2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * Abstract: This supports the initialization of the host adapter commuication interface.
28 * This is a platform dependent module for the pci cyclone board.
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/blkdev.h>
40 #include <linux/completion.h>
42 #include <scsi/scsi_host.h>
43 #include <asm/semaphore.h>
47 struct aac_common aac_config = {
51 static int aac_alloc_comm(struct aac_dev *dev, void **commaddr, unsigned long commsize, unsigned long commalign)
54 unsigned long size, align;
55 const unsigned long fibsize = 4096;
56 const unsigned long printfbufsiz = 256;
57 struct aac_init *init;
60 size = fibsize + sizeof(struct aac_init) + commsize + commalign + printfbufsiz;
63 base = pci_alloc_consistent(dev->pdev, size, &phys);
67 printk(KERN_ERR "aacraid: unable to create mapping.\n");
70 dev->comm_addr = (void *)base;
71 dev->comm_phys = phys;
72 dev->comm_size = size;
74 dev->init = (struct aac_init *)(base + fibsize);
75 dev->init_pa = phys + fibsize;
79 init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION);
80 if (dev->max_fib_size != sizeof(struct hw_fib))
81 init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_4);
82 init->MiniPortRevision = cpu_to_le32(Sa_MINIPORT_REVISION);
83 init->fsrev = cpu_to_le32(dev->fsrev);
86 * Adapter Fibs are the first thing allocated so that they
89 dev->aif_base_va = (struct hw_fib *)base;
91 init->AdapterFibsVirtualAddress = 0;
92 init->AdapterFibsPhysicalAddress = cpu_to_le32((u32)phys);
93 init->AdapterFibsSize = cpu_to_le32(fibsize);
94 init->AdapterFibAlign = cpu_to_le32(sizeof(struct hw_fib));
96 * number of 4k pages of host physical memory. The aacraid fw needs
97 * this number to be less than 4gb worth of pages. num_physpages is in
98 * system page units. New firmware doesn't have any issues with the
99 * mapping system, but older Firmware did, and had *troubles* dealing
100 * with the math overloading past 32 bits, thus we must limit this
103 * This assumes the memory is mapped zero->n, which isnt
104 * always true on real computers. It also has some slight problems
105 * with the GART on x86-64. I've btw never tried DMA from PCI space
106 * on this platform but don't be suprised if its problematic.
108 #ifndef CONFIG_GART_IOMMU
109 if ((num_physpages << (PAGE_SHIFT - 12)) <= AAC_MAX_HOSTPHYSMEMPAGES) {
110 init->HostPhysMemPages =
111 cpu_to_le32(num_physpages << (PAGE_SHIFT-12));
115 init->HostPhysMemPages = cpu_to_le32(AAC_MAX_HOSTPHYSMEMPAGES);
119 init->MaxIoCommands = cpu_to_le32(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
120 init->MaxIoSize = cpu_to_le32(dev->scsi_host_ptr->max_sectors << 9);
121 init->MaxFibSize = cpu_to_le32(dev->max_fib_size);
124 * Increment the base address by the amount already used
126 base = base + fibsize + sizeof(struct aac_init);
127 phys = (dma_addr_t)((ulong)phys + fibsize + sizeof(struct aac_init));
129 * Align the beginning of Headers to commalign
131 align = (commalign - ((unsigned long)(base) & (commalign - 1)));
135 * Fill in addresses of the Comm Area Headers and Queues
138 init->CommHeaderAddress = cpu_to_le32((u32)phys);
140 * Increment the base address by the size of the CommArea
142 base = base + commsize;
143 phys = phys + commsize;
145 * Place the Printf buffer area after the Fast I/O comm area.
147 dev->printfbuf = (void *)base;
148 init->printfbuf = cpu_to_le32(phys);
149 init->printfbufsiz = cpu_to_le32(printfbufsiz);
150 memset(base, 0, printfbufsiz);
154 static void aac_queue_init(struct aac_dev * dev, struct aac_queue * q, u32 *mem, int qsize)
158 INIT_LIST_HEAD(&q->pendingq);
159 init_waitqueue_head(&q->cmdready);
160 INIT_LIST_HEAD(&q->cmdq);
161 init_waitqueue_head(&q->qfull);
162 spin_lock_init(&q->lockdata);
163 q->lock = &q->lockdata;
164 q->headers.producer = (__le32 *)mem;
165 q->headers.consumer = (__le32 *)(mem+1);
166 *(q->headers.producer) = cpu_to_le32(qsize);
167 *(q->headers.consumer) = cpu_to_le32(qsize);
172 * aac_send_shutdown - shutdown an adapter
173 * @dev: Adapter to shutdown
175 * This routine will send a VM_CloseAll (shutdown) request to the adapter.
