Merge branches 'at91', 'dyntick', 'ep93xx', 'iop', 'ixp', 'misc', 'orion', 'omap...
[linux-2.6] / drivers / ieee1394 / sbp2.c
1 /*
2  * sbp2.c - SBP-2 protocol driver for IEEE-1394
3  *
4  * Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com)
5  * jamesg@filanet.com (JSG)
6  *
7  * Copyright (C) 2003 Ben Collins <bcollins@debian.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software Foundation,
21  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22  */
23
24 /*
25  * Brief Description:
26  *
27  * This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394
28  * under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level
29  * driver. It also registers as a SCSI lower-level driver in order to accept
30  * SCSI commands for transport using SBP-2.
31  *
32  * You may access any attached SBP-2 (usually storage devices) as regular
33  * SCSI devices. E.g. mount /dev/sda1, fdisk, mkfs, etc..
34  *
35  * See http://www.t10.org/drafts.htm#sbp2 for the final draft of the SBP-2
36  * specification and for where to purchase the official standard.
37  *
38  * TODO:
39  *   - look into possible improvements of the SCSI error handlers
40  *   - handle Unit_Characteristics.mgt_ORB_timeout and .ORB_size
41  *   - handle Logical_Unit_Number.ordered
42  *   - handle src == 1 in status blocks
43  *   - reimplement the DMA mapping in absence of physical DMA so that
44  *     bus_to_virt is no longer required
45  *   - debug the handling of absent physical DMA
46  *   - replace CONFIG_IEEE1394_SBP2_PHYS_DMA by automatic detection
47  *     (this is easy but depends on the previous two TODO items)
48  *   - make the parameter serialize_io configurable per device
49  *   - move all requests to fetch agent registers into non-atomic context,
50  *     replace all usages of sbp2util_node_write_no_wait by true transactions
51  * Grep for inline FIXME comments below.
52  */
53
54 #include <linux/blkdev.h>
55 #include <linux/compiler.h>
56 #include <linux/delay.h>
57 #include <linux/device.h>
58 #include <linux/dma-mapping.h>
59 #include <linux/gfp.h>
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/mm.h>
64 #include <linux/module.h>
65 #include <linux/moduleparam.h>
66 #include <linux/sched.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/stat.h>
70 #include <linux/string.h>
71 #include <linux/stringify.h>
72 #include <linux/types.h>
73 #include <linux/wait.h>
74 #include <linux/workqueue.h>
75 #include <linux/scatterlist.h>
76
77 #include <asm/byteorder.h>
78 #include <asm/errno.h>
79 #include <asm/param.h>
80 #include <asm/system.h>
81 #include <asm/types.h>
82
83 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
84 #include <asm/io.h> /* for bus_to_virt */
85 #endif
86
87 #include <scsi/scsi.h>
88 #include <scsi/scsi_cmnd.h>
89 #include <scsi/scsi_dbg.h>
90 #include <scsi/scsi_device.h>
91 #include <scsi/scsi_host.h>
92
93 #include "csr1212.h"
94 #include "highlevel.h"
95 #include "hosts.h"
96 #include "ieee1394.h"
97 #include "ieee1394_core.h"
98 #include "ieee1394_hotplug.h"
99 #include "ieee1394_transactions.h"
100 #include "ieee1394_types.h"
101 #include "nodemgr.h"
102 #include "sbp2.h"
103
104 /*
105  * Module load parameter definitions
106  */
107
108 /*
109  * Change max_speed on module load if you have a bad IEEE-1394
110  * controller that has trouble running 2KB packets at 400mb.
111  *
112  * NOTE: On certain OHCI parts I have seen short packets on async transmit
113  * (probably due to PCI latency/throughput issues with the part). You can
114  * bump down the speed if you are running into problems.
115  */
116 static int sbp2_max_speed = IEEE1394_SPEED_MAX;
117 module_param_named(max_speed, sbp2_max_speed, int, 0644);
118 MODULE_PARM_DESC(max_speed, "Force max speed "
119                  "(3 = 800Mb/s, 2 = 400Mb/s, 1 = 200Mb/s, 0 = 100Mb/s)");
120
121 /*
122  * Set serialize_io to 0 or N to use dynamically appended lists of command ORBs.
123  * This is and always has been buggy in multiple subtle ways. See above TODOs.
124  */
125 static int sbp2_serialize_io = 1;
126 module_param_named(serialize_io, sbp2_serialize_io, bool, 0444);
127 MODULE_PARM_DESC(serialize_io, "Serialize requests coming from SCSI drivers "
128                  "(default = Y, faster but buggy = N)");
129
130 /*
131  * Adjust max_sectors if you'd like to influence how many sectors each SCSI
132  * command can transfer at most. Please note that some older SBP-2 bridge
133  * chips are broken for transfers greater or equal to 128KB, therefore
134  * max_sectors used to be a safe 255 sectors for many years. We now have a
135  * default of 0 here which means that we let the SCSI stack choose a limit.
136  *
137  * The SBP2_WORKAROUND_128K_MAX_TRANS flag, if set either in the workarounds
138  * module parameter or in the sbp2_workarounds_table[], will override the
139  * value of max_sectors. We should use sbp2_workarounds_table[] to cover any
140  * bridge chip which becomes known to need the 255 sectors limit.
141  */
142 static int sbp2_max_sectors;
143 module_param_named(max_sectors, sbp2_max_sectors, int, 0444);
144 MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported "
145                  "(default = 0 = use SCSI stack's default)");
146
147 /*
148  * Exclusive login to sbp2 device? In most cases, the sbp2 driver should
149  * do an exclusive login, as it's generally unsafe to have two hosts
150  * talking to a single sbp2 device at the same time (filesystem coherency,
151  * etc.). If you're running an sbp2 device that supports multiple logins,
152  * and you're either running read-only filesystems or some sort of special
153  * filesystem supporting multiple hosts, e.g. OpenGFS, Oracle Cluster
154  * File System, or Lustre, then set exclusive_login to zero.
155  *
156  * So far only bridges from Oxford Semiconductor are known to support
157  * concurrent logins. Depending on firmware, four or two concurrent logins
158  * are possible on OXFW911 and newer Oxsemi bridges.
159  */
160 static int sbp2_exclusive_login = 1;
161 module_param_named(exclusive_login, sbp2_exclusive_login, bool, 0644);
162 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
163                  "(default = Y, use N for concurrent initiators)");
164
165 /*
166  * If any of the following workarounds is required for your device to work,
167  * please submit the kernel messages logged by sbp2 to the linux1394-devel
168  * mailing list.
169  *
170  * - 128kB max transfer
171  *   Limit transfer size. Necessary for some old bridges.
172  *
173  * - 36 byte inquiry
174  *   When scsi_mod probes the device, let the inquiry command look like that
175  *   from MS Windows.
176  *
177  * - skip mode page 8
178  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
179  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
180  *
181  * - fix capacity
182  *   Tell sd_mod to correct the last sector number reported by read_capacity.
183  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
184  *   Don't use this with devices which don't have this bug.
185  *
186  * - delay inquiry
187  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
188  *
189  * - override internal blacklist
190  *   Instead of adding to the built-in blacklist, use only the workarounds
191  *   specified in the module load parameter.
192  *   Useful if a blacklist entry interfered with a non-broken device.
193  */
194 static int sbp2_default_workarounds;
195 module_param_named(workarounds, sbp2_default_workarounds, int, 0644);
196 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
197         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
198         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
199         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
200         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
201         ", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
202         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
203         ", or a combination)");
204
205 /*
206  * This influences the format of the sysfs attribute
207  * /sys/bus/scsi/devices/.../ieee1394_id.
208  *
209  * The default format is like in older kernels:  %016Lx:%d:%d
210  * It contains the target's EUI-64, a number given to the logical unit by
211  * the ieee1394 driver's nodemgr (starting at 0), and the LUN.
212  *
213  * The long format is:  %016Lx:%06x:%04x
214  * It contains the target's EUI-64, the unit directory's directory_ID as per
215  * IEEE 1212 clause 7.7.19, and the LUN.  This format comes closest to the
216  * format of SBP(-3) target port and logical unit identifier as per SAM (SCSI
217  * Architecture Model) rev.2 to 4 annex A.  Therefore and because it is
218  * independent of the implementation of the ieee1394 nodemgr, the longer format
219  * is recommended for future use.
