2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
40 #include <asm/tlbflush.h>
44 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
48 EXPORT_SYMBOL(node_online_map);
49 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
50 EXPORT_SYMBOL(node_possible_map);
51 struct pglist_data *pgdat_list __read_mostly;
52 unsigned long totalram_pages __read_mostly;
53 unsigned long totalhigh_pages __read_mostly;
56 static void fastcall free_hot_cold_page(struct page *page, int cold);
59 * results with 256, 32 in the lowmem_reserve sysctl:
60 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
61 * 1G machine -> (16M dma, 784M normal, 224M high)
62 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
63 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
64 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
66 * TBD: should special case ZONE_DMA32 machines here - in those we normally
67 * don't need any ZONE_NORMAL reservation
69 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
71 EXPORT_SYMBOL(totalram_pages);
74 * Used by page_zone() to look up the address of the struct zone whose
75 * id is encoded in the upper bits of page->flags
77 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
78 EXPORT_SYMBOL(zone_table);
80 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
81 int min_free_kbytes = 1024;
83 unsigned long __initdata nr_kernel_pages;
84 unsigned long __initdata nr_all_pages;
86 #ifdef CONFIG_DEBUG_VM
87 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
91 unsigned long pfn = page_to_pfn(page);
94 seq = zone_span_seqbegin(zone);
95 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
97 else if (pfn < zone->zone_start_pfn)
99 } while (zone_span_seqretry(zone, seq));
104 static int page_is_consistent(struct zone *zone, struct page *page)
106 #ifdef CONFIG_HOLES_IN_ZONE
107 if (!pfn_valid(page_to_pfn(page)))
110 if (zone != page_zone(page))
116 * Temporary debugging check for pages not lying within a given zone.
118 static int bad_range(struct zone *zone, struct page *page)
120 if (page_outside_zone_boundaries(zone, page))
122 if (!page_is_consistent(zone, page))
129 static inline int bad_range(struct zone *zone, struct page *page)
135 static void bad_page(const char *function, struct page *page)
137 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
138 function, current->comm, page);
139 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
140 (int)(2*sizeof(unsigned long)), (unsigned long)page->flags,
141 page->mapping, page_mapcount(page), page_count(page));
142 printk(KERN_EMERG "Backtrace:\n");
144 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
145 page->flags &= ~(1 << PG_lru |
154 set_page_count(page, 0);
155 reset_page_mapcount(page);
156 page->mapping = NULL;
157 add_taint(TAINT_BAD_PAGE);
161 * Higher-order pages are called "compound pages". They are structured thusly:
163 * The first PAGE_SIZE page is called the "head page".
165 * The remaining PAGE_SIZE pages are called "tail pages".
167 * All pages have PG_compound set. All pages have their ->private pointing at
168 * the head page (even the head page has this).
170 * The first tail page's ->mapping, if non-zero, holds the address of the
171 * compound page's put_page() function.
173 * The order of the allocation is stored in the first tail page's ->index
174 * This is only for debug at present. This usage means that zero-order pages
175 * may not be compound.
177 static void prep_compound_page(struct page *page, unsigned long order)
180 int nr_pages = 1 << order;
182 page[1].mapping = NULL;
183 page[1].index = order;
184 for (i = 0; i < nr_pages; i++) {
185 struct page *p = page + i;
188 set_page_private(p, (unsigned long)page);
192 static void destroy_compound_page(struct page *page, unsigned long order)
195 int nr_pages = 1 << order;
197 if (!PageCompound(page))
200 if (page[1].index != order)
201 bad_page(__FUNCTION__, page);
203 for (i = 0; i < nr_pages; i++) {
204 struct page *p = page + i;
206 if (!PageCompound(p))
207 bad_page(__FUNCTION__, page);
208 if (page_private(p) != (unsigned long)page)
209 bad_page(__FUNCTION__, page);
210 ClearPageCompound(p);
215 * function for dealing with page's order in buddy system.
216 * zone->lock is already acquired when we use these.
217 * So, we don't need atomic page->flags operations here.
219 static inline unsigned long page_order(struct page *page) {
220 return page_private(page);
223 static inline void set_page_order(struct page *page, int order) {
224 set_page_private(page, order);
225 __SetPagePrivate(page);
228 static inline void rmv_page_order(struct page *page)
230 __ClearPagePrivate(page);
231 set_page_private(page, 0);
235 * Locate the struct page for both the matching buddy in our
236 * pair (buddy1) and the combined O(n+1) page they form (page).
238 * 1) Any buddy B1 will have an order O twin B2 which satisfies
239 * the following equation:
241 * For example, if the starting buddy (buddy2) is #8 its order
243 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
245 * 2) Any buddy B will have an order O+1 parent P which
246 * satisfies the following equation:
249 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
251 static inline struct page *
252 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
254 unsigned long buddy_idx = page_idx ^ (1 << order);
256 return page + (buddy_idx - page_idx);
259 static inline unsigned long
260 __find_combined_index(unsigned long page_idx, unsigned int order)
262 return (page_idx & ~(1 << order));
266 * This function checks whether a page is free && is the buddy
267 * we can do coalesce a page and its buddy if
268 * (a) the buddy is not in a hole &&
269 * (b) the buddy is free &&
270 * (c) the buddy is on the buddy system &&
271 * (d) a page and its buddy have the same order.
272 * for recording page's order, we use page_private(page) and PG_private.
275 static inline int page_is_buddy(struct page *page, int order)
277 #ifdef CONFIG_HOLES_IN_ZONE
278 if (!pfn_valid(page_to_pfn(page)))
282 if (PagePrivate(page) &&
283 (page_order(page) == order) &&
284 page_count(page) == 0)
290 * Freeing function for a buddy system allocator.
292 * The concept of a buddy system is to maintain direct-mapped table
293 * (containing bit values) for memory blocks of various "orders".
294 * The bottom level table contains the map for the smallest allocatable
295 * units of memory (here, pages), and each level above it describes
296 * pairs of units from the levels below, hence, "buddies".
297 * At a high level, all that happens here is marking the table entry
298 * at the bottom level available, and propagating the changes upward
299 * as necessary, plus some accounting needed to play nicely with other
300 * parts of the VM system.
301 * At each level, we keep a list of pages, which are heads of continuous
302 * free pages of length of (1 << order) and marked with PG_Private.Page's
303 * order is recorded in page_private(page) field.
304 * So when we are allocating or freeing one, we can derive the state of the
305 * other. That is, if we allocate a small block, and both were
306 * free, the remainder of the region must be split into blocks.
307 * If a block is freed, and its buddy is also free, then this
308 * triggers coalescing into a block of larger size.
