4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/config.h>
8 #include <linux/module.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
33 #include <linux/compat.h>
34 #include <linux/syscalls.h>
35 #include <linux/kprobes.h>
37 #include <asm/uaccess.h>
39 #include <asm/unistd.h>
41 #ifndef SET_UNALIGN_CTL
42 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
44 #ifndef GET_UNALIGN_CTL
45 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
48 # define SET_FPEMU_CTL(a,b) (-EINVAL)
51 # define GET_FPEMU_CTL(a,b) (-EINVAL)
54 # define SET_FPEXC_CTL(a,b) (-EINVAL)
57 # define GET_FPEXC_CTL(a,b) (-EINVAL)
61 * this is where the system-wide overflow UID and GID are defined, for
62 * architectures that now have 32-bit UID/GID but didn't in the past
65 int overflowuid = DEFAULT_OVERFLOWUID;
66 int overflowgid = DEFAULT_OVERFLOWGID;
69 EXPORT_SYMBOL(overflowuid);
70 EXPORT_SYMBOL(overflowgid);
74 * the same as above, but for filesystems which can only store a 16-bit
75 * UID and GID. as such, this is needed on all architectures
78 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
79 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
81 EXPORT_SYMBOL(fs_overflowuid);
82 EXPORT_SYMBOL(fs_overflowgid);
85 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
92 * Notifier list for kernel code which wants to be called
93 * at shutdown. This is used to stop any idling DMA operations
97 static struct notifier_block *reboot_notifier_list;
98 static DEFINE_RWLOCK(notifier_lock);
101 * notifier_chain_register - Add notifier to a notifier chain
102 * @list: Pointer to root list pointer
103 * @n: New entry in notifier chain
105 * Adds a notifier to a notifier chain.
107 * Currently always returns zero.
110 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
112 write_lock(¬ifier_lock);
115 if(n->priority > (*list)->priority)
117 list= &((*list)->next);
121 write_unlock(¬ifier_lock);
125 EXPORT_SYMBOL(notifier_chain_register);
128 * notifier_chain_unregister - Remove notifier from a notifier chain
129 * @nl: Pointer to root list pointer
130 * @n: New entry in notifier chain
132 * Removes a notifier from a notifier chain.
134 * Returns zero on success, or %-ENOENT on failure.
137 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
139 write_lock(¬ifier_lock);
145 write_unlock(¬ifier_lock);
150 write_unlock(¬ifier_lock);
154 EXPORT_SYMBOL(notifier_chain_unregister);
157 * notifier_call_chain - Call functions in a notifier chain
158 * @n: Pointer to root pointer of notifier chain
159 * @val: Value passed unmodified to notifier function
160 * @v: Pointer passed unmodified to notifier function
162 * Calls each function in a notifier chain in turn.
164 * If the return value of the notifier can be and'd
165 * with %NOTIFY_STOP_MASK, then notifier_call_chain
166 * will return immediately, with the return value of
167 * the notifier function which halted execution.
168 * Otherwise, the return value is the return value
169 * of the last notifier function called.
172 int __kprobes notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
175 struct notifier_block *nb = *n;
179 ret=nb->notifier_call(nb,val,v);
180 if(ret&NOTIFY_STOP_MASK)
189 EXPORT_SYMBOL(notifier_call_chain);
192 * register_reboot_notifier - Register function to be called at reboot time
193 * @nb: Info about notifier function to be called
195 * Registers a function with the list of functions
196 * to be called at reboot time.
198 * Currently always returns zero, as notifier_chain_register
199 * always returns zero.
202 int register_reboot_notifier(struct notifier_block * nb)
204 return notifier_chain_register(&reboot_notifier_list, nb);
207 EXPORT_SYMBOL(register_reboot_notifier);
210 * unregister_reboot_notifier - Unregister previously registered reboot notifier
211 * @nb: Hook to be unregistered
213 * Unregisters a previously registered reboot
216 * Returns zero on success, or %-ENOENT on failure.
219 int unregister_reboot_notifier(struct notifier_block * nb)
221 return notifier_chain_unregister(&reboot_notifier_list, nb);
224 EXPORT_SYMBOL(unregister_reboot_notifier);
226 static int set_one_prio(struct task_struct *p, int niceval, int error)
230 if (p->uid != current->euid &&
231 p->euid != current->euid && !capable(CAP_SYS_NICE)) {
235 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
239 no_nice = security_task_setnice(p, niceval);
246 set_user_nice(p, niceval);
251 asmlinkage long sys_setpriority(int which, int who, int niceval)
253 struct task_struct *g, *p;
254 struct user_struct *user;
257 if (which > 2 || which < 0)
260 /* normalize: avoid signed division (rounding problems) */
267 read_lock(&tasklist_lock);
272 p = find_task_by_pid(who);
274 error = set_one_prio(p, niceval, error);
278 who = process_group(current);
279 do_each_task_pid(who, PIDTYPE_PGID, p) {
280 error = set_one_prio(p, niceval, error);
281 } while_each_task_pid(who, PIDTYPE_PGID, p);
284 user = current->user;
288 if ((who != current->uid) && !(user = find_user(who)))
289 goto out_unlock; /* No processes for this user */
293 error = set_one_prio(p, niceval, error);
294 while_each_thread(g, p);
295 if (who != current->uid)
296 free_uid(user); /* For find_user() */
300 read_unlock(&tasklist_lock);
306 * Ugh. To avoid negative return values, "getpriority()" will
307 * not return the normal nice-value, but a negated value that
308 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
309 * to stay compatible.
