Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes...
[linux-2.6] / Documentation / ia64 / fsys.txt
1 -*-Mode: outline-*-
2
3                 Light-weight System Calls for IA-64
4                 -----------------------------------
5
6                         Started: 13-Jan-2003
7                     Last update: 27-Sep-2003
8
9                       David Mosberger-Tang
10                       <davidm@hpl.hp.com>
11
12 Using the "epc" instruction effectively introduces a new mode of
13 execution to the ia64 linux kernel.  We call this mode the
14 "fsys-mode".  To recap, the normal states of execution are:
15
16   - kernel mode:
17         Both the register stack and the memory stack have been
18         switched over to kernel memory.  The user-level state is saved
19         in a pt-regs structure at the top of the kernel memory stack.
20
21   - user mode:
22         Both the register stack and the kernel stack are in
23         user memory.  The user-level state is contained in the
24         CPU registers.
25
26   - bank 0 interruption-handling mode:
27         This is the non-interruptible state which all
28         interruption-handlers start execution in.  The user-level
29         state remains in the CPU registers and some kernel state may
30         be stored in bank 0 of registers r16-r31.
31
32 In contrast, fsys-mode has the following special properties:
33
34   - execution is at privilege level 0 (most-privileged)
35
36   - CPU registers may contain a mixture of user-level and kernel-level
37     state (it is the responsibility of the kernel to ensure that no
38     security-sensitive kernel-level state is leaked back to
39     user-level)
40
41   - execution is interruptible and preemptible (an fsys-mode handler
42     can disable interrupts and avoid all other interruption-sources
43     to avoid preemption)
44
45   - neither the memory-stack nor the register-stack can be trusted while
46     in fsys-mode (they point to the user-level stacks, which may
47     be invalid, or completely bogus addresses)
48
49 In summary, fsys-mode is much more similar to running in user-mode
50 than it is to running in kernel-mode.  Of course, given that the
51 privilege level is at level 0, this means that fsys-mode requires some
52 care (see below).
53
54
55 * How to tell fsys-mode
56
57 Linux operates in fsys-mode when (a) the privilege level is 0 (most
58 privileged) and (b) the stacks have NOT been switched to kernel memory
59 yet.  For convenience, the header file <asm-ia64/ptrace.h> provides
60 three macros:
61
62         user_mode(regs)
63         user_stack(task,regs)
64         fsys_mode(task,regs)
65
66 The "regs" argument is a pointer to a pt_regs structure.  The "task"
67 argument is a pointer to the task structure to which the "regs"
68 pointer belongs to.  user_mode() returns TRUE if the CPU state pointed
69 to by "regs" was executing in user mode (privilege level 3).
70 user_stack() returns TRUE if the state pointed to by "regs" was
71 executing on the user-level stack(s).  Finally, fsys_mode() returns
72 TRUE if the CPU state pointed to by "regs" was executing in fsys-mode.
73 The fsys_mode() macro is equivalent to the expression:
74
75         !user_mode(regs) && user_stack(task,regs)
76
77 * How to write an fsyscall handler
78
79 The file arch/ia64/kernel/fsys.S contains a table of fsyscall-handlers
80 (fsyscall_table).  This table contains one entry for each system call.
81 By default, a system call is handled by fsys_fallback_syscall().  This
82 routine takes care of entering (full) kernel mode and calling the
83 normal Linux system call handler.  For performance-critical system
84 calls, it is possible to write a hand-tuned fsyscall_handler.  For
85 example, fsys.S contains fsys_getpid(), which is a hand-tuned version
86 of the getpid() system call.
87
88 The entry and exit-state of an fsyscall handler is as follows:
89
90 ** Machine state on entry to fsyscall handler:
91
92  - r10    = 0
93  - r11    = saved ar.pfs (a user-level value)
94  - r15    = system call number
95  - r16    = "current" task pointer (in normal kernel-mode, this is in r13)
96  - r32-r39 = system call arguments
97  - b6     = return address (a user-level value)
98  - ar.pfs = previous frame-state (a user-level value)
99  - PSR.be = cleared to zero (i.e., little-endian byte order is in effect)
100  - all other registers may contain values passed in from user-mode
101
102 ** Required machine state on exit to fsyscall handler:
103
104  - r11    = saved ar.pfs (as passed into the fsyscall handler)
105  - r15    = system call number (as passed into the fsyscall handler)
106  - r32-r39 = system call arguments (as passed into the fsyscall handler)
107  - b6     = return address (as passed into the fsyscall handler)
108  - ar.pfs = previous frame-state (as passed into the fsyscall handler)
109
110 Fsyscall handlers can execute with very little overhead, but with that
111 speed comes a set of restrictions:
112
113  o Fsyscall-handlers MUST check for any pending work in the flags
114    member of the thread-info structure and if any of the
115    TIF_ALLWORK_MASK flags are set, the handler needs to fall back on
116    doing a full system call (by calling fsys_fallback_syscall).
