4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 bh->b_end_io = handler;
53 bh->b_private = private;
56 static int sync_buffer(void *word)
58 struct block_device *bd;
59 struct buffer_head *bh
60 = container_of(word, struct buffer_head, b_state);
65 blk_run_address_space(bd->bd_inode->i_mapping);
70 void fastcall __lock_buffer(struct buffer_head *bh)
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 TASK_UNINTERRUPTIBLE);
75 EXPORT_SYMBOL(__lock_buffer);
77 void fastcall unlock_buffer(struct buffer_head *bh)
79 smp_mb__before_clear_bit();
80 clear_buffer_locked(bh);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
90 void __wait_on_buffer(struct buffer_head * bh)
92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
96 __clear_page_buffers(struct page *page)
98 ClearPagePrivate(page);
99 set_page_private(page, 0);
100 page_cache_release(page);
103 static void buffer_io_error(struct buffer_head *bh)
105 char b[BDEVNAME_SIZE];
107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 bdevname(bh->b_bdev, b),
109 (unsigned long long)bh->b_blocknr);
113 * End-of-IO handler helper function which does not touch the bh after
115 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
116 * a race there is benign: unlock_buffer() only use the bh's address for
117 * hashing after unlocking the buffer, so it doesn't actually touch the bh
120 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
123 set_buffer_uptodate(bh);
125 /* This happens, due to failed READA attempts. */
126 clear_buffer_uptodate(bh);
132 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
133 * unlock the buffer. This is what ll_rw_block uses too.
135 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
137 __end_buffer_read_notouch(bh, uptodate);
141 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
143 char b[BDEVNAME_SIZE];
146 set_buffer_uptodate(bh);
148 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
150 printk(KERN_WARNING "lost page write due to "
152 bdevname(bh->b_bdev, b));
154 set_buffer_write_io_error(bh);
155 clear_buffer_uptodate(bh);
162 * Write out and wait upon all the dirty data associated with a block
163 * device via its mapping. Does not take the superblock lock.
165 int sync_blockdev(struct block_device *bdev)
170 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
173 EXPORT_SYMBOL(sync_blockdev);
176 * Write out and wait upon all dirty data associated with this
177 * device. Filesystem data as well as the underlying block
178 * device. Takes the superblock lock.
180 int fsync_bdev(struct block_device *bdev)
182 struct super_block *sb = get_super(bdev);
184 int res = fsync_super(sb);
188 return sync_blockdev(bdev);
192 * freeze_bdev -- lock a filesystem and force it into a consistent state
193 * @bdev: blockdevice to lock
195 * This takes the block device bd_mount_sem to make sure no new mounts
196 * happen on bdev until thaw_bdev() is called.
197 * If a superblock is found on this device, we take the s_umount semaphore
198 * on it to make sure nobody unmounts until the snapshot creation is done.
200 struct super_block *freeze_bdev(struct block_device *bdev)
202 struct super_block *sb;
204 down(&bdev->bd_mount_sem);
205 sb = get_super(bdev);
206 if (sb && !(sb->s_flags & MS_RDONLY)) {
207 sb->s_frozen = SB_FREEZE_WRITE;
212 sb->s_frozen = SB_FREEZE_TRANS;
215 sync_blockdev(sb->s_bdev);
217 if (sb->s_op->write_super_lockfs)
218 sb->s_op->write_super_lockfs(sb);
222 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
224 EXPORT_SYMBOL(freeze_bdev);
227 * thaw_bdev -- unlock filesystem
228 * @bdev: blockdevice to unlock
229 * @sb: associated superblock
231 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
233 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
236 BUG_ON(sb->s_bdev != bdev);
238 if (sb->s_op->unlockfs)
239 sb->s_op->unlockfs(sb);
240 sb->s_frozen = SB_UNFROZEN;
242 wake_up(&sb->s_wait_unfrozen);
246 up(&bdev->bd_mount_sem);
248 EXPORT_SYMBOL(thaw_bdev);
251 * Various filesystems appear to want __find_get_block to be non-blocking.
252 * But it's the page lock which protects the buffers. To get around this,
253 * we get exclusion from try_to_free_buffers with the blockdev mapping's
256 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
257 * may be quite high. This code could TryLock the page, and if that
258 * succeeds, there is no need to take private_lock. (But if
259 * private_lock is contended then so is mapping->tree_lock).
261 static struct buffer_head *
262 __find_get_block_slow(struct block_device *bdev, sector_t block)
264 struct inode *bd_inode = bdev->bd_inode;
265 struct address_space *bd_mapping = bd_inode->i_mapping;
266 struct buffer_head *ret = NULL;
268 struct buffer_head *bh;
269 struct buffer_head *head;
273 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
274 page = find_get_page(bd_mapping, index);
278 spin_lock(&bd_mapping->private_lock);
279 if (!page_has_buffers(page))
281 head = page_buffers(page);
284 if (bh->b_blocknr == block) {
289 if (!buffer_mapped(bh))
291 bh = bh->b_this_page;
292 } while (bh != head);
294 /* we might be here because some of the buffers on this page are
295 * not mapped. This is due to various races between
296 * file io on the block device and getblk. It gets dealt with
297 * elsewhere, don't buffer_error if we had some unmapped buffers
300 printk("__find_get_block_slow() failed. "
301 "block=%llu, b_blocknr=%llu\n",
302 (unsigned long long)block,
303 (unsigned long long)bh->b_blocknr);
304 printk("b_state=0x%08lx, b_size=%zu\n",
305 bh->b_state, bh->b_size);
306 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
309 spin_unlock(&bd_mapping->private_lock);
310 page_cache_release(page);
315 /* If invalidate_buffers() will trash dirty buffers, it means some kind
316 of fs corruption is going on. Trashing dirty data always imply losing
317 information that was supposed to be just stored on the physical layer
320 Thus invalidate_buffers in general usage is not allwowed to trash
321 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
322 be preserved. These buffers are simply skipped.
324 We also skip buffers which are still in use. For example this can
325 happen if a userspace program is reading the block device.
327 NOTE: In the case where the user removed a removable-media-disk even if
328 there's still dirty data not synced on disk (due a bug in the device driver
329 or due an error of the user), by not destroying the dirty buffers we could
330 generate corruption also on the next media inserted, thus a parameter is
331 necessary to handle this case in the most safe way possible (trying
332 to not corrupt also the new disk inserted with the data belonging to
333 the old now corrupted disk). Also for the ramdisk the natural thing
334 to do in order to release the ramdisk memory is to destroy dirty buffers.
336 These are two special cases. Normal usage imply the device driver
337 to issue a sync on the device (without waiting I/O completion) and
338 then an invalidate_buffers call that doesn't trash dirty buffers.
340 For handling cache coherency with the blkdev pagecache the 'update' case
341 is been introduced. It is needed to re-read from disk any pinned
342 buffer. NOTE: re-reading from disk is destructive so we can do it only
343 when we assume nobody is changing the buffercache under our I/O and when
344 we think the disk contains more recent information than the buffercache.
345 The update == 1 pass marks the buffers we need to update, the update == 2
346 pass does the actual I/O. */
347 void invalidate_bdev(struct block_device *bdev)
349 struct address_space *mapping = bdev->bd_inode->i_mapping;
351 if (mapping->nrpages == 0)
354 invalidate_bh_lrus();
355 invalidate_mapping_pages(mapping, 0, -1);
359 * Kick pdflush then try to free up some ZONE_NORMAL memory.
361 static void free_more_memory(void)
366 wakeup_pdflush(1024);
369 for_each_online_pgdat(pgdat) {
370 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
372 try_to_free_pages(zones, 0, GFP_NOFS);
377 * I/O completion handler for block_read_full_page() - pages
378 * which come unlocked at the end of I/O.
380 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
383 struct buffer_head *first;
384 struct buffer_head *tmp;
386 int page_uptodate = 1;
388 BUG_ON(!buffer_async_read(bh));
392 set_buffer_uptodate(bh);
394 clear_buffer_uptodate(bh);
395 if (printk_ratelimit())
401 * Be _very_ careful from here on. Bad things can happen if
402 * two buffer heads end IO at almost the same time and both
403 * decide that the page is now completely done.
405 first = page_buffers(page);
406 local_irq_save(flags);
407 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
408 clear_buffer_async_read(bh);
412 if (!buffer_uptodate(tmp))
414 if (buffer_async_read(tmp)) {
415 BUG_ON(!buffer_locked(tmp));
418 tmp = tmp->b_this_page;
420 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
421 local_irq_restore(flags);
424 * If none of the buffers had errors and they are all
425 * uptodate then we can set the page uptodate.
427 if (page_uptodate && !PageError(page))
428 SetPageUptodate(page);
433 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
434 local_irq_restore(flags);
439 * Completion handler for block_write_full_page() - pages which are unlocked
440 * during I/O, and which have PageWriteback cleared upon I/O completion.