311 asmlinkage long sys_getpriority(int which, int who)
313 struct task_struct *g, *p;
314 struct user_struct *user;
315 long niceval, retval = -ESRCH;
317 if (which > 2 || which < 0)
320 read_lock(&tasklist_lock);
325 p = find_task_by_pid(who);
327 niceval = 20 - task_nice(p);
328 if (niceval > retval)
334 who = process_group(current);
335 do_each_task_pid(who, PIDTYPE_PGID, p) {
336 niceval = 20 - task_nice(p);
337 if (niceval > retval)
339 } while_each_task_pid(who, PIDTYPE_PGID, p);
342 user = current->user;
346 if ((who != current->uid) && !(user = find_user(who)))
347 goto out_unlock; /* No processes for this user */
351 niceval = 20 - task_nice(p);
352 if (niceval > retval)
355 while_each_thread(g, p);
356 if (who != current->uid)
357 free_uid(user); /* for find_user() */
361 read_unlock(&tasklist_lock);
367 * emergency_restart - reboot the system
369 * Without shutting down any hardware or taking any locks
370 * reboot the system. This is called when we know we are in
371 * trouble so this is our best effort to reboot. This is
372 * safe to call in interrupt context.
374 void emergency_restart(void)
376 machine_emergency_restart();
378 EXPORT_SYMBOL_GPL(emergency_restart);
380 void kernel_restart_prepare(char *cmd)
382 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
383 system_state = SYSTEM_RESTART;
388 * kernel_restart - reboot the system
389 * @cmd: pointer to buffer containing command to execute for restart
392 * Shutdown everything and perform a clean reboot.
393 * This is not safe to call in interrupt context.
395 void kernel_restart(char *cmd)
397 kernel_restart_prepare(cmd);
399 printk(KERN_EMERG "Restarting system.\n");
401 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
404 machine_restart(cmd);
406 EXPORT_SYMBOL_GPL(kernel_restart);
409 * kernel_kexec - reboot the system
411 * Move into place and start executing a preloaded standalone
412 * executable. If nothing was preloaded return an error.
414 void kernel_kexec(void)
417 struct kimage *image;
418 image = xchg(&kexec_image, 0);
422 kernel_restart_prepare(NULL);
423 printk(KERN_EMERG "Starting new kernel\n");
425 machine_kexec(image);
428 EXPORT_SYMBOL_GPL(kernel_kexec);
431 * kernel_halt - halt the system
433 * Shutdown everything and perform a clean system halt.
435 void kernel_halt_prepare(void)
437 notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
438 system_state = SYSTEM_HALT;
441 void kernel_halt(void)
443 kernel_halt_prepare();
444 printk(KERN_EMERG "System halted.\n");
447 EXPORT_SYMBOL_GPL(kernel_halt);
450 * kernel_power_off - power_off the system
452 * Shutdown everything and perform a clean system power_off.
454 void kernel_power_off_prepare(void)
456 notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
457 system_state = SYSTEM_POWER_OFF;
460 void kernel_power_off(void)
462 kernel_power_off_prepare();
463 printk(KERN_EMERG "Power down.\n");
466 EXPORT_SYMBOL_GPL(kernel_power_off);
469 * Reboot system call: for obvious reasons only root may call it,
470 * and even root needs to set up some magic numbers in the registers
471 * so that some mistake won't make this reboot the whole machine.
472 * You can also set the meaning of the ctrl-alt-del-key here.
474 * reboot doesn't sync: do that yourself before calling this.
