2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt73usb device specific routines.
24 Supported chipsets: rt2571W & rt2671.
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/usb.h>
36 #include "rt2x00usb.h"
40 * Allow hardware encryption to be disabled.
42 static int modparam_nohwcrypt = 0;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
48 * All access to the CSR registers will go through the methods
49 * rt73usb_register_read and rt73usb_register_write.
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers BBPCSR and RFCSR to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
55 * between each attampt. When the busy bit is still set at that time,
56 * the access attempt is considered to have failed,
57 * and we will print an error.
58 * The _lock versions must be used if you already hold the usb_cache_mutex
60 static inline void rt73usb_register_read(struct rt2x00_dev *rt2x00dev,
61 const unsigned int offset, u32 *value)
64 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
65 USB_VENDOR_REQUEST_IN, offset,
66 ®, sizeof(u32), REGISTER_TIMEOUT);
67 *value = le32_to_cpu(reg);
70 static inline void rt73usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
71 const unsigned int offset, u32 *value)
74 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
75 USB_VENDOR_REQUEST_IN, offset,
76 ®, sizeof(u32), REGISTER_TIMEOUT);
77 *value = le32_to_cpu(reg);
80 static inline void rt73usb_register_multiread(struct rt2x00_dev *rt2x00dev,
81 const unsigned int offset,
82 void *value, const u32 length)
84 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
85 USB_VENDOR_REQUEST_IN, offset,
87 REGISTER_TIMEOUT32(length));
90 static inline void rt73usb_register_write(struct rt2x00_dev *rt2x00dev,
91 const unsigned int offset, u32 value)
93 __le32 reg = cpu_to_le32(value);
94 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
95 USB_VENDOR_REQUEST_OUT, offset,
96 ®, sizeof(u32), REGISTER_TIMEOUT);
99 static inline void rt73usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
100 const unsigned int offset, u32 value)
102 __le32 reg = cpu_to_le32(value);
103 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
104 USB_VENDOR_REQUEST_OUT, offset,
105 ®, sizeof(u32), REGISTER_TIMEOUT);
108 static inline void rt73usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
109 const unsigned int offset,
110 void *value, const u32 length)
112 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
113 USB_VENDOR_REQUEST_OUT, offset,
115 REGISTER_TIMEOUT32(length));
118 static u32 rt73usb_bbp_check(struct rt2x00_dev *rt2x00dev)
123 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
124 rt73usb_register_read_lock(rt2x00dev, PHY_CSR3, ®);
125 if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
127 udelay(REGISTER_BUSY_DELAY);
133 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
134 const unsigned int word, const u8 value)
138 mutex_lock(&rt2x00dev->usb_cache_mutex);
141 * Wait until the BBP becomes ready.
143 reg = rt73usb_bbp_check(rt2x00dev);
144 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY))
148 * Write the data into the BBP.
151 rt2x00_set_field32(®, PHY_CSR3_VALUE, value);
152 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
153 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
154 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0);
156 rt73usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
157 mutex_unlock(&rt2x00dev->usb_cache_mutex);
162 mutex_unlock(&rt2x00dev->usb_cache_mutex);
164 ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
167 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
168 const unsigned int word, u8 *value)
172 mutex_lock(&rt2x00dev->usb_cache_mutex);
175 * Wait until the BBP becomes ready.
177 reg = rt73usb_bbp_check(rt2x00dev);
178 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY))
182 * Write the request into the BBP.
185 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
186 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
187 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1);
189 rt73usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
192 * Wait until the BBP becomes ready.
194 reg = rt73usb_bbp_check(rt2x00dev);
195 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY))
198 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
199 mutex_unlock(&rt2x00dev->usb_cache_mutex);
204 mutex_unlock(&rt2x00dev->usb_cache_mutex);
206 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
210 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
211 const unsigned int word, const u32 value)
219 mutex_lock(&rt2x00dev->usb_cache_mutex);
221 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
222 rt73usb_register_read_lock(rt2x00dev, PHY_CSR4, ®);
223 if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
225 udelay(REGISTER_BUSY_DELAY);
228 mutex_unlock(&rt2x00dev->usb_cache_mutex);
229 ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
234 rt2x00_set_field32(®, PHY_CSR4_VALUE, value);
237 * RF5225 and RF2527 contain 21 bits per RF register value,
238 * all others contain 20 bits.
240 rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS,
241 20 + (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
242 rt2x00_rf(&rt2x00dev->chip, RF2527)));
243 rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0);
244 rt2x00_set_field32(®, PHY_CSR4_BUSY, 1);
246 rt73usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
247 rt2x00_rf_write(rt2x00dev, word, value);
248 mutex_unlock(&rt2x00dev->usb_cache_mutex);
251 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
252 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
254 static void rt73usb_read_csr(struct rt2x00_dev *rt2x00dev,
255 const unsigned int word, u32 *data)
257 rt73usb_register_read(rt2x00dev, CSR_OFFSET(word), data);
260 static void rt73usb_write_csr(struct rt2x00_dev *rt2x00dev,
261 const unsigned int word, u32 data)
263 rt73usb_register_write(rt2x00dev, CSR_OFFSET(word), data);
266 static const struct rt2x00debug rt73usb_rt2x00debug = {
267 .owner = THIS_MODULE,
269 .read = rt73usb_read_csr,
270 .write = rt73usb_write_csr,
271 .word_size = sizeof(u32),
272 .word_count = CSR_REG_SIZE / sizeof(u32),
275 .read = rt2x00_eeprom_read,
276 .write = rt2x00_eeprom_write,
277 .word_size = sizeof(u16),
278 .word_count = EEPROM_SIZE / sizeof(u16),
281 .read = rt73usb_bbp_read,
282 .write = rt73usb_bbp_write,
283 .word_size = sizeof(u8),
284 .word_count = BBP_SIZE / sizeof(u8),
287 .read = rt2x00_rf_read,
288 .write = rt73usb_rf_write,
289 .word_size = sizeof(u32),
290 .word_count = RF_SIZE / sizeof(u32),
293 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
295 #ifdef CONFIG_RT2X00_LIB_LEDS
296 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
297 enum led_brightness brightness)
299 struct rt2x00_led *led =
300 container_of(led_cdev, struct rt2x00_led, led_dev);
301 unsigned int enabled = brightness != LED_OFF;
302 unsigned int a_mode =
303 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
304 unsigned int bg_mode =
305 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
307 if (led->type == LED_TYPE_RADIO) {
308 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
309 MCU_LEDCS_RADIO_STATUS, enabled);
311 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
312 0, led->rt2x00dev->led_mcu_reg,
314 } else if (led->type == LED_TYPE_ASSOC) {
315 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
316 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
317 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
318 MCU_LEDCS_LINK_A_STATUS, a_mode);
320 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
321 0, led->rt2x00dev->led_mcu_reg,
323 } else if (led->type == LED_TYPE_QUALITY) {
325 * The brightness is divided into 6 levels (0 - 5),
326 * this means we need to convert the brightness
327 * argument into the matching level within that range.