442 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
444 char b[BDEVNAME_SIZE];
446 struct buffer_head *first;
447 struct buffer_head *tmp;
450 BUG_ON(!buffer_async_write(bh));
454 set_buffer_uptodate(bh);
456 if (printk_ratelimit()) {
458 printk(KERN_WARNING "lost page write due to "
460 bdevname(bh->b_bdev, b));
462 set_bit(AS_EIO, &page->mapping->flags);
463 set_buffer_write_io_error(bh);
464 clear_buffer_uptodate(bh);
468 first = page_buffers(page);
469 local_irq_save(flags);
470 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
472 clear_buffer_async_write(bh);
474 tmp = bh->b_this_page;
476 if (buffer_async_write(tmp)) {
477 BUG_ON(!buffer_locked(tmp));
480 tmp = tmp->b_this_page;
482 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
483 local_irq_restore(flags);
484 end_page_writeback(page);
488 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
489 local_irq_restore(flags);
494 * If a page's buffers are under async readin (end_buffer_async_read
495 * completion) then there is a possibility that another thread of
496 * control could lock one of the buffers after it has completed
497 * but while some of the other buffers have not completed. This
498 * locked buffer would confuse end_buffer_async_read() into not unlocking
499 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
500 * that this buffer is not under async I/O.
502 * The page comes unlocked when it has no locked buffer_async buffers
505 * PageLocked prevents anyone starting new async I/O reads any of
508 * PageWriteback is used to prevent simultaneous writeout of the same
511 * PageLocked prevents anyone from starting writeback of a page which is
512 * under read I/O (PageWriteback is only ever set against a locked page).
514 static void mark_buffer_async_read(struct buffer_head *bh)
516 bh->b_end_io = end_buffer_async_read;
517 set_buffer_async_read(bh);
520 void mark_buffer_async_write(struct buffer_head *bh)
522 bh->b_end_io = end_buffer_async_write;
523 set_buffer_async_write(bh);
525 EXPORT_SYMBOL(mark_buffer_async_write);
529 * fs/buffer.c contains helper functions for buffer-backed address space's
530 * fsync functions. A common requirement for buffer-based filesystems is
531 * that certain data from the backing blockdev needs to be written out for
532 * a successful fsync(). For example, ext2 indirect blocks need to be
533 * written back and waited upon before fsync() returns.
535 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
536 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
537 * management of a list of dependent buffers at ->i_mapping->private_list.
539 * Locking is a little subtle: try_to_free_buffers() will remove buffers
540 * from their controlling inode's queue when they are being freed. But
541 * try_to_free_buffers() will be operating against the *blockdev* mapping
542 * at the time, not against the S_ISREG file which depends on those buffers.
543 * So the locking for private_list is via the private_lock in the address_space
544 * which backs the buffers. Which is different from the address_space
545 * against which the buffers are listed. So for a particular address_space,
546 * mapping->private_lock does *not* protect mapping->private_list! In fact,
547 * mapping->private_list will always be protected by the backing blockdev's
550 * Which introduces a requirement: all buffers on an address_space's
551 * ->private_list must be from the same address_space: the blockdev's.
553 * address_spaces which do not place buffers at ->private_list via these
554 * utility functions are free to use private_lock and private_list for
555 * whatever they want. The only requirement is that list_empty(private_list)
556 * be true at clear_inode() time.
558 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
559 * filesystems should do that. invalidate_inode_buffers() should just go
560 * BUG_ON(!list_empty).
562 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
563 * take an address_space, not an inode. And it should be called
564 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
567 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
568 * list if it is already on a list. Because if the buffer is on a list,
569 * it *must* already be on the right one. If not, the filesystem is being
570 * silly. This will save a ton of locking. But first we have to ensure
571 * that buffers are taken *off* the old inode's list when they are freed
572 * (presumably in truncate). That requires careful auditing of all
573 * filesystems (do it inside bforget()). It could also be done by bringing
578 * The buffer's backing address_space's private_lock must be held
580 static inline void __remove_assoc_queue(struct buffer_head *bh)
582 list_del_init(&bh->b_assoc_buffers);
583 WARN_ON(!bh->b_assoc_map);
584 if (buffer_write_io_error(bh))
585 set_bit(AS_EIO, &bh->b_assoc_map->flags);
586 bh->b_assoc_map = NULL;
589 int inode_has_buffers(struct inode *inode)
591 return !list_empty(&inode->i_data.private_list);
595 * osync is designed to support O_SYNC io. It waits synchronously for
596 * all already-submitted IO to complete, but does not queue any new
597 * writes to the disk.
599 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
600 * you dirty the buffers, and then use osync_inode_buffers to wait for
601 * completion. Any other dirty buffers which are not yet queued for
602 * write will not be flushed to disk by the osync.
604 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
606 struct buffer_head *bh;
612 list_for_each_prev(p, list) {
614 if (buffer_locked(bh)) {
618 if (!buffer_uptodate(bh))
630 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
632 * @mapping: the mapping which wants those buffers written
634 * Starts I/O against the buffers at mapping->private_list, and waits upon
637 * Basically, this is a convenience function for fsync().
638 * @mapping is a file or directory which needs those buffers to be written for
639 * a successful fsync().
641 int sync_mapping_buffers(struct address_space *mapping)
643 struct address_space *buffer_mapping = mapping->assoc_mapping;
645 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
648 return fsync_buffers_list(&buffer_mapping->private_lock,
649 &mapping->private_list);
651 EXPORT_SYMBOL(sync_mapping_buffers);
654 * Called when we've recently written block `bblock', and it is known that
655 * `bblock' was for a buffer_boundary() buffer. This means that the block at
656 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
657 * dirty, schedule it for IO. So that indirects merge nicely with their data.
659 void write_boundary_block(struct block_device *bdev,
660 sector_t bblock, unsigned blocksize)
662 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
664 if (buffer_dirty(bh))
665 ll_rw_block(WRITE, 1, &bh);
670 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
672 struct address_space *mapping = inode->i_mapping;
673 struct address_space *buffer_mapping = bh->b_page->mapping;
675 mark_buffer_dirty(bh);
676 if (!mapping->assoc_mapping) {
677 mapping->assoc_mapping = buffer_mapping;
679 BUG_ON(mapping->assoc_mapping != buffer_mapping);
681 if (list_empty(&bh->b_assoc_buffers)) {
682 spin_lock(&buffer_mapping->private_lock);
683 list_move_tail(&bh->b_assoc_buffers,
684 &mapping->private_list);
685 bh->b_assoc_map = mapping;
686 spin_unlock(&buffer_mapping->private_lock);
689 EXPORT_SYMBOL(mark_buffer_dirty_inode);
692 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
695 * If warn is true, then emit a warning if the page is not uptodate and has
696 * not been truncated.
698 static int __set_page_dirty(struct page *page,
699 struct address_space *mapping, int warn)
701 if (unlikely(!mapping))
702 return !TestSetPageDirty(page);
704 if (TestSetPageDirty(page))
707 write_lock_irq(&mapping->tree_lock);
708 if (page->mapping) { /* Race with truncate? */
709 WARN_ON_ONCE(warn && !PageUptodate(page));
711 if (mapping_cap_account_dirty(mapping)) {
712 __inc_zone_page_state(page, NR_FILE_DIRTY);
713 task_io_account_write(PAGE_CACHE_SIZE);
715 radix_tree_tag_set(&mapping->page_tree,
716 page_index(page), PAGECACHE_TAG_DIRTY);
718 write_unlock_irq(&mapping->tree_lock);
719 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
725 * Add a page to the dirty page list.
727 * It is a sad fact of life that this function is called from several places
728 * deeply under spinlocking. It may not sleep.
730 * If the page has buffers, the uptodate buffers are set dirty, to preserve
731 * dirty-state coherency between the page and the buffers. It the page does
732 * not have buffers then when they are later attached they will all be set
735 * The buffers are dirtied before the page is dirtied. There's a small race
736 * window in which a writepage caller may see the page cleanness but not the
737 * buffer dirtiness. That's fine. If this code were to set the page dirty
738 * before the buffers, a concurrent writepage caller could clear the page dirty
739 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
740 * page on the dirty page list.
742 * We use private_lock to lock against try_to_free_buffers while using the
743 * page's buffer list. Also use this to protect against clean buffers being
744 * added to the page after it was set dirty.
746 * FIXME: may need to call ->reservepage here as well. That's rather up to the
747 * address_space though.
749 int __set_page_dirty_buffers(struct page *page)
751 struct address_space *mapping = page_mapping(page);
753 if (unlikely(!mapping))
754 return !TestSetPageDirty(page);
756 spin_lock(&mapping->private_lock);
757 if (page_has_buffers(page)) {
758 struct buffer_head *head = page_buffers(page);
759 struct buffer_head *bh = head;
762 set_buffer_dirty(bh);
763 bh = bh->b_this_page;
764 } while (bh != head);
766 spin_unlock(&mapping->private_lock);
768 return __set_page_dirty(page, mapping, 1);
770 EXPORT_SYMBOL(__set_page_dirty_buffers);
773 * Write out and wait upon a list of buffers.
775 * We have conflicting pressures: we want to make sure that all
776 * initially dirty buffers get waited on, but that any subsequently
777 * dirtied buffers don't. After all, we don't want fsync to last
778 * forever if somebody is actively writing to the file.
780 * Do this in two main stages: first we copy dirty buffers to a
781 * temporary inode list, queueing the writes as we go. Then we clean
782 * up, waiting for those writes to complete.
784 * During this second stage, any subsequent updates to the file may end
785 * up refiling the buffer on the original inode's dirty list again, so
786 * there is a chance we will end up with a buffer queued for write but
787 * not yet completed on that list. So, as a final cleanup we go through
788 * the osync code to catch these locked, dirty buffers without requeuing
789 * any newly dirty buffers for write.