178 int aac_send_shutdown(struct aac_dev * dev)
181 struct aac_close *cmd;
184 fibctx = fib_alloc(dev);
189 cmd = (struct aac_close *) fib_data(fibctx);
191 cmd->command = cpu_to_le32(VM_CloseAll);
192 cmd->cid = cpu_to_le32(0xffffffff);
194 status = fib_send(ContainerCommand,
196 sizeof(struct aac_close),
198 -2 /* Timeout silently */, 1,
202 fib_complete(fibctx);
208 * aac_comm_init - Initialise FSA data structures
209 * @dev: Adapter to initialise
211 * Initializes the data structures that are required for the FSA commuication
212 * interface to operate.
214 * 1 - if we were able to init the commuication interface.
215 * 0 - If there were errors initing. This is a fatal error.
218 static int aac_comm_init(struct aac_dev * dev)
220 unsigned long hdrsize = (sizeof(u32) * NUMBER_OF_COMM_QUEUES) * 2;
221 unsigned long queuesize = sizeof(struct aac_entry) * TOTAL_QUEUE_ENTRIES;
223 struct aac_entry * queues;
225 struct aac_queue_block * comm = dev->queues;
227 * Now allocate and initialize the zone structures used as our
228 * pool of FIB context records. The size of the zone is based
229 * on the system memory size. We also initialize the mutex used
230 * to protect the zone.
232 spin_lock_init(&dev->fib_lock);
235 * Allocate the physically contigous space for the commuication
239 size = hdrsize + queuesize;
241 if (!aac_alloc_comm(dev, (void * *)&headers, size, QUEUE_ALIGNMENT))
244 queues = (struct aac_entry *)(((ulong)headers) + hdrsize);
246 /* Adapter to Host normal priority Command queue */
247 comm->queue[HostNormCmdQueue].base = queues;
248 aac_queue_init(dev, &comm->queue[HostNormCmdQueue], headers, HOST_NORM_CMD_ENTRIES);
249 queues += HOST_NORM_CMD_ENTRIES;
252 /* Adapter to Host high priority command queue */
253 comm->queue[HostHighCmdQueue].base = queues;
254 aac_queue_init(dev, &comm->queue[HostHighCmdQueue], headers, HOST_HIGH_CMD_ENTRIES);
256 queues += HOST_HIGH_CMD_ENTRIES;
259 /* Host to adapter normal priority command queue */
260 comm->queue[AdapNormCmdQueue].base = queues;
261 aac_queue_init(dev, &comm->queue[AdapNormCmdQueue], headers, ADAP_NORM_CMD_ENTRIES);
263 queues += ADAP_NORM_CMD_ENTRIES;
266 /* host to adapter high priority command queue */
267 comm->queue[AdapHighCmdQueue].base = queues;
268 aac_queue_init(dev, &comm->queue[AdapHighCmdQueue], headers, ADAP_HIGH_CMD_ENTRIES);
270 queues += ADAP_HIGH_CMD_ENTRIES;
273 /* adapter to host normal priority response queue */
274 comm->queue[HostNormRespQueue].base = queues;
275 aac_queue_init(dev, &comm->queue[HostNormRespQueue], headers, HOST_NORM_RESP_ENTRIES);
276 queues += HOST_NORM_RESP_ENTRIES;
279 /* adapter to host high priority response queue */
280 comm->queue[HostHighRespQueue].base = queues;
281 aac_queue_init(dev, &comm->queue[HostHighRespQueue], headers, HOST_HIGH_RESP_ENTRIES);
283 queues += HOST_HIGH_RESP_ENTRIES;
286 /* host to adapter normal priority response queue */
287 comm->queue[AdapNormRespQueue].base = queues;
288 aac_queue_init(dev, &comm->queue[AdapNormRespQueue], headers, ADAP_NORM_RESP_ENTRIES);
290 queues += ADAP_NORM_RESP_ENTRIES;
293 /* host to adapter high priority response queue */
294 comm->queue[AdapHighRespQueue].base = queues;
295 aac_queue_init(dev, &comm->queue[AdapHighRespQueue], headers, ADAP_HIGH_RESP_ENTRIES);
297 comm->queue[AdapNormCmdQueue].lock = comm->queue[HostNormRespQueue].lock;
298 comm->queue[AdapHighCmdQueue].lock = comm->queue[HostHighRespQueue].lock;
299 comm->queue[AdapNormRespQueue].lock = comm->queue[HostNormCmdQueue].lock;
300 comm->queue[AdapHighRespQueue].lock = comm->queue[HostHighCmdQueue].lock;
305 struct aac_dev *aac_init_adapter(struct aac_dev *dev)
308 struct Scsi_Host * host = dev->scsi_host_ptr;
311 * Check the preferred comm settings, defaults from template.