329 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
330 brightness / (LED_FULL / 6),
331 led->rt2x00dev->led_mcu_reg,
336 static int rt73usb_blink_set(struct led_classdev *led_cdev,
337 unsigned long *delay_on,
338 unsigned long *delay_off)
340 struct rt2x00_led *led =
341 container_of(led_cdev, struct rt2x00_led, led_dev);
344 rt73usb_register_read(led->rt2x00dev, MAC_CSR14, ®);
345 rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on);
346 rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off);
347 rt73usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
352 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
353 struct rt2x00_led *led,
356 led->rt2x00dev = rt2x00dev;
358 led->led_dev.brightness_set = rt73usb_brightness_set;
359 led->led_dev.blink_set = rt73usb_blink_set;
360 led->flags = LED_INITIALIZED;
362 #endif /* CONFIG_RT2X00_LIB_LEDS */
365 * Configuration handlers.
367 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
368 struct rt2x00lib_crypto *crypto,
369 struct ieee80211_key_conf *key)
371 struct hw_key_entry key_entry;
372 struct rt2x00_field32 field;
377 if (crypto->cmd == SET_KEY) {
379 * rt2x00lib can't determine the correct free
380 * key_idx for shared keys. We have 1 register
381 * with key valid bits. The goal is simple, read
382 * the register, if that is full we have no slots
384 * Note that each BSS is allowed to have up to 4
385 * shared keys, so put a mask over the allowed
388 mask = (0xf << crypto->bssidx);
390 rt73usb_register_read(rt2x00dev, SEC_CSR0, ®);
393 if (reg && reg == mask)
396 key->hw_key_idx += reg ? ffz(reg) : 0;
399 * Upload key to hardware
401 memcpy(key_entry.key, crypto->key,
402 sizeof(key_entry.key));
403 memcpy(key_entry.tx_mic, crypto->tx_mic,
404 sizeof(key_entry.tx_mic));
405 memcpy(key_entry.rx_mic, crypto->rx_mic,
406 sizeof(key_entry.rx_mic));
408 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
409 timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
410 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
411 USB_VENDOR_REQUEST_OUT, reg,
417 * The cipher types are stored over 2 registers.
418 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
419 * bssidx 1 and 2 keys are stored in SEC_CSR5.
420 * Using the correct defines correctly will cause overhead,
421 * so just calculate the correct offset.
423 if (key->hw_key_idx < 8) {
424 field.bit_offset = (3 * key->hw_key_idx);
425 field.bit_mask = 0x7 << field.bit_offset;
427 rt73usb_register_read(rt2x00dev, SEC_CSR1, ®);
428 rt2x00_set_field32(®, field, crypto->cipher);
429 rt73usb_register_write(rt2x00dev, SEC_CSR1, reg);
431 field.bit_offset = (3 * (key->hw_key_idx - 8));
432 field.bit_mask = 0x7 << field.bit_offset;
434 rt73usb_register_read(rt2x00dev, SEC_CSR5, ®);
435 rt2x00_set_field32(®, field, crypto->cipher);
436 rt73usb_register_write(rt2x00dev, SEC_CSR5, reg);
440 * The driver does not support the IV/EIV generation
441 * in hardware. However it doesn't support the IV/EIV
442 * inside the ieee80211 frame either, but requires it
443 * to be provided seperately for the descriptor.
444 * rt2x00lib will cut the IV/EIV data out of all frames
445 * given to us by mac80211, but we must tell mac80211
446 * to generate the IV/EIV data.
448 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
452 * SEC_CSR0 contains only single-bit fields to indicate
453 * a particular key is valid. Because using the FIELD32()
454 * defines directly will cause a lot of overhead we use
455 * a calculation to determine the correct bit directly.
457 mask = 1 << key->hw_key_idx;
459 rt73usb_register_read(rt2x00dev, SEC_CSR0, ®);
460 if (crypto->cmd == SET_KEY)
462 else if (crypto->cmd == DISABLE_KEY)
464 rt73usb_register_write(rt2x00dev, SEC_CSR0, reg);
469 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
470 struct rt2x00lib_crypto *crypto,
471 struct ieee80211_key_conf *key)
473 struct hw_pairwise_ta_entry addr_entry;
474 struct hw_key_entry key_entry;
479 if (crypto->cmd == SET_KEY) {
481 * rt2x00lib can't determine the correct free
482 * key_idx for pairwise keys. We have 2 registers
483 * with key valid bits. The goal is simple, read
484 * the first register, if that is full move to
486 * When both registers are full, we drop the key,
487 * otherwise we use the first invalid entry.
489 rt73usb_register_read(rt2x00dev, SEC_CSR2, ®);
490 if (reg && reg == ~0) {
491 key->hw_key_idx = 32;
492 rt73usb_register_read(rt2x00dev, SEC_CSR3, ®);
493 if (reg && reg == ~0)
497 key->hw_key_idx += reg ? ffz(reg) : 0;
500 * Upload key to hardware
502 memcpy(key_entry.key, crypto->key,
503 sizeof(key_entry.key));
504 memcpy(key_entry.tx_mic, crypto->tx_mic,
505 sizeof(key_entry.tx_mic));
506 memcpy(key_entry.rx_mic, crypto->rx_mic,
507 sizeof(key_entry.rx_mic));
509 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
510 timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
511 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
512 USB_VENDOR_REQUEST_OUT, reg,
518 * Send the address and cipher type to the hardware register.
519 * This data fits within the CSR cache size, so we can use
520 * rt73usb_register_multiwrite() directly.
522 memset(&addr_entry, 0, sizeof(addr_entry));
523 memcpy(&addr_entry, crypto->address, ETH_ALEN);
524 addr_entry.cipher = crypto->cipher;
526 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
527 rt73usb_register_multiwrite(rt2x00dev, reg,
528 &addr_entry, sizeof(addr_entry));
531 * Enable pairwise lookup table for given BSS idx,
532 * without this received frames will not be decrypted
535 rt73usb_register_read(rt2x00dev, SEC_CSR4, ®);
536 reg |= (1 << crypto->bssidx);
537 rt73usb_register_write(rt2x00dev, SEC_CSR4, reg);
540 * The driver does not support the IV/EIV generation
541 * in hardware. However it doesn't support the IV/EIV
542 * inside the ieee80211 frame either, but requires it
543 * to be provided seperately for the descriptor.
544 * rt2x00lib will cut the IV/EIV data out of all frames
545 * given to us by mac80211, but we must tell mac80211
546 * to generate the IV/EIV data.
548 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
552 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
553 * a particular key is valid. Because using the FIELD32()
554 * defines directly will cause a lot of overhead we use
555 * a calculation to determine the correct bit directly.
557 if (key->hw_key_idx < 32) {
558 mask = 1 << key->hw_key_idx;
560 rt73usb_register_read(rt2x00dev, SEC_CSR2, ®);
561 if (crypto->cmd == SET_KEY)
563 else if (crypto->cmd == DISABLE_KEY)
565 rt73usb_register_write(rt2x00dev, SEC_CSR2, reg);
567 mask = 1 << (key->hw_key_idx - 32);
569 rt73usb_register_read(rt2x00dev, SEC_CSR3, ®);
570 if (crypto->cmd == SET_KEY)
572 else if (crypto->cmd == DISABLE_KEY)
574 rt73usb_register_write(rt2x00dev, SEC_CSR3, reg);
580 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
581 const unsigned int filter_flags)
586 * Start configuration steps.
587 * Note that the version error will always be dropped
588 * and broadcast frames will always be accepted since
589 * there is no filter for it at this time.