791 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
793 struct buffer_head *bh;
794 struct list_head tmp;
797 INIT_LIST_HEAD(&tmp);
800 while (!list_empty(list)) {
801 bh = BH_ENTRY(list->next);
802 __remove_assoc_queue(bh);
803 if (buffer_dirty(bh) || buffer_locked(bh)) {
804 list_add(&bh->b_assoc_buffers, &tmp);
805 if (buffer_dirty(bh)) {
809 * Ensure any pending I/O completes so that
810 * ll_rw_block() actually writes the current
811 * contents - it is a noop if I/O is still in
812 * flight on potentially older contents.
814 ll_rw_block(SWRITE, 1, &bh);
821 while (!list_empty(&tmp)) {
822 bh = BH_ENTRY(tmp.prev);
823 list_del_init(&bh->b_assoc_buffers);
827 if (!buffer_uptodate(bh))
834 err2 = osync_buffers_list(lock, list);
842 * Invalidate any and all dirty buffers on a given inode. We are
843 * probably unmounting the fs, but that doesn't mean we have already
844 * done a sync(). Just drop the buffers from the inode list.
846 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
847 * assumes that all the buffers are against the blockdev. Not true
850 void invalidate_inode_buffers(struct inode *inode)
852 if (inode_has_buffers(inode)) {
853 struct address_space *mapping = &inode->i_data;
854 struct list_head *list = &mapping->private_list;
855 struct address_space *buffer_mapping = mapping->assoc_mapping;
857 spin_lock(&buffer_mapping->private_lock);
858 while (!list_empty(list))
859 __remove_assoc_queue(BH_ENTRY(list->next));
860 spin_unlock(&buffer_mapping->private_lock);
865 * Remove any clean buffers from the inode's buffer list. This is called
866 * when we're trying to free the inode itself. Those buffers can pin it.
868 * Returns true if all buffers were removed.
870 int remove_inode_buffers(struct inode *inode)
874 if (inode_has_buffers(inode)) {
875 struct address_space *mapping = &inode->i_data;
876 struct list_head *list = &mapping->private_list;
877 struct address_space *buffer_mapping = mapping->assoc_mapping;
879 spin_lock(&buffer_mapping->private_lock);
880 while (!list_empty(list)) {
881 struct buffer_head *bh = BH_ENTRY(list->next);
882 if (buffer_dirty(bh)) {
886 __remove_assoc_queue(bh);
888 spin_unlock(&buffer_mapping->private_lock);
894 * Create the appropriate buffers when given a page for data area and
895 * the size of each buffer.. Use the bh->b_this_page linked list to
896 * follow the buffers created. Return NULL if unable to create more
899 * The retry flag is used to differentiate async IO (paging, swapping)
900 * which may not fail from ordinary buffer allocations.
902 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
905 struct buffer_head *bh, *head;
911 while ((offset -= size) >= 0) {
912 bh = alloc_buffer_head(GFP_NOFS);
917 bh->b_this_page = head;
922 atomic_set(&bh->b_count, 0);
923 bh->b_private = NULL;
926 /* Link the buffer to its page */
927 set_bh_page(bh, page, offset);
929 init_buffer(bh, NULL, NULL);
933 * In case anything failed, we just free everything we got.
939 head = head->b_this_page;
940 free_buffer_head(bh);
945 * Return failure for non-async IO requests. Async IO requests
946 * are not allowed to fail, so we have to wait until buffer heads
947 * become available. But we don't want tasks sleeping with
948 * partially complete buffers, so all were released above.
953 /* We're _really_ low on memory. Now we just
954 * wait for old buffer heads to become free due to
955 * finishing IO. Since this is an async request and
956 * the reserve list is empty, we're sure there are
957 * async buffer heads in use.
962 EXPORT_SYMBOL_GPL(alloc_page_buffers);
965 link_dev_buffers(struct page *page, struct buffer_head *head)
967 struct buffer_head *bh, *tail;
972 bh = bh->b_this_page;
974 tail->b_this_page = head;
975 attach_page_buffers(page, head);
979 * Initialise the state of a blockdev page's buffers.
982 init_page_buffers(struct page *page, struct block_device *bdev,
983 sector_t block, int size)
985 struct buffer_head *head = page_buffers(page);
986 struct buffer_head *bh = head;
987 int uptodate = PageUptodate(page);
990 if (!buffer_mapped(bh)) {
991 init_buffer(bh, NULL, NULL);
993 bh->b_blocknr = block;
995 set_buffer_uptodate(bh);
996 set_buffer_mapped(bh);
999 bh = bh->b_this_page;
1000 } while (bh != head);
1004 * Create the page-cache page that contains the requested block.
1006 * This is user purely for blockdev mappings.
1008 static struct page *
1009 grow_dev_page(struct block_device *bdev, sector_t block,
1010 pgoff_t index, int size)
1012 struct inode *inode = bdev->bd_inode;
1014 struct buffer_head *bh;
1016 page = find_or_create_page(inode->i_mapping, index,
1017 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1021 BUG_ON(!PageLocked(page));
1023 if (page_has_buffers(page)) {
1024 bh = page_buffers(page);
1025 if (bh->b_size == size) {
1026 init_page_buffers(page, bdev, block, size);
1029 if (!try_to_free_buffers(page))
1034 * Allocate some buffers for this page
1036 bh = alloc_page_buffers(page, size, 0);
1041 * Link the page to the buffers and initialise them. Take the
1042 * lock to be atomic wrt __find_get_block(), which does not
1043 * run under the page lock.
1045 spin_lock(&inode->i_mapping->private_lock);
1046 link_dev_buffers(page, bh);
1047 init_page_buffers(page, bdev, block, size);
1048 spin_unlock(&inode->i_mapping->private_lock);
1054 page_cache_release(page);
1059 * Create buffers for the specified block device block's page. If
1060 * that page was dirty, the buffers are set dirty also.
1063 grow_buffers(struct block_device *bdev, sector_t block, int size)
1072 } while ((size << sizebits) < PAGE_SIZE);
1074 index = block >> sizebits;
1077 * Check for a block which wants to lie outside our maximum possible
1078 * pagecache index. (this comparison is done using sector_t types).
1080 if (unlikely(index != block >> sizebits)) {
1081 char b[BDEVNAME_SIZE];
1083 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1085 __FUNCTION__, (unsigned long long)block,
1089 block = index << sizebits;
1090 /* Create a page with the proper size buffers.. */
1091 page = grow_dev_page(bdev, block, index, size);
1095 page_cache_release(page);
1099 static struct buffer_head *
1100 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1102 /* Size must be multiple of hard sectorsize */
1103 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1104 (size < 512 || size > PAGE_SIZE))) {
1105 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1107 printk(KERN_ERR "hardsect size: %d\n",
1108 bdev_hardsect_size(bdev));
1115 struct buffer_head * bh;
1118 bh = __find_get_block(bdev, block, size);
1122 ret = grow_buffers(bdev, block, size);
1131 * The relationship between dirty buffers and dirty pages:
1133 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1134 * the page is tagged dirty in its radix tree.
1136 * At all times, the dirtiness of the buffers represents the dirtiness of
1137 * subsections of the page. If the page has buffers, the page dirty bit is
1138 * merely a hint about the true dirty state.
1140 * When a page is set dirty in its entirety, all its buffers are marked dirty
1141 * (if the page has buffers).
1143 * When a buffer is marked dirty, its page is dirtied, but the page's other
1146 * Also. When blockdev buffers are explicitly read with bread(), they
1147 * individually become uptodate. But their backing page remains not
1148 * uptodate - even if all of its buffers are uptodate. A subsequent
1149 * block_read_full_page() against that page will discover all the uptodate
1150 * buffers, will set the page uptodate and will perform no I/O.
1154 * mark_buffer_dirty - mark a buffer_head as needing writeout
1155 * @bh: the buffer_head to mark dirty
1157 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1158 * backing page dirty, then tag the page as dirty in its address_space's radix
1159 * tree and then attach the address_space's inode to its superblock's dirty
1162 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1163 * mapping->tree_lock and the global inode_lock.
1165 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1167 WARN_ON_ONCE(!buffer_uptodate(bh));
1168 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1169 __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1173 * Decrement a buffer_head's reference count. If all buffers against a page
1174 * have zero reference count, are clean and unlocked, and if the page is clean
1175 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1176 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1177 * a page but it ends up not being freed, and buffers may later be reattached).
1179 void __brelse(struct buffer_head * buf)
1181 if (atomic_read(&buf->b_count)) {
1185 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1190 * bforget() is like brelse(), except it discards any
1191 * potentially dirty data.
1193 void __bforget(struct buffer_head *bh)
1195 clear_buffer_dirty(bh);
1196 if (!list_empty(&bh->b_assoc_buffers)) {
1197 struct address_space *buffer_mapping = bh->b_page->mapping;
1199 spin_lock(&buffer_mapping->private_lock);
1200 list_del_init(&bh->b_assoc_buffers);
1201 bh->b_assoc_map = NULL;
1202 spin_unlock(&buffer_mapping->private_lock);
1207 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1210 if (buffer_uptodate(bh)) {
1215 bh->b_end_io = end_buffer_read_sync;
1216 submit_bh(READ, bh);
1218 if (buffer_uptodate(bh))
1226 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1227 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1228 * refcount elevated by one when they're in an LRU. A buffer can only appear
1229 * once in a particular CPU's LRU. A single buffer can be present in multiple
1230 * CPU's LRUs at the same time.
1232 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1233 * sb_find_get_block().
1235 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1236 * a local interrupt disable for that.