313 dev->max_fib_size = sizeof(struct hw_fib);
314 dev->sg_tablesize = host->sg_tablesize = (dev->max_fib_size
315 - sizeof(struct aac_fibhdr)
316 - sizeof(struct aac_write) + sizeof(struct sgentry))
317 / sizeof(struct sgentry);
319 if ((!aac_adapter_sync_cmd(dev, GET_ADAPTER_PROPERTIES,
320 0, 0, 0, 0, 0, 0, status+0, status+1, status+2, NULL, NULL)) &&
321 (status[0] == 0x00000001)) {
322 if (status[1] & AAC_OPT_NEW_COMM_64)
325 if ((!aac_adapter_sync_cmd(dev, GET_COMM_PREFERRED_SETTINGS,
327 status+0, status+1, status+2, status+3, status+4))
328 && (status[0] == 0x00000001)) {
330 * status[1] >> 16 maximum command size in KB
331 * status[1] & 0xFFFF maximum FIB size
332 * status[2] >> 16 maximum SG elements to driver
333 * status[2] & 0xFFFF maximum SG elements from driver
334 * status[3] & 0xFFFF maximum number FIBs outstanding
336 host->max_sectors = (status[1] >> 16) << 1;
337 dev->max_fib_size = status[1] & 0xFFFF;
338 host->sg_tablesize = status[2] >> 16;
339 dev->sg_tablesize = status[2] & 0xFFFF;
340 host->can_queue = (status[3] & 0xFFFF) - AAC_NUM_MGT_FIB;
343 * All these overrides are based on a fixed internal
344 * knowledge and understanding of existing adapters,
345 * acbsize should be set with caution.
347 if (acbsize == 512) {
348 host->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
349 dev->max_fib_size = 512;
350 dev->sg_tablesize = host->sg_tablesize
351 = (512 - sizeof(struct aac_fibhdr)
352 - sizeof(struct aac_write) + sizeof(struct sgentry))
353 / sizeof(struct sgentry);
354 host->can_queue = AAC_NUM_IO_FIB;
355 } else if (acbsize == 2048) {
356 host->max_sectors = 512;
357 dev->max_fib_size = 2048;
358 host->sg_tablesize = 65;
359 dev->sg_tablesize = 81;
360 host->can_queue = 512 - AAC_NUM_MGT_FIB;
361 } else if (acbsize == 4096) {
362 host->max_sectors = 1024;
363 dev->max_fib_size = 4096;
364 host->sg_tablesize = 129;
365 dev->sg_tablesize = 166;
366 host->can_queue = 256 - AAC_NUM_MGT_FIB;
367 } else if (acbsize == 8192) {
368 host->max_sectors = 2048;
369 dev->max_fib_size = 8192;
370 host->sg_tablesize = 257;
371 dev->sg_tablesize = 337;
372 host->can_queue = 128 - AAC_NUM_MGT_FIB;
373 } else if (acbsize > 0) {
374 printk("Illegal acbsize=%d ignored\n", acbsize);
380 if (numacb < host->can_queue)
381 host->can_queue = numacb;
383 printk("numacb=%d ignored\n", numacb);
388 * Ok now init the communication subsystem
391 dev->queues = (struct aac_queue_block *) kmalloc(sizeof(struct aac_queue_block), GFP_KERNEL);
392 if (dev->queues == NULL) {
393 printk(KERN_ERR "Error could not allocate comm region.\n");
396 memset(dev->queues, 0, sizeof(struct aac_queue_block));
398 if (aac_comm_init(dev)<0){
403 * Initialize the list of fibs
405 if(fib_setup(dev)<0){
410 INIT_LIST_HEAD(&dev->fib_list);
411 init_completion(&dev->aif_completion);