With reiserfs no longer using the weird generic_cont_expand, remove it completely.
[linux-2.6] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55
56 static int sync_buffer(void *word)
57 {
58         struct block_device *bd;
59         struct buffer_head *bh
60                 = container_of(word, struct buffer_head, b_state);
61
62         smp_mb();
63         bd = bh->b_bdev;
64         if (bd)
65                 blk_run_address_space(bd->bd_inode->i_mapping);
66         io_schedule();
67         return 0;
68 }
69
70 void fastcall __lock_buffer(struct buffer_head *bh)
71 {
72         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73                                                         TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void fastcall unlock_buffer(struct buffer_head *bh)
78 {
79         smp_mb__before_clear_bit();
80         clear_buffer_locked(bh);
81         smp_mb__after_clear_bit();
82         wake_up_bit(&bh->b_state, BH_Lock);
83 }
84
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98         ClearPagePrivate(page);
99         set_page_private(page, 0);
100         page_cache_release(page);
101 }
102
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105         char b[BDEVNAME_SIZE];
106
107         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108                         bdevname(bh->b_bdev, b),
109                         (unsigned long long)bh->b_blocknr);
110 }
111
112 /*
113  * End-of-IO handler helper function which does not touch the bh after
114  * unlocking it.
115  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
116  * a race there is benign: unlock_buffer() only use the bh's address for
117  * hashing after unlocking the buffer, so it doesn't actually touch the bh
118  * itself.
119  */
120 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
121 {
122         if (uptodate) {
123                 set_buffer_uptodate(bh);
124         } else {
125                 /* This happens, due to failed READA attempts. */
126                 clear_buffer_uptodate(bh);
127         }
128         unlock_buffer(bh);
129 }
130
131 /*
132  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
133  * unlock the buffer. This is what ll_rw_block uses too.
134  */
135 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
136 {
137         __end_buffer_read_notouch(bh, uptodate);
138         put_bh(bh);
139 }
140
141 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
142 {
143         char b[BDEVNAME_SIZE];
144
145         if (uptodate) {
146                 set_buffer_uptodate(bh);
147         } else {
148                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
149                         buffer_io_error(bh);
150                         printk(KERN_WARNING "lost page write due to "
151                                         "I/O error on %s\n",
152                                        bdevname(bh->b_bdev, b));
153                 }
154                 set_buffer_write_io_error(bh);
155                 clear_buffer_uptodate(bh);
156         }
157         unlock_buffer(bh);
158         put_bh(bh);
159 }
160
161 /*
162  * Write out and wait upon all the dirty data associated with a block
163  * device via its mapping.  Does not take the superblock lock.
164  */
165 int sync_blockdev(struct block_device *bdev)
166 {
167         int ret = 0;
168
169         if (bdev)
170                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
171         return ret;
172 }
173 EXPORT_SYMBOL(sync_blockdev);
174
175 /*
176  * Write out and wait upon all dirty data associated with this
177  * device.   Filesystem data as well as the underlying block
178  * device.  Takes the superblock lock.
179  */
180 int fsync_bdev(struct block_device *bdev)
181 {
182         struct super_block *sb = get_super(bdev);
183         if (sb) {
184                 int res = fsync_super(sb);
185                 drop_super(sb);
186                 return res;
187         }
188         return sync_blockdev(bdev);
189 }
190
191 /**
192  * freeze_bdev  --  lock a filesystem and force it into a consistent state
193  * @bdev:       blockdevice to lock
194  *
195  * This takes the block device bd_mount_sem to make sure no new mounts
196  * happen on bdev until thaw_bdev() is called.
197  * If a superblock is found on this device, we take the s_umount semaphore
198  * on it to make sure nobody unmounts until the snapshot creation is done.
199  */
200 struct super_block *freeze_bdev(struct block_device *bdev)
201 {
202         struct super_block *sb;
203
204         down(&bdev->bd_mount_sem);
205         sb = get_super(bdev);
206         if (sb && !(sb->s_flags & MS_RDONLY)) {
207                 sb->s_frozen = SB_FREEZE_WRITE;
208                 smp_wmb();
209
210                 __fsync_super(sb);
211
212                 sb->s_frozen = SB_FREEZE_TRANS;
213                 smp_wmb();
214
215                 sync_blockdev(sb->s_bdev);
216
217                 if (sb->s_op->write_super_lockfs)
218                         sb->s_op->write_super_lockfs(sb);
219         }
220
221         sync_blockdev(bdev);
222         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
223 }
224 EXPORT_SYMBOL(freeze_bdev);
225
226 /**
227  * thaw_bdev  -- unlock filesystem
228  * @bdev:       blockdevice to unlock
229  * @sb:         associated superblock
230  *
231  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
232  */
233 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
234 {
235         if (sb) {
236                 BUG_ON(sb->s_bdev != bdev);
237
238                 if (sb->s_op->unlockfs)
239                         sb->s_op->unlockfs(sb);
240                 sb->s_frozen = SB_UNFROZEN;
241                 smp_wmb();
242                 wake_up(&sb->s_wait_unfrozen);
243                 drop_super(sb);
244         }
245
246         up(&bdev->bd_mount_sem);
247 }
248 EXPORT_SYMBOL(thaw_bdev);
249
250 /*
251  * Various filesystems appear to want __find_get_block to be non-blocking.
252  * But it's the page lock which protects the buffers.  To get around this,
253  * we get exclusion from try_to_free_buffers with the blockdev mapping's
254  * private_lock.
255  *
256  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
257  * may be quite high.  This code could TryLock the page, and if that
258  * succeeds, there is no need to take private_lock. (But if
259  * private_lock is contended then so is mapping->tree_lock).
260  */
261 static struct buffer_head *
262 __find_get_block_slow(struct block_device *bdev, sector_t block)
263 {
264         struct inode *bd_inode = bdev->bd_inode;
265         struct address_space *bd_mapping = bd_inode->i_mapping;
266         struct buffer_head *ret = NULL;
267         pgoff_t index;
268         struct buffer_head *bh;
269         struct buffer_head *head;
270         struct page *page;
271         int all_mapped = 1;
272
273         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
274         page = find_get_page(bd_mapping, index);
275         if (!page)
276                 goto out;
277
278         spin_lock(&bd_mapping->private_lock);
279         if (!page_has_buffers(page))
280                 goto out_unlock;
281         head = page_buffers(page);
282         bh = head;
283         do {
284                 if (bh->b_blocknr == block) {
285                         ret = bh;
286                         get_bh(bh);
287                         goto out_unlock;
288                 }
289                 if (!buffer_mapped(bh))
290                         all_mapped = 0;
291                 bh = bh->b_this_page;
292         } while (bh != head);
293
294         /* we might be here because some of the buffers on this page are
295          * not mapped.  This is due to various races between
296          * file io on the block device and getblk.  It gets dealt with
297          * elsewhere, don't buffer_error if we had some unmapped buffers
298          */
299         if (all_mapped) {
300                 printk("__find_get_block_slow() failed. "
301                         "block=%llu, b_blocknr=%llu\n",
302                         (unsigned long long)block,
303                         (unsigned long long)bh->b_blocknr);
304                 printk("b_state=0x%08lx, b_size=%zu\n",
305                         bh->b_state, bh->b_size);
306                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
307         }
308 out_unlock:
309         spin_unlock(&bd_mapping->private_lock);
310         page_cache_release(page);
311 out:
312         return ret;
313 }
314
315 /* If invalidate_buffers() will trash dirty buffers, it means some kind
316    of fs corruption is going on. Trashing dirty data always imply losing
317    information that was supposed to be just stored on the physical layer
318    by the user.
319
320    Thus invalidate_buffers in general usage is not allwowed to trash
321    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
322    be preserved.  These buffers are simply skipped.
323   
324    We also skip buffers which are still in use.  For example this can
325    happen if a userspace program is reading the block device.
326
327    NOTE: In the case where the user removed a removable-media-disk even if
328    there's still dirty data not synced on disk (due a bug in the device driver
329    or due an error of the user), by not destroying the dirty buffers we could
330    generate corruption also on the next media inserted, thus a parameter is
331    necessary to handle this case in the most safe way possible (trying
332    to not corrupt also the new disk inserted with the data belonging to
333    the old now corrupted disk). Also for the ramdisk the natural thing
334    to do in order to release the ramdisk memory is to destroy dirty buffers.
335
336    These are two special cases. Normal usage imply the device driver
337    to issue a sync on the device (without waiting I/O completion) and
338    then an invalidate_buffers call that doesn't trash dirty buffers.
339
340    For handling cache coherency with the blkdev pagecache the 'update' case
341    is been introduced. It is needed to re-read from disk any pinned
342    buffer. NOTE: re-reading from disk is destructive so we can do it only
343    when we assume nobody is changing the buffercache under our I/O and when
344    we think the disk contains more recent information than the buffercache.
345    The update == 1 pass marks the buffers we need to update, the update == 2
346    pass does the actual I/O. */
347 void invalidate_bdev(struct block_device *bdev)
348 {
349         struct address_space *mapping = bdev->bd_inode->i_mapping;
350
351         if (mapping->nrpages == 0)
352                 return;
353
354         invalidate_bh_lrus();
355         invalidate_mapping_pages(mapping, 0, -1);
356 }
357
358 /*
359  * Kick pdflush then try to free up some ZONE_NORMAL memory.
360  */
361 static void free_more_memory(void)
362 {
363         struct zone **zones;
364         pg_data_t *pgdat;
365
366         wakeup_pdflush(1024);
367         yield();
368
369         for_each_online_pgdat(pgdat) {
370                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
371                 if (*zones)
372                         try_to_free_pages(zones, 0, GFP_NOFS);
373         }
374 }
375
376 /*
377  * I/O completion handler for block_read_full_page() - pages
378  * which come unlocked at the end of I/O.
379  */
380 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
381 {
382         unsigned long flags;
383         struct buffer_head *first;
384         struct buffer_head *tmp;
385         struct page *page;
386         int page_uptodate = 1;
387
388         BUG_ON(!buffer_async_read(bh));
389
390         page = bh->b_page;
391         if (uptodate) {
392                 set_buffer_uptodate(bh);
393         } else {
394                 clear_buffer_uptodate(bh);
395                 if (printk_ratelimit())
396                         buffer_io_error(bh);
397                 SetPageError(page);
398         }
399
400         /*
401          * Be _very_ careful from here on. Bad things can happen if
402          * two buffer heads end IO at almost the same time and both
403          * decide that the page is now completely done.
404          */
405         first = page_buffers(page);
406         local_irq_save(flags);
407         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
408         clear_buffer_async_read(bh);
409         unlock_buffer(bh);
410         tmp = bh;
411         do {
412                 if (!buffer_uptodate(tmp))
413                         page_uptodate = 0;
414                 if (buffer_async_read(tmp)) {
415                         BUG_ON(!buffer_locked(tmp));
416                         goto still_busy;
417                 }
418                 tmp = tmp->b_this_page;
419         } while (tmp != bh);
420         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
421         local_irq_restore(flags);
422
423         /*
424          * If none of the buffers had errors and they are all
425          * uptodate then we can set the page uptodate.
426          */
427         if (page_uptodate && !PageError(page))
428                 SetPageUptodate(page);
429         unlock_page(page);
430         return;
431
432 still_busy:
433         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
434         local_irq_restore(flags);
435         return;
436 }
437
438 /*
439  * Completion handler for block_write_full_page() - pages which are unlocked
440  * during I/O, and which have PageWriteback cleared upon I/O completion.
441  */
442 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
443 {
444         char b[BDEVNAME_SIZE];
445         unsigned long flags;
446         struct buffer_head *first;
447         struct buffer_head *tmp;
448         struct page *page;
449
450         BUG_ON(!buffer_async_write(bh));
451
452         page = bh->b_page;
453         if (uptodate) {
454                 set_buffer_uptodate(bh);
455         } else {
456                 if (printk_ratelimit()) {
457                         buffer_io_error(bh);
458                         printk(KERN_WARNING "lost page write due to "
459                                         "I/O error on %s\n",
460                                bdevname(bh->b_bdev, b));
461                 }
462                 set_bit(AS_EIO, &page->mapping->flags);
463                 set_buffer_write_io_error(bh);
464                 clear_buffer_uptodate(bh);
465                 SetPageError(page);
466         }
467
468         first = page_buffers(page);
469         local_irq_save(flags);
470         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
471
472         clear_buffer_async_write(bh);
473         unlock_buffer(bh);
474         tmp = bh->b_this_page;
475         while (tmp != bh) {
476                 if (buffer_async_write(tmp)) {
477                         BUG_ON(!buffer_locked(tmp));
478                         goto still_busy;
479                 }
480                 tmp = tmp->b_this_page;
481         }
482         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
483         local_irq_restore(flags);
484         end_page_writeback(page);
485         return;
486
487 still_busy:
488         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
489         local_irq_restore(flags);
490         return;
491 }
492
493 /*
494  * If a page's buffers are under async readin (end_buffer_async_read
495  * completion) then there is a possibility that another thread of
496  * control could lock one of the buffers after it has completed
497  * but while some of the other buffers have not completed.  This
498  * locked buffer would confuse end_buffer_async_read() into not unlocking
499  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
500  * that this buffer is not under async I/O.