220  */
221 static int sbp2_long_sysfs_ieee1394_id;
222 module_param_named(long_ieee1394_id, sbp2_long_sysfs_ieee1394_id, bool, 0644);
223 MODULE_PARM_DESC(long_ieee1394_id, "8+3+2 bytes format of ieee1394_id in sysfs "
224                  "(default = backwards-compatible = N, SAM-conforming = Y)");
225
226
227 #define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
228 #define SBP2_ERR(fmt, args...)  HPSB_ERR("sbp2: "fmt, ## args)
229
230 /*
231  * Globals
232  */
233 static void sbp2scsi_complete_all_commands(struct sbp2_lu *, u32);
234 static void sbp2scsi_complete_command(struct sbp2_lu *, u32, struct scsi_cmnd *,
235                                       void (*)(struct scsi_cmnd *));
236 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *);
237 static int sbp2_start_device(struct sbp2_lu *);
238 static void sbp2_remove_device(struct sbp2_lu *);
239 static int sbp2_login_device(struct sbp2_lu *);
240 static int sbp2_reconnect_device(struct sbp2_lu *);
241 static int sbp2_logout_device(struct sbp2_lu *);
242 static void sbp2_host_reset(struct hpsb_host *);
243 static int sbp2_handle_status_write(struct hpsb_host *, int, int, quadlet_t *,
244                                     u64, size_t, u16);
245 static int sbp2_agent_reset(struct sbp2_lu *, int);
246 static void sbp2_parse_unit_directory(struct sbp2_lu *,
247                                       struct unit_directory *);
248 static int sbp2_set_busy_timeout(struct sbp2_lu *);
249 static int sbp2_max_speed_and_size(struct sbp2_lu *);
250
251
252 static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xA, 0xB, 0xC };
253
254 static DEFINE_RWLOCK(sbp2_hi_logical_units_lock);
255
256 static struct hpsb_highlevel sbp2_highlevel = {
257         .name           = SBP2_DEVICE_NAME,
258         .host_reset     = sbp2_host_reset,
259 };
260
261 static struct hpsb_address_ops sbp2_ops = {
262         .write          = sbp2_handle_status_write
263 };
264
265 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
266 static int sbp2_handle_physdma_write(struct hpsb_host *, int, int, quadlet_t *,
267                                      u64, size_t, u16);
268 static int sbp2_handle_physdma_read(struct hpsb_host *, int, quadlet_t *, u64,
269                                     size_t, u16);
270
271 static struct hpsb_address_ops sbp2_physdma_ops = {
272         .read           = sbp2_handle_physdma_read,
273         .write          = sbp2_handle_physdma_write,
274 };
275 #endif
276
277
278 /*
279  * Interface to driver core and IEEE 1394 core
280  */
281 static struct ieee1394_device_id sbp2_id_table[] = {
282         {
283          .match_flags   = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION,
284          .specifier_id  = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff,
285          .version       = SBP2_SW_VERSION_ENTRY & 0xffffff},
286         {}
287 };
288 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
289
290 static int sbp2_probe(struct device *);
291 static int sbp2_remove(struct device *);
292 static int sbp2_update(struct unit_directory *);
293
294 static struct hpsb_protocol_driver sbp2_driver = {
295         .name           = SBP2_DEVICE_NAME,
296         .id_table       = sbp2_id_table,
297         .update         = sbp2_update,
298         .driver         = {
299                 .probe          = sbp2_probe,
300                 .remove         = sbp2_remove,
301         },
302 };
303
304
305 /*
306  * Interface to SCSI core
307  */
308 static int sbp2scsi_queuecommand(struct scsi_cmnd *,
309                                  void (*)(struct scsi_cmnd *));
310 static int sbp2scsi_abort(struct scsi_cmnd *);
311 static int sbp2scsi_reset(struct scsi_cmnd *);
312 static int sbp2scsi_slave_alloc(struct scsi_device *);
313 static int sbp2scsi_slave_configure(struct scsi_device *);
314 static void sbp2scsi_slave_destroy(struct scsi_device *);
315 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *,
316                                            struct device_attribute *, char *);
317
318 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
319
320 static struct device_attribute *sbp2_sysfs_sdev_attrs[] = {
321         &dev_attr_ieee1394_id,
322         NULL
323 };
324
325 static struct scsi_host_template sbp2_shost_template = {
326         .module                  = THIS_MODULE,
327         .name                    = "SBP-2 IEEE-1394",
328         .proc_name               = SBP2_DEVICE_NAME,
329         .queuecommand            = sbp2scsi_queuecommand,
330         .eh_abort_handler        = sbp2scsi_abort,
331         .eh_device_reset_handler = sbp2scsi_reset,
332         .slave_alloc             = sbp2scsi_slave_alloc,
333         .slave_configure         = sbp2scsi_slave_configure,
334         .slave_destroy           = sbp2scsi_slave_destroy,
335         .this_id                 = -1,
336         .sg_tablesize            = SG_ALL,
337         .use_clustering          = ENABLE_CLUSTERING,
338         .cmd_per_lun             = SBP2_MAX_CMDS,
339         .can_queue               = SBP2_MAX_CMDS,
340         .sdev_attrs              = sbp2_sysfs_sdev_attrs,
341 };
342
343 /* for match-all entries in sbp2_workarounds_table */
344 #define SBP2_ROM_VALUE_WILDCARD 0x1000000
345
346 /*
347  * List of devices with known bugs.
348  *
349  * The firmware_revision field, masked with 0xffff00, is the best indicator
350  * for the type of bridge chip of a device.  It yields a few false positives
351  * but this did not break correctly behaving devices so far.
352  */
353 static const struct {
354         u32 firmware_revision;
355         u32 model_id;
356         unsigned workarounds;
357 } sbp2_workarounds_table[] = {
358         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
359                 .firmware_revision      = 0x002800,
360                 .model_id               = 0x001010,
361                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
362                                           SBP2_WORKAROUND_MODE_SENSE_8,
363         },
364         /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
365                 .firmware_revision      = 0x002800,
366                 .model_id               = 0x000000,
367                 .workarounds            = SBP2_WORKAROUND_DELAY_INQUIRY,
368         },
369         /* Initio bridges, actually only needed for some older ones */ {
370                 .firmware_revision      = 0x000200,
371                 .model_id               = SBP2_ROM_VALUE_WILDCARD,
372                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
373         },
374         /* Symbios bridge */ {
375                 .firmware_revision      = 0xa0b800,
376                 .model_id               = SBP2_ROM_VALUE_WILDCARD,
377                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
378         },
379         /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
380                 .firmware_revision      = 0x002600,
381                 .model_id               = SBP2_ROM_VALUE_WILDCARD,
382                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
383         },
384         /* iPod 4th generation */ {
385                 .firmware_revision      = 0x0a2700,
386                 .model_id               = 0x000021,
387                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
388         },
389         /* iPod mini */ {
390                 .firmware_revision      = 0x0a2700,
391                 .model_id               = 0x000023,
392                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
393         },
394         /* iPod Photo */ {
395                 .firmware_revision      = 0x0a2700,
396                 .model_id               = 0x00007e,
397                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
398         }
399 };
400
401 /**************************************
402  * General utility functions
403  **************************************/
404
405 #ifndef __BIG_ENDIAN
406 /*
407  * Converts a buffer from be32 to cpu byte ordering. Length is in bytes.
408  */
409 static inline void sbp2util_be32_to_cpu_buffer(void *buffer, int length)
410 {
411         u32 *temp = buffer;
412
413         for (length = (length >> 2); length--; )
414                 temp[length] = be32_to_cpu(temp[length]);
415 }
416
417 /*
418  * Converts a buffer from cpu to be32 byte ordering. Length is in bytes.
419  */
420 static inline void sbp2util_cpu_to_be32_buffer(void *buffer, int length)
421 {
422         u32 *temp = buffer;
423
424         for (length = (length >> 2); length--; )
425                 temp[length] = cpu_to_be32(temp[length]);
426 }
427 #else /* BIG_ENDIAN */
428 /* Why waste the cpu cycles? */
429 #define sbp2util_be32_to_cpu_buffer(x,y) do {} while (0)
430 #define sbp2util_cpu_to_be32_buffer(x,y) do {} while (0)
431 #endif
432
433 static DECLARE_WAIT_QUEUE_HEAD(sbp2_access_wq);
434
435 /*
436  * Waits for completion of an SBP-2 access request.
437  * Returns nonzero if timed out or prematurely interrupted.
438  */
439 static int sbp2util_access_timeout(struct sbp2_lu *lu, int timeout)
440 {
441         long leftover;
442
443         leftover = wait_event_interruptible_timeout(
444                         sbp2_access_wq, lu->access_complete, timeout);
445         lu->access_complete = 0;
446         return leftover <= 0;
447 }
448
449 static void sbp2_free_packet(void *packet)
450 {
451         hpsb_free_tlabel(packet);
452         hpsb_free_packet(packet);
453 }
454
455 /*
456  * This is much like hpsb_node_write(), except it ignores the response
457  * subaction and returns immediately. Can be used from atomic context.
458  */
459 static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr,
460                                        quadlet_t *buf, size_t len)
461 {
462         struct hpsb_packet *packet;
463
464         packet = hpsb_make_writepacket(ne->host, ne->nodeid, addr, buf, len);
465         if (!packet)
466                 return -ENOMEM;
467
468         hpsb_set_packet_complete_task(packet, sbp2_free_packet, packet);
469         hpsb_node_fill_packet(ne, packet);
470         if (hpsb_send_packet(packet) < 0) {
471                 sbp2_free_packet(packet);
472                 return -EIO;
473         }
474         return 0;
475 }
476
477 static void sbp2util_notify_fetch_agent(struct sbp2_lu *lu, u64 offset,
478                                         quadlet_t *data, size_t len)
479 {
480         /* There is a small window after a bus reset within which the node
481          * entry's generation is current but the reconnect wasn't completed. */
482         if (unlikely(atomic_read(&lu->state) == SBP2LU_STATE_IN_RESET))
483                 return;
484
485         if (hpsb_node_write(lu->ne, lu->command_block_agent_addr + offset,
486                             data, len))
487                 SBP2_ERR("sbp2util_notify_fetch_agent failed.");
488
489         /* Now accept new SCSI commands, unless a bus reset happended during
490          * hpsb_node_write. */
491         if (likely(atomic_read(&lu->state) != SBP2LU_STATE_IN_RESET))
492                 scsi_unblock_requests(lu->shost);
493 }
494
495 static void sbp2util_write_orb_pointer(struct work_struct *work)
496 {
497         struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
498         quadlet_t data[2];
499
500         data[0] = ORB_SET_NODE_ID(lu->hi->host->node_id);
501         data[1] = lu->last_orb_dma;
502         sbp2util_cpu_to_be32_buffer(data, 8);
503         sbp2util_notify_fetch_agent(lu, SBP2_ORB_POINTER_OFFSET, data, 8);
504 }
505
506 static void sbp2util_write_doorbell(struct work_struct *work)
507 {
508         struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
509
510         sbp2util_notify_fetch_agent(lu, SBP2_DOORBELL_OFFSET, NULL, 4);
511 }
512
513 static int sbp2util_create_command_orb_pool(struct sbp2_lu *lu)
514 {
515         struct sbp2_fwhost_info *hi = lu->hi;
516         struct sbp2_command_info *cmd;
517         int i, orbs = sbp2_serialize_io ? 2 : SBP2_MAX_CMDS;
518
519         for (i = 0; i < orbs; i++) {
520                 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
521                 if (!cmd)
522                         return -ENOMEM;
523                 cmd->command_orb_dma = dma_map_single(hi->host->device.parent,
524                                                 &cmd->command_orb,
525                                                 sizeof(struct sbp2_command_orb),
526                                                 DMA_TO_DEVICE);
527                 cmd->sge_dma = dma_map_single(hi->host->device.parent,
528                                         &cmd->scatter_gather_element,
529                                         sizeof(cmd->scatter_gather_element),
530                                         DMA_TO_DEVICE);
531                 INIT_LIST_HEAD(&cmd->list);
532                 list_add_tail(&cmd->list, &lu->cmd_orb_completed);
533         }
534         return 0;
535 }
536
537 static void sbp2util_remove_command_orb_pool(struct sbp2_lu *lu,
538                                              struct hpsb_host *host)
539 {
540         struct list_head *lh, *next;
541         struct sbp2_command_info *cmd;
542         unsigned long flags;
543
544         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
545         if (!list_empty(&lu->cmd_orb_completed))
546                 list_for_each_safe(lh, next, &lu->cmd_orb_completed) {
547                         cmd = list_entry(lh, struct sbp2_command_info, list);
548                         dma_unmap_single(host->device.parent,
549                                          cmd->command_orb_dma,
550                                          sizeof(struct sbp2_command_orb),
551                                          DMA_TO_DEVICE);
552                         dma_unmap_single(host->device.parent, cmd->sge_dma,
553                                          sizeof(cmd->scatter_gather_element),
554                                          DMA_TO_DEVICE);
555                         kfree(cmd);
556                 }
557         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
558         return;
559 }
560
561 /*
562  * Finds the sbp2_command for a given outstanding command ORB.