591 rt73usb_register_read(rt2x00dev, TXRX_CSR0, ®);
592 rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC,
593 !(filter_flags & FIF_FCSFAIL));
594 rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL,
595 !(filter_flags & FIF_PLCPFAIL));
596 rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL,
597 !(filter_flags & FIF_CONTROL));
598 rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME,
599 !(filter_flags & FIF_PROMISC_IN_BSS));
600 rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS,
601 !(filter_flags & FIF_PROMISC_IN_BSS) &&
602 !rt2x00dev->intf_ap_count);
603 rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1);
604 rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST,
605 !(filter_flags & FIF_ALLMULTI));
606 rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0);
607 rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS,
608 !(filter_flags & FIF_CONTROL));
609 rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
612 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
613 struct rt2x00_intf *intf,
614 struct rt2x00intf_conf *conf,
615 const unsigned int flags)
617 unsigned int beacon_base;
620 if (flags & CONFIG_UPDATE_TYPE) {
622 * Clear current synchronisation setup.
623 * For the Beacon base registers we only need to clear
624 * the first byte since that byte contains the VALID and OWNER
625 * bits which (when set to 0) will invalidate the entire beacon.
627 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
628 rt73usb_register_write(rt2x00dev, beacon_base, 0);
631 * Enable synchronisation.
633 rt73usb_register_read(rt2x00dev, TXRX_CSR9, ®);
634 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1);
635 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync);
636 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1);
637 rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
640 if (flags & CONFIG_UPDATE_MAC) {
641 reg = le32_to_cpu(conf->mac[1]);
642 rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
643 conf->mac[1] = cpu_to_le32(reg);
645 rt73usb_register_multiwrite(rt2x00dev, MAC_CSR2,
646 conf->mac, sizeof(conf->mac));
649 if (flags & CONFIG_UPDATE_BSSID) {
650 reg = le32_to_cpu(conf->bssid[1]);
651 rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3);
652 conf->bssid[1] = cpu_to_le32(reg);
654 rt73usb_register_multiwrite(rt2x00dev, MAC_CSR4,
655 conf->bssid, sizeof(conf->bssid));
659 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
660 struct rt2x00lib_erp *erp)
664 rt73usb_register_read(rt2x00dev, TXRX_CSR0, ®);
665 rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
666 rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
668 rt73usb_register_read(rt2x00dev, TXRX_CSR4, ®);
669 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE,
670 !!erp->short_preamble);
671 rt73usb_register_write(rt2x00dev, TXRX_CSR4, reg);
674 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
675 struct rt2x00lib_conf *libconf)
680 if (libconf->band == IEEE80211_BAND_2GHZ) {
681 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
684 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
685 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
687 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
688 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
691 rt2x00dev->lna_gain = lna_gain;
694 static void rt73usb_config_phymode(struct rt2x00_dev *rt2x00dev,
695 const int basic_rate_mask)
697 rt73usb_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask);
700 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
701 struct rf_channel *rf, const int txpower)
707 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
708 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
710 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
711 rt2x00_rf(&rt2x00dev->chip, RF2527));
713 rt73usb_bbp_read(rt2x00dev, 3, &r3);
714 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
715 rt73usb_bbp_write(rt2x00dev, 3, r3);
718 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
719 r94 += txpower - MAX_TXPOWER;
720 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
722 rt73usb_bbp_write(rt2x00dev, 94, r94);
724 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
725 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
726 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
727 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
729 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
730 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
731 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
732 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
734 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
735 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
736 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
737 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
742 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
745 struct rf_channel rf;
747 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
748 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
749 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
750 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
752 rt73usb_config_channel(rt2x00dev, &rf, txpower);
755 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
756 struct antenna_setup *ant)
763 rt73usb_bbp_read(rt2x00dev, 3, &r3);
764 rt73usb_bbp_read(rt2x00dev, 4, &r4);
765 rt73usb_bbp_read(rt2x00dev, 77, &r77);
767 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
770 * Configure the RX antenna.
773 case ANTENNA_HW_DIVERSITY:
774 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
775 temp = !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)
776 && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
777 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
780 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
781 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
782 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
783 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
785 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
789 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
790 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
791 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
792 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
794 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
798 rt73usb_bbp_write(rt2x00dev, 77, r77);
799 rt73usb_bbp_write(rt2x00dev, 3, r3);
800 rt73usb_bbp_write(rt2x00dev, 4, r4);
803 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
804 struct antenna_setup *ant)
810 rt73usb_bbp_read(rt2x00dev, 3, &r3);
811 rt73usb_bbp_read(rt2x00dev, 4, &r4);
812 rt73usb_bbp_read(rt2x00dev, 77, &r77);
814 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
815 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
816 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
819 * Configure the RX antenna.
822 case ANTENNA_HW_DIVERSITY:
823 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
826 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
827 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
831 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
832 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
836 rt73usb_bbp_write(rt2x00dev, 77, r77);
837 rt73usb_bbp_write(rt2x00dev, 3, r3);
838 rt73usb_bbp_write(rt2x00dev, 4, r4);
844 * value[0] -> non-LNA
850 static const struct antenna_sel antenna_sel_a[] = {
851 { 96, { 0x58, 0x78 } },
852 { 104, { 0x38, 0x48 } },
853 { 75, { 0xfe, 0x80 } },
854 { 86, { 0xfe, 0x80 } },
855 { 88, { 0xfe, 0x80 } },
856 { 35, { 0x60, 0x60 } },
857 { 97, { 0x58, 0x58 } },
858 { 98, { 0x58, 0x58 } },
861 static const struct antenna_sel antenna_sel_bg[] = {
862 { 96, { 0x48, 0x68 } },
863 { 104, { 0x2c, 0x3c } },
864 { 75, { 0xfe, 0x80 } },
865 { 86, { 0xfe, 0x80 } },
866 { 88, { 0xfe, 0x80 } },
867 { 35, { 0x50, 0x50 } },
868 { 97, { 0x48, 0x48 } },
869 { 98, { 0x48, 0x48 } },
872 static void rt73usb_config_antenna(struct rt2x00_dev *rt2x00dev,
873 struct antenna_setup *ant)
875 const struct antenna_sel *sel;
881 * We should never come here because rt2x00lib is supposed
882 * to catch this and send us the correct antenna explicitely.