501  *
502  * The page comes unlocked when it has no locked buffer_async buffers
503  * left.
504  *
505  * PageLocked prevents anyone starting new async I/O reads any of
506  * the buffers.
507  *
508  * PageWriteback is used to prevent simultaneous writeout of the same
509  * page.
510  *
511  * PageLocked prevents anyone from starting writeback of a page which is
512  * under read I/O (PageWriteback is only ever set against a locked page).
513  */
514 static void mark_buffer_async_read(struct buffer_head *bh)
515 {
516         bh->b_end_io = end_buffer_async_read;
517         set_buffer_async_read(bh);
518 }
519
520 void mark_buffer_async_write(struct buffer_head *bh)
521 {
522         bh->b_end_io = end_buffer_async_write;
523         set_buffer_async_write(bh);
524 }
525 EXPORT_SYMBOL(mark_buffer_async_write);
526
527
528 /*
529  * fs/buffer.c contains helper functions for buffer-backed address space's
530  * fsync functions.  A common requirement for buffer-based filesystems is
531  * that certain data from the backing blockdev needs to be written out for
532  * a successful fsync().  For example, ext2 indirect blocks need to be
533  * written back and waited upon before fsync() returns.
534  *
535  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
536  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
537  * management of a list of dependent buffers at ->i_mapping->private_list.
538  *
539  * Locking is a little subtle: try_to_free_buffers() will remove buffers
540  * from their controlling inode's queue when they are being freed.  But
541  * try_to_free_buffers() will be operating against the *blockdev* mapping
542  * at the time, not against the S_ISREG file which depends on those buffers.
543  * So the locking for private_list is via the private_lock in the address_space
544  * which backs the buffers.  Which is different from the address_space 
545  * against which the buffers are listed.  So for a particular address_space,
546  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
547  * mapping->private_list will always be protected by the backing blockdev's
548  * ->private_lock.
549  *
550  * Which introduces a requirement: all buffers on an address_space's
551  * ->private_list must be from the same address_space: the blockdev's.
552  *
553  * address_spaces which do not place buffers at ->private_list via these
554  * utility functions are free to use private_lock and private_list for
555  * whatever they want.  The only requirement is that list_empty(private_list)
556  * be true at clear_inode() time.
557  *
558  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
559  * filesystems should do that.  invalidate_inode_buffers() should just go
560  * BUG_ON(!list_empty).
561  *
562  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
563  * take an address_space, not an inode.  And it should be called
564  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
565  * queued up.
566  *
567  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
568  * list if it is already on a list.  Because if the buffer is on a list,
569  * it *must* already be on the right one.  If not, the filesystem is being
570  * silly.  This will save a ton of locking.  But first we have to ensure
571  * that buffers are taken *off* the old inode's list when they are freed
572  * (presumably in truncate).  That requires careful auditing of all
573  * filesystems (do it inside bforget()).  It could also be done by bringing
574  * b_inode back.
575  */
576
577 /*
578  * The buffer's backing address_space's private_lock must be held
579  */
580 static inline void __remove_assoc_queue(struct buffer_head *bh)
581 {
582         list_del_init(&bh->b_assoc_buffers);
583         WARN_ON(!bh->b_assoc_map);
584         if (buffer_write_io_error(bh))
585                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
586         bh->b_assoc_map = NULL;
587 }
588
589 int inode_has_buffers(struct inode *inode)
590 {
591         return !list_empty(&inode->i_data.private_list);
592 }
593
594 /*
595  * osync is designed to support O_SYNC io.  It waits synchronously for
596  * all already-submitted IO to complete, but does not queue any new
597  * writes to the disk.
598  *
599  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
600  * you dirty the buffers, and then use osync_inode_buffers to wait for
601  * completion.  Any other dirty buffers which are not yet queued for
602  * write will not be flushed to disk by the osync.
603  */
604 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
605 {
606         struct buffer_head *bh;
607         struct list_head *p;
608         int err = 0;
609
610         spin_lock(lock);
611 repeat:
612         list_for_each_prev(p, list) {
613                 bh = BH_ENTRY(p);
614                 if (buffer_locked(bh)) {
615                         get_bh(bh);
616                         spin_unlock(lock);
617                         wait_on_buffer(bh);
618                         if (!buffer_uptodate(bh))
619                                 err = -EIO;
620                         brelse(bh);
621                         spin_lock(lock);
622                         goto repeat;
623                 }
624         }
625         spin_unlock(lock);
626         return err;
627 }
628
629 /**
630  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
631  *                        buffers
632  * @mapping: the mapping which wants those buffers written
633  *
634  * Starts I/O against the buffers at mapping->private_list, and waits upon
635  * that I/O.
636  *
637  * Basically, this is a convenience function for fsync().
638  * @mapping is a file or directory which needs those buffers to be written for
639  * a successful fsync().
640  */
641 int sync_mapping_buffers(struct address_space *mapping)
642 {
643         struct address_space *buffer_mapping = mapping->assoc_mapping;
644
645         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
646                 return 0;
647
648         return fsync_buffers_list(&buffer_mapping->private_lock,
649                                         &mapping->private_list);
650 }
651 EXPORT_SYMBOL(sync_mapping_buffers);
652
653 /*
654  * Called when we've recently written block `bblock', and it is known that
655  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
656  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
657  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
658  */
659 void write_boundary_block(struct block_device *bdev,
660                         sector_t bblock, unsigned blocksize)
661 {
662         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
663         if (bh) {
664                 if (buffer_dirty(bh))
665                         ll_rw_block(WRITE, 1, &bh);
666                 put_bh(bh);
667         }
668 }
669
670 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
671 {
672         struct address_space *mapping = inode->i_mapping;
673         struct address_space *buffer_mapping = bh->b_page->mapping;
674
675         mark_buffer_dirty(bh);
676         if (!mapping->assoc_mapping) {
677                 mapping->assoc_mapping = buffer_mapping;
678         } else {
679                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
680         }
681         if (list_empty(&bh->b_assoc_buffers)) {
682                 spin_lock(&buffer_mapping->private_lock);
683                 list_move_tail(&bh->b_assoc_buffers,
684                                 &mapping->private_list);
685                 bh->b_assoc_map = mapping;
686                 spin_unlock(&buffer_mapping->private_lock);
687         }
688 }
689 EXPORT_SYMBOL(mark_buffer_dirty_inode);
690
691 /*
692  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
693  * dirty.
694  *
695  * If warn is true, then emit a warning if the page is not uptodate and has
696  * not been truncated.
697  */
698 static int __set_page_dirty(struct page *page,
699                 struct address_space *mapping, int warn)
700 {
701         if (unlikely(!mapping))
702                 return !TestSetPageDirty(page);
703
704         if (TestSetPageDirty(page))
705                 return 0;
706
707         write_lock_irq(&mapping->tree_lock);
708         if (page->mapping) {    /* Race with truncate? */
709                 WARN_ON_ONCE(warn && !PageUptodate(page));
710
711                 if (mapping_cap_account_dirty(mapping)) {
712                         __inc_zone_page_state(page, NR_FILE_DIRTY);
713                         task_io_account_write(PAGE_CACHE_SIZE);
714                 }
715                 radix_tree_tag_set(&mapping->page_tree,
716                                 page_index(page), PAGECACHE_TAG_DIRTY);
717         }
718         write_unlock_irq(&mapping->tree_lock);
719         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
720
721         return 1;
722 }
723
724 /*
725  * Add a page to the dirty page list.
726  *
727  * It is a sad fact of life that this function is called from several places
728  * deeply under spinlocking.  It may not sleep.
729  *
730  * If the page has buffers, the uptodate buffers are set dirty, to preserve
731  * dirty-state coherency between the page and the buffers.  It the page does
732  * not have buffers then when they are later attached they will all be set
733  * dirty.
734  *
735  * The buffers are dirtied before the page is dirtied.  There's a small race
736  * window in which a writepage caller may see the page cleanness but not the
737  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
738  * before the buffers, a concurrent writepage caller could clear the page dirty
739  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
740  * page on the dirty page list.
741  *
742  * We use private_lock to lock against try_to_free_buffers while using the
743  * page's buffer list.  Also use this to protect against clean buffers being
744  * added to the page after it was set dirty.
745  *
746  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
747  * address_space though.
748  */
749 int __set_page_dirty_buffers(struct page *page)
750 {
751         struct address_space *mapping = page_mapping(page);
752
753         if (unlikely(!mapping))
754                 return !TestSetPageDirty(page);
755
756         spin_lock(&mapping->private_lock);
757         if (page_has_buffers(page)) {
758                 struct buffer_head *head = page_buffers(page);
759                 struct buffer_head *bh = head;
760
761                 do {
762                         set_buffer_dirty(bh);
763                         bh = bh->b_this_page;
764                 } while (bh != head);
765         }
766         spin_unlock(&mapping->private_lock);
767
768         return __set_page_dirty(page, mapping, 1);
769 }
770 EXPORT_SYMBOL(__set_page_dirty_buffers);
771
772 /*
773  * Write out and wait upon a list of buffers.
774  *
775  * We have conflicting pressures: we want to make sure that all
776  * initially dirty buffers get waited on, but that any subsequently
777  * dirtied buffers don't.  After all, we don't want fsync to last
778  * forever if somebody is actively writing to the file.
779  *
780  * Do this in two main stages: first we copy dirty buffers to a
781  * temporary inode list, queueing the writes as we go.  Then we clean
782  * up, waiting for those writes to complete.
783  * 
784  * During this second stage, any subsequent updates to the file may end
785  * up refiling the buffer on the original inode's dirty list again, so
786  * there is a chance we will end up with a buffer queued for write but
787  * not yet completed on that list.  So, as a final cleanup we go through
788  * the osync code to catch these locked, dirty buffers without requeuing
789  * any newly dirty buffers for write.
790  */
791 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
792 {
793         struct buffer_head *bh;
794         struct list_head tmp;
795         int err = 0, err2;
796
797         INIT_LIST_HEAD(&tmp);
798
799         spin_lock(lock);
800         while (!list_empty(list)) {
801                 bh = BH_ENTRY(list->next);
802                 __remove_assoc_queue(bh);
803                 if (buffer_dirty(bh) || buffer_locked(bh)) {
804                         list_add(&bh->b_assoc_buffers, &tmp);
805                         if (buffer_dirty(bh)) {
806                                 get_bh(bh);
807                                 spin_unlock(lock);
808                                 /*
809                                  * Ensure any pending I/O completes so that
810                                  * ll_rw_block() actually writes the current
811                                  * contents - it is a noop if I/O is still in
812                                  * flight on potentially older contents.
813                                  */
814                                 ll_rw_block(SWRITE, 1, &bh);
815                                 brelse(bh);
816                                 spin_lock(lock);
817                         }
818                 }
819         }
820
821         while (!list_empty(&tmp)) {
822                 bh = BH_ENTRY(tmp.prev);
823                 list_del_init(&bh->b_assoc_buffers);
824                 get_bh(bh);
825                 spin_unlock(lock);
826                 wait_on_buffer(bh);
827                 if (!buffer_uptodate(bh))
828                         err = -EIO;
829                 brelse(bh);
830                 spin_lock(lock);
831         }
832         
833         spin_unlock(lock);
834         err2 = osync_buffers_list(lock, list);
835         if (err)
836                 return err;
837         else
838                 return err2;
839 }
840
841 /*
842  * Invalidate any and all dirty buffers on a given inode.  We are
843  * probably unmounting the fs, but that doesn't mean we have already
844  * done a sync().  Just drop the buffers from the inode list.
845  *
846  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
847  * assumes that all the buffers are against the blockdev.  Not true
848  * for reiserfs.
849  */
850 void invalidate_inode_buffers(struct inode *inode)
851 {
852         if (inode_has_buffers(inode)) {
853                 struct address_space *mapping = &inode->i_data;
854                 struct list_head *list = &mapping->private_list;
855                 struct address_space *buffer_mapping = mapping->assoc_mapping;
856
857                 spin_lock(&buffer_mapping->private_lock);
858                 while (!list_empty(list))
859                         __remove_assoc_queue(BH_ENTRY(list->next));
860                 spin_unlock(&buffer_mapping->private_lock);
861         }
862 }
863
864 /*
865  * Remove any clean buffers from the inode's buffer list.  This is called
866  * when we're trying to free the inode itself.  Those buffers can pin it.