476 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
480 /* We only trust the superuser with rebooting the system. */
481 if (!capable(CAP_SYS_BOOT))
484 /* For safety, we require "magic" arguments. */
485 if (magic1 != LINUX_REBOOT_MAGIC1 ||
486 (magic2 != LINUX_REBOOT_MAGIC2 &&
487 magic2 != LINUX_REBOOT_MAGIC2A &&
488 magic2 != LINUX_REBOOT_MAGIC2B &&
489 magic2 != LINUX_REBOOT_MAGIC2C))
494 case LINUX_REBOOT_CMD_RESTART:
495 kernel_restart(NULL);
498 case LINUX_REBOOT_CMD_CAD_ON:
502 case LINUX_REBOOT_CMD_CAD_OFF:
506 case LINUX_REBOOT_CMD_HALT:
512 case LINUX_REBOOT_CMD_POWER_OFF:
518 case LINUX_REBOOT_CMD_RESTART2:
519 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
523 buffer[sizeof(buffer) - 1] = '\0';
525 kernel_restart(buffer);
528 case LINUX_REBOOT_CMD_KEXEC:
533 #ifdef CONFIG_SOFTWARE_SUSPEND
534 case LINUX_REBOOT_CMD_SW_SUSPEND:
536 int ret = software_suspend();
550 static void deferred_cad(void *dummy)
552 kernel_restart(NULL);
556 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
557 * As it's called within an interrupt, it may NOT sync: the only choice
558 * is whether to reboot at once, or just ignore the ctrl-alt-del.
560 void ctrl_alt_del(void)
562 static DECLARE_WORK(cad_work, deferred_cad, NULL);
565 schedule_work(&cad_work);
567 kill_proc(cad_pid, SIGINT, 1);
572 * Unprivileged users may change the real gid to the effective gid
573 * or vice versa. (BSD-style)
575 * If you set the real gid at all, or set the effective gid to a value not
576 * equal to the real gid, then the saved gid is set to the new effective gid.
578 * This makes it possible for a setgid program to completely drop its
579 * privileges, which is often a useful assertion to make when you are doing
580 * a security audit over a program.
582 * The general idea is that a program which uses just setregid() will be
583 * 100% compatible with BSD. A program which uses just setgid() will be
584 * 100% compatible with POSIX with saved IDs.
586 * SMP: There are not races, the GIDs are checked only by filesystem
587 * operations (as far as semantic preservation is concerned).
589 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
591 int old_rgid = current->gid;
592 int old_egid = current->egid;
593 int new_rgid = old_rgid;
594 int new_egid = old_egid;
597 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
601 if (rgid != (gid_t) -1) {
602 if ((old_rgid == rgid) ||
603 (current->egid==rgid) ||
609 if (egid != (gid_t) -1) {
610 if ((old_rgid == egid) ||
611 (current->egid == egid) ||
612 (current->sgid == egid) ||
619 if (new_egid != old_egid)
621 current->mm->dumpable = suid_dumpable;
624 if (rgid != (gid_t) -1 ||
625 (egid != (gid_t) -1 && egid != old_rgid))
626 current->sgid = new_egid;
627 current->fsgid = new_egid;
628 current->egid = new_egid;
629 current->gid = new_rgid;
630 key_fsgid_changed(current);
631 proc_id_connector(current, PROC_EVENT_GID);
636 * setgid() is implemented like SysV w/ SAVED_IDS
638 * SMP: Same implicit races as above.
640 asmlinkage long sys_setgid(gid_t gid)
642 int old_egid = current->egid;
645 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
649 if (capable(CAP_SETGID))
653 current->mm->dumpable = suid_dumpable;
656 current->gid = current->egid = current->sgid = current->fsgid = gid;
658 else if ((gid == current->gid) || (gid == current->sgid))
662 current->mm->dumpable = suid_dumpable;
665 current->egid = current->fsgid = gid;
670 key_fsgid_changed(current);
671 proc_id_connector(current, PROC_EVENT_GID);
675 static int set_user(uid_t new_ruid, int dumpclear)
677 struct user_struct *new_user;
679 new_user = alloc_uid(new_ruid);
683 if (atomic_read(&new_user->processes) >=
684 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
685 new_user != &root_user) {
690 switch_uid(new_user);
694 current->mm->dumpable = suid_dumpable;
697 current->uid = new_ruid;
702 * Unprivileged users may change the real uid to the effective uid
703 * or vice versa. (BSD-style)
705 * If you set the real uid at all, or set the effective uid to a value not
706 * equal to the real uid, then the saved uid is set to the new effective uid.
708 * This makes it possible for a setuid program to completely drop its
709 * privileges, which is often a useful assertion to make when you are doing
710 * a security audit over a program.
712 * The general idea is that a program which uses just setreuid() will be
713 * 100% compatible with BSD. A program which uses just setuid() will be
714 * 100% compatible with POSIX with saved IDs.