313 static inline void __free_pages_bulk (struct page *page,
314 struct zone *zone, unsigned int order)
316 unsigned long page_idx;
317 int order_size = 1 << order;
320 destroy_compound_page(page, order);
322 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
324 BUG_ON(page_idx & (order_size - 1));
325 BUG_ON(bad_range(zone, page));
327 zone->free_pages += order_size;
328 while (order < MAX_ORDER-1) {
329 unsigned long combined_idx;
330 struct free_area *area;
333 buddy = __page_find_buddy(page, page_idx, order);
334 if (!page_is_buddy(buddy, order))
335 break; /* Move the buddy up one level. */
337 list_del(&buddy->lru);
338 area = zone->free_area + order;
340 rmv_page_order(buddy);
341 combined_idx = __find_combined_index(page_idx, order);
342 page = page + (combined_idx - page_idx);
343 page_idx = combined_idx;
346 set_page_order(page, order);
347 list_add(&page->lru, &zone->free_area[order].free_list);
348 zone->free_area[order].nr_free++;
351 static inline int free_pages_check(const char *function, struct page *page)
353 if (unlikely(page_mapcount(page) |
354 (page->mapping != NULL) |
355 (page_count(page) != 0) |
365 1 << PG_reserved ))))
366 bad_page(function, page);
368 __ClearPageDirty(page);
370 * For now, we report if PG_reserved was found set, but do not
371 * clear it, and do not free the page. But we shall soon need
372 * to do more, for when the ZERO_PAGE count wraps negative.
374 return PageReserved(page);
378 * Frees a list of pages.
379 * Assumes all pages on list are in same zone, and of same order.
380 * count is the number of pages to free.
382 * If the zone was previously in an "all pages pinned" state then look to
383 * see if this freeing clears that state.
385 * And clear the zone's pages_scanned counter, to hold off the "all pages are
386 * pinned" detection logic.
389 free_pages_bulk(struct zone *zone, int count,
390 struct list_head *list, unsigned int order)
392 struct page *page = NULL;
395 spin_lock(&zone->lock);
396 zone->all_unreclaimable = 0;
397 zone->pages_scanned = 0;
398 while (!list_empty(list) && count--) {
399 page = list_entry(list->prev, struct page, lru);
400 /* have to delete it as __free_pages_bulk list manipulates */
401 list_del(&page->lru);
402 __free_pages_bulk(page, zone, order);
405 spin_unlock(&zone->lock);
409 void __free_pages_ok(struct page *page, unsigned int order)
416 arch_free_page(page, order);
420 for (i = 1 ; i < (1 << order) ; ++i)
421 __put_page(page + i);
424 for (i = 0 ; i < (1 << order) ; ++i)
425 reserved += free_pages_check(__FUNCTION__, page + i);
429 list_add(&page->lru, &list);
430 mod_page_state(pgfree, 1 << order);
431 kernel_map_pages(page, 1<<order, 0);
432 local_irq_save(flags);
433 free_pages_bulk(page_zone(page), 1, &list, order);
434 local_irq_restore(flags);
438 * permit the bootmem allocator to evade page validation on high-order frees
440 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
443 __ClearPageReserved(page);
444 set_page_count(page, 0);
446 free_hot_cold_page(page, 0);
451 for (loop = 0; loop < BITS_PER_LONG; loop++) {
452 struct page *p = &page[loop];
454 if (loop + 16 < BITS_PER_LONG)
456 __ClearPageReserved(p);
457 set_page_count(p, 0);
460 arch_free_page(page, order);
462 mod_page_state(pgfree, 1 << order);
464 list_add(&page->lru, &list);
465 kernel_map_pages(page, 1 << order, 0);
466 free_pages_bulk(page_zone(page), 1, &list, order);
472 * The order of subdivision here is critical for the IO subsystem.
473 * Please do not alter this order without good reasons and regression
474 * testing. Specifically, as large blocks of memory are subdivided,
475 * the order in which smaller blocks are delivered depends on the order
476 * they're subdivided in this function. This is the primary factor
477 * influencing the order in which pages are delivered to the IO
478 * subsystem according to empirical testing, and this is also justified
479 * by considering the behavior of a buddy system containing a single
480 * large block of memory acted on by a series of small allocations.
481 * This behavior is a critical factor in sglist merging's success.
485 static inline void expand(struct zone *zone, struct page *page,
486 int low, int high, struct free_area *area)
488 unsigned long size = 1 << high;
494 BUG_ON(bad_range(zone, &page[size]));
495 list_add(&page[size].lru, &area->free_list);
497 set_page_order(&page[size], high);
502 * This page is about to be returned from the page allocator
504 static int prep_new_page(struct page *page, int order)
506 if (unlikely(page_mapcount(page) |
507 (page->mapping != NULL) |
508 (page_count(page) != 0) |
519 1 << PG_reserved ))))
520 bad_page(__FUNCTION__, page);
523 * For now, we report if PG_reserved was found set, but do not
524 * clear it, and do not allocate the page: as a safety net.
526 if (PageReserved(page))
529 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
530 1 << PG_referenced | 1 << PG_arch_1 |
531 1 << PG_checked | 1 << PG_mappedtodisk);
532 set_page_private(page, 0);
533 set_page_refs(page, order);
534 kernel_map_pages(page, 1 << order, 1);
539 * Do the hard work of removing an element from the buddy allocator.
540 * Call me with the zone->lock already held.
542 static struct page *__rmqueue(struct zone *zone, unsigned int order)
544 struct free_area * area;
545 unsigned int current_order;
548 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
549 area = zone->free_area + current_order;
550 if (list_empty(&area->free_list))
553 page = list_entry(area->free_list.next, struct page, lru);
554 list_del(&page->lru);
555 rmv_page_order(page);
557 zone->free_pages -= 1UL << order;
558 expand(zone, page, order, current_order, area);
566 * Obtain a specified number of elements from the buddy allocator, all under
567 * a single hold of the lock, for efficiency. Add them to the supplied list.
568 * Returns the number of new pages which were placed at *list.