867  *
868  * Returns true if all buffers were removed.
869  */
870 int remove_inode_buffers(struct inode *inode)
871 {
872         int ret = 1;
873
874         if (inode_has_buffers(inode)) {
875                 struct address_space *mapping = &inode->i_data;
876                 struct list_head *list = &mapping->private_list;
877                 struct address_space *buffer_mapping = mapping->assoc_mapping;
878
879                 spin_lock(&buffer_mapping->private_lock);
880                 while (!list_empty(list)) {
881                         struct buffer_head *bh = BH_ENTRY(list->next);
882                         if (buffer_dirty(bh)) {
883                                 ret = 0;
884                                 break;
885                         }
886                         __remove_assoc_queue(bh);
887                 }
888                 spin_unlock(&buffer_mapping->private_lock);
889         }
890         return ret;
891 }
892
893 /*
894  * Create the appropriate buffers when given a page for data area and
895  * the size of each buffer.. Use the bh->b_this_page linked list to
896  * follow the buffers created.  Return NULL if unable to create more
897  * buffers.
898  *
899  * The retry flag is used to differentiate async IO (paging, swapping)
900  * which may not fail from ordinary buffer allocations.
901  */
902 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
903                 int retry)
904 {
905         struct buffer_head *bh, *head;
906         long offset;
907
908 try_again:
909         head = NULL;
910         offset = PAGE_SIZE;
911         while ((offset -= size) >= 0) {
912                 bh = alloc_buffer_head(GFP_NOFS);
913                 if (!bh)
914                         goto no_grow;
915
916                 bh->b_bdev = NULL;
917                 bh->b_this_page = head;
918                 bh->b_blocknr = -1;
919                 head = bh;
920
921                 bh->b_state = 0;
922                 atomic_set(&bh->b_count, 0);
923                 bh->b_private = NULL;
924                 bh->b_size = size;
925
926                 /* Link the buffer to its page */
927                 set_bh_page(bh, page, offset);
928
929                 init_buffer(bh, NULL, NULL);
930         }
931         return head;
932 /*
933  * In case anything failed, we just free everything we got.
934  */
935 no_grow:
936         if (head) {
937                 do {
938                         bh = head;
939                         head = head->b_this_page;
940                         free_buffer_head(bh);
941                 } while (head);
942         }
943
944         /*
945          * Return failure for non-async IO requests.  Async IO requests
946          * are not allowed to fail, so we have to wait until buffer heads
947          * become available.  But we don't want tasks sleeping with 
948          * partially complete buffers, so all were released above.
949          */
950         if (!retry)
951                 return NULL;
952
953         /* We're _really_ low on memory. Now we just
954          * wait for old buffer heads to become free due to
955          * finishing IO.  Since this is an async request and
956          * the reserve list is empty, we're sure there are 
957          * async buffer heads in use.
958          */
959         free_more_memory();
960         goto try_again;
961 }
962 EXPORT_SYMBOL_GPL(alloc_page_buffers);
963
964 static inline void
965 link_dev_buffers(struct page *page, struct buffer_head *head)
966 {
967         struct buffer_head *bh, *tail;
968
969         bh = head;
970         do {
971                 tail = bh;
972                 bh = bh->b_this_page;
973         } while (bh);
974         tail->b_this_page = head;
975         attach_page_buffers(page, head);
976 }
977
978 /*
979  * Initialise the state of a blockdev page's buffers.
980  */ 
981 static void
982 init_page_buffers(struct page *page, struct block_device *bdev,
983                         sector_t block, int size)
984 {
985         struct buffer_head *head = page_buffers(page);
986         struct buffer_head *bh = head;
987         int uptodate = PageUptodate(page);
988
989         do {
990                 if (!buffer_mapped(bh)) {
991                         init_buffer(bh, NULL, NULL);
992                         bh->b_bdev = bdev;
993                         bh->b_blocknr = block;
994                         if (uptodate)
995                                 set_buffer_uptodate(bh);
996                         set_buffer_mapped(bh);
997                 }
998                 block++;
999                 bh = bh->b_this_page;
1000         } while (bh != head);
1001 }
1002
1003 /*
1004  * Create the page-cache page that contains the requested block.
1005  *
1006  * This is user purely for blockdev mappings.
1007  */
1008 static struct page *
1009 grow_dev_page(struct block_device *bdev, sector_t block,
1010                 pgoff_t index, int size)
1011 {
1012         struct inode *inode = bdev->bd_inode;
1013         struct page *page;
1014         struct buffer_head *bh;
1015
1016         page = find_or_create_page(inode->i_mapping, index,
1017                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1018         if (!page)
1019                 return NULL;
1020
1021         BUG_ON(!PageLocked(page));
1022
1023         if (page_has_buffers(page)) {
1024                 bh = page_buffers(page);
1025                 if (bh->b_size == size) {
1026                         init_page_buffers(page, bdev, block, size);
1027                         return page;
1028                 }
1029                 if (!try_to_free_buffers(page))
1030                         goto failed;
1031         }
1032
1033         /*
1034          * Allocate some buffers for this page
1035          */
1036         bh = alloc_page_buffers(page, size, 0);
1037         if (!bh)
1038                 goto failed;
1039
1040         /*
1041          * Link the page to the buffers and initialise them.  Take the
1042          * lock to be atomic wrt __find_get_block(), which does not
1043          * run under the page lock.
1044          */
1045         spin_lock(&inode->i_mapping->private_lock);
1046         link_dev_buffers(page, bh);
1047         init_page_buffers(page, bdev, block, size);
1048         spin_unlock(&inode->i_mapping->private_lock);
1049         return page;
1050
1051 failed:
1052         BUG();
1053         unlock_page(page);
1054         page_cache_release(page);
1055         return NULL;
1056 }
1057
1058 /*
1059  * Create buffers for the specified block device block's page.  If
1060  * that page was dirty, the buffers are set dirty also.
1061  */
1062 static int
1063 grow_buffers(struct block_device *bdev, sector_t block, int size)
1064 {
1065         struct page *page;
1066         pgoff_t index;
1067         int sizebits;
1068
1069         sizebits = -1;
1070         do {
1071                 sizebits++;
1072         } while ((size << sizebits) < PAGE_SIZE);
1073
1074         index = block >> sizebits;
1075
1076         /*
1077          * Check for a block which wants to lie outside our maximum possible
1078          * pagecache index.  (this comparison is done using sector_t types).
1079          */
1080         if (unlikely(index != block >> sizebits)) {
1081                 char b[BDEVNAME_SIZE];
1082
1083                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1084                         "device %s\n",
1085                         __FUNCTION__, (unsigned long long)block,
1086                         bdevname(bdev, b));
1087                 return -EIO;
1088         }
1089         block = index << sizebits;
1090         /* Create a page with the proper size buffers.. */
1091         page = grow_dev_page(bdev, block, index, size);
1092         if (!page)
1093                 return 0;
1094         unlock_page(page);
1095         page_cache_release(page);
1096         return 1;
1097 }
1098
1099 static struct buffer_head *
1100 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1101 {
1102         /* Size must be multiple of hard sectorsize */
1103         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1104                         (size < 512 || size > PAGE_SIZE))) {
1105                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1106                                         size);
1107                 printk(KERN_ERR "hardsect size: %d\n",
1108                                         bdev_hardsect_size(bdev));
1109
1110                 dump_stack();
1111                 return NULL;
1112         }
1113
1114         for (;;) {
1115                 struct buffer_head * bh;
1116                 int ret;
1117
1118                 bh = __find_get_block(bdev, block, size);
1119                 if (bh)
1120                         return bh;
1121
1122                 ret = grow_buffers(bdev, block, size);
1123                 if (ret < 0)
1124                         return NULL;
1125                 if (ret == 0)
1126                         free_more_memory();
1127         }
1128 }
1129
1130 /*
1131  * The relationship between dirty buffers and dirty pages:
1132  *
1133  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1134  * the page is tagged dirty in its radix tree.
1135  *
1136  * At all times, the dirtiness of the buffers represents the dirtiness of
1137  * subsections of the page.  If the page has buffers, the page dirty bit is
1138  * merely a hint about the true dirty state.
1139  *
1140  * When a page is set dirty in its entirety, all its buffers are marked dirty
1141  * (if the page has buffers).
1142  *
1143  * When a buffer is marked dirty, its page is dirtied, but the page's other
1144  * buffers are not.
1145  *
1146  * Also.  When blockdev buffers are explicitly read with bread(), they
1147  * individually become uptodate.  But their backing page remains not
1148  * uptodate - even if all of its buffers are uptodate.  A subsequent
1149  * block_read_full_page() against that page will discover all the uptodate
1150  * buffers, will set the page uptodate and will perform no I/O.
1151  */
1152
1153 /**
1154  * mark_buffer_dirty - mark a buffer_head as needing writeout
1155  * @bh: the buffer_head to mark dirty
1156  *
1157  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1158  * backing page dirty, then tag the page as dirty in its address_space's radix
1159  * tree and then attach the address_space's inode to its superblock's dirty
1160  * inode list.
1161  *
1162  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1163  * mapping->tree_lock and the global inode_lock.
1164  */
1165 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1166 {
1167         WARN_ON_ONCE(!buffer_uptodate(bh));
1168         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1169                 __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1170 }
1171
1172 /*
1173  * Decrement a buffer_head's reference count.  If all buffers against a page
1174  * have zero reference count, are clean and unlocked, and if the page is clean
1175  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1176  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1177  * a page but it ends up not being freed, and buffers may later be reattached).
1178  */
1179 void __brelse(struct buffer_head * buf)
1180 {
1181         if (atomic_read(&buf->b_count)) {
1182                 put_bh(buf);
1183                 return;
1184         }
1185         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1186         WARN_ON(1);
1187 }
1188
1189 /*
1190  * bforget() is like brelse(), except it discards any
1191  * potentially dirty data.
1192  */
1193 void __bforget(struct buffer_head *bh)
1194 {
1195         clear_buffer_dirty(bh);
1196         if (!list_empty(&bh->b_assoc_buffers)) {
1197                 struct address_space *buffer_mapping = bh->b_page->mapping;
1198
1199                 spin_lock(&buffer_mapping->private_lock);
1200                 list_del_init(&bh->b_assoc_buffers);
1201                 bh->b_assoc_map = NULL;
1202                 spin_unlock(&buffer_mapping->private_lock);
1203         }
1204         __brelse(bh);
1205 }
1206
1207 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1208 {
1209         lock_buffer(bh);
1210         if (buffer_uptodate(bh)) {
1211                 unlock_buffer(bh);
1212                 return bh;
1213         } else {
1214                 get_bh(bh);
1215                 bh->b_end_io = end_buffer_read_sync;
1216                 submit_bh(READ, bh);
1217                 wait_on_buffer(bh);
1218                 if (buffer_uptodate(bh))
1219                         return bh;
1220         }
1221         brelse(bh);
1222         return NULL;
1223 }
1224
1225 /*
1226  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1227  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1228  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1229  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1230  * CPU's LRUs at the same time.
1231  *
1232  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1233  * sb_find_get_block().
1234  *
1235  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1236  * a local interrupt disable for that.
1237  */
1238
1239 #define BH_LRU_SIZE     8
1240
1241 struct bh_lru {
1242         struct buffer_head *bhs[BH_LRU_SIZE];
1243 };
1244
1245 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1246
1247 #ifdef CONFIG_SMP
1248 #define bh_lru_lock()   local_irq_disable()
1249 #define bh_lru_unlock() local_irq_enable()
1250 #else
1251 #define bh_lru_lock()   preempt_disable()
1252 #define bh_lru_unlock() preempt_enable()
1253 #endif
1254
1255 static inline void check_irqs_on(void)
1256 {
1257 #ifdef irqs_disabled
1258         BUG_ON(irqs_disabled());
1259 #endif
1260 }
1261
1262 /*
1263  * The LRU management algorithm is dopey-but-simple.  Sorry.