1239 #define BH_LRU_SIZE 8
1242 struct buffer_head *bhs[BH_LRU_SIZE];
1245 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1248 #define bh_lru_lock() local_irq_disable()
1249 #define bh_lru_unlock() local_irq_enable()
1251 #define bh_lru_lock() preempt_disable()
1252 #define bh_lru_unlock() preempt_enable()
1255 static inline void check_irqs_on(void)
1257 #ifdef irqs_disabled
1258 BUG_ON(irqs_disabled());
1263 * The LRU management algorithm is dopey-but-simple. Sorry.
1265 static void bh_lru_install(struct buffer_head *bh)
1267 struct buffer_head *evictee = NULL;
1272 lru = &__get_cpu_var(bh_lrus);
1273 if (lru->bhs[0] != bh) {
1274 struct buffer_head *bhs[BH_LRU_SIZE];
1280 for (in = 0; in < BH_LRU_SIZE; in++) {
1281 struct buffer_head *bh2 = lru->bhs[in];
1286 if (out >= BH_LRU_SIZE) {
1287 BUG_ON(evictee != NULL);
1294 while (out < BH_LRU_SIZE)
1296 memcpy(lru->bhs, bhs, sizeof(bhs));
1305 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1307 static struct buffer_head *
1308 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1310 struct buffer_head *ret = NULL;
1316 lru = &__get_cpu_var(bh_lrus);
1317 for (i = 0; i < BH_LRU_SIZE; i++) {
1318 struct buffer_head *bh = lru->bhs[i];
1320 if (bh && bh->b_bdev == bdev &&
1321 bh->b_blocknr == block && bh->b_size == size) {
1324 lru->bhs[i] = lru->bhs[i - 1];
1339 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1340 * it in the LRU and mark it as accessed. If it is not present then return
1343 struct buffer_head *
1344 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1346 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1349 bh = __find_get_block_slow(bdev, block);
1357 EXPORT_SYMBOL(__find_get_block);
1360 * __getblk will locate (and, if necessary, create) the buffer_head
1361 * which corresponds to the passed block_device, block and size. The
1362 * returned buffer has its reference count incremented.
1364 * __getblk() cannot fail - it just keeps trying. If you pass it an
1365 * illegal block number, __getblk() will happily return a buffer_head
1366 * which represents the non-existent block. Very weird.
1368 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1369 * attempt is failing. FIXME, perhaps?
1371 struct buffer_head *
1372 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1374 struct buffer_head *bh = __find_get_block(bdev, block, size);
1378 bh = __getblk_slow(bdev, block, size);
1381 EXPORT_SYMBOL(__getblk);
1384 * Do async read-ahead on a buffer..
1386 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1388 struct buffer_head *bh = __getblk(bdev, block, size);
1390 ll_rw_block(READA, 1, &bh);
1394 EXPORT_SYMBOL(__breadahead);
1397 * __bread() - reads a specified block and returns the bh
1398 * @bdev: the block_device to read from
1399 * @block: number of block
1400 * @size: size (in bytes) to read
1402 * Reads a specified block, and returns buffer head that contains it.
1403 * It returns NULL if the block was unreadable.
1405 struct buffer_head *
1406 __bread(struct block_device *bdev, sector_t block, unsigned size)
1408 struct buffer_head *bh = __getblk(bdev, block, size);
1410 if (likely(bh) && !buffer_uptodate(bh))
1411 bh = __bread_slow(bh);
1414 EXPORT_SYMBOL(__bread);
1417 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1418 * This doesn't race because it runs in each cpu either in irq
1419 * or with preempt disabled.
1421 static void invalidate_bh_lru(void *arg)
1423 struct bh_lru *b = &get_cpu_var(bh_lrus);
1426 for (i = 0; i < BH_LRU_SIZE; i++) {
1430 put_cpu_var(bh_lrus);
1433 void invalidate_bh_lrus(void)
1435 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1438 void set_bh_page(struct buffer_head *bh,
1439 struct page *page, unsigned long offset)
1442 BUG_ON(offset >= PAGE_SIZE);
1443 if (PageHighMem(page))
1445 * This catches illegal uses and preserves the offset:
1447 bh->b_data = (char *)(0 + offset);
1449 bh->b_data = page_address(page) + offset;
1451 EXPORT_SYMBOL(set_bh_page);
1454 * Called when truncating a buffer on a page completely.
1456 static void discard_buffer(struct buffer_head * bh)
1459 clear_buffer_dirty(bh);
1461 clear_buffer_mapped(bh);
1462 clear_buffer_req(bh);
1463 clear_buffer_new(bh);
1464 clear_buffer_delay(bh);
1465 clear_buffer_unwritten(bh);
1470 * block_invalidatepage - invalidate part of all of a buffer-backed page
1472 * @page: the page which is affected
1473 * @offset: the index of the truncation point
1475 * block_invalidatepage() is called when all or part of the page has become
1476 * invalidatedby a truncate operation.
1478 * block_invalidatepage() does not have to release all buffers, but it must
1479 * ensure that no dirty buffer is left outside @offset and that no I/O
1480 * is underway against any of the blocks which are outside the truncation
1481 * point. Because the caller is about to free (and possibly reuse) those
1484 void block_invalidatepage(struct page *page, unsigned long offset)
1486 struct buffer_head *head, *bh, *next;
1487 unsigned int curr_off = 0;
1489 BUG_ON(!PageLocked(page));
1490 if (!page_has_buffers(page))
1493 head = page_buffers(page);
1496 unsigned int next_off = curr_off + bh->b_size;
1497 next = bh->b_this_page;
1500 * is this block fully invalidated?
1502 if (offset <= curr_off)
1504 curr_off = next_off;
1506 } while (bh != head);
1509 * We release buffers only if the entire page is being invalidated.
1510 * The get_block cached value has been unconditionally invalidated,
1511 * so real IO is not possible anymore.
1514 try_to_release_page(page, 0);
1518 EXPORT_SYMBOL(block_invalidatepage);
1521 * We attach and possibly dirty the buffers atomically wrt
1522 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1523 * is already excluded via the page lock.
1525 void create_empty_buffers(struct page *page,
1526 unsigned long blocksize, unsigned long b_state)
1528 struct buffer_head *bh, *head, *tail;
1530 head = alloc_page_buffers(page, blocksize, 1);
1533 bh->b_state |= b_state;
1535 bh = bh->b_this_page;
1537 tail->b_this_page = head;
1539 spin_lock(&page->mapping->private_lock);
1540 if (PageUptodate(page) || PageDirty(page)) {
1543 if (PageDirty(page))
1544 set_buffer_dirty(bh);
1545 if (PageUptodate(page))
1546 set_buffer_uptodate(bh);
1547 bh = bh->b_this_page;
1548 } while (bh != head);
1550 attach_page_buffers(page, head);
1551 spin_unlock(&page->mapping->private_lock);
1553 EXPORT_SYMBOL(create_empty_buffers);
1556 * We are taking a block for data and we don't want any output from any
1557 * buffer-cache aliases starting from return from that function and
1558 * until the moment when something will explicitly mark the buffer
1559 * dirty (hopefully that will not happen until we will free that block ;-)
1560 * We don't even need to mark it not-uptodate - nobody can expect
1561 * anything from a newly allocated buffer anyway. We used to used
1562 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1563 * don't want to mark the alias unmapped, for example - it would confuse
1564 * anyone who might pick it with bread() afterwards...
1566 * Also.. Note that bforget() doesn't lock the buffer. So there can
1567 * be writeout I/O going on against recently-freed buffers. We don't
1568 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1569 * only if we really need to. That happens here.
1571 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1573 struct buffer_head *old_bh;
1577 old_bh = __find_get_block_slow(bdev, block);
1579 clear_buffer_dirty(old_bh);
1580 wait_on_buffer(old_bh);
1581 clear_buffer_req(old_bh);
1585 EXPORT_SYMBOL(unmap_underlying_metadata);
1588 * NOTE! All mapped/uptodate combinations are valid:
1590 * Mapped Uptodate Meaning
1592 * No No "unknown" - must do get_block()
1593 * No Yes "hole" - zero-filled
1594 * Yes No "allocated" - allocated on disk, not read in
1595 * Yes Yes "valid" - allocated and up-to-date in memory.
1597 * "Dirty" is valid only with the last case (mapped+uptodate).
1601 * While block_write_full_page is writing back the dirty buffers under
1602 * the page lock, whoever dirtied the buffers may decide to clean them
1603 * again at any time. We handle that by only looking at the buffer
1604 * state inside lock_buffer().
1606 * If block_write_full_page() is called for regular writeback
1607 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1608 * locked buffer. This only can happen if someone has written the buffer
1609 * directly, with submit_bh(). At the address_space level PageWriteback
1610 * prevents this contention from occurring.
1612 static int __block_write_full_page(struct inode *inode, struct page *page,
1613 get_block_t *get_block, struct writeback_control *wbc)
1617 sector_t last_block;
1618 struct buffer_head *bh, *head;
1619 const unsigned blocksize = 1 << inode->i_blkbits;
1620 int nr_underway = 0;
1622 BUG_ON(!PageLocked(page));
1624 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1626 if (!page_has_buffers(page)) {
1627 create_empty_buffers(page, blocksize,
1628 (1 << BH_Dirty)|(1 << BH_Uptodate));
1632 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1633 * here, and the (potentially unmapped) buffers may become dirty at
1634 * any time. If a buffer becomes dirty here after we've inspected it
1635 * then we just miss that fact, and the page stays dirty.