884 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
885 ant->tx == ANTENNA_SW_DIVERSITY);
887 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
889 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
891 sel = antenna_sel_bg;
892 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
895 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
896 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
898 rt73usb_register_read(rt2x00dev, PHY_CSR0, ®);
900 rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG,
901 (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
902 rt2x00_set_field32(®, PHY_CSR0_PA_PE_A,
903 (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
905 rt73usb_register_write(rt2x00dev, PHY_CSR0, reg);
907 if (rt2x00_rf(&rt2x00dev->chip, RF5226) ||
908 rt2x00_rf(&rt2x00dev->chip, RF5225))
909 rt73usb_config_antenna_5x(rt2x00dev, ant);
910 else if (rt2x00_rf(&rt2x00dev->chip, RF2528) ||
911 rt2x00_rf(&rt2x00dev->chip, RF2527))
912 rt73usb_config_antenna_2x(rt2x00dev, ant);
915 static void rt73usb_config_duration(struct rt2x00_dev *rt2x00dev,
916 struct rt2x00lib_conf *libconf)
920 rt73usb_register_read(rt2x00dev, MAC_CSR9, ®);
921 rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, libconf->slot_time);
922 rt73usb_register_write(rt2x00dev, MAC_CSR9, reg);
924 rt73usb_register_read(rt2x00dev, MAC_CSR8, ®);
925 rt2x00_set_field32(®, MAC_CSR8_SIFS, libconf->sifs);
926 rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
927 rt2x00_set_field32(®, MAC_CSR8_EIFS, libconf->eifs);
928 rt73usb_register_write(rt2x00dev, MAC_CSR8, reg);
930 rt73usb_register_read(rt2x00dev, TXRX_CSR0, ®);
931 rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
932 rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
934 rt73usb_register_read(rt2x00dev, TXRX_CSR4, ®);
935 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
936 rt73usb_register_write(rt2x00dev, TXRX_CSR4, reg);
938 rt73usb_register_read(rt2x00dev, TXRX_CSR9, ®);
939 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL,
940 libconf->conf->beacon_int * 16);
941 rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
944 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
945 struct rt2x00lib_conf *libconf,
946 const unsigned int flags)
948 /* Always recalculate LNA gain before changing configuration */
949 rt73usb_config_lna_gain(rt2x00dev, libconf);
951 if (flags & CONFIG_UPDATE_PHYMODE)
952 rt73usb_config_phymode(rt2x00dev, libconf->basic_rates);
953 if (flags & CONFIG_UPDATE_CHANNEL)
954 rt73usb_config_channel(rt2x00dev, &libconf->rf,
955 libconf->conf->power_level);
956 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
957 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
958 if (flags & CONFIG_UPDATE_ANTENNA)
959 rt73usb_config_antenna(rt2x00dev, &libconf->ant);
960 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
961 rt73usb_config_duration(rt2x00dev, libconf);
967 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
968 struct link_qual *qual)
973 * Update FCS error count from register.
975 rt73usb_register_read(rt2x00dev, STA_CSR0, ®);
976 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
979 * Update False CCA count from register.
981 rt73usb_register_read(rt2x00dev, STA_CSR1, ®);
982 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
985 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
987 rt73usb_bbp_write(rt2x00dev, 17, 0x20);
988 rt2x00dev->link.vgc_level = 0x20;
991 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev)
993 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
998 rt73usb_bbp_read(rt2x00dev, 17, &r17);
1001 * Determine r17 bounds.
1003 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1007 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1015 } else if (rssi > -84) {
1023 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1030 * If we are not associated, we should go straight to the
1031 * dynamic CCA tuning.
1033 if (!rt2x00dev->intf_associated)
1034 goto dynamic_cca_tune;
1037 * Special big-R17 for very short distance
1041 rt73usb_bbp_write(rt2x00dev, 17, 0x60);
1046 * Special big-R17 for short distance
1049 if (r17 != up_bound)
1050 rt73usb_bbp_write(rt2x00dev, 17, up_bound);
1055 * Special big-R17 for middle-short distance
1059 if (r17 != low_bound)
1060 rt73usb_bbp_write(rt2x00dev, 17, low_bound);
1065 * Special mid-R17 for middle distance
1068 if (r17 != (low_bound + 0x10))
1069 rt73usb_bbp_write(rt2x00dev, 17, low_bound + 0x08);
1074 * Special case: Change up_bound based on the rssi.
1075 * Lower up_bound when rssi is weaker then -74 dBm.
1077 up_bound -= 2 * (-74 - rssi);
1078 if (low_bound > up_bound)
1079 up_bound = low_bound;
1081 if (r17 > up_bound) {
1082 rt73usb_bbp_write(rt2x00dev, 17, up_bound);
1089 * r17 does not yet exceed upper limit, continue and base
1090 * the r17 tuning on the false CCA count.
1092 if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
1096 rt73usb_bbp_write(rt2x00dev, 17, r17);
1097 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
1099 if (r17 < low_bound)
1101 rt73usb_bbp_write(rt2x00dev, 17, r17);
1106 * Firmware functions
1108 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1110 return FIRMWARE_RT2571;
1113 static u16 rt73usb_get_firmware_crc(const void *data, const size_t len)
1118 * Use the crc itu-t algorithm.
1119 * The last 2 bytes in the firmware array are the crc checksum itself,
1120 * this means that we should never pass those 2 bytes to the crc
1123 crc = crc_itu_t(0, data, len - 2);
1124 crc = crc_itu_t_byte(crc, 0);
1125 crc = crc_itu_t_byte(crc, 0);
1130 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
1138 * Wait for stable hardware.
1140 for (i = 0; i < 100; i++) {
1141 rt73usb_register_read(rt2x00dev, MAC_CSR0, ®);
1148 ERROR(rt2x00dev, "Unstable hardware.\n");
1153 * Write firmware to device.
1155 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1156 USB_VENDOR_REQUEST_OUT,
1157 FIRMWARE_IMAGE_BASE,
1159 REGISTER_TIMEOUT32(len));
1162 * Send firmware request to device to load firmware,
1163 * we need to specify a long timeout time.
1165 status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1166 0, USB_MODE_FIRMWARE,
1167 REGISTER_TIMEOUT_FIRMWARE);
1169 ERROR(rt2x00dev, "Failed to write Firmware to device.\n");
1177 * Initialization functions.
1179 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1183 rt73usb_register_read(rt2x00dev, TXRX_CSR0, ®);
1184 rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1);
1185 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0);
1186 rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1187 rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1189 rt73usb_register_read(rt2x00dev, TXRX_CSR1, ®);
1190 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1191 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1);
1192 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1193 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1);
1194 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1195 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1);
1196 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1197 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1);
1198 rt73usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1201 * CCK TXD BBP registers
1203 rt73usb_register_read(rt2x00dev, TXRX_CSR2, ®);
1204 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13);
1205 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1);
1206 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12);
1207 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1);
1208 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11);
1209 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1);
1210 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10);
1211 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1);
1212 rt73usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1215 * OFDM TXD BBP registers
1217 rt73usb_register_read(rt2x00dev, TXRX_CSR3, ®);
1218 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7);
1219 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1);
1220 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6);
1221 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1);
1222 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5);
1223 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1);
1224 rt73usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1226 rt73usb_register_read(rt2x00dev, TXRX_CSR7, ®);
1227 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59);
1228 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53);
1229 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49);
1230 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46);
1231 rt73usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1233 rt73usb_register_read(rt2x00dev, TXRX_CSR8, ®);
1234 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44);
1235 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42);
1236 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42);
1237 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42);
1238 rt73usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1240 rt73usb_register_read(rt2x00dev, TXRX_CSR9, ®);
1241 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0);
1242 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0);
1243 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0);
1244 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0);
1245 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
1246 rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1247 rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1249 rt73usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1251 rt73usb_register_read(rt2x00dev, MAC_CSR6, ®);
1252 rt2x00_set_field32(®, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1253 rt73usb_register_write(rt2x00dev, MAC_CSR6, reg);
1255 rt73usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1257 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1260 rt73usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1263 * Invalidate all Shared Keys (SEC_CSR0),
1264 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1266 rt73usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1267 rt73usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1268 rt73usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1271 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
1272 rt2x00_rf(&rt2x00dev->chip, RF2527))
1273 rt2x00_set_field32(®, PHY_CSR1_RF_RPI, 1);
1274 rt73usb_register_write(rt2x00dev, PHY_CSR1, reg);
1276 rt73usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1277 rt73usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1278 rt73usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1280 rt73usb_register_read(rt2x00dev, MAC_CSR9, ®);
1281 rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0);
1282 rt73usb_register_write(rt2x00dev, MAC_CSR9, reg);
1286 * For the Beacon base registers we only need to clear
1287 * the first byte since that byte contains the VALID and OWNER
1288 * bits which (when set to 0) will invalidate the entire beacon.