1264  */
1265 static void bh_lru_install(struct buffer_head *bh)
1266 {
1267         struct buffer_head *evictee = NULL;
1268         struct bh_lru *lru;
1269
1270         check_irqs_on();
1271         bh_lru_lock();
1272         lru = &__get_cpu_var(bh_lrus);
1273         if (lru->bhs[0] != bh) {
1274                 struct buffer_head *bhs[BH_LRU_SIZE];
1275                 int in;
1276                 int out = 0;
1277
1278                 get_bh(bh);
1279                 bhs[out++] = bh;
1280                 for (in = 0; in < BH_LRU_SIZE; in++) {
1281                         struct buffer_head *bh2 = lru->bhs[in];
1282
1283                         if (bh2 == bh) {
1284                                 __brelse(bh2);
1285                         } else {
1286                                 if (out >= BH_LRU_SIZE) {
1287                                         BUG_ON(evictee != NULL);
1288                                         evictee = bh2;
1289                                 } else {
1290                                         bhs[out++] = bh2;
1291                                 }
1292                         }
1293                 }
1294                 while (out < BH_LRU_SIZE)
1295                         bhs[out++] = NULL;
1296                 memcpy(lru->bhs, bhs, sizeof(bhs));
1297         }
1298         bh_lru_unlock();
1299
1300         if (evictee)
1301                 __brelse(evictee);
1302 }
1303
1304 /*
1305  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1306  */
1307 static struct buffer_head *
1308 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1309 {
1310         struct buffer_head *ret = NULL;
1311         struct bh_lru *lru;
1312         unsigned int i;
1313
1314         check_irqs_on();
1315         bh_lru_lock();
1316         lru = &__get_cpu_var(bh_lrus);
1317         for (i = 0; i < BH_LRU_SIZE; i++) {
1318                 struct buffer_head *bh = lru->bhs[i];
1319
1320                 if (bh && bh->b_bdev == bdev &&
1321                                 bh->b_blocknr == block && bh->b_size == size) {
1322                         if (i) {
1323                                 while (i) {
1324                                         lru->bhs[i] = lru->bhs[i - 1];
1325                                         i--;
1326                                 }
1327                                 lru->bhs[0] = bh;
1328                         }
1329                         get_bh(bh);
1330                         ret = bh;
1331                         break;
1332                 }
1333         }
1334         bh_lru_unlock();
1335         return ret;
1336 }
1337
1338 /*
1339  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1340  * it in the LRU and mark it as accessed.  If it is not present then return
1341  * NULL
1342  */
1343 struct buffer_head *
1344 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1345 {
1346         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1347
1348         if (bh == NULL) {
1349                 bh = __find_get_block_slow(bdev, block);
1350                 if (bh)
1351                         bh_lru_install(bh);
1352         }
1353         if (bh)
1354                 touch_buffer(bh);
1355         return bh;
1356 }
1357 EXPORT_SYMBOL(__find_get_block);
1358
1359 /*
1360  * __getblk will locate (and, if necessary, create) the buffer_head
1361  * which corresponds to the passed block_device, block and size. The
1362  * returned buffer has its reference count incremented.
1363  *
1364  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1365  * illegal block number, __getblk() will happily return a buffer_head
1366  * which represents the non-existent block.  Very weird.
1367  *
1368  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1369  * attempt is failing.  FIXME, perhaps?
1370  */
1371 struct buffer_head *
1372 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1373 {
1374         struct buffer_head *bh = __find_get_block(bdev, block, size);
1375
1376         might_sleep();
1377         if (bh == NULL)
1378                 bh = __getblk_slow(bdev, block, size);
1379         return bh;
1380 }
1381 EXPORT_SYMBOL(__getblk);
1382
1383 /*
1384  * Do async read-ahead on a buffer..
1385  */
1386 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1387 {
1388         struct buffer_head *bh = __getblk(bdev, block, size);
1389         if (likely(bh)) {
1390                 ll_rw_block(READA, 1, &bh);
1391                 brelse(bh);
1392         }
1393 }
1394 EXPORT_SYMBOL(__breadahead);
1395
1396 /**
1397  *  __bread() - reads a specified block and returns the bh
1398  *  @bdev: the block_device to read from
1399  *  @block: number of block
1400  *  @size: size (in bytes) to read
1401  * 
1402  *  Reads a specified block, and returns buffer head that contains it.
1403  *  It returns NULL if the block was unreadable.
1404  */
1405 struct buffer_head *
1406 __bread(struct block_device *bdev, sector_t block, unsigned size)
1407 {
1408         struct buffer_head *bh = __getblk(bdev, block, size);
1409
1410         if (likely(bh) && !buffer_uptodate(bh))
1411                 bh = __bread_slow(bh);
1412         return bh;
1413 }
1414 EXPORT_SYMBOL(__bread);
1415
1416 /*
1417  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1418  * This doesn't race because it runs in each cpu either in irq
1419  * or with preempt disabled.
1420  */
1421 static void invalidate_bh_lru(void *arg)
1422 {
1423         struct bh_lru *b = &get_cpu_var(bh_lrus);
1424         int i;
1425
1426         for (i = 0; i < BH_LRU_SIZE; i++) {
1427                 brelse(b->bhs[i]);
1428                 b->bhs[i] = NULL;
1429         }
1430         put_cpu_var(bh_lrus);
1431 }
1432         
1433 void invalidate_bh_lrus(void)
1434 {
1435         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1436 }
1437
1438 void set_bh_page(struct buffer_head *bh,
1439                 struct page *page, unsigned long offset)
1440 {
1441         bh->b_page = page;
1442         BUG_ON(offset >= PAGE_SIZE);
1443         if (PageHighMem(page))
1444                 /*
1445                  * This catches illegal uses and preserves the offset:
1446                  */
1447                 bh->b_data = (char *)(0 + offset);
1448         else
1449                 bh->b_data = page_address(page) + offset;
1450 }
1451 EXPORT_SYMBOL(set_bh_page);
1452
1453 /*
1454  * Called when truncating a buffer on a page completely.
1455  */
1456 static void discard_buffer(struct buffer_head * bh)
1457 {
1458         lock_buffer(bh);
1459         clear_buffer_dirty(bh);
1460         bh->b_bdev = NULL;
1461         clear_buffer_mapped(bh);
1462         clear_buffer_req(bh);
1463         clear_buffer_new(bh);
1464         clear_buffer_delay(bh);
1465         clear_buffer_unwritten(bh);
1466         unlock_buffer(bh);
1467 }
1468
1469 /**
1470  * block_invalidatepage - invalidate part of all of a buffer-backed page
1471  *
1472  * @page: the page which is affected
1473  * @offset: the index of the truncation point
1474  *
1475  * block_invalidatepage() is called when all or part of the page has become
1476  * invalidatedby a truncate operation.
1477  *
1478  * block_invalidatepage() does not have to release all buffers, but it must
1479  * ensure that no dirty buffer is left outside @offset and that no I/O
1480  * is underway against any of the blocks which are outside the truncation
1481  * point.  Because the caller is about to free (and possibly reuse) those
1482  * blocks on-disk.
1483  */
1484 void block_invalidatepage(struct page *page, unsigned long offset)
1485 {
1486         struct buffer_head *head, *bh, *next;
1487         unsigned int curr_off = 0;
1488
1489         BUG_ON(!PageLocked(page));
1490         if (!page_has_buffers(page))
1491                 goto out;
1492
1493         head = page_buffers(page);
1494         bh = head;
1495         do {
1496                 unsigned int next_off = curr_off + bh->b_size;
1497                 next = bh->b_this_page;
1498
1499                 /*
1500                  * is this block fully invalidated?
1501                  */
1502                 if (offset <= curr_off)
1503                         discard_buffer(bh);
1504                 curr_off = next_off;
1505                 bh = next;
1506         } while (bh != head);
1507
1508         /*
1509          * We release buffers only if the entire page is being invalidated.
1510          * The get_block cached value has been unconditionally invalidated,
1511          * so real IO is not possible anymore.
1512          */
1513         if (offset == 0)
1514                 try_to_release_page(page, 0);
1515 out:
1516         return;
1517 }
1518 EXPORT_SYMBOL(block_invalidatepage);
1519
1520 /*
1521  * We attach and possibly dirty the buffers atomically wrt
1522  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1523  * is already excluded via the page lock.
1524  */
1525 void create_empty_buffers(struct page *page,
1526                         unsigned long blocksize, unsigned long b_state)
1527 {
1528         struct buffer_head *bh, *head, *tail;
1529
1530         head = alloc_page_buffers(page, blocksize, 1);
1531         bh = head;
1532         do {
1533                 bh->b_state |= b_state;
1534                 tail = bh;
1535                 bh = bh->b_this_page;
1536         } while (bh);
1537         tail->b_this_page = head;
1538
1539         spin_lock(&page->mapping->private_lock);
1540         if (PageUptodate(page) || PageDirty(page)) {
1541                 bh = head;
1542                 do {
1543                         if (PageDirty(page))
1544                                 set_buffer_dirty(bh);
1545                         if (PageUptodate(page))
1546                                 set_buffer_uptodate(bh);
1547                         bh = bh->b_this_page;
1548                 } while (bh != head);
1549         }
1550         attach_page_buffers(page, head);
1551         spin_unlock(&page->mapping->private_lock);
1552 }
1553 EXPORT_SYMBOL(create_empty_buffers);
1554
1555 /*
1556  * We are taking a block for data and we don't want any output from any
1557  * buffer-cache aliases starting from return from that function and
1558  * until the moment when something will explicitly mark the buffer
1559  * dirty (hopefully that will not happen until we will free that block ;-)
1560  * We don't even need to mark it not-uptodate - nobody can expect
1561  * anything from a newly allocated buffer anyway. We used to used
1562  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1563  * don't want to mark the alias unmapped, for example - it would confuse
1564  * anyone who might pick it with bread() afterwards...
1565  *
1566  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1567  * be writeout I/O going on against recently-freed buffers.  We don't
1568  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1569  * only if we really need to.  That happens here.
1570  */
1571 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1572 {
1573         struct buffer_head *old_bh;
1574
1575         might_sleep();
1576
1577         old_bh = __find_get_block_slow(bdev, block);
1578         if (old_bh) {
1579                 clear_buffer_dirty(old_bh);
1580                 wait_on_buffer(old_bh);
1581                 clear_buffer_req(old_bh);
1582                 __brelse(old_bh);
1583         }
1584 }
1585 EXPORT_SYMBOL(unmap_underlying_metadata);
1586
1587 /*
1588  * NOTE! All mapped/uptodate combinations are valid:
1589  *
1590  *      Mapped  Uptodate        Meaning
1591  *
1592  *      No      No              "unknown" - must do get_block()
1593  *      No      Yes             "hole" - zero-filled
1594  *      Yes     No              "allocated" - allocated on disk, not read in
1595  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1596  *
1597  * "Dirty" is valid only with the last case (mapped+uptodate).
1598  */
1599
1600 /*
1601  * While block_write_full_page is writing back the dirty buffers under
1602  * the page lock, whoever dirtied the buffers may decide to clean them
1603  * again at any time.  We handle that by only looking at the buffer
1604  * state inside lock_buffer().
1605  *
1606  * If block_write_full_page() is called for regular writeback
1607  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1608  * locked buffer.   This only can happen if someone has written the buffer
1609  * directly, with submit_bh().  At the address_space level PageWriteback
1610  * prevents this contention from occurring.
1611  */
1612 static int __block_write_full_page(struct inode *inode, struct page *page,
1613                         get_block_t *get_block, struct writeback_control *wbc)
1614 {
1615         int err;
1616         sector_t block;
1617         sector_t last_block;
1618         struct buffer_head *bh, *head;
1619         const unsigned blocksize = 1 << inode->i_blkbits;
1620         int nr_underway = 0;
1621
1622         BUG_ON(!PageLocked(page));
1623
1624         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1625
1626         if (!page_has_buffers(page)) {
1627                 create_empty_buffers(page, blocksize,
1628                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1629         }
1630
1631         /*
1632          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1633          * here, and the (potentially unmapped) buffers may become dirty at
1634          * any time.  If a buffer becomes dirty here after we've inspected it
1635          * then we just miss that fact, and the page stays dirty.
1636          *
1637          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1638          * handle that here by just cleaning them.
1639          */
1640
1641         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1642         head = page_buffers(page);
1643         bh = head;
1644
1645         /*
1646          * Get all the dirty buffers mapped to disk addresses and
1647          * handle any aliases from the underlying blockdev's mapping.
1648          */
1649         do {
1650                 if (block > last_block) {
1651                         /*
1652                          * mapped buffers outside i_size will occur, because
1653                          * this page can be outside i_size when there is a
1654                          * truncate in progress.