563  * Only looks at the in-use list.
564  */
565 static struct sbp2_command_info *sbp2util_find_command_for_orb(
566                                 struct sbp2_lu *lu, dma_addr_t orb)
567 {
568         struct sbp2_command_info *cmd;
569         unsigned long flags;
570
571         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
572         if (!list_empty(&lu->cmd_orb_inuse))
573                 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
574                         if (cmd->command_orb_dma == orb) {
575                                 spin_unlock_irqrestore(
576                                                 &lu->cmd_orb_lock, flags);
577                                 return cmd;
578                         }
579         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
580         return NULL;
581 }
582
583 /*
584  * Finds the sbp2_command for a given outstanding SCpnt.
585  * Only looks at the in-use list.
586  * Must be called with lu->cmd_orb_lock held.
587  */
588 static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(
589                                 struct sbp2_lu *lu, void *SCpnt)
590 {
591         struct sbp2_command_info *cmd;
592
593         if (!list_empty(&lu->cmd_orb_inuse))
594                 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
595                         if (cmd->Current_SCpnt == SCpnt)
596                                 return cmd;
597         return NULL;
598 }
599
600 static struct sbp2_command_info *sbp2util_allocate_command_orb(
601                                 struct sbp2_lu *lu,
602                                 struct scsi_cmnd *Current_SCpnt,
603                                 void (*Current_done)(struct scsi_cmnd *))
604 {
605         struct list_head *lh;
606         struct sbp2_command_info *cmd = NULL;
607         unsigned long flags;
608
609         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
610         if (!list_empty(&lu->cmd_orb_completed)) {
611                 lh = lu->cmd_orb_completed.next;
612                 list_del(lh);
613                 cmd = list_entry(lh, struct sbp2_command_info, list);
614                 cmd->Current_done = Current_done;
615                 cmd->Current_SCpnt = Current_SCpnt;
616                 list_add_tail(&cmd->list, &lu->cmd_orb_inuse);
617         } else
618                 SBP2_ERR("%s: no orbs available", __func__);
619         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
620         return cmd;
621 }
622
623 /*
624  * Unmaps the DMAs of a command and moves the command to the completed ORB list.
625  * Must be called with lu->cmd_orb_lock held.
626  */
627 static void sbp2util_mark_command_completed(struct sbp2_lu *lu,
628                                             struct sbp2_command_info *cmd)
629 {
630         struct hpsb_host *host = lu->ud->ne->host;
631
632         if (cmd->cmd_dma) {
633                 if (cmd->dma_type == CMD_DMA_SINGLE)
634                         dma_unmap_single(host->device.parent, cmd->cmd_dma,
635                                          cmd->dma_size, cmd->dma_dir);
636                 else if (cmd->dma_type == CMD_DMA_PAGE)
637                         dma_unmap_page(host->device.parent, cmd->cmd_dma,
638                                        cmd->dma_size, cmd->dma_dir);
639                 /* XXX: Check for CMD_DMA_NONE bug */
640                 cmd->dma_type = CMD_DMA_NONE;
641                 cmd->cmd_dma = 0;
642         }
643         if (cmd->sge_buffer) {
644                 dma_unmap_sg(host->device.parent, cmd->sge_buffer,
645                              cmd->dma_size, cmd->dma_dir);
646                 cmd->sge_buffer = NULL;
647         }
648         list_move_tail(&cmd->list, &lu->cmd_orb_completed);
649 }
650
651 /*
652  * Is lu valid? Is the 1394 node still present?
653  */
654 static inline int sbp2util_node_is_available(struct sbp2_lu *lu)
655 {
656         return lu && lu->ne && !lu->ne->in_limbo;
657 }
658
659 /*********************************************
660  * IEEE-1394 core driver stack related section
661  *********************************************/
662
663 static int sbp2_probe(struct device *dev)
664 {
665         struct unit_directory *ud;
666         struct sbp2_lu *lu;
667
668         ud = container_of(dev, struct unit_directory, device);
669
670         /* Don't probe UD's that have the LUN flag. We'll probe the LUN(s)
671          * instead. */
672         if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY)
673                 return -ENODEV;
674
675         lu = sbp2_alloc_device(ud);
676         if (!lu)
677                 return -ENOMEM;
678
679         sbp2_parse_unit_directory(lu, ud);
680         return sbp2_start_device(lu);
681 }
682
683 static int sbp2_remove(struct device *dev)
684 {
685         struct unit_directory *ud;
686         struct sbp2_lu *lu;
687         struct scsi_device *sdev;
688
689         ud = container_of(dev, struct unit_directory, device);
690         lu = ud->device.driver_data;
691         if (!lu)
692                 return 0;
693
694         if (lu->shost) {
695                 /* Get rid of enqueued commands if there is no chance to
696                  * send them. */
697                 if (!sbp2util_node_is_available(lu))
698                         sbp2scsi_complete_all_commands(lu, DID_NO_CONNECT);
699                 /* scsi_remove_device() may trigger shutdown functions of SCSI
700                  * highlevel drivers which would deadlock if blocked. */
701                 atomic_set(&lu->state, SBP2LU_STATE_IN_SHUTDOWN);
702                 scsi_unblock_requests(lu->shost);
703         }
704         sdev = lu->sdev;
705         if (sdev) {
706                 lu->sdev = NULL;
707                 scsi_remove_device(sdev);
708         }
709
710         sbp2_logout_device(lu);
711         sbp2_remove_device(lu);
712
713         return 0;
714 }
715
716 static int sbp2_update(struct unit_directory *ud)
717 {
718         struct sbp2_lu *lu = ud->device.driver_data;
719
720         if (sbp2_reconnect_device(lu)) {
721                 /* Reconnect has failed. Perhaps we didn't reconnect fast
722                  * enough. Try a regular login, but first log out just in
723                  * case of any weirdness. */
724                 sbp2_logout_device(lu);
725
726                 if (sbp2_login_device(lu)) {
727                         /* Login failed too, just fail, and the backend
728                          * will call our sbp2_remove for us */
729                         SBP2_ERR("Failed to reconnect to sbp2 device!");
730                         return -EBUSY;
731                 }
732         }
733
734         sbp2_set_busy_timeout(lu);
735         sbp2_agent_reset(lu, 1);
736         sbp2_max_speed_and_size(lu);
737
738         /* Complete any pending commands with busy (so they get retried)
739          * and remove them from our queue. */
740         sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
741
742         /* Accept new commands unless there was another bus reset in the
743          * meantime. */
744         if (hpsb_node_entry_valid(lu->ne)) {
745                 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
746                 scsi_unblock_requests(lu->shost);
747         }
748         return 0;
749 }
750
751 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *ud)
752 {
753         struct sbp2_fwhost_info *hi;
754         struct Scsi_Host *shost = NULL;
755         struct sbp2_lu *lu = NULL;
756         unsigned long flags;
757
758         lu = kzalloc(sizeof(*lu), GFP_KERNEL);
759         if (!lu) {
760                 SBP2_ERR("failed to create lu");
761                 goto failed_alloc;
762         }
763
764         lu->ne = ud->ne;
765         lu->ud = ud;
766         lu->speed_code = IEEE1394_SPEED_100;
767         lu->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100];
768         lu->status_fifo_addr = CSR1212_INVALID_ADDR_SPACE;
769         INIT_LIST_HEAD(&lu->cmd_orb_inuse);
770         INIT_LIST_HEAD(&lu->cmd_orb_completed);
771         INIT_LIST_HEAD(&lu->lu_list);
772         spin_lock_init(&lu->cmd_orb_lock);
773         atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
774         INIT_WORK(&lu->protocol_work, NULL);
775
776         ud->device.driver_data = lu;
777
778         hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host);
779         if (!hi) {
780                 hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host,
781                                           sizeof(*hi));
782                 if (!hi) {
783                         SBP2_ERR("failed to allocate hostinfo");
784                         goto failed_alloc;
785                 }
786                 hi->host = ud->ne->host;
787                 INIT_LIST_HEAD(&hi->logical_units);
788
789 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
790                 /* Handle data movement if physical dma is not
791                  * enabled or not supported on host controller */
792                 if (!hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host,
793                                              &sbp2_physdma_ops,
794                                              0x0ULL, 0xfffffffcULL)) {
795                         SBP2_ERR("failed to register lower 4GB address range");
796                         goto failed_alloc;
797                 }
798 #endif
799         }
800
801         /* Prevent unloading of the 1394 host */
802         if (!try_module_get(hi->host->driver->owner)) {
803                 SBP2_ERR("failed to get a reference on 1394 host driver");
804                 goto failed_alloc;
805         }
806
807         lu->hi = hi;
808
809         write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
810         list_add_tail(&lu->lu_list, &hi->logical_units);
811         write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
812
813         /* Register the status FIFO address range. We could use the same FIFO
814          * for targets at different nodes. However we need different FIFOs per
815          * target in order to support multi-unit devices.
816          * The FIFO is located out of the local host controller's physical range
817          * but, if possible, within the posted write area. Status writes will
818          * then be performed as unified transactions. This slightly reduces
819          * bandwidth usage, and some Prolific based devices seem to require it.