570 static int rmqueue_bulk(struct zone *zone, unsigned int order,
571 unsigned long count, struct list_head *list)
575 spin_lock(&zone->lock);
576 for (i = 0; i < count; ++i) {
577 struct page *page = __rmqueue(zone, order);
578 if (unlikely(page == NULL))
580 list_add_tail(&page->lru, list);
582 spin_unlock(&zone->lock);
587 /* Called from the slab reaper to drain remote pagesets */
588 void drain_remote_pages(void)
594 local_irq_save(flags);
595 for_each_zone(zone) {
596 struct per_cpu_pageset *pset;
598 /* Do not drain local pagesets */
599 if (zone->zone_pgdat->node_id == numa_node_id())
602 pset = zone->pageset[smp_processor_id()];
603 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
604 struct per_cpu_pages *pcp;
608 pcp->count -= free_pages_bulk(zone, pcp->count,
612 local_irq_restore(flags);
616 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
617 static void __drain_pages(unsigned int cpu)
623 for_each_zone(zone) {
624 struct per_cpu_pageset *pset;
626 pset = zone_pcp(zone, cpu);
627 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
628 struct per_cpu_pages *pcp;
631 local_irq_save(flags);
632 pcp->count -= free_pages_bulk(zone, pcp->count,
634 local_irq_restore(flags);
638 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
642 void mark_free_pages(struct zone *zone)
644 unsigned long zone_pfn, flags;
646 struct list_head *curr;
648 if (!zone->spanned_pages)
651 spin_lock_irqsave(&zone->lock, flags);
652 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
653 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
655 for (order = MAX_ORDER - 1; order >= 0; --order)
656 list_for_each(curr, &zone->free_area[order].free_list) {
657 unsigned long start_pfn, i;
659 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
661 for (i=0; i < (1<<order); i++)
662 SetPageNosaveFree(pfn_to_page(start_pfn+i));
664 spin_unlock_irqrestore(&zone->lock, flags);
668 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
670 void drain_local_pages(void)
674 local_irq_save(flags);
675 __drain_pages(smp_processor_id());
676 local_irq_restore(flags);
678 #endif /* CONFIG_PM */
680 static void zone_statistics(struct zonelist *zonelist, struct zone *z)
685 pg_data_t *pg = z->zone_pgdat;
686 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
687 struct per_cpu_pageset *p;
689 local_irq_save(flags);
690 cpu = smp_processor_id();
696 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
698 if (pg == NODE_DATA(numa_node_id()))
702 local_irq_restore(flags);
707 * Free a 0-order page
709 static void fastcall free_hot_cold_page(struct page *page, int cold)
711 struct zone *zone = page_zone(page);
712 struct per_cpu_pages *pcp;
715 arch_free_page(page, 0);
718 page->mapping = NULL;
719 if (free_pages_check(__FUNCTION__, page))
722 inc_page_state(pgfree);
723 kernel_map_pages(page, 1, 0);
725 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
726 local_irq_save(flags);
727 list_add(&page->lru, &pcp->list);
729 if (pcp->count >= pcp->high)
730 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
731 local_irq_restore(flags);
735 void fastcall free_hot_page(struct page *page)
737 free_hot_cold_page(page, 0);
740 void fastcall free_cold_page(struct page *page)
742 free_hot_cold_page(page, 1);
745 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
749 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
750 for(i = 0; i < (1 << order); i++)
751 clear_highpage(page + i);
755 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
756 * we cheat by calling it from here, in the order > 0 path. Saves a branch
760 buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
764 int cold = !!(gfp_flags & __GFP_COLD);
768 struct per_cpu_pages *pcp;
771 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
772 local_irq_save(flags);
774 pcp->count += rmqueue_bulk(zone, 0,
775 pcp->batch, &pcp->list);
776 if (likely(pcp->count)) {
777 page = list_entry(pcp->list.next, struct page, lru);
778 list_del(&page->lru);
781 local_irq_restore(flags);
784 spin_lock_irqsave(&zone->lock, flags);
785 page = __rmqueue(zone, order);
786 spin_unlock_irqrestore(&zone->lock, flags);
790 BUG_ON(bad_range(zone, page));
791 mod_page_state_zone(zone, pgalloc, 1 << order);
792 if (prep_new_page(page, order))
795 if (gfp_flags & __GFP_ZERO)
796 prep_zero_page(page, order, gfp_flags);
798 if (order && (gfp_flags & __GFP_COMP))
799 prep_compound_page(page, order);
804 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
805 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
806 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
807 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
808 #define ALLOC_HARDER 0x10 /* try to alloc harder */
809 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
810 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
813 * Return 1 if free pages are above 'mark'. This takes into account the order
816 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
817 int classzone_idx, int alloc_flags)
819 /* free_pages my go negative - that's OK */
820 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
823 if (alloc_flags & ALLOC_HIGH)
825 if (alloc_flags & ALLOC_HARDER)
828 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
830 for (o = 0; o < order; o++) {
831 /* At the next order, this order's pages become unavailable */
832 free_pages -= z->free_area[o].nr_free << o;
834 /* Require fewer higher order pages to be free */
837 if (free_pages <= min)
844 * get_page_from_freeliest goes through the zonelist trying to allocate
848 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
849 struct zonelist *zonelist, int alloc_flags)
851 struct zone **z = zonelist->zones;
852 struct page *page = NULL;
853 int classzone_idx = zone_idx(*z);
856 * Go through the zonelist once, looking for a zone with enough free.
857 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
860 if ((alloc_flags & ALLOC_CPUSET) &&
861 !cpuset_zone_allowed(*z, gfp_mask))
864 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
866 if (alloc_flags & ALLOC_WMARK_MIN)
867 mark = (*z)->pages_min;
868 else if (alloc_flags & ALLOC_WMARK_LOW)
869 mark = (*z)->pages_low;
871 mark = (*z)->pages_high;
872 if (!zone_watermark_ok(*z, order, mark,
873 classzone_idx, alloc_flags))
877 page = buffered_rmqueue(*z, order, gfp_mask);
879 zone_statistics(zonelist, *z);
882 } while (*(++z) != NULL);
887 * This is the 'heart' of the zoned buddy allocator.
889 struct page * fastcall
890 __alloc_pages(gfp_t gfp_mask, unsigned int order,
891 struct zonelist *zonelist)
893 const gfp_t wait = gfp_mask & __GFP_WAIT;
896 struct reclaim_state reclaim_state;
897 struct task_struct *p = current;
900 int did_some_progress;
902 might_sleep_if(wait);
905 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
907 if (unlikely(*z == NULL)) {
908 /* Should this ever happen?? */
912 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
913 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
918 wakeup_kswapd(*z, order);
922 * OK, we're below the kswapd watermark and have kicked background
923 * reclaim. Now things get more complex, so set up alloc_flags according
924 * to how we want to proceed.
926 * The caller may dip into page reserves a bit more if the caller
927 * cannot run direct reclaim, or if the caller has realtime scheduling
930 alloc_flags = ALLOC_WMARK_MIN;
931 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
932 alloc_flags |= ALLOC_HARDER;
933 if (gfp_mask & __GFP_HIGH)
934 alloc_flags |= ALLOC_HIGH;
935 alloc_flags |= ALLOC_CPUSET;
938 * Go through the zonelist again. Let __GFP_HIGH and allocations
939 * coming from realtime tasks go deeper into reserves.
941 * This is the last chance, in general, before the goto nopage.
942 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
943 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
945 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
949 /* This allocation should allow future memory freeing. */
951 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
952 && !in_interrupt()) {
953 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
955 /* go through the zonelist yet again, ignoring mins */
956 page = get_page_from_freelist(gfp_mask, order,
957 zonelist, ALLOC_NO_WATERMARKS);
960 if (gfp_mask & __GFP_NOFAIL) {
961 blk_congestion_wait(WRITE, HZ/50);
968 /* Atomic allocations - we can't balance anything */
975 /* We now go into synchronous reclaim */
976 p->flags |= PF_MEMALLOC;
977 reclaim_state.reclaimed_slab = 0;
978 p->reclaim_state = &reclaim_state;
980 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
982 p->reclaim_state = NULL;
983 p->flags &= ~PF_MEMALLOC;
987 if (likely(did_some_progress)) {
988 page = get_page_from_freelist(gfp_mask, order,
989 zonelist, alloc_flags);
992 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
994 * Go through the zonelist yet one more time, keep
995 * very high watermark here, this is only to catch
996 * a parallel oom killing, we must fail if we're still
997 * under heavy pressure.
999 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1000 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1004 out_of_memory(gfp_mask, order);
1009 * Don't let big-order allocations loop unless the caller explicitly
1010 * requests that. Wait for some write requests to complete then retry.
1012 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1013 * <= 3, but that may not be true in other implementations.