1290 rt73usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1291 rt73usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1292 rt73usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1293 rt73usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1296 * We must clear the error counters.
1297 * These registers are cleared on read,
1298 * so we may pass a useless variable to store the value.
1300 rt73usb_register_read(rt2x00dev, STA_CSR0, ®);
1301 rt73usb_register_read(rt2x00dev, STA_CSR1, ®);
1302 rt73usb_register_read(rt2x00dev, STA_CSR2, ®);
1305 * Reset MAC and BBP registers.
1307 rt73usb_register_read(rt2x00dev, MAC_CSR1, ®);
1308 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1);
1309 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1);
1310 rt73usb_register_write(rt2x00dev, MAC_CSR1, reg);
1312 rt73usb_register_read(rt2x00dev, MAC_CSR1, ®);
1313 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0);
1314 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0);
1315 rt73usb_register_write(rt2x00dev, MAC_CSR1, reg);
1317 rt73usb_register_read(rt2x00dev, MAC_CSR1, ®);
1318 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1);
1319 rt73usb_register_write(rt2x00dev, MAC_CSR1, reg);
1324 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1329 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1330 rt73usb_bbp_read(rt2x00dev, 0, &value);
1331 if ((value != 0xff) && (value != 0x00))
1333 udelay(REGISTER_BUSY_DELAY);
1336 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1340 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1347 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1350 rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1351 rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1352 rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1353 rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1354 rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1355 rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1356 rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1357 rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1358 rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1359 rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1360 rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1361 rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1362 rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1363 rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1364 rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1365 rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1366 rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1367 rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1368 rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1369 rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1370 rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1371 rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1372 rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1373 rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1374 rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1376 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1377 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1379 if (eeprom != 0xffff && eeprom != 0x0000) {
1380 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1381 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1382 rt73usb_bbp_write(rt2x00dev, reg_id, value);
1390 * Device state switch handlers.
1392 static void rt73usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
1393 enum dev_state state)
1397 rt73usb_register_read(rt2x00dev, TXRX_CSR0, ®);
1398 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX,
1399 (state == STATE_RADIO_RX_OFF) ||
1400 (state == STATE_RADIO_RX_OFF_LINK));
1401 rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1404 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1407 * Initialize all registers.
1409 if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1410 rt73usb_init_bbp(rt2x00dev)))
1416 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1418 rt73usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1421 * Disable synchronisation.
1423 rt73usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1425 rt2x00usb_disable_radio(rt2x00dev);
1428 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1434 put_to_sleep = (state != STATE_AWAKE);
1436 rt73usb_register_read(rt2x00dev, MAC_CSR12, ®);
1437 rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1438 rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1439 rt73usb_register_write(rt2x00dev, MAC_CSR12, reg);
1442 * Device is not guaranteed to be in the requested state yet.
1443 * We must wait until the register indicates that the
1444 * device has entered the correct state.
1446 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1447 rt73usb_register_read(rt2x00dev, MAC_CSR12, ®);
1448 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1449 if (state == !put_to_sleep)
1457 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1458 enum dev_state state)
1463 case STATE_RADIO_ON:
1464 retval = rt73usb_enable_radio(rt2x00dev);
1466 case STATE_RADIO_OFF:
1467 rt73usb_disable_radio(rt2x00dev);
1469 case STATE_RADIO_RX_ON:
1470 case STATE_RADIO_RX_ON_LINK:
1471 case STATE_RADIO_RX_OFF:
1472 case STATE_RADIO_RX_OFF_LINK:
1473 rt73usb_toggle_rx(rt2x00dev, state);
1475 case STATE_RADIO_IRQ_ON:
1476 case STATE_RADIO_IRQ_OFF:
1477 /* No support, but no error either */
1479 case STATE_DEEP_SLEEP:
1483 retval = rt73usb_set_state(rt2x00dev, state);
1490 if (unlikely(retval))
1491 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1498 * TX descriptor initialization
1500 static void rt73usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1501 struct sk_buff *skb,
1502 struct txentry_desc *txdesc)
1504 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1505 __le32 *txd = skbdesc->desc;
1509 * Start writing the descriptor words.
1511 rt2x00_desc_read(txd, 1, &word);
1512 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1513 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1514 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1515 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1516 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1517 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1518 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1519 rt2x00_desc_write(txd, 1, word);
1521 rt2x00_desc_read(txd, 2, &word);
1522 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1523 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1524 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1525 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1526 rt2x00_desc_write(txd, 2, word);
1528 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1529 _rt2x00_desc_write(txd, 3, skbdesc->iv);
1530 _rt2x00_desc_write(txd, 4, skbdesc->eiv);
1533 rt2x00_desc_read(txd, 5, &word);
1534 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1535 TXPOWER_TO_DEV(rt2x00dev->tx_power));
1536 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1537 rt2x00_desc_write(txd, 5, word);
1539 rt2x00_desc_read(txd, 0, &word);
1540 rt2x00_set_field32(&word, TXD_W0_BURST,
1541 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1542 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1543 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1544 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1545 rt2x00_set_field32(&word, TXD_W0_ACK,
1546 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1547 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1548 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1549 rt2x00_set_field32(&word, TXD_W0_OFDM,
1550 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1551 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1552 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1553 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1554 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1555 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1556 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1557 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1558 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1559 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1560 rt2x00_set_field32(&word, TXD_W0_BURST2,
1561 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1562 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1563 rt2x00_desc_write(txd, 0, word);
1567 * TX data initialization
1569 static void rt73usb_write_beacon(struct queue_entry *entry)
1571 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1572 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1573 unsigned int beacon_base;
1577 * Add the descriptor in front of the skb.
1579 skb_push(entry->skb, entry->queue->desc_size);
1580 memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1581 skbdesc->desc = entry->skb->data;
1584 * Disable beaconing while we are reloading the beacon data,
1585 * otherwise we might be sending out invalid data.
1587 rt73usb_register_read(rt2x00dev, TXRX_CSR9, ®);
1588 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0);
1589 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0);
1590 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
1591 rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1594 * Write entire beacon with descriptor to register.
1596 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1597 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1598 USB_VENDOR_REQUEST_OUT, beacon_base,
1599 entry->skb->data, entry->skb->len,
1600 REGISTER_TIMEOUT32(entry->skb->len));
1603 * Clean up the beacon skb.
1605 dev_kfree_skb(entry->skb);
1609 static int rt73usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
1610 struct sk_buff *skb)
1615 * The length _must_ be a multiple of 4,
1616 * but it must _not_ be a multiple of the USB packet size.
1618 length = roundup(skb->len, 4);
1619 length += (4 * !(length % rt2x00dev->usb_maxpacket));
1624 static void rt73usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1625 const enum data_queue_qid queue)
1629 if (queue != QID_BEACON) {
1630 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1635 * For Wi-Fi faily generated beacons between participating stations.