820          */
821         lu->status_fifo_addr = hpsb_allocate_and_register_addrspace(
822                         &sbp2_highlevel, ud->ne->host, &sbp2_ops,
823                         sizeof(struct sbp2_status_block), sizeof(quadlet_t),
824                         ud->ne->host->low_addr_space, CSR1212_ALL_SPACE_END);
825         if (lu->status_fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
826                 SBP2_ERR("failed to allocate status FIFO address range");
827                 goto failed_alloc;
828         }
829
830         shost = scsi_host_alloc(&sbp2_shost_template, sizeof(unsigned long));
831         if (!shost) {
832                 SBP2_ERR("failed to register scsi host");
833                 goto failed_alloc;
834         }
835
836         shost->hostdata[0] = (unsigned long)lu;
837
838         if (!scsi_add_host(shost, &ud->device)) {
839                 lu->shost = shost;
840                 return lu;
841         }
842
843         SBP2_ERR("failed to add scsi host");
844         scsi_host_put(shost);
845
846 failed_alloc:
847         sbp2_remove_device(lu);
848         return NULL;
849 }
850
851 static void sbp2_host_reset(struct hpsb_host *host)
852 {
853         struct sbp2_fwhost_info *hi;
854         struct sbp2_lu *lu;
855         unsigned long flags;
856
857         hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
858         if (!hi)
859                 return;
860
861         read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
862         list_for_each_entry(lu, &hi->logical_units, lu_list)
863                 if (likely(atomic_read(&lu->state) !=
864                            SBP2LU_STATE_IN_SHUTDOWN)) {
865                         atomic_set(&lu->state, SBP2LU_STATE_IN_RESET);
866                         scsi_block_requests(lu->shost);
867                 }
868         read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
869 }
870
871 static int sbp2_start_device(struct sbp2_lu *lu)
872 {
873         struct sbp2_fwhost_info *hi = lu->hi;
874         int error;
875
876         lu->login_response = dma_alloc_coherent(hi->host->device.parent,
877                                      sizeof(struct sbp2_login_response),
878                                      &lu->login_response_dma, GFP_KERNEL);
879         if (!lu->login_response)
880                 goto alloc_fail;
881
882         lu->query_logins_orb = dma_alloc_coherent(hi->host->device.parent,
883                                      sizeof(struct sbp2_query_logins_orb),
884                                      &lu->query_logins_orb_dma, GFP_KERNEL);
885         if (!lu->query_logins_orb)
886                 goto alloc_fail;
887
888         lu->query_logins_response = dma_alloc_coherent(hi->host->device.parent,
889                                      sizeof(struct sbp2_query_logins_response),
890                                      &lu->query_logins_response_dma, GFP_KERNEL);
891         if (!lu->query_logins_response)
892                 goto alloc_fail;
893
894         lu->reconnect_orb = dma_alloc_coherent(hi->host->device.parent,
895                                      sizeof(struct sbp2_reconnect_orb),
896                                      &lu->reconnect_orb_dma, GFP_KERNEL);
897         if (!lu->reconnect_orb)
898                 goto alloc_fail;
899
900         lu->logout_orb = dma_alloc_coherent(hi->host->device.parent,
901                                      sizeof(struct sbp2_logout_orb),
902                                      &lu->logout_orb_dma, GFP_KERNEL);
903         if (!lu->logout_orb)
904                 goto alloc_fail;
905
906         lu->login_orb = dma_alloc_coherent(hi->host->device.parent,
907                                      sizeof(struct sbp2_login_orb),
908                                      &lu->login_orb_dma, GFP_KERNEL);
909         if (!lu->login_orb)
910                 goto alloc_fail;
911
912         if (sbp2util_create_command_orb_pool(lu))
913                 goto alloc_fail;
914
915         /* Wait a second before trying to log in. Previously logged in
916          * initiators need a chance to reconnect. */
917         if (msleep_interruptible(1000)) {
918                 sbp2_remove_device(lu);
919                 return -EINTR;
920         }
921
922         if (sbp2_login_device(lu)) {
923                 sbp2_remove_device(lu);
924                 return -EBUSY;
925         }
926
927         sbp2_set_busy_timeout(lu);
928         sbp2_agent_reset(lu, 1);
929         sbp2_max_speed_and_size(lu);
930
931         if (lu->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
932                 ssleep(SBP2_INQUIRY_DELAY);
933
934         error = scsi_add_device(lu->shost, 0, lu->ud->id, 0);
935         if (error) {
936                 SBP2_ERR("scsi_add_device failed");
937                 sbp2_logout_device(lu);
938                 sbp2_remove_device(lu);
939                 return error;
940         }
941
942         return 0;
943
944 alloc_fail:
945         SBP2_ERR("Could not allocate memory for lu");
946         sbp2_remove_device(lu);
947         return -ENOMEM;
948 }
949
950 static void sbp2_remove_device(struct sbp2_lu *lu)
951 {
952         struct sbp2_fwhost_info *hi;
953         unsigned long flags;
954
955         if (!lu)
956                 return;
957         hi = lu->hi;
958         if (!hi)
959                 goto no_hi;
960
961         if (lu->shost) {
962                 scsi_remove_host(lu->shost);
963                 scsi_host_put(lu->shost);
964         }
965         flush_scheduled_work();
966         sbp2util_remove_command_orb_pool(lu, hi->host);
967
968         write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
969         list_del(&lu->lu_list);
970         write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
971
972         if (lu->login_response)
973                 dma_free_coherent(hi->host->device.parent,
974                                     sizeof(struct sbp2_login_response),
975                                     lu->login_response,
976                                     lu->login_response_dma);
977         if (lu->login_orb)
978                 dma_free_coherent(hi->host->device.parent,
979                                     sizeof(struct sbp2_login_orb),
980                                     lu->login_orb,
981                                     lu->login_orb_dma);
982         if (lu->reconnect_orb)
983                 dma_free_coherent(hi->host->device.parent,
984                                     sizeof(struct sbp2_reconnect_orb),
985                                     lu->reconnect_orb,
986                                     lu->reconnect_orb_dma);
987         if (lu->logout_orb)
988                 dma_free_coherent(hi->host->device.parent,
989                                     sizeof(struct sbp2_logout_orb),
990                                     lu->logout_orb,
991                                     lu->logout_orb_dma);
992         if (lu->query_logins_orb)
993                 dma_free_coherent(hi->host->device.parent,
994                                     sizeof(struct sbp2_query_logins_orb),
995                                     lu->query_logins_orb,
996                                     lu->query_logins_orb_dma);
997         if (lu->query_logins_response)
998                 dma_free_coherent(hi->host->device.parent,
999                                     sizeof(struct sbp2_query_logins_response),
1000                                     lu->query_logins_response,
1001                                     lu->query_logins_response_dma);
1002
1003         if (lu->status_fifo_addr != CSR1212_INVALID_ADDR_SPACE)
1004                 hpsb_unregister_addrspace(&sbp2_highlevel, hi->host,
1005                                           lu->status_fifo_addr);
1006
1007         lu->ud->device.driver_data = NULL;
1008
1009         module_put(hi->host->driver->owner);
1010 no_hi:
1011         kfree(lu);
1012 }
1013
1014 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
1015 /*
1016  * Deal with write requests on adapters which do not support physical DMA or
1017  * have it switched off.
1018  */
1019 static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid,
1020                                      int destid, quadlet_t *data, u64 addr,
1021                                      size_t length, u16 flags)
1022 {
1023         memcpy(bus_to_virt((u32) addr), data, length);
1024         return RCODE_COMPLETE;
1025 }
1026
1027 /*
1028  * Deal with read requests on adapters which do not support physical DMA or
1029  * have it switched off.