1637 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1638 * handle that here by just cleaning them.
1641 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1642 head = page_buffers(page);
1646 * Get all the dirty buffers mapped to disk addresses and
1647 * handle any aliases from the underlying blockdev's mapping.
1650 if (block > last_block) {
1652 * mapped buffers outside i_size will occur, because
1653 * this page can be outside i_size when there is a
1654 * truncate in progress.
1657 * The buffer was zeroed by block_write_full_page()
1659 clear_buffer_dirty(bh);
1660 set_buffer_uptodate(bh);
1661 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1662 WARN_ON(bh->b_size != blocksize);
1663 err = get_block(inode, block, bh, 1);
1666 if (buffer_new(bh)) {
1667 /* blockdev mappings never come here */
1668 clear_buffer_new(bh);
1669 unmap_underlying_metadata(bh->b_bdev,
1673 bh = bh->b_this_page;
1675 } while (bh != head);
1678 if (!buffer_mapped(bh))
1681 * If it's a fully non-blocking write attempt and we cannot
1682 * lock the buffer then redirty the page. Note that this can
1683 * potentially cause a busy-wait loop from pdflush and kswapd
1684 * activity, but those code paths have their own higher-level
1687 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1689 } else if (test_set_buffer_locked(bh)) {
1690 redirty_page_for_writepage(wbc, page);
1693 if (test_clear_buffer_dirty(bh)) {
1694 mark_buffer_async_write(bh);
1698 } while ((bh = bh->b_this_page) != head);
1701 * The page and its buffers are protected by PageWriteback(), so we can
1702 * drop the bh refcounts early.
1704 BUG_ON(PageWriteback(page));
1705 set_page_writeback(page);
1708 struct buffer_head *next = bh->b_this_page;
1709 if (buffer_async_write(bh)) {
1710 submit_bh(WRITE, bh);
1714 } while (bh != head);
1719 if (nr_underway == 0) {
1721 * The page was marked dirty, but the buffers were
1722 * clean. Someone wrote them back by hand with
1723 * ll_rw_block/submit_bh. A rare case.
1725 end_page_writeback(page);
1728 * The page and buffer_heads can be released at any time from
1731 wbc->pages_skipped++; /* We didn't write this page */
1737 * ENOSPC, or some other error. We may already have added some
1738 * blocks to the file, so we need to write these out to avoid
1739 * exposing stale data.
1740 * The page is currently locked and not marked for writeback
1743 /* Recovery: lock and submit the mapped buffers */
1745 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1747 mark_buffer_async_write(bh);
1750 * The buffer may have been set dirty during
1751 * attachment to a dirty page.
1753 clear_buffer_dirty(bh);
1755 } while ((bh = bh->b_this_page) != head);
1757 BUG_ON(PageWriteback(page));
1758 mapping_set_error(page->mapping, err);
1759 set_page_writeback(page);
1761 struct buffer_head *next = bh->b_this_page;
1762 if (buffer_async_write(bh)) {
1763 clear_buffer_dirty(bh);
1764 submit_bh(WRITE, bh);
1768 } while (bh != head);
1774 * If a page has any new buffers, zero them out here, and mark them uptodate
1775 * and dirty so they'll be written out (in order to prevent uninitialised
1776 * block data from leaking). And clear the new bit.
1778 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1780 unsigned int block_start, block_end;
1781 struct buffer_head *head, *bh;
1783 BUG_ON(!PageLocked(page));
1784 if (!page_has_buffers(page))
1787 bh = head = page_buffers(page);
1790 block_end = block_start + bh->b_size;
1792 if (buffer_new(bh)) {
1793 if (block_end > from && block_start < to) {
1794 if (!PageUptodate(page)) {
1795 unsigned start, size;
1797 start = max(from, block_start);
1798 size = min(to, block_end) - start;
1800 zero_user_page(page, start, size, KM_USER0);
1801 set_buffer_uptodate(bh);
1804 clear_buffer_new(bh);
1805 mark_buffer_dirty(bh);
1809 block_start = block_end;
1810 bh = bh->b_this_page;
1811 } while (bh != head);
1813 EXPORT_SYMBOL(page_zero_new_buffers);
1815 static int __block_prepare_write(struct inode *inode, struct page *page,
1816 unsigned from, unsigned to, get_block_t *get_block)
1818 unsigned block_start, block_end;
1821 unsigned blocksize, bbits;
1822 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1824 BUG_ON(!PageLocked(page));
1825 BUG_ON(from > PAGE_CACHE_SIZE);
1826 BUG_ON(to > PAGE_CACHE_SIZE);
1829 blocksize = 1 << inode->i_blkbits;
1830 if (!page_has_buffers(page))
1831 create_empty_buffers(page, blocksize, 0);
1832 head = page_buffers(page);
1834 bbits = inode->i_blkbits;
1835 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1837 for(bh = head, block_start = 0; bh != head || !block_start;
1838 block++, block_start=block_end, bh = bh->b_this_page) {
1839 block_end = block_start + blocksize;
1840 if (block_end <= from || block_start >= to) {
1841 if (PageUptodate(page)) {
1842 if (!buffer_uptodate(bh))
1843 set_buffer_uptodate(bh);
1848 clear_buffer_new(bh);
1849 if (!buffer_mapped(bh)) {
1850 WARN_ON(bh->b_size != blocksize);
1851 err = get_block(inode, block, bh, 1);
1854 if (buffer_new(bh)) {
1855 unmap_underlying_metadata(bh->b_bdev,
1857 if (PageUptodate(page)) {
1858 clear_buffer_new(bh);
1859 set_buffer_uptodate(bh);
1860 mark_buffer_dirty(bh);
1863 if (block_end > to || block_start < from) {
1866 kaddr = kmap_atomic(page, KM_USER0);
1870 if (block_start < from)
1871 memset(kaddr+block_start,
1872 0, from-block_start);
1873 flush_dcache_page(page);
1874 kunmap_atomic(kaddr, KM_USER0);
1879 if (PageUptodate(page)) {
1880 if (!buffer_uptodate(bh))
1881 set_buffer_uptodate(bh);
1884 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1885 !buffer_unwritten(bh) &&
1886 (block_start < from || block_end > to)) {
1887 ll_rw_block(READ, 1, &bh);
1892 * If we issued read requests - let them complete.
1894 while(wait_bh > wait) {
1895 wait_on_buffer(*--wait_bh);
1896 if (!buffer_uptodate(*wait_bh))
1900 page_zero_new_buffers(page, from, to);
1904 static int __block_commit_write(struct inode *inode, struct page *page,
1905 unsigned from, unsigned to)
1907 unsigned block_start, block_end;
1910 struct buffer_head *bh, *head;
1912 blocksize = 1 << inode->i_blkbits;
1914 for(bh = head = page_buffers(page), block_start = 0;
1915 bh != head || !block_start;
1916 block_start=block_end, bh = bh->b_this_page) {
1917 block_end = block_start + blocksize;
1918 if (block_end <= from || block_start >= to) {
1919 if (!buffer_uptodate(bh))
1922 set_buffer_uptodate(bh);
1923 mark_buffer_dirty(bh);
1925 clear_buffer_new(bh);
1929 * If this is a partial write which happened to make all buffers
1930 * uptodate then we can optimize away a bogus readpage() for
1931 * the next read(). Here we 'discover' whether the page went
1932 * uptodate as a result of this (potentially partial) write.
1935 SetPageUptodate(page);
1940 * block_write_begin takes care of the basic task of block allocation and
1941 * bringing partial write blocks uptodate first.
1943 * If *pagep is not NULL, then block_write_begin uses the locked page
1944 * at *pagep rather than allocating its own. In this case, the page will
1945 * not be unlocked or deallocated on failure.
1947 int block_write_begin(struct file *file, struct address_space *mapping,
1948 loff_t pos, unsigned len, unsigned flags,
1949 struct page **pagep, void **fsdata,
1950 get_block_t *get_block)
1952 struct inode *inode = mapping->host;
1956 unsigned start, end;
1959 index = pos >> PAGE_CACHE_SHIFT;
1960 start = pos & (PAGE_CACHE_SIZE - 1);
1966 page = __grab_cache_page(mapping, index);
1973 BUG_ON(!PageLocked(page));
1975 status = __block_prepare_write(inode, page, start, end, get_block);
1976 if (unlikely(status)) {
1977 ClearPageUptodate(page);
1981 page_cache_release(page);
1985 * prepare_write() may have instantiated a few blocks
1986 * outside i_size. Trim these off again. Don't need
1987 * i_size_read because we hold i_mutex.
1989 if (pos + len > inode->i_size)
1990 vmtruncate(inode, inode->i_size);
1998 EXPORT_SYMBOL(block_write_begin);
2000 int block_write_end(struct file *file, struct address_space *mapping,
2001 loff_t pos, unsigned len, unsigned copied,
2002 struct page *page, void *fsdata)
2004 struct inode *inode = mapping->host;
2007 start = pos & (PAGE_CACHE_SIZE - 1);
2009 if (unlikely(copied < len)) {
2011 * The buffers that were written will now be uptodate, so we
2012 * don't have to worry about a readpage reading them and
2013 * overwriting a partial write. However if we have encountered
2014 * a short write and only partially written into a buffer, it
2015 * will not be marked uptodate, so a readpage might come in and
2016 * destroy our partial write.
2018 * Do the simplest thing, and just treat any short write to a
2019 * non uptodate page as a zero-length write, and force the
2020 * caller to redo the whole thing.