1636 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1638 rt73usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1640 rt73usb_register_read(rt2x00dev, TXRX_CSR9, ®);
1641 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1642 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1);
1643 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1);
1644 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1);
1645 rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1650 * RX control handlers
1652 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1654 u8 offset = rt2x00dev->lna_gain;
1657 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1672 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1673 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1674 if (lna == 3 || lna == 2)
1684 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1687 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1688 struct rxdone_entry_desc *rxdesc)
1690 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1691 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1692 __le32 *rxd = (__le32 *)entry->skb->data;
1697 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1698 * frame data in rt2x00usb.
1700 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1701 rxd = (__le32 *)skbdesc->desc;
1704 * It is now safe to read the descriptor on all architectures.
1706 rt2x00_desc_read(rxd, 0, &word0);
1707 rt2x00_desc_read(rxd, 1, &word1);
1709 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1710 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1712 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1714 rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1715 rxdesc->cipher_status =
1716 rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1719 if (rxdesc->cipher != CIPHER_NONE) {
1720 _rt2x00_desc_read(rxd, 2, &rxdesc->iv);
1721 _rt2x00_desc_read(rxd, 3, &rxdesc->eiv);
1722 _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1725 * Hardware has stripped IV/EIV data from 802.11 frame during
1726 * decryption. It has provided the data seperately but rt2x00lib
1727 * should decide if it should be reinserted.
1729 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1732 * FIXME: Legacy driver indicates that the frame does
1733 * contain the Michael Mic. Unfortunately, in rt2x00
1734 * the MIC seems to be missing completely...
1736 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1738 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1739 rxdesc->flags |= RX_FLAG_DECRYPTED;
1740 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1741 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1745 * Obtain the status about this packet.
1746 * When frame was received with an OFDM bitrate,
1747 * the signal is the PLCP value. If it was received with
1748 * a CCK bitrate the signal is the rate in 100kbit/s.
1750 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1751 rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1752 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1754 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1755 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1757 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1758 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1759 rxdesc->dev_flags |= RXDONE_MY_BSS;
1762 * Set skb pointers, and update frame information.
1764 skb_pull(entry->skb, entry->queue->desc_size);
1765 skb_trim(entry->skb, rxdesc->size);
1769 * Device probe functions.
1771 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1777 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1780 * Start validation of the data that has been read.
1782 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1783 if (!is_valid_ether_addr(mac)) {
1784 random_ether_addr(mac);
1785 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1788 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1789 if (word == 0xffff) {
1790 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1791 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1793 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1795 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1796 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1797 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1798 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1799 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1800 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1803 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1804 if (word == 0xffff) {
1805 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1806 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1807 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1810 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1811 if (word == 0xffff) {
1812 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1813 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1814 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1815 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1816 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1817 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1818 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1819 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1820 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1822 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1823 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1826 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1827 if (word == 0xffff) {
1828 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1829 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1830 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1831 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1834 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1835 if (word == 0xffff) {
1836 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1837 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1838 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1839 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1841 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1842 if (value < -10 || value > 10)
1843 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1844 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1845 if (value < -10 || value > 10)
1846 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1847 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1850 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1851 if (word == 0xffff) {
1852 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1853 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1854 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1855 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1857 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1858 if (value < -10 || value > 10)
1859 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1860 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1861 if (value < -10 || value > 10)
1862 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1863 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1869 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1876 * Read EEPROM word for configuration.
1878 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1881 * Identify RF chipset.
1883 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1884 rt73usb_register_read(rt2x00dev, MAC_CSR0, ®);
1885 rt2x00_set_chip(rt2x00dev, RT2571, value, reg);
1887 if (!rt2x00_check_rev(&rt2x00dev->chip, 0x25730)) {
1888 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1892 if (!rt2x00_rf(&rt2x00dev->chip, RF5226) &&
1893 !rt2x00_rf(&rt2x00dev->chip, RF2528) &&
1894 !rt2x00_rf(&rt2x00dev->chip, RF5225) &&
1895 !rt2x00_rf(&rt2x00dev->chip, RF2527)) {
1896 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1901 * Identify default antenna configuration.
1903 rt2x00dev->default_ant.tx =
1904 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1905 rt2x00dev->default_ant.rx =
1906 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1909 * Read the Frame type.
1911 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1912 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
1915 * Read frequency offset.
1917 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1918 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1921 * Read external LNA informations.
1923 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1925 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1926 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
1927 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
1931 * Store led settings, for correct led behaviour.
1933 #ifdef CONFIG_RT2X00_LIB_LEDS
1934 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1936 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1937 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1938 if (value == LED_MODE_SIGNAL_STRENGTH)
1939 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1942 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1943 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1944 rt2x00_get_field16(eeprom,
1945 EEPROM_LED_POLARITY_GPIO_0));
1946 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1947 rt2x00_get_field16(eeprom,
1948 EEPROM_LED_POLARITY_GPIO_1));
1949 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1950 rt2x00_get_field16(eeprom,
1951 EEPROM_LED_POLARITY_GPIO_2));
1952 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1953 rt2x00_get_field16(eeprom,
1954 EEPROM_LED_POLARITY_GPIO_3));
1955 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1956 rt2x00_get_field16(eeprom,
1957 EEPROM_LED_POLARITY_GPIO_4));
1958 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1959 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1960 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1961 rt2x00_get_field16(eeprom,
1962 EEPROM_LED_POLARITY_RDY_G));
1963 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1964 rt2x00_get_field16(eeprom,
1965 EEPROM_LED_POLARITY_RDY_A));
1966 #endif /* CONFIG_RT2X00_LIB_LEDS */
1972 * RF value list for RF2528
1975 static const struct rf_channel rf_vals_bg_2528[] = {
1976 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1977 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1978 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1979 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1980 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1981 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1982 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1983 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1984 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1985 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1986 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1987 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1988 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1989 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1993 * RF value list for RF5226
1994 * Supports: 2.4 GHz & 5.2 GHz
1996 static const struct rf_channel rf_vals_5226[] = {
1997 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1998 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1999 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
2000 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
2001 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
2002 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
2003 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
2004 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
2005 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
2006 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
2007 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
2008 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
2009 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
2010 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
2012 /* 802.11 UNI / HyperLan 2 */
2013 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
2014 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
2015 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
2016 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
2017 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
2018 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
2019 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
2020 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
2022 /* 802.11 HyperLan 2 */
2023 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2024 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2025 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2026 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2027 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2028 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2029 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2030 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2031 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2032 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2035 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2036 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2037 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2038 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2039 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2040 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2042 /* MMAC(Japan)J52 ch 34,38,42,46 */
2043 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2044 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2045 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2046 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2050 * RF value list for RF5225 & RF2527
2051 * Supports: 2.4 GHz & 5.2 GHz
2053 static const struct rf_channel rf_vals_5225_2527[] = {
2054 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2055 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2056 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2057 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2058 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2059 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2060 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2061 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2062 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2063 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2064 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2065 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2066 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2067 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2069 /* 802.11 UNI / HyperLan 2 */
2070 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2071 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2072 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2073 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2074 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2075 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2076 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2077 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2079 /* 802.11 HyperLan 2 */
2080 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2081 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2082 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2083 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2084 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2085 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2086 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2087 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2088 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2089 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2092 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2093 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2094 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2095 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2096 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2097 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2099 /* MMAC(Japan)J52 ch 34,38,42,46 */
2100 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2101 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2102 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2103 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2107 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2109 struct hw_mode_spec *spec = &rt2x00dev->spec;
2110 struct channel_info *info;
2115 * Initialize all hw fields.