1655                          */
1656                         /*
1657                          * The buffer was zeroed by block_write_full_page()
1658                          */
1659                         clear_buffer_dirty(bh);
1660                         set_buffer_uptodate(bh);
1661                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1662                         WARN_ON(bh->b_size != blocksize);
1663                         err = get_block(inode, block, bh, 1);
1664                         if (err)
1665                                 goto recover;
1666                         if (buffer_new(bh)) {
1667                                 /* blockdev mappings never come here */
1668                                 clear_buffer_new(bh);
1669                                 unmap_underlying_metadata(bh->b_bdev,
1670                                                         bh->b_blocknr);
1671                         }
1672                 }
1673                 bh = bh->b_this_page;
1674                 block++;
1675         } while (bh != head);
1676
1677         do {
1678                 if (!buffer_mapped(bh))
1679                         continue;
1680                 /*
1681                  * If it's a fully non-blocking write attempt and we cannot
1682                  * lock the buffer then redirty the page.  Note that this can
1683                  * potentially cause a busy-wait loop from pdflush and kswapd
1684                  * activity, but those code paths have their own higher-level
1685                  * throttling.
1686                  */
1687                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1688                         lock_buffer(bh);
1689                 } else if (test_set_buffer_locked(bh)) {
1690                         redirty_page_for_writepage(wbc, page);
1691                         continue;
1692                 }
1693                 if (test_clear_buffer_dirty(bh)) {
1694                         mark_buffer_async_write(bh);
1695                 } else {
1696                         unlock_buffer(bh);
1697                 }
1698         } while ((bh = bh->b_this_page) != head);
1699
1700         /*
1701          * The page and its buffers are protected by PageWriteback(), so we can
1702          * drop the bh refcounts early.
1703          */
1704         BUG_ON(PageWriteback(page));
1705         set_page_writeback(page);
1706
1707         do {
1708                 struct buffer_head *next = bh->b_this_page;
1709                 if (buffer_async_write(bh)) {
1710                         submit_bh(WRITE, bh);
1711                         nr_underway++;
1712                 }
1713                 bh = next;
1714         } while (bh != head);
1715         unlock_page(page);
1716
1717         err = 0;
1718 done:
1719         if (nr_underway == 0) {
1720                 /*
1721                  * The page was marked dirty, but the buffers were
1722                  * clean.  Someone wrote them back by hand with
1723                  * ll_rw_block/submit_bh.  A rare case.
1724                  */
1725                 end_page_writeback(page);
1726
1727                 /*
1728                  * The page and buffer_heads can be released at any time from
1729                  * here on.
1730                  */
1731                 wbc->pages_skipped++;   /* We didn't write this page */
1732         }
1733         return err;
1734
1735 recover:
1736         /*
1737          * ENOSPC, or some other error.  We may already have added some
1738          * blocks to the file, so we need to write these out to avoid
1739          * exposing stale data.
1740          * The page is currently locked and not marked for writeback
1741          */
1742         bh = head;
1743         /* Recovery: lock and submit the mapped buffers */
1744         do {
1745                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1746                         lock_buffer(bh);
1747                         mark_buffer_async_write(bh);
1748                 } else {
1749                         /*
1750                          * The buffer may have been set dirty during
1751                          * attachment to a dirty page.
1752                          */
1753                         clear_buffer_dirty(bh);
1754                 }
1755         } while ((bh = bh->b_this_page) != head);
1756         SetPageError(page);
1757         BUG_ON(PageWriteback(page));
1758         mapping_set_error(page->mapping, err);
1759         set_page_writeback(page);
1760         do {
1761                 struct buffer_head *next = bh->b_this_page;
1762                 if (buffer_async_write(bh)) {
1763                         clear_buffer_dirty(bh);
1764                         submit_bh(WRITE, bh);
1765                         nr_underway++;
1766                 }
1767                 bh = next;
1768         } while (bh != head);
1769         unlock_page(page);
1770         goto done;
1771 }
1772
1773 /*
1774  * If a page has any new buffers, zero them out here, and mark them uptodate
1775  * and dirty so they'll be written out (in order to prevent uninitialised
1776  * block data from leaking). And clear the new bit.
1777  */
1778 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1779 {
1780         unsigned int block_start, block_end;
1781         struct buffer_head *head, *bh;
1782
1783         BUG_ON(!PageLocked(page));
1784         if (!page_has_buffers(page))
1785                 return;
1786
1787         bh = head = page_buffers(page);
1788         block_start = 0;
1789         do {
1790                 block_end = block_start + bh->b_size;
1791
1792                 if (buffer_new(bh)) {
1793                         if (block_end > from && block_start < to) {
1794                                 if (!PageUptodate(page)) {
1795                                         unsigned start, size;
1796
1797                                         start = max(from, block_start);
1798                                         size = min(to, block_end) - start;
1799
1800                                         zero_user_page(page, start, size, KM_USER0);
1801                                         set_buffer_uptodate(bh);
1802                                 }
1803
1804                                 clear_buffer_new(bh);
1805                                 mark_buffer_dirty(bh);
1806                         }
1807                 }
1808
1809                 block_start = block_end;
1810                 bh = bh->b_this_page;
1811         } while (bh != head);
1812 }
1813 EXPORT_SYMBOL(page_zero_new_buffers);
1814
1815 static int __block_prepare_write(struct inode *inode, struct page *page,
1816                 unsigned from, unsigned to, get_block_t *get_block)
1817 {
1818         unsigned block_start, block_end;
1819         sector_t block;
1820         int err = 0;
1821         unsigned blocksize, bbits;
1822         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1823
1824         BUG_ON(!PageLocked(page));
1825         BUG_ON(from > PAGE_CACHE_SIZE);
1826         BUG_ON(to > PAGE_CACHE_SIZE);
1827         BUG_ON(from > to);
1828
1829         blocksize = 1 << inode->i_blkbits;
1830         if (!page_has_buffers(page))
1831                 create_empty_buffers(page, blocksize, 0);
1832         head = page_buffers(page);
1833
1834         bbits = inode->i_blkbits;
1835         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1836
1837         for(bh = head, block_start = 0; bh != head || !block_start;
1838             block++, block_start=block_end, bh = bh->b_this_page) {
1839                 block_end = block_start + blocksize;
1840                 if (block_end <= from || block_start >= to) {
1841                         if (PageUptodate(page)) {
1842                                 if (!buffer_uptodate(bh))
1843                                         set_buffer_uptodate(bh);
1844                         }
1845                         continue;
1846                 }
1847                 if (buffer_new(bh))
1848                         clear_buffer_new(bh);
1849                 if (!buffer_mapped(bh)) {
1850                         WARN_ON(bh->b_size != blocksize);
1851                         err = get_block(inode, block, bh, 1);
1852                         if (err)
1853                                 break;
1854                         if (buffer_new(bh)) {
1855                                 unmap_underlying_metadata(bh->b_bdev,
1856                                                         bh->b_blocknr);
1857                                 if (PageUptodate(page)) {
1858                                         clear_buffer_new(bh);
1859                                         set_buffer_uptodate(bh);
1860                                         mark_buffer_dirty(bh);
1861                                         continue;
1862                                 }
1863                                 if (block_end > to || block_start < from) {
1864                                         void *kaddr;
1865
1866                                         kaddr = kmap_atomic(page, KM_USER0);
1867                                         if (block_end > to)
1868                                                 memset(kaddr+to, 0,
1869                                                         block_end-to);
1870                                         if (block_start < from)
1871                                                 memset(kaddr+block_start,
1872                                                         0, from-block_start);
1873                                         flush_dcache_page(page);
1874                                         kunmap_atomic(kaddr, KM_USER0);
1875                                 }
1876                                 continue;
1877                         }
1878                 }
1879                 if (PageUptodate(page)) {
1880                         if (!buffer_uptodate(bh))
1881                                 set_buffer_uptodate(bh);
1882                         continue; 
1883                 }
1884                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1885                     !buffer_unwritten(bh) &&
1886                      (block_start < from || block_end > to)) {
1887                         ll_rw_block(READ, 1, &bh);
1888                         *wait_bh++=bh;
1889                 }
1890         }
1891         /*
1892          * If we issued read requests - let them complete.
1893          */
1894         while(wait_bh > wait) {
1895                 wait_on_buffer(*--wait_bh);
1896                 if (!buffer_uptodate(*wait_bh))
1897                         err = -EIO;
1898         }
1899         if (unlikely(err))
1900                 page_zero_new_buffers(page, from, to);
1901         return err;
1902 }
1903
1904 static int __block_commit_write(struct inode *inode, struct page *page,
1905                 unsigned from, unsigned to)
1906 {
1907         unsigned block_start, block_end;
1908         int partial = 0;
1909         unsigned blocksize;
1910         struct buffer_head *bh, *head;
1911
1912         blocksize = 1 << inode->i_blkbits;
1913
1914         for(bh = head = page_buffers(page), block_start = 0;
1915             bh != head || !block_start;
1916             block_start=block_end, bh = bh->b_this_page) {
1917                 block_end = block_start + blocksize;
1918                 if (block_end <= from || block_start >= to) {
1919                         if (!buffer_uptodate(bh))
1920                                 partial = 1;
1921                 } else {
1922                         set_buffer_uptodate(bh);
1923                         mark_buffer_dirty(bh);
1924                 }
1925                 clear_buffer_new(bh);
1926         }
1927
1928         /*
1929          * If this is a partial write which happened to make all buffers
1930          * uptodate then we can optimize away a bogus readpage() for
1931          * the next read(). Here we 'discover' whether the page went
1932          * uptodate as a result of this (potentially partial) write.
1933          */
1934         if (!partial)
1935                 SetPageUptodate(page);
1936         return 0;
1937 }
1938
1939 /*
1940  * block_write_begin takes care of the basic task of block allocation and
1941  * bringing partial write blocks uptodate first.
1942  *
1943  * If *pagep is not NULL, then block_write_begin uses the locked page
1944  * at *pagep rather than allocating its own. In this case, the page will
1945  * not be unlocked or deallocated on failure.
1946  */
1947 int block_write_begin(struct file *file, struct address_space *mapping,
1948                         loff_t pos, unsigned len, unsigned flags,
1949                         struct page **pagep, void **fsdata,
1950                         get_block_t *get_block)
1951 {
1952         struct inode *inode = mapping->host;
1953         int status = 0;
1954         struct page *page;
1955         pgoff_t index;
1956         unsigned start, end;
1957         int ownpage = 0;
1958
1959         index = pos >> PAGE_CACHE_SHIFT;
1960         start = pos & (PAGE_CACHE_SIZE - 1);
1961         end = start + len;
1962
1963         page = *pagep;
1964         if (page == NULL) {
1965                 ownpage = 1;
1966                 page = __grab_cache_page(mapping, index);
1967                 if (!page) {
1968                         status = -ENOMEM;
1969                         goto out;
1970                 }
1971                 *pagep = page;
1972         } else
1973                 BUG_ON(!PageLocked(page));
1974
1975         status = __block_prepare_write(inode, page, start, end, get_block);
1976         if (unlikely(status)) {
1977                 ClearPageUptodate(page);
1978
1979                 if (ownpage) {
1980                         unlock_page(page);
1981                         page_cache_release(page);
1982                         *pagep = NULL;
1983
1984                         /*
1985                          * prepare_write() may have instantiated a few blocks
1986                          * outside i_size.  Trim these off again. Don't need
1987                          * i_size_read because we hold i_mutex.
1988                          */
1989                         if (pos + len > inode->i_size)
1990                                 vmtruncate(inode, inode->i_size);
1991                 }
1992                 goto out;
1993         }
1994
1995 out:
1996         return status;
1997 }
1998 EXPORT_SYMBOL(block_write_begin);
1999
2000 int block_write_end(struct file *file, struct address_space *mapping,
2001                         loff_t pos, unsigned len, unsigned copied,
2002                         struct page *page, void *fsdata)
2003 {
2004         struct inode *inode = mapping->host;
2005         unsigned start;
2006
2007         start = pos & (PAGE_CACHE_SIZE - 1);
2008
2009         if (unlikely(copied < len)) {
2010                 /*
2011                  * The buffers that were written will now be uptodate, so we
2012                  * don't have to worry about a readpage reading them and
2013                  * overwriting a partial write. However if we have encountered
2014                  * a short write and only partially written into a buffer, it
2015                  * will not be marked uptodate, so a readpage might come in and
2016                  * destroy our partial write.
2017                  *
2018                  * Do the simplest thing, and just treat any short write to a
2019                  * non uptodate page as a zero-length write, and force the
2020                  * caller to redo the whole thing.
2021                  */
2022                 if (!PageUptodate(page))
2023                         copied = 0;
2024
2025                 page_zero_new_buffers(page, start+copied, start+len);
2026         }
2027         flush_dcache_page(page);
2028
2029         /* This could be a short (even 0-length) commit */
2030         __block_commit_write(inode, page, start, start+copied);
2031
2032         return copied;
2033 }
2034 EXPORT_SYMBOL(block_write_end);
2035
2036 int generic_write_end(struct file *file, struct address_space *mapping,
2037                         loff_t pos, unsigned len, unsigned copied,
2038                         struct page *page, void *fsdata)
2039 {
2040         struct inode *inode = mapping->host;
2041
2042         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2043
2044         /*
2045          * No need to use i_size_read() here, the i_size
2046          * cannot change under us because we hold i_mutex.