1030  */
1031 static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid,
1032                                     quadlet_t *data, u64 addr, size_t length,
1033                                     u16 flags)
1034 {
1035         memcpy(data, bus_to_virt((u32) addr), length);
1036         return RCODE_COMPLETE;
1037 }
1038 #endif
1039
1040 /**************************************
1041  * SBP-2 protocol related section
1042  **************************************/
1043
1044 static int sbp2_query_logins(struct sbp2_lu *lu)
1045 {
1046         struct sbp2_fwhost_info *hi = lu->hi;
1047         quadlet_t data[2];
1048         int max_logins;
1049         int active_logins;
1050
1051         lu->query_logins_orb->reserved1 = 0x0;
1052         lu->query_logins_orb->reserved2 = 0x0;
1053
1054         lu->query_logins_orb->query_response_lo = lu->query_logins_response_dma;
1055         lu->query_logins_orb->query_response_hi =
1056                         ORB_SET_NODE_ID(hi->host->node_id);
1057         lu->query_logins_orb->lun_misc =
1058                         ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST);
1059         lu->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1);
1060         lu->query_logins_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1061
1062         lu->query_logins_orb->reserved_resp_length =
1063                 ORB_SET_QUERY_LOGINS_RESP_LENGTH(
1064                         sizeof(struct sbp2_query_logins_response));
1065
1066         lu->query_logins_orb->status_fifo_hi =
1067                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1068         lu->query_logins_orb->status_fifo_lo =
1069                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1070
1071         sbp2util_cpu_to_be32_buffer(lu->query_logins_orb,
1072                                     sizeof(struct sbp2_query_logins_orb));
1073
1074         memset(lu->query_logins_response, 0,
1075                sizeof(struct sbp2_query_logins_response));
1076
1077         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1078         data[1] = lu->query_logins_orb_dma;
1079         sbp2util_cpu_to_be32_buffer(data, 8);
1080
1081         hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1082
1083         if (sbp2util_access_timeout(lu, 2*HZ)) {
1084                 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1085                 return -EIO;
1086         }
1087
1088         if (lu->status_block.ORB_offset_lo != lu->query_logins_orb_dma) {
1089                 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1090                 return -EIO;
1091         }
1092
1093         if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1094                 SBP2_INFO("Error querying logins to SBP-2 device - failed");
1095                 return -EIO;
1096         }
1097
1098         sbp2util_cpu_to_be32_buffer(lu->query_logins_response,
1099                                     sizeof(struct sbp2_query_logins_response));
1100
1101         max_logins = RESPONSE_GET_MAX_LOGINS(
1102                         lu->query_logins_response->length_max_logins);
1103         SBP2_INFO("Maximum concurrent logins supported: %d", max_logins);
1104
1105         active_logins = RESPONSE_GET_ACTIVE_LOGINS(
1106                         lu->query_logins_response->length_max_logins);
1107         SBP2_INFO("Number of active logins: %d", active_logins);
1108
1109         if (active_logins >= max_logins) {
1110                 return -EIO;
1111         }
1112
1113         return 0;
1114 }
1115
1116 static int sbp2_login_device(struct sbp2_lu *lu)
1117 {
1118         struct sbp2_fwhost_info *hi = lu->hi;
1119         quadlet_t data[2];
1120
1121         if (!lu->login_orb)
1122                 return -EIO;
1123
1124         if (!sbp2_exclusive_login && sbp2_query_logins(lu)) {
1125                 SBP2_INFO("Device does not support any more concurrent logins");
1126                 return -EIO;
1127         }
1128
1129         /* assume no password */
1130         lu->login_orb->password_hi = 0;
1131         lu->login_orb->password_lo = 0;
1132
1133         lu->login_orb->login_response_lo = lu->login_response_dma;
1134         lu->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
1135         lu->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST);
1136
1137         /* one second reconnect time */
1138         lu->login_orb->lun_misc |= ORB_SET_RECONNECT(0);
1139         lu->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(sbp2_exclusive_login);
1140         lu->login_orb->lun_misc |= ORB_SET_NOTIFY(1);
1141         lu->login_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1142
1143         lu->login_orb->passwd_resp_lengths =
1144                 ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response));
1145
1146         lu->login_orb->status_fifo_hi =
1147                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1148         lu->login_orb->status_fifo_lo =
1149                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1150
1151         sbp2util_cpu_to_be32_buffer(lu->login_orb,
1152                                     sizeof(struct sbp2_login_orb));
1153
1154         memset(lu->login_response, 0, sizeof(struct sbp2_login_response));
1155
1156         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1157         data[1] = lu->login_orb_dma;
1158         sbp2util_cpu_to_be32_buffer(data, 8);
1159
1160         hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1161
1162         /* wait up to 20 seconds for login status */
1163         if (sbp2util_access_timeout(lu, 20*HZ)) {
1164                 SBP2_ERR("Error logging into SBP-2 device - timed out");
1165                 return -EIO;
1166         }
1167
1168         /* make sure that the returned status matches the login ORB */
1169         if (lu->status_block.ORB_offset_lo != lu->login_orb_dma) {
1170                 SBP2_ERR("Error logging into SBP-2 device - timed out");
1171                 return -EIO;
1172         }
1173
1174         if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1175                 SBP2_ERR("Error logging into SBP-2 device - failed");
1176                 return -EIO;
1177         }
1178
1179         sbp2util_cpu_to_be32_buffer(lu->login_response,
1180                                     sizeof(struct sbp2_login_response));
1181         lu->command_block_agent_addr =
1182                         ((u64)lu->login_response->command_block_agent_hi) << 32;
1183         lu->command_block_agent_addr |=
1184                         ((u64)lu->login_response->command_block_agent_lo);
1185         lu->command_block_agent_addr &= 0x0000ffffffffffffULL;
1186
1187         SBP2_INFO("Logged into SBP-2 device");
1188         return 0;
1189 }
1190
1191 static int sbp2_logout_device(struct sbp2_lu *lu)
1192 {
1193         struct sbp2_fwhost_info *hi = lu->hi;
1194         quadlet_t data[2];
1195         int error;
1196
1197         lu->logout_orb->reserved1 = 0x0;
1198         lu->logout_orb->reserved2 = 0x0;
1199         lu->logout_orb->reserved3 = 0x0;
1200         lu->logout_orb->reserved4 = 0x0;
1201
1202         lu->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST);
1203         lu->logout_orb->login_ID_misc |=
1204                         ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1205         lu->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1206
1207         lu->logout_orb->reserved5 = 0x0;
1208         lu->logout_orb->status_fifo_hi =
1209                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1210         lu->logout_orb->status_fifo_lo =
1211                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1212
1213         sbp2util_cpu_to_be32_buffer(lu->logout_orb,
1214                                     sizeof(struct sbp2_logout_orb));
1215
1216         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1217         data[1] = lu->logout_orb_dma;
1218         sbp2util_cpu_to_be32_buffer(data, 8);
1219
1220         error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1221         if (error)
1222                 return error;
1223
1224         /* wait up to 1 second for the device to complete logout */
1225         if (sbp2util_access_timeout(lu, HZ))
1226                 return -EIO;
1227
1228         SBP2_INFO("Logged out of SBP-2 device");
1229         return 0;
1230 }
1231
1232 static int sbp2_reconnect_device(struct sbp2_lu *lu)
1233 {
1234         struct sbp2_fwhost_info *hi = lu->hi;
1235         quadlet_t data[2];
1236         int error;
1237
1238         lu->reconnect_orb->reserved1 = 0x0;
1239         lu->reconnect_orb->reserved2 = 0x0;
1240         lu->reconnect_orb->reserved3 = 0x0;
1241         lu->reconnect_orb->reserved4 = 0x0;
1242
1243         lu->reconnect_orb->login_ID_misc =
1244                         ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST);
1245         lu->reconnect_orb->login_ID_misc |=
1246                         ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1247         lu->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1248
1249         lu->reconnect_orb->reserved5 = 0x0;
1250         lu->reconnect_orb->status_fifo_hi =
1251                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1252         lu->reconnect_orb->status_fifo_lo =
1253                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1254
1255         sbp2util_cpu_to_be32_buffer(lu->reconnect_orb,
1256                                     sizeof(struct sbp2_reconnect_orb));
1257
1258         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1259         data[1] = lu->reconnect_orb_dma;
1260         sbp2util_cpu_to_be32_buffer(data, 8);
1261
1262         error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1263         if (error)
1264                 return error;
1265
1266         /* wait up to 1 second for reconnect status */
1267         if (sbp2util_access_timeout(lu, HZ)) {
1268                 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1269                 return -EIO;
1270         }
1271
1272         /* make sure that the returned status matches the reconnect ORB */
1273         if (lu->status_block.ORB_offset_lo != lu->reconnect_orb_dma) {
1274                 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1275                 return -EIO;
1276         }
1277
1278         if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1279                 SBP2_ERR("Error reconnecting to SBP-2 device - failed");
1280                 return -EIO;
1281         }
1282
1283         SBP2_INFO("Reconnected to SBP-2 device");
1284         return 0;
1285 }
1286
1287 /*
1288  * Set the target node's Single Phase Retry limit. Affects the target's retry
1289  * behaviour if our node is too busy to accept requests.
1290  */
1291 static int sbp2_set_busy_timeout(struct sbp2_lu *lu)
1292 {
1293         quadlet_t data;
1294
1295         data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE);
1296         if (hpsb_node_write(lu->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4))
1297                 SBP2_ERR("%s error", __func__);
1298         return 0;
1299 }
1300
1301 static void sbp2_parse_unit_directory(struct sbp2_lu *lu,
1302                                       struct unit_directory *ud)
1303 {
1304         struct csr1212_keyval *kv;
1305         struct csr1212_dentry *dentry;
1306         u64 management_agent_addr;
1307         u32 unit_characteristics, firmware_revision;
1308         unsigned workarounds;
1309         int i;
1310
1311         management_agent_addr = 0;
1312         unit_characteristics = 0;
1313         firmware_revision = 0;
1314
1315         csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) {
1316                 switch (kv->key.id) {
1317                 case CSR1212_KV_ID_DEPENDENT_INFO:
1318                         if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET)
1319                                 management_agent_addr =
1320                                     CSR1212_REGISTER_SPACE_BASE +
1321                                     (kv->value.csr_offset << 2);
1322
1323                         else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE)
1324                                 lu->lun = ORB_SET_LUN(kv->value.immediate);
1325                         break;
1326
1327                 case SBP2_UNIT_CHARACTERISTICS_KEY:
1328                         /* FIXME: This is ignored so far.
1329                          * See SBP-2 clause 7.4.8. */
1330                         unit_characteristics = kv->value.immediate;
1331                         break;
1332
1333                 case SBP2_FIRMWARE_REVISION_KEY:
1334                         firmware_revision = kv->value.immediate;
1335                         break;
1336
1337                 default:
1338                         /* FIXME: Check for SBP2_DEVICE_TYPE_AND_LUN_KEY.
1339                          * Its "ordered" bit has consequences for command ORB
1340                          * list handling. See SBP-2 clauses 4.6, 7.4.11, 10.2 */
1341                         break;
1342                 }
1343         }
1344
1345         workarounds = sbp2_default_workarounds;
1346
1347         if (!(workarounds & SBP2_WORKAROUND_OVERRIDE))
1348                 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1349                         if (sbp2_workarounds_table[i].firmware_revision !=
1350                             SBP2_ROM_VALUE_WILDCARD &&
1351                             sbp2_workarounds_table[i].firmware_revision !=
1352                             (firmware_revision & 0xffff00))
1353                                 continue;
1354                         if (sbp2_workarounds_table[i].model_id !=
1355                             SBP2_ROM_VALUE_WILDCARD &&
1356                             sbp2_workarounds_table[i].model_id != ud->model_id)
1357                                 continue;
1358                         workarounds |= sbp2_workarounds_table[i].workarounds;
1359                         break;
1360                 }
1361
1362         if (workarounds)
1363                 SBP2_INFO("Workarounds for node " NODE_BUS_FMT ": 0x%x "
1364                           "(firmware_revision 0x%06x, vendor_id 0x%06x,"
1365                           " model_id 0x%06x)",
1366                           NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1367                           workarounds, firmware_revision,
1368                           ud->vendor_id ? ud->vendor_id : ud->ne->vendor_id,
1369                           ud->model_id);
1370
1371         /* We would need one SCSI host template for each target to adjust
1372          * max_sectors on the fly, therefore warn only. */
1373         if (workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
1374             (sbp2_max_sectors * 512) > (128 * 1024))
1375                 SBP2_INFO("Node " NODE_BUS_FMT ": Bridge only supports 128KB "
1376                           "max transfer size. WARNING: Current max_sectors "
1377                           "setting is larger than 128KB (%d sectors)",
1378                           NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1379                           sbp2_max_sectors);
1380
1381         /* If this is a logical unit directory entry, process the parent
1382          * to get the values. */
1383         if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) {
1384                 struct unit_directory *parent_ud = container_of(
1385                         ud->device.parent, struct unit_directory, device);
1386                 sbp2_parse_unit_directory(lu, parent_ud);
1387         } else {
1388                 lu->management_agent_addr = management_agent_addr;
1389                 lu->workarounds = workarounds;
1390                 if (ud->flags & UNIT_DIRECTORY_HAS_LUN)
1391                         lu->lun = ORB_SET_LUN(ud->lun);
1392         }
1393 }
1394
1395 #define SBP2_PAYLOAD_TO_BYTES(p) (1 << ((p) + 2))
1396
1397 /*
1398  * This function is called in order to determine the max speed and packet
1399  * size we can use in our ORBs. Note, that we (the driver and host) only
1400  * initiate the transaction. The SBP-2 device actually transfers the data
1401  * (by reading from the DMA area we tell it). This means that the SBP-2
1402  * device decides the actual maximum data it can transfer. We just tell it
1403  * the speed that it needs to use, and the max_rec the host supports, and
1404  * it takes care of the rest.