1016 if (!(gfp_mask & __GFP_NORETRY)) {
1017 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1019 if (gfp_mask & __GFP_NOFAIL)
1023 blk_congestion_wait(WRITE, HZ/50);
1028 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1029 printk(KERN_WARNING "%s: page allocation failure."
1030 " order:%d, mode:0x%x\n",
1031 p->comm, order, gfp_mask);
1039 EXPORT_SYMBOL(__alloc_pages);
1042 * Common helper functions.
1044 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1047 page = alloc_pages(gfp_mask, order);
1050 return (unsigned long) page_address(page);
1053 EXPORT_SYMBOL(__get_free_pages);
1055 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1060 * get_zeroed_page() returns a 32-bit address, which cannot represent
1063 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1065 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1067 return (unsigned long) page_address(page);
1071 EXPORT_SYMBOL(get_zeroed_page);
1073 void __pagevec_free(struct pagevec *pvec)
1075 int i = pagevec_count(pvec);
1078 free_hot_cold_page(pvec->pages[i], pvec->cold);
1081 fastcall void __free_pages(struct page *page, unsigned int order)
1083 if (put_page_testzero(page)) {
1085 free_hot_page(page);
1087 __free_pages_ok(page, order);
1091 EXPORT_SYMBOL(__free_pages);
1093 fastcall void free_pages(unsigned long addr, unsigned int order)
1096 BUG_ON(!virt_addr_valid((void *)addr));
1097 __free_pages(virt_to_page((void *)addr), order);
1101 EXPORT_SYMBOL(free_pages);
1104 * Total amount of free (allocatable) RAM:
1106 unsigned int nr_free_pages(void)
1108 unsigned int sum = 0;
1112 sum += zone->free_pages;
1117 EXPORT_SYMBOL(nr_free_pages);
1120 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1122 unsigned int i, sum = 0;
1124 for (i = 0; i < MAX_NR_ZONES; i++)
1125 sum += pgdat->node_zones[i].free_pages;
1131 static unsigned int nr_free_zone_pages(int offset)
1133 /* Just pick one node, since fallback list is circular */
1134 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1135 unsigned int sum = 0;
1137 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1138 struct zone **zonep = zonelist->zones;
1141 for (zone = *zonep++; zone; zone = *zonep++) {
1142 unsigned long size = zone->present_pages;
1143 unsigned long high = zone->pages_high;
1152 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1154 unsigned int nr_free_buffer_pages(void)
1156 return nr_free_zone_pages(gfp_zone(GFP_USER));
1160 * Amount of free RAM allocatable within all zones
1162 unsigned int nr_free_pagecache_pages(void)
1164 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1167 #ifdef CONFIG_HIGHMEM
1168 unsigned int nr_free_highpages (void)
1171 unsigned int pages = 0;
1173 for_each_pgdat(pgdat)
1174 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1181 static void show_node(struct zone *zone)
1183 printk("Node %d ", zone->zone_pgdat->node_id);
1186 #define show_node(zone) do { } while (0)
1190 * Accumulate the page_state information across all CPUs.
1191 * The result is unavoidably approximate - it can change
1192 * during and after execution of this function.
1194 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1196 atomic_t nr_pagecache = ATOMIC_INIT(0);
1197 EXPORT_SYMBOL(nr_pagecache);
1199 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1202 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1206 memset(ret, 0, sizeof(*ret));
1208 cpu = first_cpu(*cpumask);
1209 while (cpu < NR_CPUS) {
1210 unsigned long *in, *out, off;
1212 in = (unsigned long *)&per_cpu(page_states, cpu);
1214 cpu = next_cpu(cpu, *cpumask);
1217 prefetch(&per_cpu(page_states, cpu));
1219 out = (unsigned long *)ret;
1220 for (off = 0; off < nr; off++)
1225 void get_page_state_node(struct page_state *ret, int node)
1228 cpumask_t mask = node_to_cpumask(node);
1230 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1231 nr /= sizeof(unsigned long);
1233 __get_page_state(ret, nr+1, &mask);
1236 void get_page_state(struct page_state *ret)
1239 cpumask_t mask = CPU_MASK_ALL;
1241 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1242 nr /= sizeof(unsigned long);
1244 __get_page_state(ret, nr + 1, &mask);
1247 void get_full_page_state(struct page_state *ret)
1249 cpumask_t mask = CPU_MASK_ALL;
1251 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1254 unsigned long __read_page_state(unsigned long offset)
1256 unsigned long ret = 0;
1262 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1263 ret += *((unsigned long *)in);
1268 void __mod_page_state(unsigned long offset, unsigned long delta)
1270 unsigned long flags;
1273 local_irq_save(flags);
1274 ptr = &__get_cpu_var(page_states);
1275 *(unsigned long*)(ptr + offset) += delta;
1276 local_irq_restore(flags);
1279 EXPORT_SYMBOL(__mod_page_state);
1281 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1282 unsigned long *free, struct pglist_data *pgdat)
1284 struct zone *zones = pgdat->node_zones;
1290 for (i = 0; i < MAX_NR_ZONES; i++) {
1291 *active += zones[i].nr_active;
1292 *inactive += zones[i].nr_inactive;
1293 *free += zones[i].free_pages;
1297 void get_zone_counts(unsigned long *active,
1298 unsigned long *inactive, unsigned long *free)
1300 struct pglist_data *pgdat;
1305 for_each_pgdat(pgdat) {
1306 unsigned long l, m, n;
1307 __get_zone_counts(&l, &m, &n, pgdat);
1314 void si_meminfo(struct sysinfo *val)
1316 val->totalram = totalram_pages;
1318 val->freeram = nr_free_pages();
1319 val->bufferram = nr_blockdev_pages();
1320 #ifdef CONFIG_HIGHMEM
1321 val->totalhigh = totalhigh_pages;
1322 val->freehigh = nr_free_highpages();
1327 val->mem_unit = PAGE_SIZE;
1330 EXPORT_SYMBOL(si_meminfo);
1333 void si_meminfo_node(struct sysinfo *val, int nid)
1335 pg_data_t *pgdat = NODE_DATA(nid);
1337 val->totalram = pgdat->node_present_pages;
1338 val->freeram = nr_free_pages_pgdat(pgdat);
1339 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1340 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1341 val->mem_unit = PAGE_SIZE;
1345 #define K(x) ((x) << (PAGE_SHIFT-10))
1348 * Show free area list (used inside shift_scroll-lock stuff)
1349 * We also calculate the percentage fragmentation. We do this by counting the
1350 * memory on each free list with the exception of the first item on the list.
