while (--wait > 0);
1454 mii_get_media (struct net_device *dev)
1461 struct netdev_private *np;
1463 np = netdev_priv(dev);
1464 phy_addr = np->phy_addr;
1466 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1467 if (np->an_enable) {
1468 if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
1469 /* Auto-Negotiation not completed */
1472 negotiate = mii_read (dev, phy_addr, MII_ANAR) &
1473 mii_read (dev, phy_addr, MII_ANLPAR);
1474 mscr = mii_read (dev, phy_addr, MII_MSCR);
1475 mssr = mii_read (dev, phy_addr, MII_MSSR);
1476 if (mscr & MII_MSCR_1000BT_FD && mssr & MII_MSSR_LP_1000BT_FD) {
1478 np->full_duplex = 1;
1479 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1480 } else if (mscr & MII_MSCR_1000BT_HD && mssr & MII_MSSR_LP_1000BT_HD) {
1482 np->full_duplex = 0;
1483 printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1484 } else if (negotiate & MII_ANAR_100BX_FD) {
1486 np->full_duplex = 1;
1487 printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1488 } else if (negotiate & MII_ANAR_100BX_HD) {
1490 np->full_duplex = 0;
1491 printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1492 } else if (negotiate & MII_ANAR_10BT_FD) {
1494 np->full_duplex = 1;
1495 printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1496 } else if (negotiate & MII_ANAR_10BT_HD) {
1498 np->full_duplex = 0;
1499 printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1501 if (negotiate & MII_ANAR_PAUSE) {
1504 } else if (negotiate & MII_ANAR_ASYMMETRIC) {
1508 /* else tx_flow, rx_flow = user select */
1510 __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1511 switch (bmcr & (MII_BMCR_SPEED_100 | MII_BMCR_SPEED_1000)) {
1512 case MII_BMCR_SPEED_1000:
1513 printk (KERN_INFO "Operating at 1000 Mbps, ");
1515 case MII_BMCR_SPEED_100:
1516 printk (KERN_INFO "Operating at 100 Mbps, ");
1519 printk (KERN_INFO "Operating at 10 Mbps, ");
1521 if (bmcr & MII_BMCR_DUPLEX_MODE) {
1522 printk ("Full duplex\n");
1524 printk ("Half duplex\n");
1528 printk(KERN_INFO "Enable Tx Flow Control\n");
1530 printk(KERN_INFO "Disable Tx Flow Control\n");
1532 printk(KERN_INFO "Enable Rx Flow Control\n");
1534 printk(KERN_INFO "Disable Rx Flow Control\n");
1540 mii_set_media (struct net_device *dev)
1547 struct netdev_private *np;
1548 np = netdev_priv(dev);
1549 phy_addr = np->phy_addr;
1551 /* Does user set speed? */
1552 if (np->an_enable) {
1553 /* Advertise capabilities */
1554 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1555 anar = mii_read (dev, phy_addr, MII_ANAR) &
1556 ~MII_ANAR_100BX_FD &
1557 ~MII_ANAR_100BX_HD &
1561 if (bmsr & MII_BMSR_100BX_FD)
1562 anar |= MII_ANAR_100BX_FD;
1563 if (bmsr & MII_BMSR_100BX_HD)
1564 anar |= MII_ANAR_100BX_HD;
1565 if (bmsr & MII_BMSR_100BT4)
1566 anar |= MII_ANAR_100BT4;
1567 if (bmsr & MII_BMSR_10BT_FD)
1568 anar |= MII_ANAR_10BT_FD;
1569 if (bmsr & MII_BMSR_10BT_HD)
1570 anar |= MII_ANAR_10BT_HD;
1571 anar |= MII_ANAR_PAUSE | MII_ANAR_ASYMMETRIC;
1572 mii_write (dev, phy_addr, MII_ANAR, anar);
1574 /* Enable Auto crossover */
1575 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1576 pscr |= 3 << 5; /* 11'b */
1577 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1579 /* Soft reset PHY */
1580 mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1581 bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN | MII_BMCR_RESET;
1582 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1585 /* Force speed setting */
1586 /* 1) Disable Auto crossover */
1587 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1589 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1592 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1593 bmcr |= MII_BMCR_RESET;
1594 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1597 bmcr = 0x1940; /* must be 0x1940 */
1598 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1599 mdelay (100); /* wait a certain time */
1601 /* 4) Advertise nothing */
1602 mii_write (dev, phy_addr, MII_ANAR, 0);
1604 /* 5) Set media and Power Up */
1605 bmcr = MII_BMCR_POWER_DOWN;
1606 if (np->speed == 100) {
1607 bmcr |= MII_BMCR_SPEED_100;
1608 printk (KERN_INFO "Manual 100 Mbps, ");
1609 } else if (np->speed == 10) {
1610 printk (KERN_INFO "Manual 10 Mbps, ");
1612 if (np->full_duplex) {
1613 bmcr |= MII_BMCR_DUPLEX_MODE;
1614 printk ("Full duplex\n");
1616 printk ("Half duplex\n");
1619 /* Set 1000BaseT Master/Slave setting */
1620 mscr = mii_read (dev, phy_addr, MII_MSCR);
1621 mscr |= MII_MSCR_CFG_ENABLE;