1405  */
1406 static int sbp2_max_speed_and_size(struct sbp2_lu *lu)
1407 {
1408         struct sbp2_fwhost_info *hi = lu->hi;
1409         u8 payload;
1410
1411         lu->speed_code = hi->host->speed[NODEID_TO_NODE(lu->ne->nodeid)];
1412
1413         if (lu->speed_code > sbp2_max_speed) {
1414                 lu->speed_code = sbp2_max_speed;
1415                 SBP2_INFO("Reducing speed to %s",
1416                           hpsb_speedto_str[sbp2_max_speed]);
1417         }
1418
1419         /* Payload size is the lesser of what our speed supports and what
1420          * our host supports.  */
1421         payload = min(sbp2_speedto_max_payload[lu->speed_code],
1422                       (u8) (hi->host->csr.max_rec - 1));
1423
1424         /* If physical DMA is off, work around limitation in ohci1394:
1425          * packet size must not exceed PAGE_SIZE */
1426         if (lu->ne->host->low_addr_space < (1ULL << 32))
1427                 while (SBP2_PAYLOAD_TO_BYTES(payload) + 24 > PAGE_SIZE &&
1428                        payload)
1429                         payload--;
1430
1431         SBP2_INFO("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]",
1432                   NODE_BUS_ARGS(hi->host, lu->ne->nodeid),
1433                   hpsb_speedto_str[lu->speed_code],
1434                   SBP2_PAYLOAD_TO_BYTES(payload));
1435
1436         lu->max_payload_size = payload;
1437         return 0;
1438 }
1439
1440 static int sbp2_agent_reset(struct sbp2_lu *lu, int wait)
1441 {
1442         quadlet_t data;
1443         u64 addr;
1444         int retval;
1445         unsigned long flags;
1446
1447         /* flush lu->protocol_work */
1448         if (wait)
1449                 flush_scheduled_work();
1450
1451         data = ntohl(SBP2_AGENT_RESET_DATA);
1452         addr = lu->command_block_agent_addr + SBP2_AGENT_RESET_OFFSET;
1453
1454         if (wait)
1455                 retval = hpsb_node_write(lu->ne, addr, &data, 4);
1456         else
1457                 retval = sbp2util_node_write_no_wait(lu->ne, addr, &data, 4);
1458
1459         if (retval < 0) {
1460                 SBP2_ERR("hpsb_node_write failed.\n");
1461                 return -EIO;
1462         }
1463
1464         /* make sure that the ORB_POINTER is written on next command */
1465         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1466         lu->last_orb = NULL;
1467         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1468
1469         return 0;
1470 }
1471
1472 static void sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
1473                                      struct sbp2_fwhost_info *hi,
1474                                      struct sbp2_command_info *cmd,
1475                                      unsigned int scsi_use_sg,
1476                                      struct scatterlist *sg,
1477                                      u32 orb_direction,
1478                                      enum dma_data_direction dma_dir)
1479 {
1480         cmd->dma_dir = dma_dir;
1481         orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
1482         orb->misc |= ORB_SET_DIRECTION(orb_direction);
1483
1484         /* special case if only one element (and less than 64KB in size) */
1485         if (scsi_use_sg == 1 && sg->length <= SBP2_MAX_SG_ELEMENT_LENGTH) {
1486
1487                 cmd->dma_size = sg->length;
1488                 cmd->dma_type = CMD_DMA_PAGE;
1489                 cmd->cmd_dma = dma_map_page(hi->host->device.parent,
1490                                             sg_page(sg), sg->offset,
1491                                             cmd->dma_size, cmd->dma_dir);
1492
1493                 orb->data_descriptor_lo = cmd->cmd_dma;
1494                 orb->misc |= ORB_SET_DATA_SIZE(cmd->dma_size);
1495
1496         } else {
1497                 struct sbp2_unrestricted_page_table *sg_element =
1498                                                 &cmd->scatter_gather_element[0];
1499                 u32 sg_count, sg_len;
1500                 dma_addr_t sg_addr;
1501                 int i, count = dma_map_sg(hi->host->device.parent, sg,
1502                                           scsi_use_sg, dma_dir);
1503
1504                 cmd->dma_size = scsi_use_sg;
1505                 cmd->sge_buffer = sg;
1506
1507                 /* use page tables (s/g) */
1508                 orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1);
1509                 orb->data_descriptor_lo = cmd->sge_dma;
1510
1511                 /* loop through and fill out our SBP-2 page tables
1512                  * (and split up anything too large) */
1513                 for (i = 0, sg_count = 0; i < count; i++, sg = sg_next(sg)) {
1514                         sg_len = sg_dma_len(sg);
1515                         sg_addr = sg_dma_address(sg);
1516                         while (sg_len) {
1517                                 sg_element[sg_count].segment_base_lo = sg_addr;
1518                                 if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) {
1519                                         sg_element[sg_count].length_segment_base_hi =
1520                                                 PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH);
1521                                         sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH;
1522                                         sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH;
1523                                 } else {
1524                                         sg_element[sg_count].length_segment_base_hi =
1525                                                 PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len);
1526                                         sg_len = 0;
1527                                 }
1528                                 sg_count++;
1529                         }
1530                 }
1531
1532                 orb->misc |= ORB_SET_DATA_SIZE(sg_count);
1533
1534                 sbp2util_cpu_to_be32_buffer(sg_element,
1535                                 (sizeof(struct sbp2_unrestricted_page_table)) *
1536                                 sg_count);
1537         }
1538 }
1539
1540 static void sbp2_create_command_orb(struct sbp2_lu *lu,
1541                                     struct sbp2_command_info *cmd,
1542                                     struct scsi_cmnd *SCpnt)
1543 {
1544         struct sbp2_fwhost_info *hi = lu->hi;
1545         struct sbp2_command_orb *orb = &cmd->command_orb;
1546         u32 orb_direction;
1547         unsigned int scsi_request_bufflen = scsi_bufflen(SCpnt);
1548         enum dma_data_direction dma_dir = SCpnt->sc_data_direction;
1549
1550         /*
1551          * Set-up our command ORB.
1552          *
1553          * NOTE: We're doing unrestricted page tables (s/g), as this is
1554          * best performance (at least with the devices I have). This means
1555          * that data_size becomes the number of s/g elements, and
1556          * page_size should be zero (for unrestricted).
1557          */
1558         orb->next_ORB_hi = ORB_SET_NULL_PTR(1);
1559         orb->next_ORB_lo = 0x0;
1560         orb->misc = ORB_SET_MAX_PAYLOAD(lu->max_payload_size);
1561         orb->misc |= ORB_SET_SPEED(lu->speed_code);
1562         orb->misc |= ORB_SET_NOTIFY(1);
1563
1564         if (dma_dir == DMA_NONE)
1565                 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1566         else if (dma_dir == DMA_TO_DEVICE && scsi_request_bufflen)
1567                 orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA;
1568         else if (dma_dir == DMA_FROM_DEVICE && scsi_request_bufflen)
1569                 orb_direction = ORB_DIRECTION_READ_FROM_MEDIA;
1570         else {
1571                 SBP2_INFO("Falling back to DMA_NONE");
1572                 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1573         }
1574
1575         /* set up our page table stuff */
1576         if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) {
1577                 orb->data_descriptor_hi = 0x0;
1578                 orb->data_descriptor_lo = 0x0;
1579                 orb->misc |= ORB_SET_DIRECTION(1);
1580         } else
1581                 sbp2_prep_command_orb_sg(orb, hi, cmd, scsi_sg_count(SCpnt),
1582                                          scsi_sglist(SCpnt),
1583                                          orb_direction, dma_dir);
1584
1585         sbp2util_cpu_to_be32_buffer(orb, sizeof(*orb));
1586
1587         memset(orb->cdb, 0, sizeof(orb->cdb));
1588         memcpy(orb->cdb, SCpnt->cmnd, SCpnt->cmd_len);
1589 }
1590
1591 static void sbp2_link_orb_command(struct sbp2_lu *lu,
1592                                   struct sbp2_command_info *cmd)
1593 {
1594         struct sbp2_fwhost_info *hi = lu->hi;
1595         struct sbp2_command_orb *last_orb;
1596         dma_addr_t last_orb_dma;
1597         u64 addr = lu->command_block_agent_addr;
1598         quadlet_t data[2];
1599         size_t length;
1600         unsigned long flags;
1601
1602         dma_sync_single_for_device(hi->host->device.parent,
1603                                    cmd->command_orb_dma,
1604                                    sizeof(struct sbp2_command_orb),
1605                                    DMA_TO_DEVICE);
1606         dma_sync_single_for_device(hi->host->device.parent, cmd->sge_dma,
1607                                    sizeof(cmd->scatter_gather_element),
1608                                    DMA_TO_DEVICE);
1609
1610         /* check to see if there are any previous orbs to use */
1611         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1612         last_orb = lu->last_orb;
1613         last_orb_dma = lu->last_orb_dma;
1614         if (!last_orb) {
1615                 /*
1616                  * last_orb == NULL means: We know that the target's fetch agent
1617                  * is not active right now.