2047          *
2048          * But it's important to update i_size while still holding page lock:
2049          * page writeout could otherwise come in and zero beyond i_size.
2050          */
2051         if (pos+copied > inode->i_size) {
2052                 i_size_write(inode, pos+copied);
2053                 mark_inode_dirty(inode);
2054         }
2055
2056         unlock_page(page);
2057         page_cache_release(page);
2058
2059         return copied;
2060 }
2061 EXPORT_SYMBOL(generic_write_end);
2062
2063 /*
2064  * Generic "read page" function for block devices that have the normal
2065  * get_block functionality. This is most of the block device filesystems.
2066  * Reads the page asynchronously --- the unlock_buffer() and
2067  * set/clear_buffer_uptodate() functions propagate buffer state into the
2068  * page struct once IO has completed.
2069  */
2070 int block_read_full_page(struct page *page, get_block_t *get_block)
2071 {
2072         struct inode *inode = page->mapping->host;
2073         sector_t iblock, lblock;
2074         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2075         unsigned int blocksize;
2076         int nr, i;
2077         int fully_mapped = 1;
2078
2079         BUG_ON(!PageLocked(page));
2080         blocksize = 1 << inode->i_blkbits;
2081         if (!page_has_buffers(page))
2082                 create_empty_buffers(page, blocksize, 0);
2083         head = page_buffers(page);
2084
2085         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2086         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2087         bh = head;
2088         nr = 0;
2089         i = 0;
2090
2091         do {
2092                 if (buffer_uptodate(bh))
2093                         continue;
2094
2095                 if (!buffer_mapped(bh)) {
2096                         int err = 0;
2097
2098                         fully_mapped = 0;
2099                         if (iblock < lblock) {
2100                                 WARN_ON(bh->b_size != blocksize);
2101                                 err = get_block(inode, iblock, bh, 0);
2102                                 if (err)
2103                                         SetPageError(page);
2104                         }
2105                         if (!buffer_mapped(bh)) {
2106                                 zero_user_page(page, i * blocksize, blocksize,
2107                                                 KM_USER0);
2108                                 if (!err)
2109                                         set_buffer_uptodate(bh);
2110                                 continue;
2111                         }
2112                         /*
2113                          * get_block() might have updated the buffer
2114                          * synchronously
2115                          */
2116                         if (buffer_uptodate(bh))
2117                                 continue;
2118                 }
2119                 arr[nr++] = bh;
2120         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2121
2122         if (fully_mapped)
2123                 SetPageMappedToDisk(page);
2124
2125         if (!nr) {
2126                 /*
2127                  * All buffers are uptodate - we can set the page uptodate
2128                  * as well. But not if get_block() returned an error.
2129                  */
2130                 if (!PageError(page))
2131                         SetPageUptodate(page);
2132                 unlock_page(page);
2133                 return 0;
2134         }
2135
2136         /* Stage two: lock the buffers */
2137         for (i = 0; i < nr; i++) {
2138                 bh = arr[i];
2139                 lock_buffer(bh);
2140                 mark_buffer_async_read(bh);
2141         }
2142
2143         /*
2144          * Stage 3: start the IO.  Check for uptodateness
2145          * inside the buffer lock in case another process reading
2146          * the underlying blockdev brought it uptodate (the sct fix).
2147          */
2148         for (i = 0; i < nr; i++) {
2149                 bh = arr[i];
2150                 if (buffer_uptodate(bh))
2151                         end_buffer_async_read(bh, 1);
2152                 else
2153                         submit_bh(READ, bh);
2154         }
2155         return 0;
2156 }
2157
2158 /* utility function for filesystems that need to do work on expanding
2159  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2160  * deal with the hole.  
2161  */
2162 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2163 {
2164         struct address_space *mapping = inode->i_mapping;
2165         struct page *page;
2166         void *fsdata;
2167         unsigned long limit;
2168         int err;
2169
2170         err = -EFBIG;
2171         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2172         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2173                 send_sig(SIGXFSZ, current, 0);
2174                 goto out;
2175         }
2176         if (size > inode->i_sb->s_maxbytes)
2177                 goto out;
2178
2179         err = pagecache_write_begin(NULL, mapping, size, 0,
2180                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2181                                 &page, &fsdata);
2182         if (err)
2183                 goto out;
2184
2185         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2186         BUG_ON(err > 0);
2187
2188 out:
2189         return err;
2190 }
2191
2192 int cont_expand_zero(struct file *file, struct address_space *mapping,
2193                         loff_t pos, loff_t *bytes)
2194 {
2195         struct inode *inode = mapping->host;
2196         unsigned blocksize = 1 << inode->i_blkbits;
2197         struct page *page;
2198         void *fsdata;
2199         pgoff_t index, curidx;
2200         loff_t curpos;
2201         unsigned zerofrom, offset, len;
2202         int err = 0;
2203
2204         index = pos >> PAGE_CACHE_SHIFT;
2205         offset = pos & ~PAGE_CACHE_MASK;
2206
2207         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2208                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2209                 if (zerofrom & (blocksize-1)) {
2210                         *bytes |= (blocksize-1);
2211                         (*bytes)++;
2212                 }
2213                 len = PAGE_CACHE_SIZE - zerofrom;
2214
2215                 err = pagecache_write_begin(file, mapping, curpos, len,
2216                                                 AOP_FLAG_UNINTERRUPTIBLE,
2217                                                 &page, &fsdata);
2218                 if (err)
2219                         goto out;
2220                 zero_user_page(page, zerofrom, len, KM_USER0);
2221                 err = pagecache_write_end(file, mapping, curpos, len, len,
2222                                                 page, fsdata);
2223                 if (err < 0)
2224                         goto out;
2225                 BUG_ON(err != len);
2226                 err = 0;
2227         }
2228
2229         /* page covers the boundary, find the boundary offset */
2230         if (index == curidx) {
2231                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2232                 /* if we will expand the thing last block will be filled */
2233                 if (offset <= zerofrom) {
2234                         goto out;
2235                 }
2236                 if (zerofrom & (blocksize-1)) {
2237                         *bytes |= (blocksize-1);
2238                         (*bytes)++;
2239                 }
2240                 len = offset - zerofrom;
2241
2242                 err = pagecache_write_begin(file, mapping, curpos, len,
2243                                                 AOP_FLAG_UNINTERRUPTIBLE,
2244                                                 &page, &fsdata);
2245                 if (err)
2246                         goto out;
2247                 zero_user_page(page, zerofrom, len, KM_USER0);
2248                 err = pagecache_write_end(file, mapping, curpos, len, len,
2249                                                 page, fsdata);
2250                 if (err < 0)
2251                         goto out;
2252                 BUG_ON(err != len);
2253                 err = 0;
2254         }
2255 out:
2256         return err;
2257 }
2258
2259 /*
2260  * For moronic filesystems that do not allow holes in file.
2261  * We may have to extend the file.
2262  */
2263 int cont_write_begin(struct file *file, struct address_space *mapping,
2264                         loff_t pos, unsigned len, unsigned flags,
2265                         struct page **pagep, void **fsdata,
2266                         get_block_t *get_block, loff_t *bytes)
2267 {
2268         struct inode *inode = mapping->host;
2269         unsigned blocksize = 1 << inode->i_blkbits;
2270         unsigned zerofrom;
2271         int err;
2272
2273         err = cont_expand_zero(file, mapping, pos, bytes);
2274         if (err)
2275                 goto out;
2276
2277         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2278         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2279                 *bytes |= (blocksize-1);
2280                 (*bytes)++;
2281         }
2282
2283         *pagep = NULL;
2284         err = block_write_begin(file, mapping, pos, len,
2285                                 flags, pagep, fsdata, get_block);
2286 out:
2287         return err;
2288 }
2289
2290 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2291                         get_block_t *get_block)
2292 {
2293         struct inode *inode = page->mapping->host;
2294         int err = __block_prepare_write(inode, page, from, to, get_block);
2295         if (err)
2296                 ClearPageUptodate(page);
2297         return err;
2298 }
2299
2300 int block_commit_write(struct page *page, unsigned from, unsigned to)
2301 {
2302         struct inode *inode = page->mapping->host;
2303         __block_commit_write(inode,page,from,to);
2304         return 0;
2305 }
2306
2307 int generic_commit_write(struct file *file, struct page *page,
2308                 unsigned from, unsigned to)
2309 {
2310         struct inode *inode = page->mapping->host;
2311         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2312         __block_commit_write(inode,page,from,to);
2313         /*
2314          * No need to use i_size_read() here, the i_size
2315          * cannot change under us because we hold i_mutex.
2316          */
2317         if (pos > inode->i_size) {
2318                 i_size_write(inode, pos);
2319                 mark_inode_dirty(inode);
2320         }
2321         return 0;
2322 }
2323
2324 /*
2325  * block_page_mkwrite() is not allowed to change the file size as it gets
2326  * called from a page fault handler when a page is first dirtied. Hence we must
2327  * be careful to check for EOF conditions here. We set the page up correctly
2328  * for a written page which means we get ENOSPC checking when writing into
2329  * holes and correct delalloc and unwritten extent mapping on filesystems that
2330  * support these features.
2331  *
2332  * We are not allowed to take the i_mutex here so we have to play games to
2333  * protect against truncate races as the page could now be beyond EOF.  Because
2334  * vmtruncate() writes the inode size before removing pages, once we have the
2335  * page lock we can determine safely if the page is beyond EOF. If it is not
2336  * beyond EOF, then the page is guaranteed safe against truncation until we
2337  * unlock the page.
2338  */
2339 int
2340 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2341                    get_block_t get_block)
2342 {
2343         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2344         unsigned long end;
2345         loff_t size;
2346         int ret = -EINVAL;
2347
2348         lock_page(page);
2349         size = i_size_read(inode);
2350         if ((page->mapping != inode->i_mapping) ||
2351             (page_offset(page) > size)) {
2352                 /* page got truncated out from underneath us */
2353                 goto out_unlock;
2354         }
2355
2356         /* page is wholly or partially inside EOF */
2357         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2358                 end = size & ~PAGE_CACHE_MASK;
2359         else
2360                 end = PAGE_CACHE_SIZE;
2361
2362         ret = block_prepare_write(page, 0, end, get_block);
2363         if (!ret)
2364                 ret = block_commit_write(page, 0, end);
2365
2366 out_unlock:
2367         unlock_page(page);
2368         return ret;
2369 }
2370
2371 /*
2372  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2373  * immediately, while under the page lock.  So it needs a special end_io
2374  * handler which does not touch the bh after unlocking it.
2375  */
2376 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2377 {
2378         __end_buffer_read_notouch(bh, uptodate);
2379 }
2380
2381 /*
2382  * On entry, the page is fully not uptodate.
2383  * On exit the page is fully uptodate in the areas outside (from,to)
2384  */
2385 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2386                         get_block_t *get_block)
2387 {
2388         struct inode *inode = page->mapping->host;
2389         const unsigned blkbits = inode->i_blkbits;
2390         const unsigned blocksize = 1 << blkbits;
2391         struct buffer_head *head, *bh;
2392         unsigned block_in_page;
2393         unsigned block_start, block_end;
2394         sector_t block_in_file;
2395         char *kaddr;
2396         int nr_reads = 0;
2397         int ret = 0;
2398         int is_mapped_to_disk = 1;
2399
2400         if (page_has_buffers(page))
2401                 return block_prepare_write(page, from, to, get_block);
2402
2403         if (PageMappedToDisk(page))
2404                 return 0;
2405
2406         /*
2407          * Allocate buffers so that we can keep track of state, and potentially
2408          * attach them to the page if an error occurs. In the common case of
2409          * no error, they will just be freed again without ever being attached
2410          * to the page (which is all OK, because we're under the page lock).
2411          *
2412          * Be careful: the buffer linked list is a NULL terminated one, rather
2413          * than the circular one we're used to.
2414          */
2415         head = alloc_page_buffers(page, blocksize, 0);
2416         if (!head)
2417                 return -ENOMEM;
2418
2419         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2420
2421         /*
2422          * We loop across all blocks in the page, whether or not they are
2423          * part of the affected region.  This is so we can discover if the
2424          * page is fully mapped-to-disk.