117
118  o Fsyscall-handlers MUST preserve incoming arguments (r32-r39, r11,
119    r15, b6, and ar.pfs) because they will be needed in case of a
120    system call restart.  Of course, all "preserved" registers also
121    must be preserved, in accordance to the normal calling conventions.
122
123  o Fsyscall-handlers MUST check argument registers for containing a
124    NaT value before using them in any way that could trigger a
125    NaT-consumption fault.  If a system call argument is found to
126    contain a NaT value, an fsyscall-handler may return immediately
127    with r8=EINVAL, r10=-1.
128
129  o Fsyscall-handlers MUST NOT use the "alloc" instruction or perform
130    any other operation that would trigger mandatory RSE
131    (register-stack engine) traffic.
132
133  o Fsyscall-handlers MUST NOT write to any stacked registers because
134    it is not safe to assume that user-level called a handler with the
135    proper number of arguments.
136
137  o Fsyscall-handlers need to be careful when accessing per-CPU variables:
138    unless proper safe-guards are taken (e.g., interruptions are avoided),
139    execution may be pre-empted and resumed on another CPU at any given
140    time.
141
142  o Fsyscall-handlers must be careful not to leak sensitive kernel'
143    information back to user-level.  In particular, before returning to
144    user-level, care needs to be taken to clear any scratch registers
145    that could contain sensitive information (note that the current
146    task pointer is not considered sensitive: it's already exposed
147    through ar.k6).
148
149  o Fsyscall-handlers MUST NOT access user-memory without first
150    validating access-permission (this can be done typically via
151    probe.r.fault and/or probe.w.fault) and without guarding against
152    memory access exceptions (this can be done with the EX() macros
153    defined by asmmacro.h).
154
155 The above restrictions may seem draconian, but remember that it's
156 possible to trade off some of the restrictions by paying a slightly
157 higher overhead.  For example, if an fsyscall-handler could benefit
158 from the shadow register bank, it could temporarily disable PSR.i and
159 PSR.ic, switch to bank 0 (bsw.0) and then use the shadow registers as
160 needed.  In other words, following the above rules yields extremely
161 fast system call execution (while fully preserving system call
162 semantics), but there is also a lot of flexibility in handling more
163 complicated cases.
164
165 * Signal handling
166
167 The delivery of (asynchronous) signals must be delayed until fsys-mode
168 is exited.  This is accomplished with the help of the lower-privilege
169 transfer trap: arch/ia64/kernel/process.c:do_notify_resume_user()
170 checks whether the interrupted task was in fsys-mode and, if so, sets
171 PSR.lp and returns immediately.  When fsys-mode is exited via the
172 "br.ret" instruction that lowers the privilege level, a trap will
173 occur.  The trap handler clears PSR.lp again and returns immediately.
174 The kernel exit path then checks for and delivers any pending signals.
175
176 * PSR Handling
177
178 The "epc" instruction doesn't change the contents of PSR at all.  This
179 is in contrast to a regular interruption, which clears almost all
180 bits.  Because of that, some care needs to be taken to ensure things
181 work as expected.  The following discussion describes how each PSR bit
182 is handled.
183
184 PSR.be  Cleared when entering fsys-mode.  A srlz.d instruction is used
185         to ensure the CPU is in little-endian mode before the first
186         load/store instruction is executed.  PSR.be is normally NOT
187         restored upon return from an fsys-mode handler.  In other
188         words, user-level code must not rely on PSR.be being preserved
189         across a system call.