716 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
718 int old_ruid, old_euid, old_suid, new_ruid, new_euid;
721 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
725 new_ruid = old_ruid = current->uid;
726 new_euid = old_euid = current->euid;
727 old_suid = current->suid;
729 if (ruid != (uid_t) -1) {
731 if ((old_ruid != ruid) &&
732 (current->euid != ruid) &&
733 !capable(CAP_SETUID))
737 if (euid != (uid_t) -1) {
739 if ((old_ruid != euid) &&
740 (current->euid != euid) &&
741 (current->suid != euid) &&
742 !capable(CAP_SETUID))
746 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
749 if (new_euid != old_euid)
751 current->mm->dumpable = suid_dumpable;
754 current->fsuid = current->euid = new_euid;
755 if (ruid != (uid_t) -1 ||
756 (euid != (uid_t) -1 && euid != old_ruid))
757 current->suid = current->euid;
758 current->fsuid = current->euid;
760 key_fsuid_changed(current);
761 proc_id_connector(current, PROC_EVENT_UID);
763 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
769 * setuid() is implemented like SysV with SAVED_IDS
771 * Note that SAVED_ID's is deficient in that a setuid root program
772 * like sendmail, for example, cannot set its uid to be a normal
773 * user and then switch back, because if you're root, setuid() sets
774 * the saved uid too. If you don't like this, blame the bright people
775 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
776 * will allow a root program to temporarily drop privileges and be able to
777 * regain them by swapping the real and effective uid.
779 asmlinkage long sys_setuid(uid_t uid)
781 int old_euid = current->euid;
782 int old_ruid, old_suid, new_ruid, new_suid;
785 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
789 old_ruid = new_ruid = current->uid;
790 old_suid = current->suid;
793 if (capable(CAP_SETUID)) {
794 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
797 } else if ((uid != current->uid) && (uid != new_suid))
802 current->mm->dumpable = suid_dumpable;
805 current->fsuid = current->euid = uid;
806 current->suid = new_suid;
808 key_fsuid_changed(current);
809 proc_id_connector(current, PROC_EVENT_UID);
811 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
816 * This function implements a generic ability to update ruid, euid,
817 * and suid. This allows you to implement the 4.4 compatible seteuid().
819 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
821 int old_ruid = current->uid;
822 int old_euid = current->euid;
823 int old_suid = current->suid;
826 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
830 if (!capable(CAP_SETUID)) {
831 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
832 (ruid != current->euid) && (ruid != current->suid))
834 if ((euid != (uid_t) -1) && (euid != current->uid) &&
835 (euid != current->euid) && (euid != current->suid))
837 if ((suid != (uid_t) -1) && (suid != current->uid) &&
838 (suid != current->euid) && (suid != current->suid))
841 if (ruid != (uid_t) -1) {
842 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
845 if (euid != (uid_t) -1) {
846 if (euid != current->euid)
848 current->mm->dumpable = suid_dumpable;
851 current->euid = euid;
853 current->fsuid = current->euid;
854 if (suid != (uid_t) -1)
855 current->suid = suid;
857 key_fsuid_changed(current);
858 proc_id_connector(current, PROC_EVENT_UID);
860 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
863 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
867 if (!(retval = put_user(current->uid, ruid)) &&
868 !(retval = put_user(current->euid, euid)))
869 retval = put_user(current->suid, suid);
875 * Same as above, but for rgid, egid, sgid.
877 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
881 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
885 if (!capable(CAP_SETGID)) {
886 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
887 (rgid != current->egid) && (rgid != current->sgid))
889 if ((egid != (gid_t) -1) && (egid != current->gid) &&
890 (egid != current->egid) && (egid != current->sgid))
892 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
893 (sgid != current->egid) && (sgid != current->sgid))
896 if (egid != (gid_t) -1) {
897 if (egid != current->egid)
899 current->mm->dumpable = suid_dumpable;
902 current->egid = egid;
904 current->fsgid = current->egid;
905 if (rgid != (gid_t) -1)
907 if (sgid != (gid_t) -1)
908 current->sgid = sgid;
910 key_fsgid_changed(current);
911 proc_id_connector(current, PROC_EVENT_GID);
915 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
919 if (!(retval = put_user(current->gid, rgid)) &&
920 !(retval = put_user(current->egid, egid)))
921 retval = put_user(current->sgid, sgid);
928 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
929 * is used for "access()" and for the NFS daemon (letting nfsd stay at
930 * whatever uid it wants to). It normally shadows "euid", except when
931 * explicitly set by setfsuid() or for access..
933 asmlinkage long sys_setfsuid(uid_t uid)
937 old_fsuid = current->fsuid;
938 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
941 if (uid == current->uid || uid == current->euid ||
942 uid == current->suid || uid == current->fsuid ||
945 if (uid != old_fsuid)
947 current->mm->dumpable = suid_dumpable;
950 current->fsuid = uid;
953 key_fsuid_changed(current);
954 proc_id_connector(current, PROC_EVENT_UID);
956 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
962 * Samma på svenska..