2425          */
2426         for (block_start = 0, block_in_page = 0, bh = head;
2427                   block_start < PAGE_CACHE_SIZE;
2428                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2429                 int create;
2430
2431                 block_end = block_start + blocksize;
2432                 bh->b_state = 0;
2433                 create = 1;
2434                 if (block_start >= to)
2435                         create = 0;
2436                 ret = get_block(inode, block_in_file + block_in_page,
2437                                         bh, create);
2438                 if (ret)
2439                         goto failed;
2440                 if (!buffer_mapped(bh))
2441                         is_mapped_to_disk = 0;
2442                 if (buffer_new(bh))
2443                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2444                 if (PageUptodate(page)) {
2445                         set_buffer_uptodate(bh);
2446                         continue;
2447                 }
2448                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2449                         kaddr = kmap_atomic(page, KM_USER0);
2450                         if (block_start < from)
2451                                 memset(kaddr+block_start, 0, from-block_start);
2452                         if (block_end > to)
2453                                 memset(kaddr + to, 0, block_end - to);
2454                         flush_dcache_page(page);
2455                         kunmap_atomic(kaddr, KM_USER0);
2456                         continue;
2457                 }
2458                 if (buffer_uptodate(bh))
2459                         continue;       /* reiserfs does this */
2460                 if (block_start < from || block_end > to) {
2461                         lock_buffer(bh);
2462                         bh->b_end_io = end_buffer_read_nobh;
2463                         submit_bh(READ, bh);
2464                         nr_reads++;
2465                 }
2466         }
2467
2468         if (nr_reads) {
2469                 /*
2470                  * The page is locked, so these buffers are protected from
2471                  * any VM or truncate activity.  Hence we don't need to care
2472                  * for the buffer_head refcounts.
2473                  */
2474                 for (bh = head; bh; bh = bh->b_this_page) {
2475                         wait_on_buffer(bh);
2476                         if (!buffer_uptodate(bh))
2477                                 ret = -EIO;
2478                 }
2479                 if (ret)
2480                         goto failed;
2481         }
2482
2483         if (is_mapped_to_disk)
2484                 SetPageMappedToDisk(page);
2485
2486         do {
2487                 bh = head;
2488                 head = head->b_this_page;
2489                 free_buffer_head(bh);
2490         } while (head);
2491
2492         return 0;
2493
2494 failed:
2495         /*
2496          * Error recovery is a bit difficult. We need to zero out blocks that
2497          * were newly allocated, and dirty them to ensure they get written out.
2498          * Buffers need to be attached to the page at this point, otherwise
2499          * the handling of potential IO errors during writeout would be hard
2500          * (could try doing synchronous writeout, but what if that fails too?)
2501          */
2502         spin_lock(&page->mapping->private_lock);
2503         bh = head;
2504         block_start = 0;
2505         do {
2506                 if (PageUptodate(page))
2507                         set_buffer_uptodate(bh);
2508                 if (PageDirty(page))
2509                         set_buffer_dirty(bh);
2510
2511                 block_end = block_start+blocksize;
2512                 if (block_end <= from)
2513                         goto next;
2514                 if (block_start >= to)
2515                         goto next;
2516
2517                 if (buffer_new(bh)) {
2518                         clear_buffer_new(bh);
2519                         if (!buffer_uptodate(bh)) {
2520                                 zero_user_page(page, block_start, bh->b_size, KM_USER0);
2521                                 set_buffer_uptodate(bh);
2522                         }
2523                         mark_buffer_dirty(bh);
2524                 }
2525 next:
2526                 block_start = block_end;
2527                 if (!bh->b_this_page)
2528                         bh->b_this_page = head;
2529                 bh = bh->b_this_page;
2530         } while (bh != head);
2531         attach_page_buffers(page, head);
2532         spin_unlock(&page->mapping->private_lock);
2533
2534         return ret;
2535 }
2536 EXPORT_SYMBOL(nobh_prepare_write);
2537
2538 /*
2539  * Make sure any changes to nobh_commit_write() are reflected in
2540  * nobh_truncate_page(), since it doesn't call commit_write().
2541  */
2542 int nobh_commit_write(struct file *file, struct page *page,
2543                 unsigned from, unsigned to)
2544 {
2545         struct inode *inode = page->mapping->host;
2546         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2547
2548         if (page_has_buffers(page))
2549                 return generic_commit_write(file, page, from, to);
2550
2551         SetPageUptodate(page);
2552         set_page_dirty(page);
2553         if (pos > inode->i_size) {
2554                 i_size_write(inode, pos);
2555                 mark_inode_dirty(inode);
2556         }
2557         return 0;
2558 }
2559 EXPORT_SYMBOL(nobh_commit_write);
2560
2561 /*
2562  * nobh_writepage() - based on block_full_write_page() except
2563  * that it tries to operate without attaching bufferheads to
2564  * the page.
2565  */
2566 int nobh_writepage(struct page *page, get_block_t *get_block,
2567                         struct writeback_control *wbc)
2568 {
2569         struct inode * const inode = page->mapping->host;
2570         loff_t i_size = i_size_read(inode);
2571         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2572         unsigned offset;
2573         int ret;
2574
2575         /* Is the page fully inside i_size? */
2576         if (page->index < end_index)
2577                 goto out;
2578
2579         /* Is the page fully outside i_size? (truncate in progress) */
2580         offset = i_size & (PAGE_CACHE_SIZE-1);
2581         if (page->index >= end_index+1 || !offset) {
2582                 /*
2583                  * The page may have dirty, unmapped buffers.  For example,
2584                  * they may have been added in ext3_writepage().  Make them
2585                  * freeable here, so the page does not leak.
2586                  */
2587 #if 0
2588                 /* Not really sure about this  - do we need this ? */
2589                 if (page->mapping->a_ops->invalidatepage)
2590                         page->mapping->a_ops->invalidatepage(page, offset);
2591 #endif
2592                 unlock_page(page);
2593                 return 0; /* don't care */
2594         }
2595
2596         /*
2597          * The page straddles i_size.  It must be zeroed out on each and every
2598          * writepage invocation because it may be mmapped.  "A file is mapped
2599          * in multiples of the page size.  For a file that is not a multiple of
2600          * the  page size, the remaining memory is zeroed when mapped, and
2601          * writes to that region are not written out to the file."
2602          */
2603         zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
2604 out:
2605         ret = mpage_writepage(page, get_block, wbc);
2606         if (ret == -EAGAIN)
2607                 ret = __block_write_full_page(inode, page, get_block, wbc);
2608         return ret;
2609 }
2610 EXPORT_SYMBOL(nobh_writepage);
2611
2612 /*
2613  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2614  */
2615 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2616 {
2617         struct inode *inode = mapping->host;
2618         unsigned blocksize = 1 << inode->i_blkbits;
2619         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2620         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2621         unsigned to;
2622         struct page *page;
2623         const struct address_space_operations *a_ops = mapping->a_ops;
2624         int ret = 0;
2625
2626         if ((offset & (blocksize - 1)) == 0)
2627                 goto out;
2628
2629         ret = -ENOMEM;
2630         page = grab_cache_page(mapping, index);
2631         if (!page)
2632                 goto out;
2633
2634         to = (offset + blocksize) & ~(blocksize - 1);
2635         ret = a_ops->prepare_write(NULL, page, offset, to);
2636         if (ret == 0) {
2637                 zero_user_page(page, offset, PAGE_CACHE_SIZE - offset,
2638                                 KM_USER0);
2639                 /*
2640                  * It would be more correct to call aops->commit_write()
2641                  * here, but this is more efficient.
2642                  */
2643                 SetPageUptodate(page);
2644                 set_page_dirty(page);
2645         }
2646         unlock_page(page);
2647         page_cache_release(page);
2648 out:
2649         return ret;
2650 }
2651 EXPORT_SYMBOL(nobh_truncate_page);
2652
2653 int block_truncate_page(struct address_space *mapping,
2654                         loff_t from, get_block_t *get_block)
2655 {
2656         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2657         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2658         unsigned blocksize;
2659         sector_t iblock;
2660         unsigned length, pos;
2661         struct inode *inode = mapping->host;
2662         struct page *page;
2663         struct buffer_head *bh;
2664         int err;
2665
2666         blocksize = 1 << inode->i_blkbits;
2667         length = offset & (blocksize - 1);
2668
2669         /* Block boundary? Nothing to do */
2670         if (!length)
2671                 return 0;
2672
2673         length = blocksize - length;
2674         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2675         
2676         page = grab_cache_page(mapping, index);
2677         err = -ENOMEM;
2678         if (!page)
2679                 goto out;
2680
2681         if (!page_has_buffers(page))
2682                 create_empty_buffers(page, blocksize, 0);
2683
2684         /* Find the buffer that contains "offset" */
2685         bh = page_buffers(page);
2686         pos = blocksize;
2687         while (offset >= pos) {
2688                 bh = bh->b_this_page;
2689                 iblock++;
2690                 pos += blocksize;
2691         }
2692
2693         err = 0;
2694         if (!buffer_mapped(bh)) {
2695                 WARN_ON(bh->b_size != blocksize);
2696                 err = get_block(inode, iblock, bh, 0);
2697                 if (err)
2698                         goto unlock;
2699                 /* unmapped? It's a hole - nothing to do */
2700                 if (!buffer_mapped(bh))
2701                         goto unlock;
2702         }
2703
2704         /* Ok, it's mapped. Make sure it's up-to-date */
2705         if (PageUptodate(page))
2706                 set_buffer_uptodate(bh);
2707
2708         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2709                 err = -EIO;
2710                 ll_rw_block(READ, 1, &bh);
2711                 wait_on_buffer(bh);
2712                 /* Uhhuh. Read error. Complain and punt. */
2713                 if (!buffer_uptodate(bh))
2714                         goto unlock;
2715         }
2716
2717         zero_user_page(page, offset, length, KM_USER0);
2718         mark_buffer_dirty(bh);
2719         err = 0;
2720
2721 unlock:
2722         unlock_page(page);
2723         page_cache_release(page);
2724 out:
2725         return err;
2726 }
2727
2728 /*
2729  * The generic ->writepage function for buffer-backed address_spaces
2730  */
2731 int block_write_full_page(struct page *page, get_block_t *get_block,
2732                         struct writeback_control *wbc)
2733 {
2734         struct inode * const inode = page->mapping->host;
2735         loff_t i_size = i_size_read(inode);
2736         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2737         unsigned offset;
2738
2739         /* Is the page fully inside i_size? */
2740         if (page->index < end_index)
2741                 return __block_write_full_page(inode, page, get_block, wbc);
2742
2743         /* Is the page fully outside i_size? (truncate in progress) */
2744         offset = i_size & (PAGE_CACHE_SIZE-1);
2745         if (page->index >= end_index+1 || !offset) {
2746                 /*
2747                  * The page may have dirty, unmapped buffers.  For example,
2748                  * they may have been added in ext3_writepage().  Make them
2749                  * freeable here, so the page does not leak.
2750                  */
2751                 do_invalidatepage(page, 0);
2752                 unlock_page(page);
2753                 return 0; /* don't care */
2754         }
2755
2756         /*
2757          * The page straddles i_size.  It must be zeroed out on each and every
2758          * writepage invokation because it may be mmapped.  "A file is mapped
2759          * in multiples of the page size.  For a file that is not a multiple of
2760          * the  page size, the remaining memory is zeroed when mapped, and
2761          * writes to that region are not written out to the file."
2762          */
2763         zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
2764         return __block_write_full_page(inode, page, get_block, wbc);
2765 }
2766
2767 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2768                             get_block_t *get_block)
2769 {
2770         struct buffer_head tmp;
2771         struct inode *inode = mapping->host;
2772         tmp.b_state = 0;
2773         tmp.b_blocknr = 0;
2774         tmp.b_size = 1 << inode->i_blkbits;
2775         get_block(inode, block, &tmp, 0);
2776         return tmp.b_blocknr;
2777 }
2778
2779 static void end_bio_bh_io_sync(struct bio *bio, int err)
2780 {
2781         struct buffer_head *bh = bio->bi_private;
2782
2783         if (err == -EOPNOTSUPP) {
2784                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2785                 set_bit(BH_Eopnotsupp, &bh->b_state);
2786         }
2787
2788         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2789         bio_put(bio);
2790 }
2791
2792 int submit_bh(int rw, struct buffer_head * bh)
2793 {
2794         struct bio *bio;
2795         int ret = 0;
2796
2797         BUG_ON(!buffer_locked(bh));
2798         BUG_ON(!buffer_mapped(bh));
2799         BUG_ON(!bh->b_end_io);
2800
2801         if (buffer_ordered(bh) && (rw == WRITE))
2802                 rw = WRITE_BARRIER;
2803
2804         /*
2805          * Only clear out a write error when rewriting, should this
2806          * include WRITE_SYNC as well?