1352 void show_free_areas(void)
1354 struct page_state ps;
1355 int cpu, temperature;
1356 unsigned long active;
1357 unsigned long inactive;
1361 for_each_zone(zone) {
1363 printk("%s per-cpu:", zone->name);
1365 if (!zone->present_pages) {
1371 for_each_online_cpu(cpu) {
1372 struct per_cpu_pageset *pageset;
1374 pageset = zone_pcp(zone, cpu);
1376 for (temperature = 0; temperature < 2; temperature++)
1377 printk("cpu %d %s: high %d, batch %d used:%d\n",
1379 temperature ? "cold" : "hot",
1380 pageset->pcp[temperature].high,
1381 pageset->pcp[temperature].batch,
1382 pageset->pcp[temperature].count);
1386 get_page_state(&ps);
1387 get_zone_counts(&active, &inactive, &free);
1389 printk("Free pages: %11ukB (%ukB HighMem)\n",
1391 K(nr_free_highpages()));
1393 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1394 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1403 ps.nr_page_table_pages);
1405 for_each_zone(zone) {
1417 " pages_scanned:%lu"
1418 " all_unreclaimable? %s"
1421 K(zone->free_pages),
1424 K(zone->pages_high),
1426 K(zone->nr_inactive),
1427 K(zone->present_pages),
1428 zone->pages_scanned,
1429 (zone->all_unreclaimable ? "yes" : "no")
1431 printk("lowmem_reserve[]:");
1432 for (i = 0; i < MAX_NR_ZONES; i++)
1433 printk(" %lu", zone->lowmem_reserve[i]);
1437 for_each_zone(zone) {
1438 unsigned long nr, flags, order, total = 0;
1441 printk("%s: ", zone->name);
1442 if (!zone->present_pages) {
1447 spin_lock_irqsave(&zone->lock, flags);
1448 for (order = 0; order < MAX_ORDER; order++) {
1449 nr = zone->free_area[order].nr_free;
1450 total += nr << order;
1451 printk("%lu*%lukB ", nr, K(1UL) << order);
1453 spin_unlock_irqrestore(&zone->lock, flags);
1454 printk("= %lukB\n", K(total));
1457 show_swap_cache_info();
1461 * Builds allocation fallback zone lists.
1463 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1470 zone = pgdat->node_zones + ZONE_HIGHMEM;
1471 if (zone->present_pages) {
1472 #ifndef CONFIG_HIGHMEM
1475 zonelist->zones[j++] = zone;
1478 zone = pgdat->node_zones + ZONE_NORMAL;
1479 if (zone->present_pages)
1480 zonelist->zones[j++] = zone;
1482 zone = pgdat->node_zones + ZONE_DMA32;
1483 if (zone->present_pages)
1484 zonelist->zones[j++] = zone;
1486 zone = pgdat->node_zones + ZONE_DMA;
1487 if (zone->present_pages)
1488 zonelist->zones[j++] = zone;
1494 static inline int highest_zone(int zone_bits)
1496 int res = ZONE_NORMAL;
1497 if (zone_bits & (__force int)__GFP_HIGHMEM)
1499 if (zone_bits & (__force int)__GFP_DMA32)
1501 if (zone_bits & (__force int)__GFP_DMA)
1507 #define MAX_NODE_LOAD (num_online_nodes())
1508 static int __initdata node_load[MAX_NUMNODES];
1510 * find_next_best_node - find the next node that should appear in a given node's fallback list
1511 * @node: node whose fallback list we're appending
1512 * @used_node_mask: nodemask_t of already used nodes
1514 * We use a number of factors to determine which is the next node that should
1515 * appear on a given node's fallback list. The node should not have appeared
1516 * already in @node's fallback list, and it should be the next closest node
1517 * according to the distance array (which contains arbitrary distance values
1518 * from each node to each node in the system), and should also prefer nodes
1519 * with no CPUs, since presumably they'll have very little allocation pressure
1520 * on them otherwise.
1521 * It returns -1 if no node is found.
1523 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1526 int min_val = INT_MAX;
1529 for_each_online_node(i) {
1532 /* Start from local node */
1533 n = (node+i) % num_online_nodes();
1535 /* Don't want a node to appear more than once */
1536 if (node_isset(n, *used_node_mask))
1539 /* Use the local node if we haven't already */
1540 if (!node_isset(node, *used_node_mask)) {
1545 /* Use the distance array to find the distance */
1546 val = node_distance(node, n);
1548 /* Give preference to headless and unused nodes */
1549 tmp = node_to_cpumask(n);
1550 if (!cpus_empty(tmp))
1551 val += PENALTY_FOR_NODE_WITH_CPUS;
1553 /* Slight preference for less loaded node */
1554 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1555 val += node_load[n];
1557 if (val < min_val) {
1564 node_set(best_node, *used_node_mask);
1569 static void __init build_zonelists(pg_data_t *pgdat)
1571 int i, j, k, node, local_node;
1572 int prev_node, load;
1573 struct zonelist *zonelist;
1574 nodemask_t used_mask;
1576 /* initialize zonelists */
1577 for (i = 0; i < GFP_ZONETYPES; i++) {
1578 zonelist = pgdat->node_zonelists + i;
1579 zonelist->zones[0] = NULL;
1582 /* NUMA-aware ordering of nodes */
1583 local_node = pgdat->node_id;
1584 load = num_online_nodes();
1585 prev_node = local_node;
1586 nodes_clear(used_mask);
1587 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1589 * We don't want to pressure a particular node.
1590 * So adding penalty to the first node in same
1591 * distance group to make it round-robin.
1593 if (node_distance(local_node, node) !=
1594 node_distance(local_node, prev_node))
1595 node_load[node] += load;
1598 for (i = 0; i < GFP_ZONETYPES; i++) {
1599 zonelist = pgdat->node_zonelists + i;
1600 for (j = 0; zonelist->zones[j] != NULL; j++);
1602 k = highest_zone(i);
1604 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1605 zonelist->zones[j] = NULL;
1610 #else /* CONFIG_NUMA */
1612 static void __init build_zonelists(pg_data_t *pgdat)
1614 int i, j, k, node, local_node;
1616 local_node = pgdat->node_id;
1617 for (i = 0; i < GFP_ZONETYPES; i++) {
1618 struct zonelist *zonelist;
1620 zonelist = pgdat->node_zonelists + i;
1623 k = highest_zone(i);
1624 j = build_zonelists_node(pgdat, zonelist, j, k);
1626 * Now we build the zonelist so that it contains the zones
1627 * of all the other nodes.
1628 * We don't want to pressure a particular node, so when
1629 * building the zones for node N, we make sure that the
1630 * zones coming right after the local ones are those from
1631 * node N+1 (modulo N)
1633 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1634 if (!node_online(node))
1636 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1638 for (node = 0; node < local_node; node++) {
1639 if (!node_online(node))
1641 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1644 zonelist->zones[j] = NULL;
1648 #endif /* CONFIG_NUMA */
1650 void __init build_all_zonelists(void)
1654 for_each_online_node(i)
1655 build_zonelists(NODE_DATA(i));
1656 printk("Built %i zonelists\n", num_online_nodes());
1657 cpuset_init_current_mems_allowed();
1661 * Helper functions to size the waitqueue hash table.
1662 * Essentially these want to choose hash table sizes sufficiently
1663 * large so that collisions trying to wait on pages are rare.
1664 * But in fact, the number of active page waitqueues on typical
1665 * systems is ridiculously low, less than 200. So this is even
1666 * conservative, even though it seems large.
1668 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1669 * waitqueues, i.e. the size of the waitq table given the number of pages.
1671 #define PAGES_PER_WAITQUEUE 256
1673 static inline unsigned long wait_table_size(unsigned long pages)
1675 unsigned long size = 1;
1677 pages /= PAGES_PER_WAITQUEUE;
1679 while (size < pages)
1683 * Once we have dozens or even hundreds of threads sleeping
1684 * on IO we've got bigger problems than wait queue collision.