1622 mscr &= ~MII_MSCR_CFG_VALUE = 0;
1624 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1631 mii_get_media_pcs (struct net_device *dev)
1636 struct netdev_private *np;
1638 np = netdev_priv(dev);
1639 phy_addr = np->phy_addr;
1641 bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1642 if (np->an_enable) {
1643 if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
1644 /* Auto-Negotiation not completed */
1647 negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1648 mii_read (dev, phy_addr, PCS_ANLPAR);
1650 if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1651 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1652 np->full_duplex = 1;
1654 printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1655 np->full_duplex = 0;
1657 if (negotiate & PCS_ANAR_PAUSE) {
1660 } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1664 /* else tx_flow, rx_flow = user select */
1666 __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1667 printk (KERN_INFO "Operating at 1000 Mbps, ");
1668 if (bmcr & MII_BMCR_DUPLEX_MODE) {
1669 printk ("Full duplex\n");
1671 printk ("Half duplex\n");
1675 printk(KERN_INFO "Enable Tx Flow Control\n");
1677 printk(KERN_INFO "Disable Tx Flow Control\n");
1679 printk(KERN_INFO "Enable Rx Flow Control\n");
1681 printk(KERN_INFO "Disable Rx Flow Control\n");
1687 mii_set_media_pcs (struct net_device *dev)
1693 struct netdev_private *np;
1694 np = netdev_priv(dev);
1695 phy_addr = np->phy_addr;
1697 /* Auto-Negotiation? */
1698 if (np->an_enable) {
1699 /* Advertise capabilities */
1700 esr = mii_read (dev, phy_addr, PCS_ESR);
1701 anar = mii_read (dev, phy_addr, MII_ANAR) &
1702 ~PCS_ANAR_HALF_DUPLEX &
1703 ~PCS_ANAR_FULL_DUPLEX;
1704 if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1705 anar |= PCS_ANAR_HALF_DUPLEX;
1706 if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1707 anar |= PCS_ANAR_FULL_DUPLEX;
1708 anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1709 mii_write (dev, phy_addr, MII_ANAR, anar);
1711 /* Soft reset PHY */
1712 mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1713 bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN |
1715 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1718 /* Force speed setting */
1720 bmcr = MII_BMCR_RESET;
1721 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1723 if (np->full_duplex) {
1724 bmcr = MII_BMCR_DUPLEX_MODE;
1725 printk (KERN_INFO "Manual full duplex\n");
1728 printk (KERN_INFO "Manual half duplex\n");
1730 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1733 /* Advertise nothing */
1734 mii_write (dev, phy_addr, MII_ANAR, 0);
1741 rio_close (struct net_device *dev)
1743 long ioaddr = dev->base_addr;
1744 struct netdev_private *np = netdev_priv(dev);
1745 struct sk_buff *skb;
1748 netif_stop_queue (dev);
1750 /* Disable interrupts */
1751 writew (0, ioaddr + IntEnable);
1753 /* Stop Tx and Rx logics */
1754 writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl);
1756 free_irq (dev->irq, dev);
1757 del_timer_sync (&np->timer);
1759 /* Free all the skbuffs in the queue. */
1760 for (i = 0; i < RX_RING_SIZE; i++) {
1761 np->rx_ring[i].status = 0;
1762 np->rx_ring[i].fraginfo = 0;
1763 skb = np->rx_skbuff[i];
1765 pci_unmap_single(np->pdev,
1766 desc_to_dma(&np->rx_ring[i]),
1767 skb->len, PCI_DMA_FROMDEVICE);
1768 dev_kfree_skb (skb);
1769 np->rx_skbuff[i] = NULL;
1772 for (i = 0; i < TX_RING_SIZE; i++) {
1773 skb = np->tx_skbuff[i];
1775 pci_unmap_single(np->pdev,
1776 desc_to_dma(&np->tx_ring[i]),
1777 skb->len, PCI_DMA_TODEVICE);
1778 dev_kfree_skb (skb);
1779 np->tx_skbuff[i] = NULL;
1786 static void __devexit
1787 rio_remove1 (struct pci_dev *pdev)
1789 struct net_device *dev = pci_get_drvdata (pdev);
1792 struct netdev_private *np = netdev_priv(dev);
1794 unregister_netdev (dev);
1795 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1797 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1800 iounmap ((char *) (dev->base_addr));
1803 pci_release_regions (pdev);
1804 pci_disable_device (pdev);
1806 pci_set_drvdata (pdev, NULL);
1809 static struct pci_driver rio_driver = {
1811 .id_table = rio_pci_tbl,
1812 .probe = rio_probe1,
1813 .remove = __devexit_p(rio_remove1),
1819 return pci_register_driver(&rio_driver);
1825 pci_unregister_driver (&rio_driver);
1828 module_init (rio_init);
1829 module_exit (rio_exit);
1835 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1837 Read Documentation/networking/dl2k.txt for details.