964 asmlinkage long sys_setfsgid(gid_t gid)
968 old_fsgid = current->fsgid;
969 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
972 if (gid == current->gid || gid == current->egid ||
973 gid == current->sgid || gid == current->fsgid ||
976 if (gid != old_fsgid)
978 current->mm->dumpable = suid_dumpable;
981 current->fsgid = gid;
982 key_fsgid_changed(current);
983 proc_id_connector(current, PROC_EVENT_GID);
988 asmlinkage long sys_times(struct tms __user * tbuf)
991 * In the SMP world we might just be unlucky and have one of
992 * the times increment as we use it. Since the value is an
993 * atomically safe type this is just fine. Conceptually its
994 * as if the syscall took an instant longer to occur.
998 cputime_t utime, stime, cutime, cstime;
1001 if (thread_group_empty(current)) {
1003 * Single thread case without the use of any locks.
1005 * We may race with release_task if two threads are
1006 * executing. However, release task first adds up the
1007 * counters (__exit_signal) before removing the task
1008 * from the process tasklist (__unhash_process).
1009 * __exit_signal also acquires and releases the
1010 * siglock which results in the proper memory ordering
1011 * so that the list modifications are always visible
1012 * after the counters have been updated.
1014 * If the counters have been updated by the second thread
1015 * but the thread has not yet been removed from the list
1016 * then the other branch will be executing which will
1017 * block on tasklist_lock until the exit handling of the
1018 * other task is finished.
1020 * This also implies that the sighand->siglock cannot
1021 * be held by another processor. So we can also
1022 * skip acquiring that lock.
1024 utime = cputime_add(current->signal->utime, current->utime);
1025 stime = cputime_add(current->signal->utime, current->stime);
1026 cutime = current->signal->cutime;
1027 cstime = current->signal->cstime;
1032 /* Process with multiple threads */
1033 struct task_struct *tsk = current;
1034 struct task_struct *t;
1036 read_lock(&tasklist_lock);
1037 utime = tsk->signal->utime;
1038 stime = tsk->signal->stime;
1041 utime = cputime_add(utime, t->utime);
1042 stime = cputime_add(stime, t->stime);
1047 * While we have tasklist_lock read-locked, no dying thread
1048 * can be updating current->signal->[us]time. Instead,
1049 * we got their counts included in the live thread loop.
1050 * However, another thread can come in right now and
1051 * do a wait call that updates current->signal->c[us]time.
1052 * To make sure we always see that pair updated atomically,
1053 * we take the siglock around fetching them.
1055 spin_lock_irq(&tsk->sighand->siglock);
1056 cutime = tsk->signal->cutime;
1057 cstime = tsk->signal->cstime;
1058 spin_unlock_irq(&tsk->sighand->siglock);
1059 read_unlock(&tasklist_lock);
1061 tmp.tms_utime = cputime_to_clock_t(utime);
1062 tmp.tms_stime = cputime_to_clock_t(stime);
1063 tmp.tms_cutime = cputime_to_clock_t(cutime);
1064 tmp.tms_cstime = cputime_to_clock_t(cstime);
1065 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1068 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1072 * This needs some heavy checking ...
1073 * I just haven't the stomach for it. I also don't fully
1074 * understand sessions/pgrp etc. Let somebody who does explain it.
1076 * OK, I think I have the protection semantics right.... this is really
1077 * only important on a multi-user system anyway, to make sure one user
1078 * can't send a signal to a process owned by another. -TYT, 12/12/91
1080 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1084 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1086 struct task_struct *p;
1096 /* From this point forward we keep holding onto the tasklist lock
1097 * so that our parent does not change from under us. -DaveM
1099 write_lock_irq(&tasklist_lock);
1102 p = find_task_by_pid(pid);
1107 if (!thread_group_leader(p))
1110 if (p->parent == current || p->real_parent == current) {
1112 if (p->signal->session != current->signal->session)
1124 if (p->signal->leader)
1128 struct task_struct *p;
1130 do_each_task_pid(pgid, PIDTYPE_PGID, p) {
1131 if (p->signal->session == current->signal->session)
1133 } while_each_task_pid(pgid, PIDTYPE_PGID, p);
1138 err = security_task_setpgid(p, pgid);
1142 if (process_group(p) != pgid) {
1143 detach_pid(p, PIDTYPE_PGID);
1144 p->signal->pgrp = pgid;
1145 attach_pid(p, PIDTYPE_PGID, pgid);
1150 /* All paths lead to here, thus we are safe. -DaveM */
1151 write_unlock_irq(&tasklist_lock);
1155 asmlinkage long sys_getpgid(pid_t pid)
1158 return process_group(current);
1161 struct task_struct *p;
1163 read_lock(&tasklist_lock);
1164 p = find_task_by_pid(pid);