1685 * Limit the size of the wait table to a reasonable size.
1687 size = min(size, 4096UL);
1689 return max(size, 4UL);
1693 * This is an integer logarithm so that shifts can be used later
1694 * to extract the more random high bits from the multiplicative
1695 * hash function before the remainder is taken.
1697 static inline unsigned long wait_table_bits(unsigned long size)
1702 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1704 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1705 unsigned long *zones_size, unsigned long *zholes_size)
1707 unsigned long realtotalpages, totalpages = 0;
1710 for (i = 0; i < MAX_NR_ZONES; i++)
1711 totalpages += zones_size[i];
1712 pgdat->node_spanned_pages = totalpages;
1714 realtotalpages = totalpages;
1716 for (i = 0; i < MAX_NR_ZONES; i++)
1717 realtotalpages -= zholes_size[i];
1718 pgdat->node_present_pages = realtotalpages;
1719 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1724 * Initially all pages are reserved - free ones are freed
1725 * up by free_all_bootmem() once the early boot process is
1726 * done. Non-atomic initialization, single-pass.
1728 void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1729 unsigned long start_pfn)
1732 unsigned long end_pfn = start_pfn + size;
1735 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1736 if (!early_pfn_valid(pfn))
1738 page = pfn_to_page(pfn);
1739 set_page_links(page, zone, nid, pfn);
1740 set_page_count(page, 1);
1741 reset_page_mapcount(page);
1742 SetPageReserved(page);
1743 INIT_LIST_HEAD(&page->lru);
1744 #ifdef WANT_PAGE_VIRTUAL
1745 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1746 if (!is_highmem_idx(zone))
1747 set_page_address(page, __va(pfn << PAGE_SHIFT));
1752 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1756 for (order = 0; order < MAX_ORDER ; order++) {
1757 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1758 zone->free_area[order].nr_free = 0;
1762 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1763 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1766 unsigned long snum = pfn_to_section_nr(pfn);
1767 unsigned long end = pfn_to_section_nr(pfn + size);
1770 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1772 for (; snum <= end; snum++)
1773 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1776 #ifndef __HAVE_ARCH_MEMMAP_INIT
1777 #define memmap_init(size, nid, zone, start_pfn) \
1778 memmap_init_zone((size), (nid), (zone), (start_pfn))
1781 static int __devinit zone_batchsize(struct zone *zone)
1786 * The per-cpu-pages pools are set to around 1000th of the
1787 * size of the zone. But no more than 1/2 of a meg.
1789 * OK, so we don't know how big the cache is. So guess.
1791 batch = zone->present_pages / 1024;
1792 if (batch * PAGE_SIZE > 512 * 1024)
1793 batch = (512 * 1024) / PAGE_SIZE;
1794 batch /= 4; /* We effectively *= 4 below */
1799 * Clamp the batch to a 2^n - 1 value. Having a power
1800 * of 2 value was found to be more likely to have
1801 * suboptimal cache aliasing properties in some cases.
1803 * For example if 2 tasks are alternately allocating
1804 * batches of pages, one task can end up with a lot
1805 * of pages of one half of the possible page colors
1806 * and the other with pages of the other colors.
1808 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1813 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1815 struct per_cpu_pages *pcp;
1817 memset(p, 0, sizeof(*p));
1819 pcp = &p->pcp[0]; /* hot */
1821 pcp->high = 6 * batch;
1822 pcp->batch = max(1UL, 1 * batch);
1823 INIT_LIST_HEAD(&pcp->list);
1825 pcp = &p->pcp[1]; /* cold*/
1827 pcp->high = 2 * batch;
1828 pcp->batch = max(1UL, batch/2);
1829 INIT_LIST_HEAD(&pcp->list);
1834 * Boot pageset table. One per cpu which is going to be used for all
1835 * zones and all nodes. The parameters will be set in such a way
1836 * that an item put on a list will immediately be handed over to
1837 * the buddy list. This is safe since pageset manipulation is done
1838 * with interrupts disabled.
1840 * Some NUMA counter updates may also be caught by the boot pagesets.
1842 * The boot_pagesets must be kept even after bootup is complete for
1843 * unused processors and/or zones. They do play a role for bootstrapping
1844 * hotplugged processors.
1846 * zoneinfo_show() and maybe other functions do
1847 * not check if the processor is online before following the pageset pointer.
1848 * Other parts of the kernel may not check if the zone is available.
1850 static struct per_cpu_pageset
1851 boot_pageset[NR_CPUS];
1854 * Dynamically allocate memory for the
1855 * per cpu pageset array in struct zone.
1857 static int __devinit process_zones(int cpu)
1859 struct zone *zone, *dzone;
1861 for_each_zone(zone) {
1863 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1864 GFP_KERNEL, cpu_to_node(cpu));
1865 if (!zone->pageset[cpu])
1868 setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1873 for_each_zone(dzone) {
1876 kfree(dzone->pageset[cpu]);
1877 dzone->pageset[cpu] = NULL;
1882 static inline void free_zone_pagesets(int cpu)
1887 for_each_zone(zone) {
1888 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1890 zone_pcp(zone, cpu) = NULL;
1896 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1897 unsigned long action,
1900 int cpu = (long)hcpu;
1901 int ret = NOTIFY_OK;
1904 case CPU_UP_PREPARE:
1905 if (process_zones(cpu))
1908 case CPU_UP_CANCELED:
1910 free_zone_pagesets(cpu);
1918 static struct notifier_block pageset_notifier =
1919 { &pageset_cpuup_callback, NULL, 0 };
1921 void __init setup_per_cpu_pageset(void)
1925 /* Initialize per_cpu_pageset for cpu 0.