1618                  */
1619                 addr += SBP2_ORB_POINTER_OFFSET;
1620                 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1621                 data[1] = cmd->command_orb_dma;
1622                 sbp2util_cpu_to_be32_buffer(data, 8);
1623                 length = 8;
1624         } else {
1625                 /*
1626                  * last_orb != NULL means: We know that the target's fetch agent
1627                  * is (very probably) not dead or in reset state right now.
1628                  * We have an ORB already sent that we can append a new one to.
1629                  * The target's fetch agent may or may not have read this
1630                  * previous ORB yet.
1631                  */
1632                 dma_sync_single_for_cpu(hi->host->device.parent, last_orb_dma,
1633                                         sizeof(struct sbp2_command_orb),
1634                                         DMA_TO_DEVICE);
1635                 last_orb->next_ORB_lo = cpu_to_be32(cmd->command_orb_dma);
1636                 wmb();
1637                 /* Tells hardware that this pointer is valid */
1638                 last_orb->next_ORB_hi = 0;
1639                 dma_sync_single_for_device(hi->host->device.parent,
1640                                            last_orb_dma,
1641                                            sizeof(struct sbp2_command_orb),
1642                                            DMA_TO_DEVICE);
1643                 addr += SBP2_DOORBELL_OFFSET;
1644                 data[0] = 0;
1645                 length = 4;
1646         }
1647         lu->last_orb = &cmd->command_orb;
1648         lu->last_orb_dma = cmd->command_orb_dma;
1649         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1650
1651         if (sbp2util_node_write_no_wait(lu->ne, addr, data, length)) {
1652                 /*
1653                  * sbp2util_node_write_no_wait failed. We certainly ran out
1654                  * of transaction labels, perhaps just because there were no
1655                  * context switches which gave khpsbpkt a chance to collect
1656                  * free tlabels. Try again in non-atomic context. If necessary,
1657                  * the workqueue job will sleep to guaranteedly get a tlabel.
1658                  * We do not accept new commands until the job is over.
1659                  */
1660                 scsi_block_requests(lu->shost);
1661                 PREPARE_WORK(&lu->protocol_work,
1662                              last_orb ? sbp2util_write_doorbell:
1663                                         sbp2util_write_orb_pointer);
1664                 schedule_work(&lu->protocol_work);
1665         }
1666 }
1667
1668 static int sbp2_send_command(struct sbp2_lu *lu, struct scsi_cmnd *SCpnt,
1669                              void (*done)(struct scsi_cmnd *))
1670 {
1671         struct sbp2_command_info *cmd;
1672
1673         cmd = sbp2util_allocate_command_orb(lu, SCpnt, done);
1674         if (!cmd)
1675                 return -EIO;
1676
1677         sbp2_create_command_orb(lu, cmd, SCpnt);
1678         sbp2_link_orb_command(lu, cmd);
1679
1680         return 0;
1681 }
1682
1683 /*
1684  * Translates SBP-2 status into SCSI sense data for check conditions
1685  */
1686 static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status,
1687                                               unchar *sense_data)
1688 {
1689         /* OK, it's pretty ugly... ;-) */
1690         sense_data[0] = 0x70;
1691         sense_data[1] = 0x0;
1692         sense_data[2] = sbp2_status[9];
1693         sense_data[3] = sbp2_status[12];
1694         sense_data[4] = sbp2_status[13];
1695         sense_data[5] = sbp2_status[14];
1696         sense_data[6] = sbp2_status[15];
1697         sense_data[7] = 10;
1698         sense_data[8] = sbp2_status[16];
1699         sense_data[9] = sbp2_status[17];
1700         sense_data[10] = sbp2_status[18];
1701         sense_data[11] = sbp2_status[19];
1702         sense_data[12] = sbp2_status[10];
1703         sense_data[13] = sbp2_status[11];
1704         sense_data[14] = sbp2_status[20];
1705         sense_data[15] = sbp2_status[21];
1706
1707         return sbp2_status[8] & 0x3f;
1708 }
1709
1710 static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid,
1711                                     int destid, quadlet_t *data, u64 addr,
1712                                     size_t length, u16 fl)
1713 {
1714         struct sbp2_fwhost_info *hi;
1715         struct sbp2_lu *lu = NULL, *lu_tmp;
1716         struct scsi_cmnd *SCpnt = NULL;
1717         struct sbp2_status_block *sb;
1718         u32 scsi_status = SBP2_SCSI_STATUS_GOOD;
1719         struct sbp2_command_info *cmd;
1720         unsigned long flags;
1721
1722         if (unlikely(length < 8 || length > sizeof(struct sbp2_status_block))) {
1723                 SBP2_ERR("Wrong size of status block");
1724                 return RCODE_ADDRESS_ERROR;
1725         }
1726         if (unlikely(!host)) {
1727                 SBP2_ERR("host is NULL - this is bad!");
1728                 return RCODE_ADDRESS_ERROR;
1729         }
1730         hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
1731         if (unlikely(!hi)) {
1732                 SBP2_ERR("host info is NULL - this is bad!");
1733                 return RCODE_ADDRESS_ERROR;
1734         }
1735
1736         /* Find the unit which wrote the status. */
1737         read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
1738         list_for_each_entry(lu_tmp, &hi->logical_units, lu_list) {
1739                 if (lu_tmp->ne->nodeid == nodeid &&
1740                     lu_tmp->status_fifo_addr == addr) {
1741                         lu = lu_tmp;
1742                         break;
1743                 }
1744         }
1745         read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
1746
1747         if (unlikely(!lu)) {
1748                 SBP2_ERR("lu is NULL - device is gone?");
1749                 return RCODE_ADDRESS_ERROR;
1750         }
1751
1752         /* Put response into lu status fifo buffer. The first two bytes
1753          * come in big endian bit order. Often the target writes only a
1754          * truncated status block, minimally the first two quadlets. The rest
1755          * is implied to be zeros. */
1756         sb = &lu->status_block;
1757         memset(sb->command_set_dependent, 0, sizeof(sb->command_set_dependent));
1758         memcpy(sb, data, length);
1759         sbp2util_be32_to_cpu_buffer(sb, 8);
1760
1761         /* Ignore unsolicited status. Handle command ORB status. */
1762         if (unlikely(STATUS_GET_SRC(sb->ORB_offset_hi_misc) == 2))
1763                 cmd = NULL;
1764         else
1765                 cmd = sbp2util_find_command_for_orb(lu, sb->ORB_offset_lo);
1766         if (cmd) {
1767                 dma_sync_single_for_cpu(hi->host->device.parent,
1768                                         cmd->command_orb_dma,
1769                                         sizeof(struct sbp2_command_orb),
1770                                         DMA_TO_DEVICE);
1771                 dma_sync_single_for_cpu(hi->host->device.parent, cmd->sge_dma,
1772                                         sizeof(cmd->scatter_gather_element),
1773                                         DMA_TO_DEVICE);
1774                 /* Grab SCSI command pointers and check status. */
1775                 /*
1776                  * FIXME: If the src field in the status is 1, the ORB DMA must
1777                  * not be reused until status for a subsequent ORB is received.
1778                  */
1779                 SCpnt = cmd->Current_SCpnt;
1780                 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1781                 sbp2util_mark_command_completed(lu, cmd);
1782                 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1783
1784                 if (SCpnt) {
1785                         u32 h = sb->ORB_offset_hi_misc;
1786                         u32 r = STATUS_GET_RESP(h);
1787
1788                         if (r != RESP_STATUS_REQUEST_COMPLETE) {
1789                                 SBP2_INFO("resp 0x%x, sbp_status 0x%x",
1790                                           r, STATUS_GET_SBP_STATUS(h));
1791                                 scsi_status =
1792                                         r == RESP_STATUS_TRANSPORT_FAILURE ?
1793                                         SBP2_SCSI_STATUS_BUSY :
1794                                         SBP2_SCSI_STATUS_COMMAND_TERMINATED;
1795                         }
1796
1797                         if (STATUS_GET_LEN(h) > 1)
1798                                 scsi_status = sbp2_status_to_sense_data(
1799                                         (unchar *)sb, SCpnt->sense_buffer);
1800
1801                         if (STATUS_TEST_DEAD(h))
1802                                 sbp2_agent_reset(lu, 0);
1803                 }
1804
1805                 /* Check here to see if there are no commands in-use. If there
1806                  * are none, we know that the fetch agent left the active state
1807                  * _and_ that we did not reactivate it yet. Therefore clear
1808                  * last_orb so that next time we write directly to the
1809                  * ORB_POINTER register. That way the fetch agent does not need
1810                  * to refetch the next_ORB. */
1811                 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1812                 if (list_empty(&lu->cmd_orb_inuse))
1813                         lu->last_orb = NULL;
1814                 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1815
1816         } else {
1817                 /* It's probably status after a management request. */
1818                 if ((sb->ORB_offset_lo == lu->reconnect_orb_dma) ||
1819                     (sb->ORB_offset_lo == lu->login_orb_dma) ||
1820                     (sb->ORB_offset_lo == lu->query_logins_orb_dma) ||
1821                     (sb->ORB_offset_lo == lu->logout_orb_dma)) {
1822                         lu->access_complete = 1;
1823                         wake_up_interruptible(&sbp2_access_wq);
1824                 }
1825         }
1826
1827         if (SCpnt)
1828                 sbp2scsi_complete_command(lu, scsi_status, SCpnt,
1829                                           cmd->Current_done);
1830         return RCODE_COMPLETE;
1831 }
1832
1833 /**************************************
1834  * SCSI interface related section
1835  **************************************/
1836
1837 static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
1838                                  void (*done)(struct scsi_cmnd *))
1839 {
1840         struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
1841         struct sbp2_fwhost_info *hi;
1842         int result = DID_NO_CONNECT << 16;
1843
1844         if (unlikely(!sbp2util_node_is_available(lu)))
1845                 goto done;
1846
1847         hi = lu->hi;
1848
1849         if (unlikely(!hi)) {
1850                 SBP2_ERR("sbp2_fwhost_info is NULL - this is bad!");
1851                 goto done;
1852         }
1853
1854         /* Multiple units are currently represented to the SCSI core as separate
1855          * targets, not as one target with multiple LUs. Therefore return
1856          * selection time-out to any IO directed at non-zero LUNs. */
1857         if (unlikely(SCpnt->device->lun))
1858                 goto done;
1859
1860         if (unlikely(!hpsb_node_entry_valid(lu->ne))) {
1861                 SBP2_ERR("Bus reset in progress - rejecting command");
1862                 result = DID_BUS_BUSY << 16;
1863                 goto done;
1864         }
1865
1866         /* Bidirectional commands are not yet implemented,
1867          * and unknown transfer direction not handled. */
1868         if (unlikely(SCpnt->sc_data_direction == DMA_BIDIRECTIONAL)) {
1869                 SBP2_ERR("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
1870                 result = DID_ERROR << 16;
1871                 goto done;
1872         }
1873
1874         if (sbp2_send_command(lu, SCpnt, done)) {
1875                 SBP2_ERR("Error sending SCSI command");
1876                 sbp2scsi_complete_command(lu,
1877                                           SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
1878                                           SCpnt, done);
1879         }
1880         return 0;
1881
1882 done:
1883         SCpnt->result = result;
1884         done(SCpnt);
1885         return 0;
1886 }
1887
1888 static void sbp2scsi_complete_all_commands(struct sbp2_lu *lu, u32 status)
1889 {
1890         struct sbp2_fwhost_info *hi = lu->hi;
1891         struct list_head *lh;
1892         struct sbp2_command_info *cmd;
1893         unsigned long flags;
1894
1895         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1896         while (!list_empty(&lu->cmd_orb_inuse)) {
1897                 lh = lu->cmd_orb_inuse.next;
1898                 cmd = list_entry(lh, struct sbp2_command_info, list);
1899                 dma_sync_single_for_cpu(hi->host->device.parent,
1900                                         cmd->command_orb_dma,
1901                                         sizeof(struct sbp2_command_orb),
1902                                         DMA_TO_DEVICE);
1903                 dma_sync_single_for_cpu(hi->host->device.parent, cmd->sge_dma,
1904                                         sizeof(cmd->scatter_gather_element),
1905                                         DMA_TO_DEVICE);
1906                 sbp2util_mark_command_completed(lu, cmd);
1907                 if (cmd->Current_SCpnt) {
1908                         cmd->Current_SCpnt->result = status << 16;
1909                         cmd->Current_done(cmd->Current_SCpnt);
1910                 }
1911         }
1912         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1913
1914         return;
1915 }
1916
1917 /*
1918  * Complete a regular SCSI command. Can be called in atomic context.