1168 retval = security_task_getpgid(p);
1170 retval = process_group(p);
1172 read_unlock(&tasklist_lock);
1177 #ifdef __ARCH_WANT_SYS_GETPGRP
1179 asmlinkage long sys_getpgrp(void)
1181 /* SMP - assuming writes are word atomic this is fine */
1182 return process_group(current);
1187 asmlinkage long sys_getsid(pid_t pid)
1190 return current->signal->session;
1193 struct task_struct *p;
1195 read_lock(&tasklist_lock);
1196 p = find_task_by_pid(pid);
1200 retval = security_task_getsid(p);
1202 retval = p->signal->session;
1204 read_unlock(&tasklist_lock);
1209 asmlinkage long sys_setsid(void)
1214 if (!thread_group_leader(current))
1218 write_lock_irq(&tasklist_lock);
1220 pid = find_pid(PIDTYPE_PGID, current->pid);
1224 current->signal->leader = 1;
1225 __set_special_pids(current->pid, current->pid);
1226 current->signal->tty = NULL;
1227 current->signal->tty_old_pgrp = 0;
1228 err = process_group(current);
1230 write_unlock_irq(&tasklist_lock);
1236 * Supplementary group IDs
1239 /* init to 2 - one for init_task, one to ensure it is never freed */
1240 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1242 struct group_info *groups_alloc(int gidsetsize)
1244 struct group_info *group_info;
1248 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1249 /* Make sure we always allocate at least one indirect block pointer */
1250 nblocks = nblocks ? : 1;
1251 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1254 group_info->ngroups = gidsetsize;
1255 group_info->nblocks = nblocks;
1256 atomic_set(&group_info->usage, 1);
1258 if (gidsetsize <= NGROUPS_SMALL) {
1259 group_info->blocks[0] = group_info->small_block;
1261 for (i = 0; i < nblocks; i++) {
1263 b = (void *)__get_free_page(GFP_USER);
1265 goto out_undo_partial_alloc;
1266 group_info->blocks[i] = b;
1271 out_undo_partial_alloc:
1273 free_page((unsigned long)group_info->blocks[i]);
1279 EXPORT_SYMBOL(groups_alloc);
1281 void groups_free(struct group_info *group_info)
1283 if (group_info->blocks[0] != group_info->small_block) {
1285 for (i = 0; i < group_info->nblocks; i++)
1286 free_page((unsigned long)group_info->blocks[i]);
1291 EXPORT_SYMBOL(groups_free);
1293 /* export the group_info to a user-space array */
1294 static int groups_to_user(gid_t __user *grouplist,
1295 struct group_info *group_info)
1298 int count = group_info->ngroups;
1300 for (i = 0; i < group_info->nblocks; i++) {
1301 int cp_count = min(NGROUPS_PER_BLOCK, count);
1302 int off = i * NGROUPS_PER_BLOCK;
1303 int len = cp_count * sizeof(*grouplist);
1305 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1313 /* fill a group_info from a user-space array - it must be allocated already */
1314 static int groups_from_user(struct group_info *group_info,
1315 gid_t __user *grouplist)
1318 int count = group_info->ngroups;
1320 for (i = 0; i < group_info->nblocks; i++) {
1321 int cp_count = min(NGROUPS_PER_BLOCK, count);
1322 int off = i * NGROUPS_PER_BLOCK;
1323 int len = cp_count * sizeof(*grouplist);
1325 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1333 /* a simple Shell sort */
1334 static void groups_sort(struct group_info *group_info)
1336 int base, max, stride;
1337 int gidsetsize = group_info->ngroups;
1339 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1344 max = gidsetsize - stride;
1345 for (base = 0; base < max; base++) {
1347 int right = left + stride;
1348 gid_t tmp = GROUP_AT(group_info, right);
1350 while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1351 GROUP_AT(group_info, right) =
1352 GROUP_AT(group_info, left);
1356 GROUP_AT(group_info, right) = tmp;
1362 /* a simple bsearch */
1363 int groups_search(struct group_info *group_info, gid_t grp)
1371 right = group_info->ngroups;
1372 while (left < right) {
1373 int mid = (left+right)/2;
1374 int cmp = grp - GROUP_AT(group_info, mid);
1385 /* validate and set current->group_info */
1386 int set_current_groups(struct group_info *group_info)
1389 struct group_info *old_info;
1391 retval = security_task_setgroups(group_info);
1395 groups_sort(group_info);
1396 get_group_info(group_info);
1399 old_info = current->group_info;
1400 current->group_info = group_info;
1401 task_unlock(current);
1403 put_group_info(old_info);
1408 EXPORT_SYMBOL(set_current_groups);
1410 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1415 * SMP: Nobody else can change our grouplist. Thus we are
1422 /* no need to grab task_lock here; it cannot change */
1423 get_group_info(current->group_info);
1424 i = current->group_info->ngroups;
1426 if (i > gidsetsize) {
1430 if (groups_to_user(grouplist, current->group_info)) {
1436 put_group_info(current->group_info);
1441 * SMP: Our groups are copy-on-write. We can set them safely
1442 * without another task interfering.