1926 * A cpuup callback will do this for every cpu
1927 * as it comes online
1929 err = process_zones(smp_processor_id());
1931 register_cpu_notifier(&pageset_notifier);
1937 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1940 struct pglist_data *pgdat = zone->zone_pgdat;
1943 * The per-page waitqueue mechanism uses hashed waitqueues
1946 zone->wait_table_size = wait_table_size(zone_size_pages);
1947 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1948 zone->wait_table = (wait_queue_head_t *)
1949 alloc_bootmem_node(pgdat, zone->wait_table_size
1950 * sizeof(wait_queue_head_t));
1952 for(i = 0; i < zone->wait_table_size; ++i)
1953 init_waitqueue_head(zone->wait_table + i);
1956 static __devinit void zone_pcp_init(struct zone *zone)
1959 unsigned long batch = zone_batchsize(zone);
1961 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1963 /* Early boot. Slab allocator not functional yet */
1964 zone->pageset[cpu] = &boot_pageset[cpu];
1965 setup_pageset(&boot_pageset[cpu],0);
1967 setup_pageset(zone_pcp(zone,cpu), batch);
1970 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1971 zone->name, zone->present_pages, batch);
1974 static __devinit void init_currently_empty_zone(struct zone *zone,
1975 unsigned long zone_start_pfn, unsigned long size)
1977 struct pglist_data *pgdat = zone->zone_pgdat;
1979 zone_wait_table_init(zone, size);
1980 pgdat->nr_zones = zone_idx(zone) + 1;
1982 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1983 zone->zone_start_pfn = zone_start_pfn;
1985 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1987 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1991 * Set up the zone data structures:
1992 * - mark all pages reserved
1993 * - mark all memory queues empty
1994 * - clear the memory bitmaps
1996 static void __init free_area_init_core(struct pglist_data *pgdat,
1997 unsigned long *zones_size, unsigned long *zholes_size)
2000 int nid = pgdat->node_id;
2001 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2003 pgdat_resize_init(pgdat);
2004 pgdat->nr_zones = 0;
2005 init_waitqueue_head(&pgdat->kswapd_wait);
2006 pgdat->kswapd_max_order = 0;
2008 for (j = 0; j < MAX_NR_ZONES; j++) {
2009 struct zone *zone = pgdat->node_zones + j;
2010 unsigned long size, realsize;
2012 realsize = size = zones_size[j];
2014 realsize -= zholes_size[j];
2016 if (j < ZONE_HIGHMEM)
2017 nr_kernel_pages += realsize;
2018 nr_all_pages += realsize;
2020 zone->spanned_pages = size;
2021 zone->present_pages = realsize;
2022 zone->name = zone_names[j];
2023 spin_lock_init(&zone->lock);
2024 spin_lock_init(&zone->lru_lock);
2025 zone_seqlock_init(zone);
2026 zone->zone_pgdat = pgdat;
2027 zone->free_pages = 0;
2029 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2031 zone_pcp_init(zone);
2032 INIT_LIST_HEAD(&zone->active_list);
2033 INIT_LIST_HEAD(&zone->inactive_list);
2034 zone->nr_scan_active = 0;
2035 zone->nr_scan_inactive = 0;
2036 zone->nr_active = 0;
2037 zone->nr_inactive = 0;
2038 atomic_set(&zone->reclaim_in_progress, 0);
2042 zonetable_add(zone, nid, j, zone_start_pfn, size);
2043 init_currently_empty_zone(zone, zone_start_pfn, size);
2044 zone_start_pfn += size;
2048 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2050 /* Skip empty nodes */
2051 if (!pgdat->node_spanned_pages)
2054 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2055 /* ia64 gets its own node_mem_map, before this, without bootmem */
2056 if (!pgdat->node_mem_map) {
2060 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2061 map = alloc_remap(pgdat->node_id, size);
2063 map = alloc_bootmem_node(pgdat, size);
2064 pgdat->node_mem_map = map;
2066 #ifdef CONFIG_FLATMEM
2068 * With no DISCONTIG, the global mem_map is just set as node 0's
2070 if (pgdat == NODE_DATA(0))
2071 mem_map = NODE_DATA(0)->node_mem_map;
2073 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2076 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2077 unsigned long *zones_size, unsigned long node_start_pfn,
2078 unsigned long *zholes_size)
2080 pgdat->node_id = nid;
2081 pgdat->node_start_pfn = node_start_pfn;
2082 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2084 alloc_node_mem_map(pgdat);
2086 free_area_init_core(pgdat, zones_size, zholes_size);
2089 #ifndef CONFIG_NEED_MULTIPLE_NODES
2090 static bootmem_data_t contig_bootmem_data;
2091 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2093 EXPORT_SYMBOL(contig_page_data);
2096 void __init free_area_init(unsigned long *zones_size)
2098 free_area_init_node(0, NODE_DATA(0), zones_size,
2099 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2102 #ifdef CONFIG_PROC_FS
2104 #include <linux/seq_file.h>
2106 static void *frag_start(struct seq_file *m, loff_t *pos)
2111 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2117 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2119 pg_data_t *pgdat = (pg_data_t *)arg;
2122 return pgdat->pgdat_next;
2125 static void frag_stop(struct seq_file *m, void *arg)
2130 * This walks the free areas for each zone.
2132 static int frag_show(struct seq_file *m, void *arg)
2134 pg_data_t *pgdat = (pg_data_t *)arg;
2136 struct zone *node_zones = pgdat->node_zones;
2137 unsigned long flags;
2140 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2141 if (!zone->present_pages)
2144 spin_lock_irqsave(&zone->lock, flags);
2145 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2146 for (order = 0; order < MAX_ORDER; ++order)
2147 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2148 spin_unlock_irqrestore(&zone->lock, flags);
2154 struct seq_operations fragmentation_op = {
2155 .start = frag_start,
2162 * Output information about zones in @pgdat.
2164 static int zoneinfo_show(struct seq_file *m, void *arg)
2166 pg_data_t *pgdat = arg;
2168 struct zone *node_zones = pgdat->node_zones;
2169 unsigned long flags;
2171 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2174 if (!zone->present_pages)
2177 spin_lock_irqsave(&zone->lock, flags);
2178 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2186 "\n scanned %lu (a: %lu i: %lu)"
2195 zone->pages_scanned,
2196 zone->nr_scan_active, zone->nr_scan_inactive,
2197 zone->spanned_pages,
2198 zone->present_pages);
2200 "\n protection: (%lu",
2201 zone->lowmem_reserve[0]);
2202 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2203 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2207 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2208 struct per_cpu_pageset *pageset;
2211 pageset = zone_pcp(zone, i);
2212 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2213 if (pageset->pcp[j].count)
2216 if (j == ARRAY_SIZE(pageset->pcp))
2218 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2220 "\n cpu: %i pcp: %i"
2225 pageset->pcp[j].count,
2226 pageset->pcp[j].high,
2227 pageset->pcp[j].batch);
2233 "\n numa_foreign: %lu"
2234 "\n interleave_hit: %lu"
2235 "\n local_node: %lu"
2236 "\n other_node: %lu",
2239 pageset->numa_foreign,
2240 pageset->interleave_hit,
2241 pageset->local_node,
2242 pageset->other_node);
2246 "\n all_unreclaimable: %u"
2247 "\n prev_priority: %i"
2248 "\n temp_priority: %i"
2249 "\n start_pfn: %lu",
2250 zone->all_unreclaimable,
2251 zone->prev_priority,
2252 zone->temp_priority,
2253 zone->zone_start_pfn);
2254 spin_unlock_irqrestore(&zone->lock, flags);
2260 struct seq_operations zoneinfo_op = {
2261 .start = frag_start, /* iterate over all zones. The same as in
2265 .show = zoneinfo_show,
2268 static char *vmstat_text[] = {
2272 "nr_page_table_pages",
2297 "pgscan_kswapd_high",
2298 "pgscan_kswapd_normal",
2300 "pgscan_kswapd_dma",
2301 "pgscan_direct_high",
2302 "pgscan_direct_normal",
2303 "pgscan_direct_dma",
2308 "kswapd_inodesteal",
2316 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2318 struct page_state *ps;
2320 if (*pos >= ARRAY_SIZE(vmstat_text))
2323 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2326 return ERR_PTR(-ENOMEM);
2327 get_full_page_state(ps);
2328 ps->pgpgin /= 2; /* sectors -> kbytes */
2330 return (unsigned long *)ps + *pos;
2333 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2336 if (*pos >= ARRAY_SIZE(vmstat_text))
2338 return (unsigned long *)m->private + *pos;
2341 static int vmstat_show(struct seq_file *m, void *arg)
2343 unsigned long *l = arg;
2344 unsigned long off = l - (unsigned long *)m->private;
2346 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2350 static void vmstat_stop(struct seq_file *m, void *arg)
2356 struct seq_operations vmstat_op = {
2357 .start = vmstat_start,
2358 .next = vmstat_next,
2359 .stop = vmstat_stop,
2360 .show = vmstat_show,
2363 #endif /* CONFIG_PROC_FS */
2365 #ifdef CONFIG_HOTPLUG_CPU
2366 static int page_alloc_cpu_notify(struct notifier_block *self,
2367 unsigned long action, void *hcpu)
2369 int cpu = (unsigned long)hcpu;
2371 unsigned long *src, *dest;
2373 if (action == CPU_DEAD) {
2376 /* Drain local pagecache count. */
2377 count = &per_cpu(nr_pagecache_local, cpu);
2378 atomic_add(*count, &nr_pagecache);
2380 local_irq_disable();
2383 /* Add dead cpu's page_states to our own. */
2384 dest = (unsigned long *)&__get_cpu_var(page_states);
2385 src = (unsigned long *)&per_cpu(page_states, cpu);
2387 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2397 #endif /* CONFIG_HOTPLUG_CPU */
2399 void __init page_alloc_init(void)
2401 hotcpu_notifier(page_alloc_cpu_notify, 0);
2405 * setup_per_zone_lowmem_reserve - called whenever
2406 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2407 * has a correct pages reserved value, so an adequate number of
2408 * pages are left in the zone after a successful __alloc_pages().