2807          */
2808         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2809                 clear_buffer_write_io_error(bh);
2810
2811         /*
2812          * from here on down, it's all bio -- do the initial mapping,
2813          * submit_bio -> generic_make_request may further map this bio around
2814          */
2815         bio = bio_alloc(GFP_NOIO, 1);
2816
2817         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2818         bio->bi_bdev = bh->b_bdev;
2819         bio->bi_io_vec[0].bv_page = bh->b_page;
2820         bio->bi_io_vec[0].bv_len = bh->b_size;
2821         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2822
2823         bio->bi_vcnt = 1;
2824         bio->bi_idx = 0;
2825         bio->bi_size = bh->b_size;
2826
2827         bio->bi_end_io = end_bio_bh_io_sync;
2828         bio->bi_private = bh;
2829
2830         bio_get(bio);
2831         submit_bio(rw, bio);
2832
2833         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2834                 ret = -EOPNOTSUPP;
2835
2836         bio_put(bio);
2837         return ret;
2838 }
2839
2840 /**
2841  * ll_rw_block: low-level access to block devices (DEPRECATED)
2842  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2843  * @nr: number of &struct buffer_heads in the array
2844  * @bhs: array of pointers to &struct buffer_head
2845  *
2846  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2847  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2848  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2849  * are sent to disk. The fourth %READA option is described in the documentation
2850  * for generic_make_request() which ll_rw_block() calls.
2851  *
2852  * This function drops any buffer that it cannot get a lock on (with the
2853  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2854  * clean when doing a write request, and any buffer that appears to be
2855  * up-to-date when doing read request.  Further it marks as clean buffers that
2856  * are processed for writing (the buffer cache won't assume that they are
2857  * actually clean until the buffer gets unlocked).
2858  *
2859  * ll_rw_block sets b_end_io to simple completion handler that marks
2860  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2861  * any waiters. 
2862  *
2863  * All of the buffers must be for the same device, and must also be a
2864  * multiple of the current approved size for the device.
2865  */
2866 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2867 {
2868         int i;
2869
2870         for (i = 0; i < nr; i++) {
2871                 struct buffer_head *bh = bhs[i];
2872
2873                 if (rw == SWRITE)
2874                         lock_buffer(bh);
2875                 else if (test_set_buffer_locked(bh))
2876                         continue;
2877
2878                 if (rw == WRITE || rw == SWRITE) {
2879                         if (test_clear_buffer_dirty(bh)) {
2880                                 bh->b_end_io = end_buffer_write_sync;
2881                                 get_bh(bh);
2882                                 submit_bh(WRITE, bh);
2883                                 continue;
2884                         }
2885                 } else {
2886                         if (!buffer_uptodate(bh)) {
2887                                 bh->b_end_io = end_buffer_read_sync;
2888                                 get_bh(bh);
2889                                 submit_bh(rw, bh);
2890                                 continue;
2891                         }
2892                 }
2893                 unlock_buffer(bh);
2894         }
2895 }
2896
2897 /*
2898  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2899  * and then start new I/O and then wait upon it.  The caller must have a ref on
2900  * the buffer_head.
2901  */
2902 int sync_dirty_buffer(struct buffer_head *bh)
2903 {
2904         int ret = 0;
2905
2906         WARN_ON(atomic_read(&bh->b_count) < 1);
2907         lock_buffer(bh);
2908         if (test_clear_buffer_dirty(bh)) {
2909                 get_bh(bh);
2910                 bh->b_end_io = end_buffer_write_sync;
2911                 ret = submit_bh(WRITE, bh);
2912                 wait_on_buffer(bh);
2913                 if (buffer_eopnotsupp(bh)) {
2914                         clear_buffer_eopnotsupp(bh);
2915                         ret = -EOPNOTSUPP;
2916                 }
2917                 if (!ret && !buffer_uptodate(bh))
2918                         ret = -EIO;
2919         } else {
2920                 unlock_buffer(bh);
2921         }
2922         return ret;
2923 }
2924
2925 /*
2926  * try_to_free_buffers() checks if all the buffers on this particular page
2927  * are unused, and releases them if so.
2928  *
2929  * Exclusion against try_to_free_buffers may be obtained by either
2930  * locking the page or by holding its mapping's private_lock.
2931  *
2932  * If the page is dirty but all the buffers are clean then we need to
2933  * be sure to mark the page clean as well.  This is because the page
2934  * may be against a block device, and a later reattachment of buffers
2935  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2936  * filesystem data on the same device.
2937  *
2938  * The same applies to regular filesystem pages: if all the buffers are
2939  * clean then we set the page clean and proceed.  To do that, we require
2940  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2941  * private_lock.
2942  *
2943  * try_to_free_buffers() is non-blocking.
2944  */
2945 static inline int buffer_busy(struct buffer_head *bh)
2946 {
2947         return atomic_read(&bh->b_count) |
2948                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2949 }
2950
2951 static int
2952 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2953 {
2954         struct buffer_head *head = page_buffers(page);
2955         struct buffer_head *bh;
2956
2957         bh = head;
2958         do {
2959                 if (buffer_write_io_error(bh) && page->mapping)
2960                         set_bit(AS_EIO, &page->mapping->flags);
2961                 if (buffer_busy(bh))
2962                         goto failed;
2963                 bh = bh->b_this_page;
2964         } while (bh != head);
2965
2966         do {
2967                 struct buffer_head *next = bh->b_this_page;
2968
2969                 if (!list_empty(&bh->b_assoc_buffers))
2970                         __remove_assoc_queue(bh);
2971                 bh = next;
2972         } while (bh != head);
2973         *buffers_to_free = head;
2974         __clear_page_buffers(page);
2975         return 1;
2976 failed:
2977         return 0;
2978 }
2979
2980 int try_to_free_buffers(struct page *page)
2981 {
2982         struct address_space * const mapping = page->mapping;
2983         struct buffer_head *buffers_to_free = NULL;
2984         int ret = 0;
2985
2986         BUG_ON(!PageLocked(page));
2987         if (PageWriteback(page))
2988                 return 0;
2989
2990         if (mapping == NULL) {          /* can this still happen? */
2991                 ret = drop_buffers(page, &buffers_to_free);
2992                 goto out;
2993         }
2994
2995         spin_lock(&mapping->private_lock);
2996         ret = drop_buffers(page, &buffers_to_free);
2997
2998         /*
2999          * If the filesystem writes its buffers by hand (eg ext3)
3000          * then we can have clean buffers against a dirty page.  We
3001          * clean the page here; otherwise the VM will never notice
3002          * that the filesystem did any IO at all.
3003          *
3004          * Also, during truncate, discard_buffer will have marked all
3005          * the page's buffers clean.  We discover that here and clean
3006          * the page also.
3007          *
3008          * private_lock must be held over this entire operation in order
3009          * to synchronise against __set_page_dirty_buffers and prevent the
3010          * dirty bit from being lost.
3011          */
3012         if (ret)
3013                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3014         spin_unlock(&mapping->private_lock);
3015 out:
3016         if (buffers_to_free) {
3017                 struct buffer_head *bh = buffers_to_free;
3018
3019                 do {
3020                         struct buffer_head *next = bh->b_this_page;
3021                         free_buffer_head(bh);
3022                         bh = next;
3023                 } while (bh != buffers_to_free);
3024         }
3025         return ret;
3026 }
3027 EXPORT_SYMBOL(try_to_free_buffers);
3028
3029 void block_sync_page(struct page *page)
3030 {
3031         struct address_space *mapping;
3032
3033         smp_mb();
3034         mapping = page_mapping(page);
3035         if (mapping)
3036                 blk_run_backing_dev(mapping->backing_dev_info, page);
3037 }
3038
3039 /*
3040  * There are no bdflush tunables left.  But distributions are
3041  * still running obsolete flush daemons, so we terminate them here.
3042  *
3043  * Use of bdflush() is deprecated and will be removed in a future kernel.
3044  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3045  */
3046 asmlinkage long sys_bdflush(int func, long data)
3047 {
3048         static int msg_count;
3049
3050         if (!capable(CAP_SYS_ADMIN))
3051                 return -EPERM;
3052
3053         if (msg_count < 5) {
3054                 msg_count++;
3055                 printk(KERN_INFO
3056                         "warning: process `%s' used the obsolete bdflush"
3057                         " system call\n", current->comm);
3058                 printk(KERN_INFO "Fix your initscripts?\n");
3059         }
3060
3061         if (func == 1)
3062                 do_exit(0);
3063         return 0;
3064 }
3065
3066 /*
3067  * Buffer-head allocation
3068  */
3069 static struct kmem_cache *bh_cachep;
3070
3071 /*
3072  * Once the number of bh's in the machine exceeds this level, we start
3073  * stripping them in writeback.
3074  */
3075 static int max_buffer_heads;
3076
3077 int buffer_heads_over_limit;
3078
3079 struct bh_accounting {
3080         int nr;                 /* Number of live bh's */
3081         int ratelimit;          /* Limit cacheline bouncing */
3082 };
3083
3084 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3085
3086 static void recalc_bh_state(void)
3087 {
3088         int i;
3089         int tot = 0;
3090
3091         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3092                 return;
3093         __get_cpu_var(bh_accounting).ratelimit = 0;
3094         for_each_online_cpu(i)
3095                 tot += per_cpu(bh_accounting, i).nr;
3096         buffer_heads_over_limit = (tot > max_buffer_heads);
3097 }
3098         
3099 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3100 {
3101         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3102         if (ret) {
3103                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3104                 get_cpu_var(bh_accounting).nr++;
3105                 recalc_bh_state();
3106                 put_cpu_var(bh_accounting);
3107         }
3108         return ret;
3109 }
3110 EXPORT_SYMBOL(alloc_buffer_head);
3111
3112 void free_buffer_head(struct buffer_head *bh)
3113 {
3114         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3115         kmem_cache_free(bh_cachep, bh);
3116         get_cpu_var(bh_accounting).nr--;
3117         recalc_bh_state();
3118         put_cpu_var(bh_accounting);
3119 }
3120 EXPORT_SYMBOL(free_buffer_head);
3121
3122 static void buffer_exit_cpu(int cpu)
3123 {
3124         int i;
3125         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3126
3127         for (i = 0; i < BH_LRU_SIZE; i++) {
3128                 brelse(b->bhs[i]);
3129                 b->bhs[i] = NULL;
3130         }
3131         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3132         per_cpu(bh_accounting, cpu).nr = 0;
3133         put_cpu_var(bh_accounting);
3134 }
3135
3136 static int buffer_cpu_notify(struct notifier_block *self,
3137                               unsigned long action, void *hcpu)
3138 {
3139         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3140                 buffer_exit_cpu((unsigned long)hcpu);
3141         return NOTIFY_OK;
3142 }
3143
3144 void __init buffer_init(void)
3145 {
3146         int nrpages;
3147
3148         bh_cachep = KMEM_CACHE(buffer_head,
3149                         SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3150
3151         /*
3152          * Limit the bh occupancy to 10% of ZONE_NORMAL
3153          */
3154         nrpages = (nr_free_buffer_pages() * 10) / 100;
3155         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3156         hotcpu_notifier(buffer_cpu_notify, 0);
3157 }
3158
3159 EXPORT_SYMBOL(__bforget);
3160 EXPORT_SYMBOL(__brelse);
3161 EXPORT_SYMBOL(__wait_on_buffer);
3162 EXPORT_SYMBOL(block_commit_write);
3163 EXPORT_SYMBOL(block_prepare_write);
3164 EXPORT_SYMBOL(block_page_mkwrite);
3165 EXPORT_SYMBOL(block_read_full_page);
3166 EXPORT_SYMBOL(block_sync_page);
3167 EXPORT_SYMBOL(block_truncate_page);
3168 EXPORT_SYMBOL(block_write_full_page);
3169 EXPORT_SYMBOL(cont_write_begin);
3170 EXPORT_SYMBOL(end_buffer_read_sync);
3171 EXPORT_SYMBOL(end_buffer_write_sync);
3172 EXPORT_SYMBOL(file_fsync);
3173 EXPORT_SYMBOL(fsync_bdev);
3174 EXPORT_SYMBOL(generic_block_bmap);
3175 EXPORT_SYMBOL(generic_commit_write);
3176 EXPORT_SYMBOL(generic_cont_expand_simple);
3177 EXPORT_SYMBOL(init_buffer);
3178 EXPORT_SYMBOL(invalidate_bdev);
3179 EXPORT_SYMBOL(ll_rw_block);
3180 EXPORT_SYMBOL(mark_buffer_dirty);
3181 EXPORT_SYMBOL(submit_bh);
3182 EXPORT_SYMBOL(sync_dirty_buffer);
3183 EXPORT_SYMBOL(unlock_buffer);