2117 rt2x00dev->hw->flags =
2118 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2119 IEEE80211_HW_SIGNAL_DBM;
2120 rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
2122 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2123 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2124 rt2x00_eeprom_addr(rt2x00dev,
2125 EEPROM_MAC_ADDR_0));
2128 * Initialize hw_mode information.
2130 spec->supported_bands = SUPPORT_BAND_2GHZ;
2131 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2133 if (rt2x00_rf(&rt2x00dev->chip, RF2528)) {
2134 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2135 spec->channels = rf_vals_bg_2528;
2136 } else if (rt2x00_rf(&rt2x00dev->chip, RF5226)) {
2137 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2138 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2139 spec->channels = rf_vals_5226;
2140 } else if (rt2x00_rf(&rt2x00dev->chip, RF2527)) {
2141 spec->num_channels = 14;
2142 spec->channels = rf_vals_5225_2527;
2143 } else if (rt2x00_rf(&rt2x00dev->chip, RF5225)) {
2144 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2145 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2146 spec->channels = rf_vals_5225_2527;
2150 * Create channel information array
2152 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2156 spec->channels_info = info;
2158 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2159 for (i = 0; i < 14; i++)
2160 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2162 if (spec->num_channels > 14) {
2163 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2164 for (i = 14; i < spec->num_channels; i++)
2165 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2171 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2176 * Allocate eeprom data.
2178 retval = rt73usb_validate_eeprom(rt2x00dev);
2182 retval = rt73usb_init_eeprom(rt2x00dev);
2187 * Initialize hw specifications.
2189 retval = rt73usb_probe_hw_mode(rt2x00dev);
2194 * This device requires firmware.
2196 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2197 __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
2198 if (!modparam_nohwcrypt)
2199 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2202 * Set the rssi offset.
2204 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2210 * IEEE80211 stack callback functions.
2212 static int rt73usb_set_retry_limit(struct ieee80211_hw *hw,
2213 u32 short_retry, u32 long_retry)
2215 struct rt2x00_dev *rt2x00dev = hw->priv;
2218 rt73usb_register_read(rt2x00dev, TXRX_CSR4, ®);
2219 rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
2220 rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
2221 rt73usb_register_write(rt2x00dev, TXRX_CSR4, reg);
2226 static int rt73usb_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2227 const struct ieee80211_tx_queue_params *params)
2229 struct rt2x00_dev *rt2x00dev = hw->priv;
2230 struct data_queue *queue;
2231 struct rt2x00_field32 field;
2236 * First pass the configuration through rt2x00lib, that will
2237 * update the queue settings and validate the input. After that
2238 * we are free to update the registers based on the value
2239 * in the queue parameter.
2241 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2245 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2247 /* Update WMM TXOP register */
2248 if (queue_idx < 2) {
2249 field.bit_offset = queue_idx * 16;
2250 field.bit_mask = 0xffff << field.bit_offset;
2252 rt73usb_register_read(rt2x00dev, AC_TXOP_CSR0, ®);
2253 rt2x00_set_field32(®, field, queue->txop);
2254 rt73usb_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
2255 } else if (queue_idx < 4) {
2256 field.bit_offset = (queue_idx - 2) * 16;
2257 field.bit_mask = 0xffff << field.bit_offset;
2259 rt73usb_register_read(rt2x00dev, AC_TXOP_CSR1, ®);
2260 rt2x00_set_field32(®, field, queue->txop);
2261 rt73usb_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
2264 /* Update WMM registers */
2265 field.bit_offset = queue_idx * 4;
2266 field.bit_mask = 0xf << field.bit_offset;
2268 rt73usb_register_read(rt2x00dev, AIFSN_CSR, ®);
2269 rt2x00_set_field32(®, field, queue->aifs);
2270 rt73usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2272 rt73usb_register_read(rt2x00dev, CWMIN_CSR, ®);
2273 rt2x00_set_field32(®, field, queue->cw_min);
2274 rt73usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2276 rt73usb_register_read(rt2x00dev, CWMAX_CSR, ®);
2277 rt2x00_set_field32(®, field, queue->cw_max);
2278 rt73usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2285 * Mac80211 demands get_tsf must be atomic.
2286 * This is not possible for rt73usb since all register access
2287 * functions require sleeping. Untill mac80211 no longer needs
2288 * get_tsf to be atomic, this function should be disabled.
2290 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw)
2292 struct rt2x00_dev *rt2x00dev = hw->priv;
2296 rt73usb_register_read(rt2x00dev, TXRX_CSR13, ®);
2297 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2298 rt73usb_register_read(rt2x00dev, TXRX_CSR12, ®);
2299 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2304 #define rt73usb_get_tsf NULL
2307 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2309 .start = rt2x00mac_start,
2310 .stop = rt2x00mac_stop,
2311 .add_interface = rt2x00mac_add_interface,
2312 .remove_interface = rt2x00mac_remove_interface,
2313 .config = rt2x00mac_config,
2314 .config_interface = rt2x00mac_config_interface,
2315 .configure_filter = rt2x00mac_configure_filter,
2316 .set_key = rt2x00mac_set_key,
2317 .get_stats = rt2x00mac_get_stats,
2318 .set_retry_limit = rt73usb_set_retry_limit,
2319 .bss_info_changed = rt2x00mac_bss_info_changed,
2320 .conf_tx = rt73usb_conf_tx,
2321 .get_tx_stats = rt2x00mac_get_tx_stats,
2322 .get_tsf = rt73usb_get_tsf,
2325 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2326 .probe_hw = rt73usb_probe_hw,
2327 .get_firmware_name = rt73usb_get_firmware_name,
2328 .get_firmware_crc = rt73usb_get_firmware_crc,
2329 .load_firmware = rt73usb_load_firmware,
2330 .initialize = rt2x00usb_initialize,
2331 .uninitialize = rt2x00usb_uninitialize,
2332 .init_rxentry = rt2x00usb_init_rxentry,
2333 .init_txentry = rt2x00usb_init_txentry,
2334 .set_device_state = rt73usb_set_device_state,
2335 .link_stats = rt73usb_link_stats,
2336 .reset_tuner = rt73usb_reset_tuner,
2337 .link_tuner = rt73usb_link_tuner,
2338 .write_tx_desc = rt73usb_write_tx_desc,
2339 .write_tx_data = rt2x00usb_write_tx_data,
2340 .write_beacon = rt73usb_write_beacon,
2341 .get_tx_data_len = rt73usb_get_tx_data_len,
2342 .kick_tx_queue = rt73usb_kick_tx_queue,
2343 .fill_rxdone = rt73usb_fill_rxdone,
2344 .config_shared_key = rt73usb_config_shared_key,
2345 .config_pairwise_key = rt73usb_config_pairwise_key,
2346 .config_filter = rt73usb_config_filter,
2347 .config_intf = rt73usb_config_intf,
2348 .config_erp = rt73usb_config_erp,
2349 .config = rt73usb_config,
2352 static const struct data_queue_desc rt73usb_queue_rx = {
2353 .entry_num = RX_ENTRIES,
2354 .data_size = DATA_FRAME_SIZE,
2355 .desc_size = RXD_DESC_SIZE,
2356 .priv_size = sizeof(struct queue_entry_priv_usb),
2359 static const struct data_queue_desc rt73usb_queue_tx = {
2360 .entry_num = TX_ENTRIES,
2361 .data_size = DATA_FRAME_SIZE,
2362 .desc_size = TXD_DESC_SIZE,
2363 .priv_size = sizeof(struct queue_entry_priv_usb),
2366 static const struct data_queue_desc rt73usb_queue_bcn = {
2367 .entry_num = 4 * BEACON_ENTRIES,
2368 .data_size = MGMT_FRAME_SIZE,
2369 .desc_size = TXINFO_SIZE,
2370 .priv_size = sizeof(struct queue_entry_priv_usb),
2373 static const struct rt2x00_ops rt73usb_ops = {
2374 .name = KBUILD_MODNAME,
2377 .eeprom_size = EEPROM_SIZE,
2379 .tx_queues = NUM_TX_QUEUES,
2380 .rx = &rt73usb_queue_rx,
2381 .tx = &rt73usb_queue_tx,
2382 .bcn = &rt73usb_queue_bcn,
2383 .lib = &rt73usb_rt2x00_ops,
2384 .hw = &rt73usb_mac80211_ops,
2385 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2386 .debugfs = &rt73usb_rt2x00debug,
2387 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2391 * rt73usb module information.