190 PSR.up  Unchanged.
191 PSR.ac  Unchanged.
192 PSR.mfl Unchanged.  Note: fsys-mode handlers must not write-registers!
193 PSR.mfh Unchanged.  Note: fsys-mode handlers must not write-registers!
194 PSR.ic  Unchanged.  Note: fsys-mode handlers can clear the bit, if needed.
195 PSR.i   Unchanged.  Note: fsys-mode handlers can clear the bit, if needed.
196 PSR.pk  Unchanged.
197 PSR.dt  Unchanged.
198 PSR.dfl Unchanged.  Note: fsys-mode handlers must not write-registers!
199 PSR.dfh Unchanged.  Note: fsys-mode handlers must not write-registers!
200 PSR.sp  Unchanged.
201 PSR.pp  Unchanged.
202 PSR.di  Unchanged.
203 PSR.si  Unchanged.
204 PSR.db  Unchanged.  The kernel prevents user-level from setting a hardware
205         breakpoint that triggers at any privilege level other than 3 (user-mode).
206 PSR.lp  Unchanged.
207 PSR.tb  Lazy redirect.  If a taken-branch trap occurs while in
208         fsys-mode, the trap-handler modifies the saved machine state
209         such that execution resumes in the gate page at
210         syscall_via_break(), with privilege level 3.  Note: the
211         taken branch would occur on the branch invoking the
212         fsyscall-handler, at which point, by definition, a syscall
213         restart is still safe.  If the system call number is invalid,
214         the fsys-mode handler will return directly to user-level.  This
215         return will trigger a taken-branch trap, but since the trap is
216         taken _after_ restoring the privilege level, the CPU has already
217         left fsys-mode, so no special treatment is needed.
218 PSR.rt  Unchanged.
219 PSR.cpl Cleared to 0.
220 PSR.is  Unchanged (guaranteed to be 0 on entry to the gate page).
221 PSR.mc  Unchanged.
222 PSR.it  Unchanged (guaranteed to be 1).
223 PSR.id  Unchanged.  Note: the ia64 linux kernel never sets this bit.
224 PSR.da  Unchanged.  Note: the ia64 linux kernel never sets this bit.
225 PSR.dd  Unchanged.  Note: the ia64 linux kernel never sets this bit.
226 PSR.ss  Lazy redirect.  If set, "epc" will cause a Single Step Trap to
227         be taken.  The trap handler then modifies the saved machine
228         state such that execution resumes in the gate page at
229         syscall_via_break(), with privilege level 3.
230 PSR.ri  Unchanged.
231 PSR.ed  Unchanged.  Note: This bit could only have an effect if an fsys-mode
232         handler performed a speculative load that gets NaTted.  If so, this
233         would be the normal & expected behavior, so no special treatment is
234         needed.
235 PSR.bn  Unchanged.  Note: fsys-mode handlers may clear the bit, if needed.
236         Doing so requires clearing PSR.i and PSR.ic as well.
237 PSR.ia  Unchanged.  Note: the ia64 linux kernel never sets this bit.
238
239 * Using fast system calls
240
241 To use fast system calls, userspace applications need simply call
242 __kernel_syscall_via_epc().  For example
243
244 -- example fgettimeofday() call --
245 -- fgettimeofday.S --
246
247 #include <asm/asmmacro.h>
248
249 GLOBAL_ENTRY(fgettimeofday)
250 .prologue
251 .save ar.pfs, r11
252 mov r11 = ar.pfs
253 .body 
254
255 mov r2 = 0xa000000000020660;;  // gate address 
256                                // found by inspection of System.map for the 
257                                // __kernel_syscall_via_epc() function.  See
258                                // below for how to do this for real.
259
260 mov b7 = r2
261 mov r15 = 1087                 // gettimeofday syscall
262 ;;
263 br.call.sptk.many b6 = b7
264 ;;
265
266 .restore sp
267
268 mov ar.pfs = r11
269 br.ret.sptk.many rp;;         // return to caller
270 END(fgettimeofday)
271
272 -- end fgettimeofday.S --
273
274 In reality, getting the gate address is accomplished by two extra
275 values passed via the ELF auxiliary vector (include/asm-ia64/elf.h)
276
277  o AT_SYSINFO : is the address of __kernel_syscall_via_epc()
278  o AT_SYSINFO_EHDR : is the address of the kernel gate ELF DSO
279
280 The ELF DSO is a pre-linked library that is mapped in by the kernel at
281 the gate page.  It is a proper ELF shared object so, with a dynamic
282 loader that recognises the library, you should be able to make calls to
283 the exported functions within it as with any other shared library.
284 AT_SYSINFO points into the kernel DSO at the
285 __kernel_syscall_via_epc() function for historical reasons (it was
286 used before the kernel DSO) and as a convenience.