1445 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1447 struct group_info *group_info;
1450 if (!capable(CAP_SETGID))
1452 if ((unsigned)gidsetsize > NGROUPS_MAX)
1455 group_info = groups_alloc(gidsetsize);
1458 retval = groups_from_user(group_info, grouplist);
1460 put_group_info(group_info);
1464 retval = set_current_groups(group_info);
1465 put_group_info(group_info);
1471 * Check whether we're fsgid/egid or in the supplemental group..
1473 int in_group_p(gid_t grp)
1476 if (grp != current->fsgid) {
1477 get_group_info(current->group_info);
1478 retval = groups_search(current->group_info, grp);
1479 put_group_info(current->group_info);
1484 EXPORT_SYMBOL(in_group_p);
1486 int in_egroup_p(gid_t grp)
1489 if (grp != current->egid) {
1490 get_group_info(current->group_info);
1491 retval = groups_search(current->group_info, grp);
1492 put_group_info(current->group_info);
1497 EXPORT_SYMBOL(in_egroup_p);
1499 DECLARE_RWSEM(uts_sem);
1501 EXPORT_SYMBOL(uts_sem);
1503 asmlinkage long sys_newuname(struct new_utsname __user * name)
1507 down_read(&uts_sem);
1508 if (copy_to_user(name,&system_utsname,sizeof *name))
1514 asmlinkage long sys_sethostname(char __user *name, int len)
1517 char tmp[__NEW_UTS_LEN];
1519 if (!capable(CAP_SYS_ADMIN))
1521 if (len < 0 || len > __NEW_UTS_LEN)
1523 down_write(&uts_sem);
1525 if (!copy_from_user(tmp, name, len)) {
1526 memcpy(system_utsname.nodename, tmp, len);
1527 system_utsname.nodename[len] = 0;
1534 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1536 asmlinkage long sys_gethostname(char __user *name, int len)
1542 down_read(&uts_sem);
1543 i = 1 + strlen(system_utsname.nodename);
1547 if (copy_to_user(name, system_utsname.nodename, i))
1556 * Only setdomainname; getdomainname can be implemented by calling
1559 asmlinkage long sys_setdomainname(char __user *name, int len)
1562 char tmp[__NEW_UTS_LEN];
1564 if (!capable(CAP_SYS_ADMIN))
1566 if (len < 0 || len > __NEW_UTS_LEN)
1569 down_write(&uts_sem);
1571 if (!copy_from_user(tmp, name, len)) {
1572 memcpy(system_utsname.domainname, tmp, len);
1573 system_utsname.domainname[len] = 0;
1580 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1582 if (resource >= RLIM_NLIMITS)
1585 struct rlimit value;
1586 task_lock(current->group_leader);
1587 value = current->signal->rlim[resource];
1588 task_unlock(current->group_leader);
1589 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1593 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1596 * Back compatibility for getrlimit. Needed for some apps.
1599 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1602 if (resource >= RLIM_NLIMITS)
1605 task_lock(current->group_leader);
1606 x = current->signal->rlim[resource];
1607 task_unlock(current->group_leader);
1608 if(x.rlim_cur > 0x7FFFFFFF)
1609 x.rlim_cur = 0x7FFFFFFF;
1610 if(x.rlim_max > 0x7FFFFFFF)
1611 x.rlim_max = 0x7FFFFFFF;
1612 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1617 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1619 struct rlimit new_rlim, *old_rlim;
1622 if (resource >= RLIM_NLIMITS)
1624 if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1626 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1628 old_rlim = current->signal->rlim + resource;
1629 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1630 !capable(CAP_SYS_RESOURCE))
1632 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1635 retval = security_task_setrlimit(resource, &new_rlim);
1639 task_lock(current->group_leader);
1640 *old_rlim = new_rlim;
1641 task_unlock(current->group_leader);
1643 if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY &&
1644 (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
1645 new_rlim.rlim_cur <= cputime_to_secs(
1646 current->signal->it_prof_expires))) {
1647 cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur);
1648 read_lock(&tasklist_lock);
1649 spin_lock_irq(¤t->sighand->siglock);
1650 set_process_cpu_timer(current, CPUCLOCK_PROF,
1652 spin_unlock_irq(¤t->sighand->siglock);
1653 read_unlock(&tasklist_lock);
1660 * It would make sense to put struct rusage in the task_struct,
1661 * except that would make the task_struct be *really big*. After
1662 * task_struct gets moved into malloc'ed memory, it would
1663 * make sense to do this. It will make moving the rest of the information
1664 * a lot simpler! (Which we're not doing right now because we're not
1665 * measuring them yet).
1667 * This expects to be called with tasklist_lock read-locked or better,
1668 * and the siglock not locked. It may momentarily take the siglock.