2022 if (!PageUptodate(page))
2025 page_zero_new_buffers(page, start+copied, start+len);
2027 flush_dcache_page(page);
2029 /* This could be a short (even 0-length) commit */
2030 __block_commit_write(inode, page, start, start+copied);
2034 EXPORT_SYMBOL(block_write_end);
2036 int generic_write_end(struct file *file, struct address_space *mapping,
2037 loff_t pos, unsigned len, unsigned copied,
2038 struct page *page, void *fsdata)
2040 struct inode *inode = mapping->host;
2042 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2045 * No need to use i_size_read() here, the i_size
2046 * cannot change under us because we hold i_mutex.
2048 * But it's important to update i_size while still holding page lock:
2049 * page writeout could otherwise come in and zero beyond i_size.
2051 if (pos+copied > inode->i_size) {
2052 i_size_write(inode, pos+copied);
2053 mark_inode_dirty(inode);
2057 page_cache_release(page);
2061 EXPORT_SYMBOL(generic_write_end);
2064 * Generic "read page" function for block devices that have the normal
2065 * get_block functionality. This is most of the block device filesystems.
2066 * Reads the page asynchronously --- the unlock_buffer() and
2067 * set/clear_buffer_uptodate() functions propagate buffer state into the
2068 * page struct once IO has completed.
2070 int block_read_full_page(struct page *page, get_block_t *get_block)
2072 struct inode *inode = page->mapping->host;
2073 sector_t iblock, lblock;
2074 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2075 unsigned int blocksize;
2077 int fully_mapped = 1;
2079 BUG_ON(!PageLocked(page));
2080 blocksize = 1 << inode->i_blkbits;
2081 if (!page_has_buffers(page))
2082 create_empty_buffers(page, blocksize, 0);
2083 head = page_buffers(page);
2085 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2086 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2092 if (buffer_uptodate(bh))
2095 if (!buffer_mapped(bh)) {
2099 if (iblock < lblock) {
2100 WARN_ON(bh->b_size != blocksize);
2101 err = get_block(inode, iblock, bh, 0);
2105 if (!buffer_mapped(bh)) {
2106 zero_user_page(page, i * blocksize, blocksize,
2109 set_buffer_uptodate(bh);
2113 * get_block() might have updated the buffer
2116 if (buffer_uptodate(bh))
2120 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2123 SetPageMappedToDisk(page);
2127 * All buffers are uptodate - we can set the page uptodate
2128 * as well. But not if get_block() returned an error.
2130 if (!PageError(page))
2131 SetPageUptodate(page);
2136 /* Stage two: lock the buffers */
2137 for (i = 0; i < nr; i++) {
2140 mark_buffer_async_read(bh);
2144 * Stage 3: start the IO. Check for uptodateness
2145 * inside the buffer lock in case another process reading
2146 * the underlying blockdev brought it uptodate (the sct fix).
2148 for (i = 0; i < nr; i++) {
2150 if (buffer_uptodate(bh))
2151 end_buffer_async_read(bh, 1);
2153 submit_bh(READ, bh);
2158 /* utility function for filesystems that need to do work on expanding
2159 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2160 * deal with the hole.
2162 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2164 struct address_space *mapping = inode->i_mapping;
2167 unsigned long limit;
2171 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2172 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2173 send_sig(SIGXFSZ, current, 0);
2176 if (size > inode->i_sb->s_maxbytes)
2179 err = pagecache_write_begin(NULL, mapping, size, 0,
2180 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2185 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2192 int cont_expand_zero(struct file *file, struct address_space *mapping,
2193 loff_t pos, loff_t *bytes)
2195 struct inode *inode = mapping->host;
2196 unsigned blocksize = 1 << inode->i_blkbits;
2199 pgoff_t index, curidx;
2201 unsigned zerofrom, offset, len;
2204 index = pos >> PAGE_CACHE_SHIFT;
2205 offset = pos & ~PAGE_CACHE_MASK;
2207 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2208 zerofrom = curpos & ~PAGE_CACHE_MASK;
2209 if (zerofrom & (blocksize-1)) {
2210 *bytes |= (blocksize-1);
2213 len = PAGE_CACHE_SIZE - zerofrom;
2215 err = pagecache_write_begin(file, mapping, curpos, len,
2216 AOP_FLAG_UNINTERRUPTIBLE,
2220 zero_user_page(page, zerofrom, len, KM_USER0);
2221 err = pagecache_write_end(file, mapping, curpos, len, len,
2229 /* page covers the boundary, find the boundary offset */
2230 if (index == curidx) {
2231 zerofrom = curpos & ~PAGE_CACHE_MASK;
2232 /* if we will expand the thing last block will be filled */
2233 if (offset <= zerofrom) {
2236 if (zerofrom & (blocksize-1)) {
2237 *bytes |= (blocksize-1);
2240 len = offset - zerofrom;
2242 err = pagecache_write_begin(file, mapping, curpos, len,
2243 AOP_FLAG_UNINTERRUPTIBLE,
2247 zero_user_page(page, zerofrom, len, KM_USER0);
2248 err = pagecache_write_end(file, mapping, curpos, len, len,
2260 * For moronic filesystems that do not allow holes in file.
2261 * We may have to extend the file.
2263 int cont_write_begin(struct file *file, struct address_space *mapping,
2264 loff_t pos, unsigned len, unsigned flags,
2265 struct page **pagep, void **fsdata,
2266 get_block_t *get_block, loff_t *bytes)
2268 struct inode *inode = mapping->host;
2269 unsigned blocksize = 1 << inode->i_blkbits;
2273 err = cont_expand_zero(file, mapping, pos, bytes);
2277 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2278 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2279 *bytes |= (blocksize-1);
2284 err = block_write_begin(file, mapping, pos, len,
2285 flags, pagep, fsdata, get_block);
2290 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2291 get_block_t *get_block)
2293 struct inode *inode = page->mapping->host;
2294 int err = __block_prepare_write(inode, page, from, to, get_block);
2296 ClearPageUptodate(page);
2300 int block_commit_write(struct page *page, unsigned from, unsigned to)
2302 struct inode *inode = page->mapping->host;
2303 __block_commit_write(inode,page,from,to);
2307 int generic_commit_write(struct file *file, struct page *page,
2308 unsigned from, unsigned to)
2310 struct inode *inode = page->mapping->host;
2311 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2312 __block_commit_write(inode,page,from,to);
2314 * No need to use i_size_read() here, the i_size
2315 * cannot change under us because we hold i_mutex.
2317 if (pos > inode->i_size) {
2318 i_size_write(inode, pos);
2319 mark_inode_dirty(inode);
2325 * block_page_mkwrite() is not allowed to change the file size as it gets
2326 * called from a page fault handler when a page is first dirtied. Hence we must
2327 * be careful to check for EOF conditions here. We set the page up correctly
2328 * for a written page which means we get ENOSPC checking when writing into
2329 * holes and correct delalloc and unwritten extent mapping on filesystems that
2330 * support these features.
2332 * We are not allowed to take the i_mutex here so we have to play games to
2333 * protect against truncate races as the page could now be beyond EOF. Because
2334 * vmtruncate() writes the inode size before removing pages, once we have the
2335 * page lock we can determine safely if the page is beyond EOF. If it is not
2336 * beyond EOF, then the page is guaranteed safe against truncation until we
2340 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2341 get_block_t get_block)
2343 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2349 size = i_size_read(inode);
2350 if ((page->mapping != inode->i_mapping) ||
2351 (page_offset(page) > size)) {
2352 /* page got truncated out from underneath us */
2356 /* page is wholly or partially inside EOF */
2357 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2358 end = size & ~PAGE_CACHE_MASK;
2360 end = PAGE_CACHE_SIZE;
2362 ret = block_prepare_write(page, 0, end, get_block);
2364 ret = block_commit_write(page, 0, end);
2372 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2373 * immediately, while under the page lock. So it needs a special end_io
2374 * handler which does not touch the bh after unlocking it.
2376 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2378 __end_buffer_read_notouch(bh, uptodate);
2382 * On entry, the page is fully not uptodate.
2383 * On exit the page is fully uptodate in the areas outside (from,to)
2385 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2386 get_block_t *get_block)
2388 struct inode *inode = page->mapping->host;
2389 const unsigned blkbits = inode->i_blkbits;
2390 const unsigned blocksize = 1 << blkbits;
2391 struct buffer_head *head, *bh;
2392 unsigned block_in_page;
2393 unsigned block_start, block_end;
2394 sector_t block_in_file;
2398 int is_mapped_to_disk = 1;
2400 if (page_has_buffers(page))
2401 return block_prepare_write(page, from, to, get_block);
2403 if (PageMappedToDisk(page))
2407 * Allocate buffers so that we can keep track of state, and potentially
2408 * attach them to the page if an error occurs. In the common case of
2409 * no error, they will just be freed again without ever being attached
2410 * to the page (which is all OK, because we're under the page lock).
2412 * Be careful: the buffer linked list is a NULL terminated one, rather
2413 * than the circular one we're used to.
2415 head = alloc_page_buffers(page, blocksize, 0);
2419 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2422 * We loop across all blocks in the page, whether or not they are
2423 * part of the affected region. This is so we can discover if the
2424 * page is fully mapped-to-disk.