1919  */
1920 static void sbp2scsi_complete_command(struct sbp2_lu *lu, u32 scsi_status,
1921                                       struct scsi_cmnd *SCpnt,
1922                                       void (*done)(struct scsi_cmnd *))
1923 {
1924         if (!SCpnt) {
1925                 SBP2_ERR("SCpnt is NULL");
1926                 return;
1927         }
1928
1929         switch (scsi_status) {
1930         case SBP2_SCSI_STATUS_GOOD:
1931                 SCpnt->result = DID_OK << 16;
1932                 break;
1933
1934         case SBP2_SCSI_STATUS_BUSY:
1935                 SBP2_ERR("SBP2_SCSI_STATUS_BUSY");
1936                 SCpnt->result = DID_BUS_BUSY << 16;
1937                 break;
1938
1939         case SBP2_SCSI_STATUS_CHECK_CONDITION:
1940                 SCpnt->result = CHECK_CONDITION << 1 | DID_OK << 16;
1941                 break;
1942
1943         case SBP2_SCSI_STATUS_SELECTION_TIMEOUT:
1944                 SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT");
1945                 SCpnt->result = DID_NO_CONNECT << 16;
1946                 scsi_print_command(SCpnt);
1947                 break;
1948
1949         case SBP2_SCSI_STATUS_CONDITION_MET:
1950         case SBP2_SCSI_STATUS_RESERVATION_CONFLICT:
1951         case SBP2_SCSI_STATUS_COMMAND_TERMINATED:
1952                 SBP2_ERR("Bad SCSI status = %x", scsi_status);
1953                 SCpnt->result = DID_ERROR << 16;
1954                 scsi_print_command(SCpnt);
1955                 break;
1956
1957         default:
1958                 SBP2_ERR("Unsupported SCSI status = %x", scsi_status);
1959                 SCpnt->result = DID_ERROR << 16;
1960         }
1961
1962         /* If a bus reset is in progress and there was an error, complete
1963          * the command as busy so that it will get retried. */
1964         if (!hpsb_node_entry_valid(lu->ne)
1965             && (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
1966                 SBP2_ERR("Completing command with busy (bus reset)");
1967                 SCpnt->result = DID_BUS_BUSY << 16;
1968         }
1969
1970         /* Tell the SCSI stack that we're done with this command. */
1971         done(SCpnt);
1972 }
1973
1974 static int sbp2scsi_slave_alloc(struct scsi_device *sdev)
1975 {
1976         struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
1977
1978         if (sdev->lun != 0 || sdev->id != lu->ud->id || sdev->channel != 0)
1979                 return -ENODEV;
1980
1981         lu->sdev = sdev;
1982         sdev->allow_restart = 1;
1983
1984         /* SBP-2 requires quadlet alignment of the data buffers. */
1985         blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1986
1987         if (lu->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1988                 sdev->inquiry_len = 36;
1989         return 0;
1990 }
1991
1992 static int sbp2scsi_slave_configure(struct scsi_device *sdev)
1993 {
1994         struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
1995
1996         sdev->use_10_for_rw = 1;
1997
1998         if (sdev->type == TYPE_ROM)
1999                 sdev->use_10_for_ms = 1;
2000         if (sdev->type == TYPE_DISK &&
2001             lu->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
2002                 sdev->skip_ms_page_8 = 1;
2003         if (lu->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
2004                 sdev->fix_capacity = 1;
2005         if (lu->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
2006                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
2007         return 0;
2008 }
2009
2010 static void sbp2scsi_slave_destroy(struct scsi_device *sdev)
2011 {
2012         ((struct sbp2_lu *)sdev->host->hostdata[0])->sdev = NULL;
2013         return;
2014 }
2015
2016 /*
2017  * Called by scsi stack when something has really gone wrong.
2018  * Usually called when a command has timed-out for some reason.
2019  */
2020 static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
2021 {
2022         struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2023         struct sbp2_fwhost_info *hi = lu->hi;
2024         struct sbp2_command_info *cmd;
2025         unsigned long flags;
2026
2027         SBP2_INFO("aborting sbp2 command");
2028         scsi_print_command(SCpnt);
2029
2030         if (sbp2util_node_is_available(lu)) {
2031                 sbp2_agent_reset(lu, 1);
2032
2033                 /* Return a matching command structure to the free pool. */
2034                 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
2035                 cmd = sbp2util_find_command_for_SCpnt(lu, SCpnt);
2036                 if (cmd) {
2037                         dma_sync_single_for_cpu(hi->host->device.parent,
2038                                         cmd->command_orb_dma,
2039                                         sizeof(struct sbp2_command_orb),
2040                                         DMA_TO_DEVICE);
2041                         dma_sync_single_for_cpu(hi->host->device.parent,
2042                                         cmd->sge_dma,
2043                                         sizeof(cmd->scatter_gather_element),
2044                                         DMA_TO_DEVICE);
2045                         sbp2util_mark_command_completed(lu, cmd);
2046                         if (cmd->Current_SCpnt) {
2047                                 cmd->Current_SCpnt->result = DID_ABORT << 16;
2048                                 cmd->Current_done(cmd->Current_SCpnt);
2049                         }
2050                 }
2051                 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
2052
2053                 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
2054         }
2055
2056         return SUCCESS;
2057 }
2058
2059 /*
2060  * Called by scsi stack when something has really gone wrong.
2061  */
2062 static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
2063 {
2064         struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2065
2066         SBP2_INFO("reset requested");
2067
2068         if (sbp2util_node_is_available(lu)) {
2069                 SBP2_INFO("generating sbp2 fetch agent reset");
2070                 sbp2_agent_reset(lu, 1);
2071         }
2072
2073         return SUCCESS;
2074 }
2075
2076 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
2077                                            struct device_attribute *attr,
2078                                            char *buf)
2079 {
2080         struct scsi_device *sdev;
2081         struct sbp2_lu *lu;
2082
2083         if (!(sdev = to_scsi_device(dev)))
2084                 return 0;
2085
2086         if (!(lu = (struct sbp2_lu *)sdev->host->hostdata[0]))
2087                 return 0;
2088
2089         if (sbp2_long_sysfs_ieee1394_id)
2090                 return sprintf(buf, "%016Lx:%06x:%04x\n",
2091                                 (unsigned long long)lu->ne->guid,
2092                                 lu->ud->directory_id, ORB_SET_LUN(lu->lun));
2093         else
2094                 return sprintf(buf, "%016Lx:%d:%d\n",
2095                                 (unsigned long long)lu->ne->guid,
2096                                 lu->ud->id, ORB_SET_LUN(lu->lun));
2097 }
2098
2099 MODULE_AUTHOR("Ben Collins <bcollins@debian.org>");
2100 MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver");
2101 MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME);
2102 MODULE_LICENSE("GPL");
2103
2104 static int sbp2_module_init(void)
2105 {
2106         int ret;
2107
2108         if (sbp2_serialize_io) {
2109                 sbp2_shost_template.can_queue = 1;
2110                 sbp2_shost_template.cmd_per_lun = 1;
2111         }
2112
2113         sbp2_shost_template.max_sectors = sbp2_max_sectors;
2114
2115         hpsb_register_highlevel(&sbp2_highlevel);
2116         ret = hpsb_register_protocol(&sbp2_driver);
2117         if (ret) {
2118                 SBP2_ERR("Failed to register protocol");
2119                 hpsb_unregister_highlevel(&sbp2_highlevel);
2120                 return ret;
2121         }
2122         return 0;
2123 }
2124
2125 static void __exit sbp2_module_exit(void)
2126 {
2127         hpsb_unregister_protocol(&sbp2_driver);
2128         hpsb_unregister_highlevel(&sbp2_highlevel);
2129 }
2130
2131 module_init(sbp2_module_init);
2132 module_exit(sbp2_module_exit);