1670 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1671 * races with threads incrementing their own counters. But since word
1672 * reads are atomic, we either get new values or old values and we don't
1673 * care which for the sums. We always take the siglock to protect reading
1674 * the c* fields from p->signal from races with exit.c updating those
1675 * fields when reaping, so a sample either gets all the additions of a
1676 * given child after it's reaped, or none so this sample is before reaping.
1679 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1681 struct task_struct *t;
1682 unsigned long flags;
1683 cputime_t utime, stime;
1685 memset((char *) r, 0, sizeof *r);
1687 if (unlikely(!p->signal))
1691 case RUSAGE_CHILDREN:
1692 spin_lock_irqsave(&p->sighand->siglock, flags);
1693 utime = p->signal->cutime;
1694 stime = p->signal->cstime;
1695 r->ru_nvcsw = p->signal->cnvcsw;
1696 r->ru_nivcsw = p->signal->cnivcsw;
1697 r->ru_minflt = p->signal->cmin_flt;
1698 r->ru_majflt = p->signal->cmaj_flt;
1699 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1700 cputime_to_timeval(utime, &r->ru_utime);
1701 cputime_to_timeval(stime, &r->ru_stime);
1704 spin_lock_irqsave(&p->sighand->siglock, flags);
1705 utime = stime = cputime_zero;
1708 spin_lock_irqsave(&p->sighand->siglock, flags);
1709 utime = p->signal->cutime;
1710 stime = p->signal->cstime;
1711 r->ru_nvcsw = p->signal->cnvcsw;
1712 r->ru_nivcsw = p->signal->cnivcsw;
1713 r->ru_minflt = p->signal->cmin_flt;
1714 r->ru_majflt = p->signal->cmaj_flt;
1716 utime = cputime_add(utime, p->signal->utime);
1717 stime = cputime_add(stime, p->signal->stime);
1718 r->ru_nvcsw += p->signal->nvcsw;
1719 r->ru_nivcsw += p->signal->nivcsw;
1720 r->ru_minflt += p->signal->min_flt;
1721 r->ru_majflt += p->signal->maj_flt;
1724 utime = cputime_add(utime, t->utime);
1725 stime = cputime_add(stime, t->stime);
1726 r->ru_nvcsw += t->nvcsw;
1727 r->ru_nivcsw += t->nivcsw;
1728 r->ru_minflt += t->min_flt;
1729 r->ru_majflt += t->maj_flt;
1732 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1733 cputime_to_timeval(utime, &r->ru_utime);
1734 cputime_to_timeval(stime, &r->ru_stime);
1741 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1744 read_lock(&tasklist_lock);
1745 k_getrusage(p, who, &r);
1746 read_unlock(&tasklist_lock);
1747 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1750 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1752 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1754 return getrusage(current, who, ru);
1757 asmlinkage long sys_umask(int mask)
1759 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1763 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1764 unsigned long arg4, unsigned long arg5)
1768 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1773 case PR_SET_PDEATHSIG:
1774 if (!valid_signal(arg2)) {
1778 current->pdeath_signal = arg2;
1780 case PR_GET_PDEATHSIG:
1781 error = put_user(current->pdeath_signal, (int __user *)arg2);
1783 case PR_GET_DUMPABLE:
1784 error = current->mm->dumpable;
1786 case PR_SET_DUMPABLE:
1787 if (arg2 < 0 || arg2 > 2) {
1791 current->mm->dumpable = arg2;
1794 case PR_SET_UNALIGN:
1795 error = SET_UNALIGN_CTL(current, arg2);
1797 case PR_GET_UNALIGN:
1798 error = GET_UNALIGN_CTL(current, arg2);
1801 error = SET_FPEMU_CTL(current, arg2);
1804 error = GET_FPEMU_CTL(current, arg2);
1807 error = SET_FPEXC_CTL(current, arg2);
1810 error = GET_FPEXC_CTL(current, arg2);
1813 error = PR_TIMING_STATISTICAL;
1816 if (arg2 == PR_TIMING_STATISTICAL)
1822 case PR_GET_KEEPCAPS:
1823 if (current->keep_capabilities)
1826 case PR_SET_KEEPCAPS:
1827 if (arg2 != 0 && arg2 != 1) {
1831 current->keep_capabilities = arg2;
1834 struct task_struct *me = current;
1835 unsigned char ncomm[sizeof(me->comm)];
1837 ncomm[sizeof(me->comm)-1] = 0;
1838 if (strncpy_from_user(ncomm, (char __user *)arg2,
1839 sizeof(me->comm)-1) < 0)
1841 set_task_comm(me, ncomm);
1845 struct task_struct *me = current;
1846 unsigned char tcomm[sizeof(me->comm)];
1848 get_task_comm(tcomm, me);
1849 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))