2410 static void setup_per_zone_lowmem_reserve(void)
2412 struct pglist_data *pgdat;
2415 for_each_pgdat(pgdat) {
2416 for (j = 0; j < MAX_NR_ZONES; j++) {
2417 struct zone *zone = pgdat->node_zones + j;
2418 unsigned long present_pages = zone->present_pages;
2420 zone->lowmem_reserve[j] = 0;
2422 for (idx = j-1; idx >= 0; idx--) {
2423 struct zone *lower_zone;
2425 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2426 sysctl_lowmem_reserve_ratio[idx] = 1;
2428 lower_zone = pgdat->node_zones + idx;
2429 lower_zone->lowmem_reserve[j] = present_pages /
2430 sysctl_lowmem_reserve_ratio[idx];
2431 present_pages += lower_zone->present_pages;
2438 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2439 * that the pages_{min,low,high} values for each zone are set correctly
2440 * with respect to min_free_kbytes.
2442 void setup_per_zone_pages_min(void)
2444 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2445 unsigned long lowmem_pages = 0;
2447 unsigned long flags;
2449 /* Calculate total number of !ZONE_HIGHMEM pages */
2450 for_each_zone(zone) {
2451 if (!is_highmem(zone))
2452 lowmem_pages += zone->present_pages;
2455 for_each_zone(zone) {
2457 spin_lock_irqsave(&zone->lru_lock, flags);
2458 tmp = (pages_min * zone->present_pages) / lowmem_pages;
2459 if (is_highmem(zone)) {
2461 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2462 * need highmem pages, so cap pages_min to a small
2465 * The (pages_high-pages_low) and (pages_low-pages_min)
2466 * deltas controls asynch page reclaim, and so should
2467 * not be capped for highmem.
2471 min_pages = zone->present_pages / 1024;
2472 if (min_pages < SWAP_CLUSTER_MAX)
2473 min_pages = SWAP_CLUSTER_MAX;
2474 if (min_pages > 128)
2476 zone->pages_min = min_pages;
2479 * If it's a lowmem zone, reserve a number of pages
2480 * proportionate to the zone's size.
2482 zone->pages_min = tmp;
2485 zone->pages_low = zone->pages_min + tmp / 4;
2486 zone->pages_high = zone->pages_min + tmp / 2;
2487 spin_unlock_irqrestore(&zone->lru_lock, flags);
2492 * Initialise min_free_kbytes.
2494 * For small machines we want it small (128k min). For large machines
2495 * we want it large (64MB max). But it is not linear, because network
2496 * bandwidth does not increase linearly with machine size. We use
2498 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2499 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2515 static int __init init_per_zone_pages_min(void)
2517 unsigned long lowmem_kbytes;
2519 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2521 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2522 if (min_free_kbytes < 128)
2523 min_free_kbytes = 128;
2524 if (min_free_kbytes > 65536)
2525 min_free_kbytes = 65536;
2526 setup_per_zone_pages_min();
2527 setup_per_zone_lowmem_reserve();
2530 module_init(init_per_zone_pages_min)
2533 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2534 * that we can call two helper functions whenever min_free_kbytes
2537 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2538 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2540 proc_dointvec(table, write, file, buffer, length, ppos);
2541 setup_per_zone_pages_min();
2546 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2547 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2548 * whenever sysctl_lowmem_reserve_ratio changes.
2550 * The reserve ratio obviously has absolutely no relation with the
2551 * pages_min watermarks. The lowmem reserve ratio can only make sense
2552 * if in function of the boot time zone sizes.
2554 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2555 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2557 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2558 setup_per_zone_lowmem_reserve();
2562 __initdata int hashdist = HASHDIST_DEFAULT;
2565 static int __init set_hashdist(char *str)
2569 hashdist = simple_strtoul(str, &str, 0);
2572 __setup("hashdist=", set_hashdist);
2576 * allocate a large system hash table from bootmem
2577 * - it is assumed that the hash table must contain an exact power-of-2
2578 * quantity of entries
2579 * - limit is the number of hash buckets, not the total allocation size
2581 void *__init alloc_large_system_hash(const char *tablename,
2582 unsigned long bucketsize,
2583 unsigned long numentries,
2586 unsigned int *_hash_shift,
2587 unsigned int *_hash_mask,
2588 unsigned long limit)
2590 unsigned long long max = limit;
2591 unsigned long log2qty, size;
2594 /* allow the kernel cmdline to have a say */
2596 /* round applicable memory size up to nearest megabyte */
2597 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2598 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2599 numentries >>= 20 - PAGE_SHIFT;
2600 numentries <<= 20 - PAGE_SHIFT;
2602 /* limit to 1 bucket per 2^scale bytes of low memory */
2603 if (scale > PAGE_SHIFT)
2604 numentries >>= (scale - PAGE_SHIFT);
2606 numentries <<= (PAGE_SHIFT - scale);
2608 /* rounded up to nearest power of 2 in size */
2609 numentries = 1UL << (long_log2(numentries) + 1);
2611 /* limit allocation size to 1/16 total memory by default */
2613 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2614 do_div(max, bucketsize);
2617 if (numentries > max)
2620 log2qty = long_log2(numentries);
2623 size = bucketsize << log2qty;
2624 if (flags & HASH_EARLY)
2625 table = alloc_bootmem(size);
2627 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2629 unsigned long order;
2630 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2632 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2634 } while (!table && size > PAGE_SIZE && --log2qty);
2637 panic("Failed to allocate %s hash table\n", tablename);
2639 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2642 long_log2(size) - PAGE_SHIFT,
2646 *_hash_shift = log2qty;
2648 *_hash_mask = (1 << log2qty) - 1;