2393 static struct usb_device_id rt73usb_device_table[] = {
2395 { USB_DEVICE(0x07b8, 0xb21d), USB_DEVICE_DATA(&rt73usb_ops) },
2397 { USB_DEVICE(0x1690, 0x0722), USB_DEVICE_DATA(&rt73usb_ops) },
2399 { USB_DEVICE(0x0b05, 0x1723), USB_DEVICE_DATA(&rt73usb_ops) },
2400 { USB_DEVICE(0x0b05, 0x1724), USB_DEVICE_DATA(&rt73usb_ops) },
2402 { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt73usb_ops) },
2403 { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt73usb_ops) },
2404 { USB_DEVICE(0x050d, 0x905b), USB_DEVICE_DATA(&rt73usb_ops) },
2405 { USB_DEVICE(0x050d, 0x905c), USB_DEVICE_DATA(&rt73usb_ops) },
2407 { USB_DEVICE(0x1631, 0xc019), USB_DEVICE_DATA(&rt73usb_ops) },
2409 { USB_DEVICE(0x0411, 0x00f4), USB_DEVICE_DATA(&rt73usb_ops) },
2411 { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt73usb_ops) },
2412 { USB_DEVICE(0x1371, 0x9032), USB_DEVICE_DATA(&rt73usb_ops) },
2414 { USB_DEVICE(0x14b2, 0x3c22), USB_DEVICE_DATA(&rt73usb_ops) },
2416 { USB_DEVICE(0x07aa, 0x002e), USB_DEVICE_DATA(&rt73usb_ops) },
2418 { USB_DEVICE(0x07d1, 0x3c03), USB_DEVICE_DATA(&rt73usb_ops) },
2419 { USB_DEVICE(0x07d1, 0x3c04), USB_DEVICE_DATA(&rt73usb_ops) },
2420 { USB_DEVICE(0x07d1, 0x3c06), USB_DEVICE_DATA(&rt73usb_ops) },
2421 { USB_DEVICE(0x07d1, 0x3c07), USB_DEVICE_DATA(&rt73usb_ops) },
2423 { USB_DEVICE(0x15a9, 0x0004), USB_DEVICE_DATA(&rt73usb_ops) },
2425 { USB_DEVICE(0x1044, 0x8008), USB_DEVICE_DATA(&rt73usb_ops) },
2426 { USB_DEVICE(0x1044, 0x800a), USB_DEVICE_DATA(&rt73usb_ops) },
2428 { USB_DEVICE(0x1472, 0x0009), USB_DEVICE_DATA(&rt73usb_ops) },
2430 { USB_DEVICE(0x06f8, 0xe010), USB_DEVICE_DATA(&rt73usb_ops) },
2431 { USB_DEVICE(0x06f8, 0xe020), USB_DEVICE_DATA(&rt73usb_ops) },
2433 { USB_DEVICE(0x13b1, 0x0020), USB_DEVICE_DATA(&rt73usb_ops) },
2434 { USB_DEVICE(0x13b1, 0x0023), USB_DEVICE_DATA(&rt73usb_ops) },
2436 { USB_DEVICE(0x0db0, 0x6877), USB_DEVICE_DATA(&rt73usb_ops) },
2437 { USB_DEVICE(0x0db0, 0x6874), USB_DEVICE_DATA(&rt73usb_ops) },
2438 { USB_DEVICE(0x0db0, 0xa861), USB_DEVICE_DATA(&rt73usb_ops) },
2439 { USB_DEVICE(0x0db0, 0xa874), USB_DEVICE_DATA(&rt73usb_ops) },
2441 { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt73usb_ops) },
2442 { USB_DEVICE(0x148f, 0x2671), USB_DEVICE_DATA(&rt73usb_ops) },
2444 { USB_DEVICE(0x18e8, 0x6196), USB_DEVICE_DATA(&rt73usb_ops) },
2445 { USB_DEVICE(0x18e8, 0x6229), USB_DEVICE_DATA(&rt73usb_ops) },
2446 { USB_DEVICE(0x18e8, 0x6238), USB_DEVICE_DATA(&rt73usb_ops) },
2448 { USB_DEVICE(0x1740, 0x7100), USB_DEVICE_DATA(&rt73usb_ops) },
2450 { USB_DEVICE(0x0df6, 0x9712), USB_DEVICE_DATA(&rt73usb_ops) },
2451 { USB_DEVICE(0x0df6, 0x90ac), USB_DEVICE_DATA(&rt73usb_ops) },
2453 { USB_DEVICE(0x0769, 0x31f3), USB_DEVICE_DATA(&rt73usb_ops) },
2455 { USB_DEVICE(0x2019, 0xab01), USB_DEVICE_DATA(&rt73usb_ops) },
2456 { USB_DEVICE(0x2019, 0xab50), USB_DEVICE_DATA(&rt73usb_ops) },
2460 MODULE_AUTHOR(DRV_PROJECT);
2461 MODULE_VERSION(DRV_VERSION);
2462 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2463 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2464 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2465 MODULE_FIRMWARE(FIRMWARE_RT2571);
2466 MODULE_LICENSE("GPL");
2468 static struct usb_driver rt73usb_driver = {
2469 .name = KBUILD_MODNAME,
2470 .id_table = rt73usb_device_table,
2471 .probe = rt2x00usb_probe,
2472 .disconnect = rt2x00usb_disconnect,
2473 .suspend = rt2x00usb_suspend,
2474 .resume = rt2x00usb_resume,
2477 static int __init rt73usb_init(void)
2479 return usb_register(&rt73usb_driver);
2482 static void __exit rt73usb_exit(void)
2484 usb_deregister(&rt73usb_driver);
2487 module_init(rt73usb_init);
2488 module_exit(rt73usb_exit);