2426 for (block_start = 0, block_in_page = 0, bh = head;
2427 block_start < PAGE_CACHE_SIZE;
2428 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2431 block_end = block_start + blocksize;
2434 if (block_start >= to)
2436 ret = get_block(inode, block_in_file + block_in_page,
2440 if (!buffer_mapped(bh))
2441 is_mapped_to_disk = 0;
2443 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2444 if (PageUptodate(page)) {
2445 set_buffer_uptodate(bh);
2448 if (buffer_new(bh) || !buffer_mapped(bh)) {
2449 kaddr = kmap_atomic(page, KM_USER0);
2450 if (block_start < from)
2451 memset(kaddr+block_start, 0, from-block_start);
2453 memset(kaddr + to, 0, block_end - to);
2454 flush_dcache_page(page);
2455 kunmap_atomic(kaddr, KM_USER0);
2458 if (buffer_uptodate(bh))
2459 continue; /* reiserfs does this */
2460 if (block_start < from || block_end > to) {
2462 bh->b_end_io = end_buffer_read_nobh;
2463 submit_bh(READ, bh);
2470 * The page is locked, so these buffers are protected from
2471 * any VM or truncate activity. Hence we don't need to care
2472 * for the buffer_head refcounts.
2474 for (bh = head; bh; bh = bh->b_this_page) {
2476 if (!buffer_uptodate(bh))
2483 if (is_mapped_to_disk)
2484 SetPageMappedToDisk(page);
2488 head = head->b_this_page;
2489 free_buffer_head(bh);
2496 * Error recovery is a bit difficult. We need to zero out blocks that
2497 * were newly allocated, and dirty them to ensure they get written out.
2498 * Buffers need to be attached to the page at this point, otherwise
2499 * the handling of potential IO errors during writeout would be hard
2500 * (could try doing synchronous writeout, but what if that fails too?)
2502 spin_lock(&page->mapping->private_lock);
2506 if (PageUptodate(page))
2507 set_buffer_uptodate(bh);
2508 if (PageDirty(page))
2509 set_buffer_dirty(bh);
2511 block_end = block_start+blocksize;
2512 if (block_end <= from)
2514 if (block_start >= to)
2517 if (buffer_new(bh)) {
2518 clear_buffer_new(bh);
2519 if (!buffer_uptodate(bh)) {
2520 zero_user_page(page, block_start, bh->b_size, KM_USER0);
2521 set_buffer_uptodate(bh);
2523 mark_buffer_dirty(bh);
2526 block_start = block_end;
2527 if (!bh->b_this_page)
2528 bh->b_this_page = head;
2529 bh = bh->b_this_page;
2530 } while (bh != head);
2531 attach_page_buffers(page, head);
2532 spin_unlock(&page->mapping->private_lock);
2536 EXPORT_SYMBOL(nobh_prepare_write);
2539 * Make sure any changes to nobh_commit_write() are reflected in
2540 * nobh_truncate_page(), since it doesn't call commit_write().
2542 int nobh_commit_write(struct file *file, struct page *page,
2543 unsigned from, unsigned to)
2545 struct inode *inode = page->mapping->host;
2546 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2548 if (page_has_buffers(page))
2549 return generic_commit_write(file, page, from, to);
2551 SetPageUptodate(page);
2552 set_page_dirty(page);
2553 if (pos > inode->i_size) {
2554 i_size_write(inode, pos);
2555 mark_inode_dirty(inode);
2559 EXPORT_SYMBOL(nobh_commit_write);
2562 * nobh_writepage() - based on block_full_write_page() except
2563 * that it tries to operate without attaching bufferheads to
2566 int nobh_writepage(struct page *page, get_block_t *get_block,
2567 struct writeback_control *wbc)
2569 struct inode * const inode = page->mapping->host;
2570 loff_t i_size = i_size_read(inode);
2571 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2575 /* Is the page fully inside i_size? */
2576 if (page->index < end_index)
2579 /* Is the page fully outside i_size? (truncate in progress) */
2580 offset = i_size & (PAGE_CACHE_SIZE-1);
2581 if (page->index >= end_index+1 || !offset) {
2583 * The page may have dirty, unmapped buffers. For example,
2584 * they may have been added in ext3_writepage(). Make them
2585 * freeable here, so the page does not leak.
2588 /* Not really sure about this - do we need this ? */
2589 if (page->mapping->a_ops->invalidatepage)
2590 page->mapping->a_ops->invalidatepage(page, offset);
2593 return 0; /* don't care */
2597 * The page straddles i_size. It must be zeroed out on each and every
2598 * writepage invocation because it may be mmapped. "A file is mapped
2599 * in multiples of the page size. For a file that is not a multiple of
2600 * the page size, the remaining memory is zeroed when mapped, and
2601 * writes to that region are not written out to the file."
2603 zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
2605 ret = mpage_writepage(page, get_block, wbc);
2607 ret = __block_write_full_page(inode, page, get_block, wbc);
2610 EXPORT_SYMBOL(nobh_writepage);
2613 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2615 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2617 struct inode *inode = mapping->host;
2618 unsigned blocksize = 1 << inode->i_blkbits;
2619 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2620 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2623 const struct address_space_operations *a_ops = mapping->a_ops;
2626 if ((offset & (blocksize - 1)) == 0)
2630 page = grab_cache_page(mapping, index);
2634 to = (offset + blocksize) & ~(blocksize - 1);
2635 ret = a_ops->prepare_write(NULL, page, offset, to);
2637 zero_user_page(page, offset, PAGE_CACHE_SIZE - offset,
2640 * It would be more correct to call aops->commit_write()
2641 * here, but this is more efficient.
2643 SetPageUptodate(page);
2644 set_page_dirty(page);
2647 page_cache_release(page);
2651 EXPORT_SYMBOL(nobh_truncate_page);
2653 int block_truncate_page(struct address_space *mapping,
2654 loff_t from, get_block_t *get_block)
2656 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2657 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2660 unsigned length, pos;
2661 struct inode *inode = mapping->host;
2663 struct buffer_head *bh;
2666 blocksize = 1 << inode->i_blkbits;
2667 length = offset & (blocksize - 1);
2669 /* Block boundary? Nothing to do */
2673 length = blocksize - length;
2674 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2676 page = grab_cache_page(mapping, index);
2681 if (!page_has_buffers(page))
2682 create_empty_buffers(page, blocksize, 0);
2684 /* Find the buffer that contains "offset" */
2685 bh = page_buffers(page);
2687 while (offset >= pos) {
2688 bh = bh->b_this_page;
2694 if (!buffer_mapped(bh)) {
2695 WARN_ON(bh->b_size != blocksize);
2696 err = get_block(inode, iblock, bh, 0);
2699 /* unmapped? It's a hole - nothing to do */
2700 if (!buffer_mapped(bh))
2704 /* Ok, it's mapped. Make sure it's up-to-date */
2705 if (PageUptodate(page))
2706 set_buffer_uptodate(bh);
2708 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2710 ll_rw_block(READ, 1, &bh);
2712 /* Uhhuh. Read error. Complain and punt. */
2713 if (!buffer_uptodate(bh))
2717 zero_user_page(page, offset, length, KM_USER0);
2718 mark_buffer_dirty(bh);
2723 page_cache_release(page);
2729 * The generic ->writepage function for buffer-backed address_spaces
2731 int block_write_full_page(struct page *page, get_block_t *get_block,
2732 struct writeback_control *wbc)
2734 struct inode * const inode = page->mapping->host;
2735 loff_t i_size = i_size_read(inode);
2736 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2739 /* Is the page fully inside i_size? */
2740 if (page->index < end_index)
2741 return __block_write_full_page(inode, page, get_block, wbc);
2743 /* Is the page fully outside i_size? (truncate in progress) */
2744 offset = i_size & (PAGE_CACHE_SIZE-1);
2745 if (page->index >= end_index+1 || !offset) {
2747 * The page may have dirty, unmapped buffers. For example,
2748 * they may have been added in ext3_writepage(). Make them
2749 * freeable here, so the page does not leak.
2751 do_invalidatepage(page, 0);
2753 return 0; /* don't care */
2757 * The page straddles i_size. It must be zeroed out on each and every
2758 * writepage invokation because it may be mmapped. "A file is mapped
2759 * in multiples of the page size. For a file that is not a multiple of
2760 * the page size, the remaining memory is zeroed when mapped, and
2761 * writes to that region are not written out to the file."
2763 zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
2764 return __block_write_full_page(inode, page, get_block, wbc);
2767 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2768 get_block_t *get_block)
2770 struct buffer_head tmp;
2771 struct inode *inode = mapping->host;
2774 tmp.b_size = 1 << inode->i_blkbits;
2775 get_block(inode, block, &tmp, 0);
2776 return tmp.b_blocknr;
2779 static void end_bio_bh_io_sync(struct bio *bio, int err)
2781 struct buffer_head *bh = bio->bi_private;
2783 if (err == -EOPNOTSUPP) {
2784 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2785 set_bit(BH_Eopnotsupp, &bh->b_state);
2788 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2792 int submit_bh(int rw, struct buffer_head * bh)
2797 BUG_ON(!buffer_locked(bh));
2798 BUG_ON(!buffer_mapped(bh));
2799 BUG_ON(!bh->b_end_io);
2801 if (buffer_ordered(bh) && (rw == WRITE))
2805 * Only clear out a write error when rewriting, should this
2806 * include WRITE_SYNC as well?
2808 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2809 clear_buffer_write_io_error(bh);
2812 * from here on down, it's all bio -- do the initial mapping,
2813 * submit_bio -> generic_make_request may further map this bio around
2815 bio = bio_alloc(GFP_NOIO, 1);
2817 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2818 bio->bi_bdev = bh->b_bdev;
2819 bio->bi_io_vec[0].bv_page = bh->b_page;
2820 bio->bi_io_vec[0].bv_len = bh->b_size;
2821 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2825 bio->bi_size = bh->b_size;
2827 bio->bi_end_io = end_bio_bh_io_sync;
2828 bio->bi_private = bh;
2831 submit_bio(rw, bio);
2833 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2841 * ll_rw_block: low-level access to block devices (DEPRECATED)
2842 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2843 * @nr: number of &struct buffer_heads in the array
2844 * @bhs: array of pointers to &struct buffer_head
2846 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2847 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2848 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2849 * are sent to disk. The fourth %READA option is described in the documentation
2850 * for generic_make_request() which ll_rw_block() calls.
2852 * This function drops any buffer that it cannot get a lock on (with the
2853 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2854 * clean when doing a write request, and any buffer that appears to be
2855 * up-to-date when doing read request. Further it marks as clean buffers that
2856 * are processed for writing (the buffer cache won't assume that they are
2857 * actually clean until the buffer gets unlocked).
2859 * ll_rw_block sets b_end_io to simple completion handler that marks
2860 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2863 * All of the buffers must be for the same device, and must also be a
2864 * multiple of the current approved size for the device.
2866 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2870 for (i = 0; i < nr; i++) {
2871 struct buffer_head *bh = bhs[i];
2875 else if (test_set_buffer_locked(bh))
2878 if (rw == WRITE || rw == SWRITE) {
2879 if (test_clear_buffer_dirty(bh)) {
2880 bh->b_end_io = end_buffer_write_sync;
2882 submit_bh(WRITE, bh);
2886 if (!buffer_uptodate(bh)) {
2887 bh->b_end_io = end_buffer_read_sync;
2898 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2899 * and then start new I/O and then wait upon it. The caller must have a ref on
2902 int sync_dirty_buffer(struct buffer_head *bh)
2906 WARN_ON(atomic_read(&bh->b_count) < 1);
2908 if (test_clear_buffer_dirty(bh)) {
2910 bh->b_end_io = end_buffer_write_sync;
2911 ret = submit_bh(WRITE, bh);
2913 if (buffer_eopnotsupp(bh)) {
2914 clear_buffer_eopnotsupp(bh);
2917 if (!ret && !buffer_uptodate(bh))
2926 * try_to_free_buffers() checks if all the buffers on this particular page
2927 * are unused, and releases them if so.
2929 * Exclusion against try_to_free_buffers may be obtained by either
2930 * locking the page or by holding its mapping's private_lock.
2932 * If the page is dirty but all the buffers are clean then we need to
2933 * be sure to mark the page clean as well. This is because the page
2934 * may be against a block device, and a later reattachment of buffers
2935 * to a dirty page will set *all* buffers dirty. Which would corrupt
2936 * filesystem data on the same device.
2938 * The same applies to regular filesystem pages: if all the buffers are
2939 * clean then we set the page clean and proceed. To do that, we require
2940 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2943 * try_to_free_buffers() is non-blocking.
2945 static inline int buffer_busy(struct buffer_head *bh)
2947 return atomic_read(&bh->b_count) |
2948 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2952 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2954 struct buffer_head *head = page_buffers(page);
2955 struct buffer_head *bh;
2959 if (buffer_write_io_error(bh) && page->mapping)
2960 set_bit(AS_EIO, &page->mapping->flags);
2961 if (buffer_busy(bh))
2963 bh = bh->b_this_page;
2964 } while (bh != head);
2967 struct buffer_head *next = bh->b_this_page;
2969 if (!list_empty(&bh->b_assoc_buffers))
2970 __remove_assoc_queue(bh);
2972 } while (bh != head);
2973 *buffers_to_free = head;
2974 __clear_page_buffers(page);
2980 int try_to_free_buffers(struct page *page)
2982 struct address_space * const mapping = page->mapping;
2983 struct buffer_head *buffers_to_free = NULL;
2986 BUG_ON(!PageLocked(page));
2987 if (PageWriteback(page))
2990 if (mapping == NULL) { /* can this still happen? */
2991 ret = drop_buffers(page, &buffers_to_free);
2995 spin_lock(&mapping->private_lock);
2996 ret = drop_buffers(page, &buffers_to_free);
2999 * If the filesystem writes its buffers by hand (eg ext3)
3000 * then we can have clean buffers against a dirty page. We
3001 * clean the page here; otherwise the VM will never notice
3002 * that the filesystem did any IO at all.
3004 * Also, during truncate, discard_buffer will have marked all
3005 * the page's buffers clean. We discover that here and clean
3008 * private_lock must be held over this entire operation in order
3009 * to synchronise against __set_page_dirty_buffers and prevent the
3010 * dirty bit from being lost.
3013 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3014 spin_unlock(&mapping->private_lock);
3016 if (buffers_to_free) {
3017 struct buffer_head *bh = buffers_to_free;
3020 struct buffer_head *next = bh->b_this_page;
3021 free_buffer_head(bh);
3023 } while (bh != buffers_to_free);
3027 EXPORT_SYMBOL(try_to_free_buffers);
3029 void block_sync_page(struct page *page)
3031 struct address_space *mapping;
3034 mapping = page_mapping(page);
3036 blk_run_backing_dev(mapping->backing_dev_info, page);
3040 * There are no bdflush tunables left. But distributions are
3041 * still running obsolete flush daemons, so we terminate them here.
3043 * Use of bdflush() is deprecated and will be removed in a future kernel.
3044 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3046 asmlinkage long sys_bdflush(int func, long data)
3048 static int msg_count;
3050 if (!capable(CAP_SYS_ADMIN))
3053 if (msg_count < 5) {
3056 "warning: process `%s' used the obsolete bdflush"
3057 " system call\n", current->comm);
3058 printk(KERN_INFO "Fix your initscripts?\n");
3067 * Buffer-head allocation
3069 static struct kmem_cache *bh_cachep;
3072 * Once the number of bh's in the machine exceeds this level, we start
3073 * stripping them in writeback.
3075 static int max_buffer_heads;
3077 int buffer_heads_over_limit;
3079 struct bh_accounting {
3080 int nr; /* Number of live bh's */
3081 int ratelimit; /* Limit cacheline bouncing */
3084 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3086 static void recalc_bh_state(void)
3091 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3093 __get_cpu_var(bh_accounting).ratelimit = 0;
3094 for_each_online_cpu(i)
3095 tot += per_cpu(bh_accounting, i).nr;
3096 buffer_heads_over_limit = (tot > max_buffer_heads);
3099 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3101 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3103 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3104 get_cpu_var(bh_accounting).nr++;
3106 put_cpu_var(bh_accounting);
3110 EXPORT_SYMBOL(alloc_buffer_head);
3112 void free_buffer_head(struct buffer_head *bh)
3114 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3115 kmem_cache_free(bh_cachep, bh);
3116 get_cpu_var(bh_accounting).nr--;
3118 put_cpu_var(bh_accounting);
3120 EXPORT_SYMBOL(free_buffer_head);
3122 static void buffer_exit_cpu(int cpu)
3125 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3127 for (i = 0; i < BH_LRU_SIZE; i++) {
3131 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3132 per_cpu(bh_accounting, cpu).nr = 0;
3133 put_cpu_var(bh_accounting);
3136 static int buffer_cpu_notify(struct notifier_block *self,
3137 unsigned long action, void *hcpu)
3139 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3140 buffer_exit_cpu((unsigned long)hcpu);
3144 void __init buffer_init(void)
3148 bh_cachep = KMEM_CACHE(buffer_head,
3149 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3152 * Limit the bh occupancy to 10% of ZONE_NORMAL
3154 nrpages = (nr_free_buffer_pages() * 10) / 100;
3155 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3156 hotcpu_notifier(buffer_cpu_notify, 0);
3159 EXPORT_SYMBOL(__bforget);
3160 EXPORT_SYMBOL(__brelse);
3161 EXPORT_SYMBOL(__wait_on_buffer);
3162 EXPORT_SYMBOL(block_commit_write);
3163 EXPORT_SYMBOL(block_prepare_write);
3164 EXPORT_SYMBOL(block_page_mkwrite);
3165 EXPORT_SYMBOL(block_read_full_page);
3166 EXPORT_SYMBOL(block_sync_page);
3167 EXPORT_SYMBOL(block_truncate_page);
3168 EXPORT_SYMBOL(block_write_full_page);
3169 EXPORT_SYMBOL(cont_write_begin);
3170 EXPORT_SYMBOL(end_buffer_read_sync);
3171 EXPORT_SYMBOL(end_buffer_write_sync);
3172 EXPORT_SYMBOL(file_fsync);
3173 EXPORT_SYMBOL(fsync_bdev);
3174 EXPORT_SYMBOL(generic_block_bmap);
3175 EXPORT_SYMBOL(generic_commit_write);
3176 EXPORT_SYMBOL(generic_cont_expand_simple);
3177 EXPORT_SYMBOL(init_buffer);
3178 EXPORT_SYMBOL(invalidate_bdev);
3179 EXPORT_SYMBOL(ll_rw_block);
3180 EXPORT_SYMBOL(mark_buffer_dirty);
3181 EXPORT_SYMBOL(submit_bh);
3182 EXPORT_SYMBOL(sync_dirty_buffer);
3183 EXPORT_SYMBOL(unlock_buffer);